FORMAL POISSON COHOMOLOGY OF QUADRATIC POISSON
STRUCTURES

PHILIPPE MONNIER

ABSTRACT. In this paper, we compute the formal Poisson cohomology of qua-
dratic Poisson structures. We first recall that, generically, quadratic Poisson
structures are diagonalizable. Then we compute the formal cohomology of
diagonal Poisson structures.

INTRODUCTION

A Poisson structure on a manifold M is given by a 2-vector II which satisfies
L] =0

where [, ] : X*(M) x X*(M) — X2FP(M) is the Schouten bracket (see [9]). We
recall that X*(M) denotes the vector space of a-vectors on M, i.e. the space of
sections of the vector bundle A*(T'M). We will say that a Poisson structure II
on a vector space V is quadratic if, for any linear functions f and g, the function
TI(df A dg) is a quadratic polynomial. Using coordinates (x1,...,z,), this can be
written 9 9
II= Zafjxr:ﬂsa—xi A o,
1<J
r<s

where the a}? are constants.
Such structures have a particular application in mathematical physics. It is possible
to construct quadratic Poisson structures from a solution of the classical Yang-
Baxter equation (see [16]). Some informations on the quantization of quadratic
Poisson structures may be found in [5], [11] and [14]. Some classifications in low
dimension of quadratic Poisson structures have been established, for instance, in
[1], [3] and [10]. Finally, for a Poisson structure which has a zero 1-jet at a point,
the problem of “quadratization” (i.e. of finding a coordinate system in which the
expression of the Poisson structure is quadratic) arises naturally (see [2] and [8]).

The Poisson cohomology of a Poisson structure was introduced by Lichnerowicz
in [9]. It is constructed as follows. If (M,II) is a Poisson manifold, we consider the
linear maps OF

xR ) 25 xRy 25 AR () —

defined by 9%(A) = [A, 1] ([, ] indicates the Schouten bracket). It can be shown
that 0% o 9*~! = 0. The induced cohomology spaces H*(M,1II) are the Poisson
cohomology spaces of (M, II).

These cohomology spaces are invariants of the Poisson structure and they have

1991 Mathematics Subject Classification. 53D17.
Key words and phrases. Quadratic Poisson structures, Poisson cohomology.

1



2 PHILIPPE MONNIER

applications for instance in problems of deformation of the structure. The main
feature of this cohomology is that it is particularly difficult to compute. Among the
publications on this subject, the explicit results are scarce. It is fairly easy to see
that if the Poisson structure is “symplectic” then its cohomology is isomorphic to
the de Rham cohomology. The case of regular Poisson structures has been studied,
for instance, by P. Xu ([21]) and I. Vaisman ([17], [18]). In [7], V. Ginzburg and
A. Weinstein consider the Poisson cohomology of Lie-Poisson groups. Finally, in
dimension two, the Poisson cohomology has been studied and computed in [12],
[13] and [15].

In this paper, the aim is to compute the formal Poisson cohomology of quadratic
Poisson structures, which means that we work with formal k-vectors instead of
smooth or analytic ones. The 2-dimensional case has already been studied by N.
Nakanishi in [13]. Here, we work in R™ (the results can be extended to C™) with
n > 2.

In the first section, we recall that under a hypothesis of genericity, a quadratic
Poisson structure is diagonalizable. Then, in the following two sections, we com-
pute the Poisson cohomology of diagonal Poisson structures. We first study the
3-dimensional case (section 2). In this situation, the diagonal Poisson structures
may be interpreted in terms of the geometry of R3. The computation of the coho-
mology is then reduced to an elementary problem of geometry. Moreover, we can
make the cohomology spaces explicit in a relatively clear way.

Finally, in the last section, we generalize to higher dimensions.

We note that some informations on the space H?(II) have been given in [4] by J.-P.
Dufour and A. Wade in order to study normal forms of Poisson structures.

