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Abstract. In this paper, we compute the formal Poisson cohomology of qua-
dratic Poisson structures. We first recall that, generically, quadratic Poisson
structures are diagonalizable. Then we compute the formal cohomology of
diagonal Poisson structures.

Introduction

A Poisson structure on a manifold M is given by a 2-vector Π which satisfies

[Π, Π] = 0

where [ , ] : X a(M) × X b(M) 7−→ X a+b(M) is the Schouten bracket (see [9]). We
recall that X a(M) denotes the vector space of a-vectors on M , i.e. the space of
sections of the vector bundle Λa(TM). We will say that a Poisson structure Π
on a vector space V is quadratic if, for any linear functions f and g, the function
Π(df ∧ dg) is a quadratic polynomial. Using coordinates (x1, . . . , xn), this can be
written

Π =
∑

i<j
r≤s

ars
ij xrxs

∂

∂xi
∧ ∂

∂xj

where the ars
ij are constants.

Such structures have a particular application in mathematical physics. It is possible
to construct quadratic Poisson structures from a solution of the classical Yang-
Baxter equation (see [16]). Some informations on the quantization of quadratic
Poisson structures may be found in [5], [11] and [14]. Some classifications in low
dimension of quadratic Poisson structures have been established, for instance, in
[1], [3] and [10]. Finally, for a Poisson structure which has a zero 1-jet at a point,
the problem of “quadratization” (i.e. of finding a coordinate system in which the
expression of the Poisson structure is quadratic) arises naturally (see [2] and [8]).

The Poisson cohomology of a Poisson structure was introduced by Lichnerowicz
in [9]. It is constructed as follows. If (M, Π) is a Poisson manifold, we consider the
linear maps ∂k

. . . −→ X k−1(M) ∂k−1

−→ X k(M) ∂k

−→ X k+1(M) −→ . . .

defined by ∂k(A) = [A, Π] ([ , ] indicates the Schouten bracket). It can be shown
that ∂k ◦ ∂k−1 = 0. The induced cohomology spaces H•(M, Π) are the Poisson
cohomology spaces of (M, Π).
These cohomology spaces are invariants of the Poisson structure and they have
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applications for instance in problems of deformation of the structure. The main
feature of this cohomology is that it is particularly difficult to compute. Among the
publications on this subject, the explicit results are scarce. It is fairly easy to see
that if the Poisson structure is “symplectic” then its cohomology is isomorphic to
the de Rham cohomology. The case of regular Poisson structures has been studied,
for instance, by P. Xu ([21]) and I. Vaisman ([17], [18]). In [7], V. Ginzburg and
A. Weinstein consider the Poisson cohomology of Lie-Poisson groups. Finally, in
dimension two, the Poisson cohomology has been studied and computed in [12],
[13] and [15].

In this paper, the aim is to compute the formal Poisson cohomology of quadratic
Poisson structures, which means that we work with formal k-vectors instead of
smooth or analytic ones. The 2-dimensional case has already been studied by N.
Nakanishi in [13]. Here, we work in Rn (the results can be extended to Cn) with
n > 2.
In the first section, we recall that under a hypothesis of genericity, a quadratic
Poisson structure is diagonalizable. Then, in the following two sections, we com-
pute the Poisson cohomology of diagonal Poisson structures. We first study the
3-dimensional case (section 2). In this situation, the diagonal Poisson structures
may be interpreted in terms of the geometry of R3. The computation of the coho-
mology is then reduced to an elementary problem of geometry. Moreover, we can
make the cohomology spaces explicit in a relatively clear way.
Finally, in the last section, we generalize to higher dimensions.
We note that some informations on the space H2(Π) have been given in [4] by J.-P.
Dufour and A. Wade in order to study normal forms of Poisson structures.

Acknowledgements. I would like to thank J.-P. Dufour for calling my attention
on this problem and for his comments on this paper.

1. Diagonalizable Poisson structures

We first recall the definition of the curl vector fields of an oriented Poisson man-
ifold (M, Π). This notion of curl has been defined in [3] (also in [20] under the
name of modular vector field) in order to classify quadratic Poisson structures in
dimension 3.
Let ν be a volume form on M . We denote by ν[ the isomorphism X p(M) −→
Ωn−p(M) (where Ωn−p(M) is the vector space of the (n − p)-forms on M) with
ν[(u) = iuν (the contraction of ν by u). The curl of Π (with respect to ν) is the
vector field DνΠ = (ν[)−1 ◦ d ◦ ν[(Π).
If Π is a quadratic Poisson structure on a vector space V , its curl (with respect to
ν) is then a linear vector field whose trace is zero. Moreover, the Jordan decompo-
sition of DνΠ is an invariant of Π. Consequently, we can define the eigenvalues of
Π as the eigenvalues of its curl (with respect to any volume form).

We will say that a quadratic Poisson structure Π on Rn is diagonalizable if there
exists a coordinate system (x1, . . . , xn) in which Π can be written as

Π =
∑

i<j

aijxixj
∂

∂xi
∧ ∂

∂xj



FORMAL POISSON COHOMOLOGY OF QUADRATIC POISSON STRUCTURES 3

where the aij are constants.
Diagonal Poisson structures play a part, for instance, in some integrable systems
(see [6]). Actually, quadratic Poisson structures are generically diagonalizable; more
precisely :

Theorem 1.1. [3] If the eigenvalues λi of a quadratic Poisson structure Π do not
satisfy relations of type

λi + λj = λr + λs (∗)
with r 6= s and {i, j} 6= {r, s}, then the Poisson structure Π is diagonalizable.

Remark 1.2. In [19], A. Wade showed (it is not obvious) that if a quadratic Poisson
structure is diagonalizable, then its diagonal form is unique up to a permutation of
the coordinates.

2. Computation of the cohomology in dimension 3

In this section, we work in R3 with the coordinates (x, y, z).
We will use the following notation (already introduced in [4]):

X = x
∂

∂x
Y = y

∂

∂y
Z = z

∂

∂z
.

We consider a diagonal Poisson structure Π on R3 of the form

Π = aY ∧ Z + bZ ∧X + cX ∧ Y

where a, b and c are in R.

2.1. Notation. We are going to adopt the following notation:
X 0(R3) is the vector space of formal series (i.e. R[[x, y, z]]),
X 1(R3) is the vector space of formal vector fields on R3,
X 2(R3) is the vector space of formal 2-vectors on R3,
X 3(R3) is the vector space of formal 3-vectors on R3.

Let us express the elements in these spaces in terms of X, Y and Z, rather than
∂
∂x , ∂

∂y and ∂
∂z (allowing expressions such as ∂

∂x = x−1X).
Remark : In this paper, N is the set of non-negative integers.

• Every element f in X 0(R3) may be written as

f =
∑

I∈N3

λIf
(I)

where the λI are in R and f (I) = xi1yi2zi3 if I = (i1, i2, i3).

• In the same way, every element V in X 1(R3) may be written as

V =
∑

I∈(N∪{−1})3
f (I)VI

with f (I) = xi1yi2zi3 (I = (i1, i2, i3)) and VI = αIX + βIY + γIZ where αI , βI ,
and γI are real numbers which are zero if I has two or three negative components.
If I has exactly one negative component then two real numbers among αI , βI and
γI are zero; for instance, if I = (−1, i2, i3) then βI = γI = 0.
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• Every element Λ in X 2(R3) may be written as

Λ =
∑

I∈(N∪{−1})3
f (I)ΛI

with ΛI = αIY ∧ Z + βIZ ∧X + γIX ∧ Y where αI , βI , and γI are real numbers
which are zero if I has three negative components. If I has exactly two negative
components then two real numbers among αI , βI and γI are zero; for instance, if
I = (−1,−1, i3) then αI = βI = 0. If I has exactly one negative component then
one real number among αI , βI and γI is zero; for instance, if I = (−1, i2, i3) then
αI = 0.