Acknowledgements. I would like to thank J.-P. Dufour for calling my attention
on this problem and for his comments on this paper.

1. DIAGONALIZABLE POISSON STRUCTURES

We first recall the definition of the curl vector fields of an oriented Poisson man-
ifold (M,II). This notion of curl has been defined in [3] (also in [20] under the
name of modular vector field) in order to classify quadratic Poisson structures in
dimension 3.

Let v be a volume form on M. We denote by »° the isomorphism X?(M) —
Q" P(M) (where Q" P(M) is the vector space of the (n — p)-forms on M) with
v°(u) = iyv (the contraction of v by u). The curl of II (with respect to v) is the
vector field D,II = (v*)~! o d o v°(II).

If IT is a quadratic Poisson structure on a vector space V, its curl (with respect to
v) is then a linear vector field whose trace is zero. Moreover, the Jordan decompo-
sition of D,II is an invariant of II. Consequently, we can define the eigenvalues of
IT as the eigenvalues of its curl (with respect to any volume form).

We will say that a quadratic Poisson structure I on R" is diagonalizable if there
exists a coordinate system (z1,...,2,) in which II can be written as

0 0
II = Zaijxixja—xi A\ 87.13_7

1<j
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where the a;; are constants.

Diagonal Poisson structures play a part, for instance, in some integrable systems
(see [6]). Actually, quadratic Poisson structures are generically diagonalizable; more
precisely :

Theorem 1.1. [3] If the eigenvalues \; of a quadratic Poisson structure II do not
satisfy relations of type

/\i+/\j:/\r+)\s (*)
with r # s and {i,j} # {r, s}, then the Poisson structure I is diagonalizable.

Remark 1.2. In [19], A. Wade showed (it is not obvious) that if a quadratic Poisson
structure is diagonalizable, then its diagonal form is unique up to a permutation of
the coordinates.

2. COMPUTATION OF THE COHOMOLOGY IN DIMENSION 3

In this section, we work in R? with the coordinates (x,y, 2).
We will use the following notation (already introduced in [4]):
0 0 0
X=z— Y =y— Z=z—.
o 4 oy “92
We consider a diagonal Poisson structure II on R? of the form
M=aYANZ+bZANX+cXANY

where a, b and ¢ are in R.

2.1. Notation. We are going to adopt the following notation:
XO(R3) is the vector space of formal series (i.e. R[[z,y, z]]),
X1(R3) is the vector space of formal vector fields on R3,
X2(R3) is the vector space of formal 2-vectors on R3,
X3(R3) is the vector space of formal 3-vectors on R3.

Let us express the elements in these spaces in terms of X, Y and Z, rather than

o 0 9 : : o _ ,.—1
32> 3y and 5 (allowing expressions such as 77 = z7 X).

Remark : In this paper, N is the set of non-negative integers.

e Every element f in X°(R3) may be written as
f=2 af?
Iens

where the \; are in R and (0 = z%1y%2% if T = (iy, 4o, 143).

e In the same way, every element V in X'1(R3) may be written as

V= Z fOvy

Ie(NU{—-1})3

with £ = a1y22% (I = (iy,49,43)) and V7 = ay X + B;Y + v1Z where oy, 81,
and ~y; are real numbers which are zero if I has two or three negative components.
If I has exactly one negative component then two real numbers among «;, Gy and
~r are zero; for instance, if I = (—1,49,143) then 8y =~; = 0.
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e Every element A in X?(R?®) may be written as
Y
Ie(Nu{-1})3

with Ay = a;Y ANZ + B Z AN X + v X ANY where af, 81, and ~; are real numbers
which are zero if I has three negative components. If I has exactly two negative
components then two real numbers among «aj, 87 and ~y; are zero; for instance, if
I =(-1,-1,i3) then ay = B; = 0. If I has exactly one negative component then
one real number among oy, G and 7y is zero; for instance, if I = (—1,42,43) then
oy = 0.

e Every element I' of X3(R?) may be written as

= >  MfOXAYAZ
Ie(Nu{-1})3

where A\; are in R and f) = giyi22% (I = (iy, iy, 13)).

We can then set, for I € (NU{—1})3,

R = (AP AeR)

XIRY = {fD(aX +BY +72); o, 8,7 € R}

2R3 = {fDQYANZ+BZANX+yXAY); o, 8,7 € R}
XER? = (MOXAYAZ; NeR}

with the convention
XP(R3) = {0} if I has at least one negative component
X} (R3) = {0} if I has at least two negative components
XE(R3) ={0}if I = (—1,-1,-1).

Remark 2.1. It is important to note that, unless the & 1] vanish, we can identify in
an obvious way X7 with R, X7 with R, X} with a subspace E} of R?® and X7 with
a subspace E? of R?, where E} = R® and E? = R3 if I € N and, for instance,

E(lfl,ig,ig) = {(,0,0) e R* a € R}
E(271,i2,i3) = {(0,8,7) € R% B, € R}
E(271,71,i3) = {(0,0,v) € R3 € R}

2.2. Description of the Poisson complex. In our case, the complex defining
the Poisson cohomology of 1T is

0 — 2[R} 2 ¥R 25 A2RY) L A3(RY) — 0
with, for T € X%, (T) = [T, 1] ([, ] indicates the Schouten bracket).
i) Computation of 8°(X?(R?)):
Take I € N® and fU) = z1y22% € XP(R?). A short calculation gives
(D) = D ((ciy — biz)X + (aiz — cir)Y + (bir — ai2)Z) (o).
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ii) Computation of &' (X} (R?)):
Take V = fDV; € XH(K?) with Vi = aX + Y +~Z.
Let us suppose that I € N3: we then have
o'y = [fPvi.1
= [, fO) AV — f D[, vy
—°(fDYAVI+0

Therefore,
vy = o (ﬁ(bil — aiz) — y(aiz — cil))Y NZ
+FD (y(cig — big) — a(biy — ais)) Z A X
+1D(alaiz — cir) — Bleiz — big)) X AY (1)

Now, if we assume, for instance, that I = (—1,1i2,i3) with is,i3 € N, then we can
write V = af(NX = aga% where g = y%22%. Consequently, it is possible to show
that

') = fD(a(aiz — b(—=1))Z A X + a(aiz — c(~1)) X AY)

which is the same expression as (x1) with § =~ = 0.

iii) Computation of §%(X?(R?)):
Take A = fOA; € XP(R3) with Ay =Y AZ +BZAX +4X AY.
We first suppose that I € N3: we then have

O*(A) = [IL, fO) AN+ O[T, Ay

which implies that
P (A) = D (aleiz — bis) + Blaiz — cir) +y(bir — ai2)) X ANY AZ (x2).

Now, if we suppose, for instance, that I = (—1,4s,i3) with i9,i3 € N, then we can
write A = fD(BZ A X +yX AY) and it is possible to show that

(M) = 1D (Blais — c(~1)) + 1(b(~1) — aiz) X A\Y A Z,
which is the same expression as (x3) with o = 0.
Finally, if we suppose that I = (—1,—1,i3) with i3 € N, we can write A as A =
vfDX AY and, in the same way, it is possible to show that
G2(A) = FD (4(b(~1) — a(~ 1)) X AY A Z,

which is the same expression as (x2) with o« = 8 = 0.

2.3. Computation of the cohomology. It follows from the previous section that
the computation of our cohomology may be done “degree by degree”, that is to say
that it is sufficient to study, for each I € (N U {—1})3, the cohomology of the
complex

0 — AR 2 LR 25 A2(R?) L AB(RY) — 0

Now, using the identifications made in remark 2.1, we see that the computation is
reduced to an elementary problem of geometry in R3. Indeed, if we denote by P
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the vector of R3 of coordinates (a,b,c), our problem reduces to the study of the
complex (Ky)

O—>R6—?>E}5—}>E?5—?>R—>O (Kr)
with
8\ = MxP
53(V) = Vx(IxP)
51 (W) = W.(IxP)

where x indicates the cross product on R® and . is the dot product on R3.