• Every element Γ of X 3(R3) may be written as

Γ =
∑

I∈(N∪{−1})3
λIf

(I)X ∧ Y ∧ Z

where λI are in R and f (I) = xi1yi2zi3 (I = (i1, i2, i3)).

We can then set, for I ∈ (N ∪ {−1})3,
X 0

I (R3) = {λf (I) ; λ ∈ R}
X 1

I (R3) = {f (I)(αX + βY + γZ) ; α, β, γ ∈ R}
X 2

I (R3) = {f (I)(αY ∧ Z + βZ ∧X + γX ∧ Y ) ; α, β, γ ∈ R}
X 3

I (R3) = {λf (I)X ∧ Y ∧ Z ; λ ∈ R}
with the convention
X 0

I (R3) = {0} if I has at least one negative component
X 1

I (R3) = {0} if I has at least two negative components
X 2

I (R3) = {0} if I = (−1,−1,−1).

Remark 2.1. It is important to note that, unless the X j
I vanish, we can identify in

an obvious way X 0
I with R, X 3

I with R, X 1
I with a subspace E1

I of R3 and X 2
I with

a subspace E2
I of R3, where E1

I = R3 and E2
I = R3 if I ∈ N3 and, for instance,

E1
(−1,i2,i3)

= {(α, 0, 0) ∈ R3; α ∈ R}
E2

(−1,i2,i3)
= {(0, β, γ) ∈ R3; β, γ ∈ R}

E2
(−1,−1,i3)

= {(0, 0, γ) ∈ R3; γ ∈ R}

2.2. Description of the Poisson complex. In our case, the complex defining
the Poisson cohomology of Π is

0 −→ X 0(R3) ∂0

−→ X 1(R3) ∂1

−→ X 2(R3) ∂2

−→ X 3(R3) −→ 0

with, for T ∈ X i, ∂i(T ) = [T, Π] ([ , ] indicates the Schouten bracket).

i) Computation of ∂0(X 0
I (R3)):

Take I ∈ N3 and f (I) = xi1yi2zi3 ∈ X 0
I (R3). A short calculation gives

∂0(f (I)) = f (I)
(
(ci2 − bi3)X + (ai3 − ci1)Y + (bi1 − ai2)Z

)
(∗0) .
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ii) Computation of ∂1(X 1
I (R3)):

Take V = f (I)VI ∈ X 1
I (K3) with VI = αX + βY + γZ.

Let us suppose that I ∈ N3: we then have

∂1(V ) = [f (I)VI , Π]

= −[Π, f (I)] ∧ VI − f (I)[Π, VI ]

= −∂0(f (I)) ∧ VI + 0

Therefore,

∂1(V ) = f (I)
(
β(bi1 − ai2)− γ(ai3 − ci1)

)
Y ∧ Z

+f (I)
(
γ(ci2 − bi3)− α(bi1 − ai2)

)
Z ∧X

+f (I)
(
α(ai3 − ci1)− β(ci2 − bi3)

)
X ∧ Y (∗1) .

Now, if we assume, for instance, that I = (−1, i2, i3) with i2, i3 ∈ N, then we can
write V = αf (I)X = αg ∂

∂x where g = yi2zi3 . Consequently, it is possible to show
that

∂1(V ) = f (I)
(
α(ai2 − b(−1))Z ∧X + α(ai3 − c(−1))X ∧ Y

)

which is the same expression as (∗1) with β = γ = 0.

iii) Computation of ∂2(X 2
I (R3)):

Take Λ = f (I)ΛI ∈ X 2
I (R3) with ΛI = αY ∧ Z + βZ ∧X + γX ∧ Y .

We first suppose that I ∈ N3: we then have

∂2(Λ) = [Π, f (I)] ∧ ΛI + f (I)[Π, ΛI ]

which implies that

∂2(Λ) = f (I)
(
α(ci2 − bi3) + β(ai3 − ci1) + γ(bi1 − ai2)

)
X ∧ Y ∧ Z (∗2) .