We will denote by H?(II), H} (1), H?(II) and H3(II) the cohomology spaces of this
complex.

The following proposition is clear

Proposition 2.2. If I x P =0 then we have HY(Il) ~ R, H}(II) ~ E} , HF(II) ~
E? and H}(II) ~ R.

In the sequel, we assume that I x P # 0.

We clearly have H?(II) = {0}. The computation of the spaces H}(II), HZ(II) and
H3(IT) depends on the vector I, more precisely, on the number of negative compo-
nents of I. We are going to distinguish three cases.

First case : We suppose that I € N3.

e Let V be in E} with 6;(V) = 0. Since V x (I x P) =0, the vectors V and I x P
are collinear, i.e. there exists a real number A such that V = AI x P. Consequently,
V =6%(N).

We deduce that H}(IT) = {0}.

e Let W be in E? with 62(W) = 0. Since W.(I x P) = 0, the vectors W and I x P
are orthogonal. Therefore, the vectors W, I and P are coplanar.

If we put V = ﬁw x (I x P), we get 6:(V)=W.

We deduce that HZ(II) = {0}.

e Finally, it is clear that H3(II) = {0}.

Second case : We suppose, for instance, that I = (—1,1s,143) with is,i3 € N.
The complex is then reduced to

0B LR
with

E; = {(a,0,0) € R?} a R}

Ei = {(0,8,7) € R* B,y € R}

e Let V in E} be such that (V) = 0. We suppose that V' # 0. Since V is collinear
with I x P, it is in particular orthogonal to I. Consequently, the vector I is in
the plane which is orthogonal to V. This plane is V* = {(0,3,7); 3,7 € R}. The
vector I cannot be in this plane. Therefore, V = 0.
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17T —
We deduce that Hj(II) = {0}.

e Let W in E?\ {0} be such that §2(W) = 0. The vector W is then orthogonal to
I x P and so the vectors W, I and P are coplanar. Now, if we denote by Vect(I, P)
the plane spanned by I and P, since E? # Vect(I, P) (I € E?), the vector W is a
generator of the line E? N Vect(I, P).

Now, we consider V € E} such that §}(V) = V x (I x P) # 0. Such a vector
exists because I is not orthogonal to E}. Since the vectors V x (I x P) and I x P
are orthogonal, the vector V x (I x P) is in Vect(I, P). On the other hand, we
have V x (I x P) € (E})* = E%. Consequently, the vector V x (I x P) is in
E? N Vect(I, P) and is different from zero. Therefore, it is possible to find a real
number \ such that 6}(AV) = W.

We deduce that HZ(IT) = {0}.

e Finally, we have §2(E?) = {0} or R. If §2(W) = 0 for every W € E?, then the
vector I x P is orthogonal to E? i.e. E? = Vect(I,P). Thus I is in E? which is
false. Consequently, 67(E%) = R which implies that H7(II) = {0}.

Third case : We suppose, for instance, that I = (=1, —1,i3) with i3 € N.
The complex is then reduced to

2
0—>E? LR—)O
with
E7f ={(0,0,7) € R% y € R}.

Here, it is sufficient to work with the formula (x3).
If b # a then it is clear that H?(II) = {0} and H3?(II) = {0}.

If b = a then we see that H?Z(II) zR.(ziB’a% A 8%) and H3(IT) ~ R.(zig’(% A 6% NZ).

Fourth case : We suppose that I = (-1, -1, —1).
In this case, it is clear that H7(II) ~ R.(:Z A 8% NE).

We can now sum up these results in the following proposition.