Now, if we suppose, for instance, that I = (−1, i2, i3) with i2, i3 ∈ N, then we can
write Λ = f (I)(βZ ∧X + γX ∧ Y ) and it is possible to show that

∂2(Λ) = f (I)
(
β(ai3 − c(−1)) + γ(b(−1)− ai2)

)
X ∧ Y ∧ Z ,

which is the same expression as (∗2) with α = 0.

Finally, if we suppose that I = (−1,−1, i3) with i3 ∈ N , we can write Λ as Λ =
γf (I)X ∧ Y and, in the same way, it is possible to show that

∂2(Λ) = f (I)
(
γ(b(−1)− a(−1))

)
X ∧ Y ∧ Z ,

which is the same expression as (∗2) with α = β = 0.

2.3. Computation of the cohomology. It follows from the previous section that
the computation of our cohomology may be done “degree by degree”, that is to say
that it is sufficient to study, for each I ∈ (N ∪ {−1})3, the cohomology of the
complex

0 −→ X 0
I (R3) ∂0

−→ X 1
I (R3) ∂1

−→ X 2
I (R3) ∂2

−→ X 3
I (R3) −→ 0

Now, using the identifications made in remark 2.1, we see that the computation is
reduced to an elementary problem of geometry in R3. Indeed, if we denote by P
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the vector of R3 of coordinates (a, b, c), our problem reduces to the study of the
complex (KI)

0 −→ R
δ0

I−→ E1
I

δ1
I−→ E2

I

δ2
I−→ R −→ 0 (KI)

with

δ0
I (λ) = λI × P

δ1
I (V ) = V × (I × P )

δ2
I (W ) = W .(I × P )

where × indicates the cross product on R3 and . is the dot product on R3.
We will denote by H0

I (Π), H1
I (Π), H2

I (Π) and H3
I (Π) the cohomology spaces of this

complex.
The following proposition is clear

Proposition 2.2. If I ×P = 0 then we have H0
I (Π) ' R , H1

I (Π) ' E1
I , H2

I (Π) '
E2

I and H3
I (Π) ' R.

In the sequel, we assume that I × P 6= 0.
We clearly have H0

I (Π) = {0}. The computation of the spaces H1
I (Π), H2

I (Π) and
H3

I (Π) depends on the vector I, more precisely, on the number of negative compo-
nents of I. We are going to distinguish three cases.

First case : We suppose that I ∈ N3.
• Let V be in E1

I with δ1
I (V ) = 0. Since V × (I × P ) = 0, the vectors V and I × P

are collinear, i.e. there exists a real number λ such that V = λI×P . Consequently,
V = δ0

I (λ).
We deduce that H1

I (Π) = {0}.

• Let W be in E2
I with δ2

I (W ) = 0. Since W .(I ×P ) = 0, the vectors W and I ×P
are orthogonal. Therefore, the vectors W , I and P are coplanar.
If we put V = −1

||I×P ||2 W × (I × P ), we get δ1
I (V ) = W .

We deduce that H2
I (Π) = {0}.

• Finally, it is clear that H3
I (Π) = {0}.

Second case : We suppose, for instance, that I = (−1, i2, i3) with i2, i3 ∈ N.
The complex is then reduced to

0 −→ E1
I

δ1
I−→ E2

I

δ2
I−→ R −→ 0

with

E1
I = {(α, 0, 0) ∈ R3; α ∈ R}

E2
I = {(0, β, γ) ∈ R3; β, γ ∈ R}

• Let V in E1
I be such that δ1

I (V ) = 0. We suppose that V 6= 0. Since V is collinear
with I × P , it is in particular orthogonal to I. Consequently, the vector I is in
the plane which is orthogonal to V . This plane is V ⊥ = {(0, β, γ); β, γ ∈ R}. The
vector I cannot be in this plane. Therefore, V = 0.
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We deduce that H1
I (Π) = {0}.

• Let W in E2
I \ {0} be such that δ2

I (W ) = 0. The vector W is then orthogonal to
I×P and so the vectors W , I and P are coplanar. Now, if we denote by V ect(I, P )
the plane spanned by I and P , since E2

I 6= V ect(I, P ) (I 6∈ E2
I ), the vector W is a

generator of the line E2
I ∩ V ect(I, P ).

Now, we consider V ∈ E1
I such that δ1

I (V ) = V × (I × P ) 6= 0. Such a vector
exists because I is not orthogonal to E1

I . Since the vectors V × (I × P ) and I × P
are orthogonal, the vector V × (I × P ) is in V ect(I, P ). On the other hand, we
have V × (I × P ) ∈ (E1

I )⊥ = E2
I . Consequently, the vector V × (I × P ) is in

E2
I ∩ V ect(I, P ) and is different from zero. Therefore, it is possible to find a real

number λ such that δ1
I (λV ) = W .

We deduce that H2
I (Π) = {0}.

• Finally, we have δ2
I (E2

I ) = {0} or R. If δ2
I (W ) = 0 for every W ∈ E2

I , then the
vector I × P is orthogonal to E2

I i.e. E2
I = V ect(I, P ). Thus I is in E2

I which is
false. Consequently, δ2

I (E2
I ) = R which implies that H3

I (Π) = {0}.

Third case : We suppose, for instance, that I = (−1,−1, i3) with i3 ∈ N .
The complex is then reduced to

0 −→ E2
I

δ2
I−→ R −→ 0

with

E2
I = {(0, 0, γ) ∈ R3; γ ∈ R} .

Here, it is sufficient to work with the formula (∗2).
If b 6= a then it is clear that H2

I (Π) = {0} and H3
I (Π) = {0}.

If b = a then we see that H2
I (Π) ' R .

(
zi3 ∂

∂x ∧ ∂
∂y

)
and H3

I (Π) ' R .
(
zi3 ∂

∂x ∧ ∂
∂y ∧ Z

)
.

Fourth case : We suppose that I = (−1,−1,−1).
In this case, it is clear that H3

I (Π) ' R.
(

∂
∂x ∧ ∂

∂y ∧ ∂
∂z

)
.

We can now sum up these results in the following proposition.

Proposition 2.3. We suppose that I × P 6= 0.
1- If I has at most 1 negative component then the complex KI is acyclic.
2- If I has 2 negative components, for instance I = (−1,−1, i3), then

if a 6= b, the complex KI is acyclic.
if a = b, we have H1

I (Π) = {0}, H2
I (Π) ' R .

(
zi3 ∂

∂x ∧ ∂
∂y

)
and H3

I (Π) '
R .

(
zi3 ∂

∂x ∧ ∂
∂y ∧ Z

)
. 3- If I = (−1,−1,−1) then Hk

I (Π) = {0} for k < 3 and
H3

I (Π) ' R.
(

∂
∂x ∧ ∂

∂y ∧ ∂
∂z

)
.

We deduce the cohomology of Π in the case when a, b and c are pairwise distinct.

Corollary 2.4. Let Π be a Poisson structure on R3 of type

Π = aY ∧ Z + bZ ∧X + cX ∧ Y ,



8 PHILIPPE MONNIER

with a, b and c pairwise distinct.
Then the formal cohomology spaces of Π are

H0(Π) '
{ ∑

I∈N3

I×P=0

λIx
i1yi2zi3 ; λI real numbers

}

H1(Π) '
{ ∑

I∈(N∪{−1})3
I×P=0

I has at most
1 negative component

xi1yi2zi3(αIX + βIY + γIZ) ; αI , βI , γI real numbers
}

H2(Π) '
{ ∑

I∈(N∪{−1})3
I×P=0

I has at most
2 negative components

xi1yi2zi3(αIY ∧ Z + βIZ ∧X + γIX ∧ Y ) ; αI , βI , γI real numbers
}

H3(Π) '
{ ∑

I∈(N∪{−1})3
I×P=0

λIx
i1yi2zi3X ∧ Y ∧ Z ; αI real numbers

}
⊕ R .