Proposition 2.3. We suppose that I x P # 0.
1- If I has at most 1 negative component then the compler Ky is acyclic.
2- If I has 2 negative components, for instance I = (—1,—1,13), then
if a £ b, the complex Ky is acyclic.
if a = b, we have H(I) = {0}, H#(II) ~ R.(zi?’a% A a%) and H3(I1) ~
R.(2% & NG AZ). 8- If I = (=1,-1,-1) then HF(I) = {0} for k < 3 and

H}ID) =~ R.(Z AL AL

We deduce the cohomology of IT in the case when a, b and ¢ are pairwise distinct.

Corollary 2.4. Let II be a Poisson structure on R? of type

M=aV AZ+bZAX +cXAY,
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with a, b and ¢ pairwise distinct.
Then the formal cohomology spaces of 11 are

HOII) ~ { Z Arxty'22% 5 A; real numbers }

Ien?®
IxP=0

HY(I) ~ { Z sy (o X + B1Y +v12Z) 5 g, Br,yr real numbers }

Ie(Nu{-1})®
IxP=0
I has at most
1 negative component

0

HQ(H) ~ { g xilyigzi3(a1Y/\Z+ﬁIZ/\X—|—71X/\Y) ; arg, Br,yr real numbers }
Ie(Nu{-1})3
IxP=0
I has at most
2 negative components
H3(T) =~ { E Arzy22# X ANY A Z ;5 ap real numbers }@R.i/\g/\
or 0Oy

Ie(Nu{-1})3
IxP=0

Let us note that the relation I x P = 0 means that the vectors I and P are
collinear, which implies the existence of a real number £ such that (£a,&b,&c) €
(NU{-1})%.

2.4. Examples. In the examples i) and i), we describe the cohomology spaces in
the case when a, b and ¢ are not pairwise distinct. The third example is just an
illustration of the corollary 2.4.

1) We suppose that I = yza% A % + xz% A % + xy% A a%'
We have P = (1,1,1); therefore, for I in (NU {—1})3, the relation I x P = 0 is
equivalent to the statement that I = (k, k, k) with &k in NU {-1}.

We deduce that

HO(II) = R[[(zy2)]
H'(II) =~ R[[(zy2)]-X @ R[[(zy2)]].Y & R[[(zy2)]].Z
H*(I) ~ R[[(zy2)].Y A Z @ R[[(zy2)]]-Z A X & R[[(zy2)]]. X AY
@R[[x]]% A % @R[[y]]% A (% @R[[z]]% A (%
H3 () ~ ]R[[(xyz)]]ag %A?@R[[ ] X/\(%/\%
D R[[y]] aﬁ ANY A % @R[[z]]% A aé NZ
1) We suppose that IT = yza% A 6% + scza% A % — Qxy% A a%'

Since P = (1,1, —2), the sets I in (NU{—1})? satisfying the relation I x P = 0 are
(—1,-1,2) and (0,0,0).

0z’
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‘We deduce that

H°OI) ~ R
H'(T) ~ RXeR.Y®OR.Z
a 0
H*(II) ~ RYANZOR.IZAXPR.XAY & R[[z]]l.— A —
(II) NZ® AX @ AY @ [[z]]aany
o o 0
H3(I) ~ Rlz]l.—A—A—OR.XAYAZ
(1) [l 55 A 5y " 3z ORAAY A

i11) We suppose that II = ayza% A % + a:z% A % - xy% A a% with a a nonrational

real number. We have P = (a,1,—1). Let I in (NU{—1})3 be such that I x P = 0.
Therefore there exists a real number \ satisfying AP € Z3, which is possible only
when A is zero. Consequently, I = (0,0,0).