∂

∂x
∧ ∂

∂y
∧ ∂

∂z
.

Let us note that the relation I × P = 0 means that the vectors I and P are
collinear, which implies the existence of a real number ξ such that (ξa, ξb, ξc) ∈
(N ∪ {−1})3.

2.4. Examples. In the examples i) and ii), we describe the cohomology spaces in
the case when a, b and c are not pairwise distinct. The third example is just an
illustration of the corollary 2.4.

i) We suppose that Π = yz ∂
∂y ∧ ∂

∂z + xz ∂
∂z ∧ ∂

∂x + xy ∂
∂x ∧ ∂

∂y .
We have P = (1, 1, 1); therefore, for I in (N ∪ {−1})3, the relation I × P = 0 is
equivalent to the statement that I = (k, k, k) with k in N ∪ {−1}.
We deduce that

H0(Π) ' R[[(xyz)]]
H1(Π) ' R[[(xyz)]].X ⊕ R[[(xyz)]].Y ⊕ R[[(xyz)]].Z
H2(Π) ' R[[(xyz)]].Y ∧ Z ⊕ R[[(xyz)]].Z ∧X ⊕ R[[(xyz)]].X ∧ Y

⊕R[[x]].
∂

∂y
∧ ∂

∂z
⊕ R[[y]].

∂

∂z
∧ ∂

∂x
⊕ R[[z]].

∂

∂x
∧ ∂

∂y

H3(Π) ' R[[(xyz)]].
∂

∂x
∧ ∂

∂y
∧ ∂

∂z
⊕ R[[x]].X ∧ ∂

∂y
∧ ∂

∂z

⊕R[[y]].
∂

∂x
∧ Y ∧ ∂

∂z
⊕ R[[z]].

∂

∂x
∧ ∂

∂y
∧ Z

ii) We suppose that Π = yz ∂
∂y ∧ ∂

∂z + xz ∂
∂z ∧ ∂

∂x − 2xy ∂
∂x ∧ ∂

∂y .
Since P = (1, 1,−2), the sets I in (N∪{−1})3 satisfying the relation I ×P = 0 are
(−1,−1, 2) and (0, 0, 0).
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We deduce that

H0(Π) ' R
H1(Π) ' R .X ⊕ R .Y ⊕ R .Z

H2(Π) ' R .Y ∧ Z ⊕ R .Z ∧X ⊕ R .X ∧ Y ⊕ R[[z]].
∂

∂x
∧ ∂

∂y

H3(Π) ' R[[z]].
∂

∂x
∧ ∂

∂y
∧ ∂

∂z
⊕ R .X ∧ Y ∧ Z

iii) We suppose that Π = ayz ∂
∂y ∧ ∂

∂z +xz ∂
∂z ∧ ∂

∂x −xy ∂
∂x ∧ ∂

∂y with a a nonrational
real number. We have P = (a, 1,−1). Let I in (N∪{−1})3 be such that I×P = 0.
Therefore there exists a real number λ satisfying λP ∈ Z3, which is possible only
when λ is zero. Consequently, I = (0, 0, 0).
We deduce that

H0(Π) ' R
H1(Π) ' R .X ⊕ R .Y ⊕ R .Z

H2(Π) ' R .Y ∧ Z ⊕ R .Z ∧X ⊕ R .X ∧ Y

H3(Π) ' R .
∂

∂x
∧ ∂

∂y
∧ ∂

∂z
⊕ R .X ∧ Y ∧ Z

Remark 2.5. Unfortunately, the cohomology spaces do not enable us to distinguish
the diagonal Poisson structures, up to isomorphism. Indeed, we can consider the
Poisson structure Π defined in example iii) above, and the Poisson structure Λ
given by

Λ = byz
∂

∂y
∧ ∂

∂z
+ xz

∂

∂z
∧ ∂

∂x
− xy

∂

∂x
∧ ∂

∂y
,

where b is an nonrational real number different from a and −a.
The Poisson structures Π and Λ have cohomologies which are isomorphic. However,
they are not equivalent because their curls are not isomorphic.

3. Generalization

Of course, we can recover the results of the previous section by setting n = 3 in
the results of this section. The purpose of Section 2 was to clarify the geometrical
meaning of the diagonal Poisson structures and of their cohomology.

For each k in {1, . . . , n}, let Yk denote the vector field xk
∂

∂xk
. We adopt the

convention x−1
k Yk = ∂

∂xk
.

Consider a diagonal Poisson structure Π on Rn (n ≥ 3), written

Π =
∑

i<j

aijxixj
∂

∂xi
∧ ∂

∂xi
=

∑

i<j

aijYi ∧ Yj .

The advantage of using the vector fields Yk is that, in some computations, we can
consider that we are working on the exterior algebra of a vector space spanned by
Y1, . . . , Yn.
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In the same way as in the previous section, we denote by X r(Rn) the vector
space of formal r-vectors on Rn and, for I = (i1, . . . , in) ∈ (N ∪ {−1})n,

X r
I (Rn) = {xI

∑

K∈Nr

k1<...<kr

λKYk1 ∧ . . . ∧ Ykr} .

where xI = xi1 . . . xin .
If I has r + 1 or more negative components, we set X r

I (Rn) = {0}.
As above, we have

X r(Rn) = ⊕I∈(N∪{−1})nX r
I (Rn) .

For I in (N ∪ {−1})n, we denote by A.I the vector field

A.I =
n∑

j=1

(
n∑

k=1

ajkik)Yj =
n∑

j=1

αjYj

with αj =
∑n

k=1 ajkik.

3.1. Description of the cobord operator. Let I be in Nn and take Λ in X r
I (Rn)

of type xIΛI with

xI = xi1 . . . xin

ΛI =
∑

K∈Nr

k1<...<kr

λKYk1 ∧ . . . ∧ Ykr

We have

[Λ, Π] = (−1)r[Π, xI ] ∧ ΛI + (−1)rxI [Π, ΛI ]

= (−1)rxI
( ∑

u<v

auv(ivYu − iuYv)
) ∧ ΛI + 0

= (−1)rxI
( n∑

u=1

(
n∑

v=1

auviv)Yu

) ∧ ΛI

Consequently,
∂r(Λ) = [Λ,Π] = xIΛI ∧ (A.I) = Λ ∧ (A.I) .

In the same way, it is possible to show that if I has negative components, we obtain
the same expression.

We note, as in the previous section, that the computation of the cohomology can
be done “degree by degree” i.e. we need only study the complex

0 −→ X 0
I (Rn) −→ . . . −→ Xn

I (Rn) −→ 0

for each I ∈ (N ∪ {−1})n. If we denote by Hr
I (Π) the cohomology spaces of these

complexes, we will have Hr(Π) = ⊕IH
r
I (Π).

3.2. The computation of the cohomology. Let I be in (N ∪ {−1})n. We set

Zr
I (Π) = {Λ ∈ X r

I (Rn) ; ∂r(A) = 0} ,

Br
I (Π) = {∂r−1(B) ; B ∈ X r−1

I (Rn)} ,

and Hr
I (Π) = Zr

I /Br
I .

First case : We suppose that A.I = 0.
In this case, it is clear that Zr

I (Π) = X r
I (Rn) and Br

I (Π) = {0}.



FORMAL POISSON COHOMOLOGY OF QUADRATIC POISSON STRUCTURES 11

Proposition 3.1. If A.I = 0, then Hr
I (Π) = X r

I (Rn).

Second case : We suppose that A.I 6= 0.
Here again, the expression of the cohomology spaces Hr

I (Π) depends on the number
of negative components of I.

1- We first assume that I does not have negative components, i.e. I ∈ Nn.
We are going to state the following proposition.

Proposition 3.2. If I does not have negative components, then Hr
I (Π) = {0}.

In particular, we have H0(Π) = ⊕A.I=0X 0
I (Rn).

Proof : Let Λ in Zr
I (Π). We can write Λ = xIΛI . We then have

0 = ∂r(Λ) = xIΛI ∧ (A.I) .