We deduce that

HY(I) ~ R
H'(TI) ~ R.XeR.Y®R.Z
H*T) ~ RYANZOGR.ZAXSR.XAY
o o 0
H3I) ~ R.—A—A=—0R.XAYAZ
() ax/\ﬁy/\az@ 4

Remark 2.5. Unfortunately, the cohomology spaces do not enable us to distinguish
the diagonal Poisson structures, up to isomorphism. Indeed, we can consider the
Poisson structure IT defined in example iii) above, and the Poisson structure A
given by

A—b 0 0 0 0 0 0

= yza—y/\g—i-xz@/\%—xy%/\a—y,

where b is an nonrational real number different from a and —a.
The Poisson structures IT and A have cohomologies which are isomorphic. However,
they are not equivalent because their curls are not isomorphic.

3. GENERALIZATION

Of course, we can recover the results of the previous section by setting n = 3 in
the results of this section. The purpose of Section 2 was to clarify the geometrical
meaning of the diagonal Poisson structures and of their cohomology.

For each k in {1,...,n}, let Y; denote the vector field xk%. We adopt the
convention x;lYk = 8%'
k

Consider a diagonal Poisson structure IT on R™ (n > 3), written
7] 7]
H = Zaijfﬂil’j% A 875(,‘1 = ZQUY? /\}/j .
i<j 1<J

The advantage of using the vector fields Y} is that, in some computations, we can
consider that we are working on the exterior algebra of a vector space spanned by
Yi,...,Y,.
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In the same way as in the previous section, we denote by X" (R™) the vector
space of formal r-vectors on R™ and, for I = (41,...,i,) € NU{-1})",

XPRY) ={2" > AgVi, A AYR T

KeN"
k1<...<k.,

where z! =z ... xin.
If I has r 4+ 1 or more negative components, we set X7 (R") = {0}.
As above, we have

X" (R") = @remug-1hn A7 (R").
For I in (NU{—1})", we denote by A.I the vector field

Al = Z Z%klk Zaj

j=1 k=1
with o = >"0_, ajkik-

3.1. Description of the cobord operator. Let I be in N” and take A in A7 (R™)
of type ' A; with
el = g g

Ar = > AV A

KeN"
k1<...<k,

We have
AT = (=1)"[2'] AA;+ (=1) 2! [IL, Af)
= (71)T$I( Z am)(iqu - Zu}/u)) AN +0

u<<v

= (—1)%1(2(2 Quviv)Yu) A Ag
u=1 v=1
Consequently,
"(A) = [ATI) = 2T A; A (AD) = AN (AT).

In the same way, it is possible to show that if I has negative components, we obtain
the same expression.

We note, as in the previous section, that the computation of the cohomology can
be done “degree by degree” i.e. we need only study the complex

O—>XIO(R") — ... — AR") —0

for each I € (NU{—1})". If we denote by HJ(II) the cohomology spaces of these
complexes, we will have H"(II) = & H7 (II).

3.2. The computation of the cohomology. Let I be in (NU{—1})". We set

Zi(I) = {A € &7 (R"); 0"(A) = 0},
Bi(Il) = {0"7'(B); Be X' (R")},
and Hi(Il) = Zj/B}.

First case : We suppose that A.I = 0.
In this case, it is clear that Z7(IT) = A7 (R™) and BJ(II) = {0}.
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Proposition 3.1. If A.I =0, then Hf(II) = X7 (R"™).

Second case : We suppose that A.I # 0.
Here again, the expression of the cohomology spaces Hj (IT) depends on the number
of negative components of I.

1- We first assume that I does not have negative components, i.e. I € N,
We are going to state the following proposition.

Proposition 3.2. If I does not have negative components, then Hf(II) = {0}.
In particular, we have HO(I1) = @4 1o X? (R™).

Proof : Let A in Z7(II). We can write A = 2/ A;. We then have
0=0"(A) =alA; A (AT).
Therefore, there exists T’y in X7~ ! (R"), with

= > AV A AYk
Kenr—!
ki1<...<kr_1

which satisfies
Ar=T;A(AI).
We deduce that A = 0"~ 1(zT';). m

2- Now, we assume that the n-tuple I has exactly s negative components with
s <.
We recall that A.J =37, ;Y; with a; = 7)) ajkix.

Proposition 3.3. Suppose that I has exactly s negative components with s < r,
for instance iy, = ... =1,, = —1.

1-If Al # oy Yy, +... +a,Y,, then Hf(II) = {0}.

2-If Al =, Yy, + ...+ .Yy, then H(II) = X7 (R™).

Proof : 1- We first suppose that A.J # o, Yy, + ... + o, Y,,. We consider A in
Z7 (1), and we write A = 2/ A; with

Ar=u, A...ANY,)AO

where © is an (r — s)-vector which does not depend on Y, ,...,Y,, and which can
be written as

Z QKYkl /\-~-/\Ykr,s .

KeN™—s
k1<..<kr_s

In order to simplify the notation, let us suppose that s = 2 and i1 = i5 = —1 (the
proof in the general case can be done in the same way).

We then have A; = Y7 A Y2 A © (O does not depend on Y] and Y5).

Since A is an r-cocycle, we must have

ViAYa AOA (anV1) + Vi AY2 AOA (azY2) + Y Vi AYa AOA (%) =0
j=3
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i.e.

Y1 AYs A (ZajeAYj) =0.
7=3
We deduce that (because © does not depend on Y; and Y3)

> a0AY; =0
j=3
i.e.
OA (A.I—qul —ang) =0.
Now, since A.T # a1Y7 + axYs, there exists an (r — 3)-vector A of type

A= Z 6KYI€1/\--~/\YI<:T,3

KeNT—3
ki<..<kp_3

such that
O=ArA (AI - Y] — CYQ}/Q) .

Therefore, we can write
Ar=Y1; /\YQ/\A[/\(A.I).
Now, if we set I' = 2/Y; A Yo A Az, we have 0"~ 1(T') = A.

2- Now, we suppose that A.] = «a,,Y,, + ... + @, Y,,. In this case, since
Yu, A...AY,, divides A, it is clear that, if A is in A7, then 9"(A) = 0. Consequently,
Zp () = X](R").

Now, let A be in Bf(II). There exists I' in X7~ *(R") such that A = T' A (A.T).
Since iy, = ... =1,, = —1, the term Y,,, A... A Y, divides I'.
We deduce that ' A (A1) =0. =

Remark 3.4. If T has only one negative component (for instance i), then A.I is
not collinear with Y.
Indeed, if A.I = a}Y), we have «,, = 0 for every u # k, which can be interpreted
as
Auk = Z Aoty for each u #£ k
v#£k
hence,

—Qpyly = E Qypiyiy, for each u # k.
v#k

—Qf = — Z Ay = Z Ayl ly -
u u#k,v#£k
Since the matrix (Guv)q<, y<p, 15 sSkewsymmetric, this last sum is zero. This implies
that A.I = 0, which is not compatible with our hypothesis.

We deduce that, in this case,

Therefore, we get

Hi(IT) = {0} .

3- Finally, we assume that I has r negative components.
We then show the following result.
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Proposition 3.5. We suppose that I has r negative components, for instance i,, =
e =y, = —1.

1- If there exists k & {u1,...,u,} such that ay # 0 then H}(II) = {0}.

2- If not, we have HJ(II) = XT(R™).

Proof : In this case, it is easy to see that B} (II) = {0}.

Now, let us describe Z7(IT). Consider an element A in Z7(II).
We can write A = A

Consequently,

6,‘? A ... A =2~ where ) is a real number.
Ty Oy,

o ) o 0

We deduce that, if there exists k & {u1, ..., u,} such that ay # 0 then Z7(II) = {0}.
If not, then we have Z7(II) = A7 (R"). =

Corollary 3.6. The space H'(I) is given by H'(I1) = &4 1—o X} (R").

Proof : According to remark 3.4 and case 1- of the previous proposition, we have
H}(II) = {0} whenever I has one negative component. m
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