Therefore, there exists ΓI in X r−1
I (Rn), with

ΓI =
∑

K∈Nr−1

k1<...<kr−1

γKYk1 ∧ . . . ∧ Ykr−1

which satisfies
ΛI = ΓI ∧ (A.I) .

We deduce that Λ = ∂r−1(xIΓI). �

2- Now, we assume that the n-tuple I has exactly s negative components with
s < r.
We recall that A.I =

∑n
j=1 αjYj with αj =

∑n
k=1 ajkik.

Proposition 3.3. Suppose that I has exactly s negative components with s < r,
for instance iu1 = . . . = ius = −1.

1- If A.I 6= αu1Yu1 + . . . + αusYus then Hr
I (Π) = {0}.

2- If A.I = αu1Yu1 + . . . + αusYus then Hr
I (Π) = X r

I (Rn).

Proof : 1- We first suppose that A.I 6= αu1Yu1 + . . . + αusYus . We consider Λ in
Zr

I (Π), and we write Λ = xIΛI with

ΛI = (Yu1 ∧ . . . ∧ Yus) ∧Θ

where Θ is an (r− s)-vector which does not depend on Yu1 , . . . , Yus and which can
be written as ∑

K∈Nr−s

k1<...<kr−s

θKYk1 ∧ . . . ∧ Ykr−s .

In order to simplify the notation, let us suppose that s = 2 and i1 = i2 = −1 (the
proof in the general case can be done in the same way).
We then have ΛI = Y1 ∧ Y2 ∧Θ (Θ does not depend on Y1 and Y2).
Since Λ is an r-cocycle, we must have

Y1 ∧ Y2 ∧Θ ∧ (α1Y1) + Y1 ∧ Y2 ∧Θ ∧ (α2Y2) +
n∑

j=3

Y1 ∧ Y2 ∧Θ ∧ (αjYj) = 0



12 PHILIPPE MONNIER

i.e.

Y1 ∧ Y2 ∧
( n∑

j=3

αjΘ ∧ Yj

)
= 0 .

We deduce that (because Θ does not depend on Y1 and Y2)
n∑

j=3

αjΘ ∧ Yj = 0

i.e.
Θ ∧ (

A.I − α1Y1 − α2Y2

)
= 0 .

Now, since A.I 6= α1Y1 + α2Y2, there exists an (r − 3)-vector ∆I of type

∆I =
∑

K∈Nr−3

k1<...<kr−3

δKYk1 ∧ . . . ∧ Ykr−3

such that
Θ = ∆I ∧

(
A.I − α1Y1 − α2Y2

)
.

Therefore, we can write

ΛI = Y1 ∧ Y2 ∧∆I ∧ (A.I) .

Now, if we set Γ = xIY1 ∧ Y2 ∧∆I , we have ∂r−1(Γ) = Λ.

2- Now, we suppose that A.I = αu1Yu1 + . . . + αusYus . In this case, since
Yu1∧. . .∧Yus divides Λ, it is clear that, if Λ is in X r

I , then ∂r(Λ) = 0. Consequently,
Zr

I (Π) = X r
I (Rn).

Now, let Λ be in Br
I (Π). There exists Γ in X r−1

I (Rn) such that Λ = Γ ∧ (A.I).
Since iu1 = . . . = ius = −1, the term Yu1 ∧ . . . ∧ Yus divides Γ.
We deduce that Γ ∧ (A.I) = 0. �

Remark 3.4. If I has only one negative component (for instance ik), then A.I is
not collinear with Yk.
Indeed, if A.I = αkYk, we have αu = 0 for every u 6= k, which can be interpreted
as

auk =
∑

v 6=k

auviv for each u 6= k

hence,
−akuiu =

∑

v 6=k

auviuiv for each u 6= k .

Therefore, we get
−αk = −

∑
u

akuiu =
∑

u 6=k,v 6=k

auviuiv .

Since the matrix (auv)1≤u,v≤n is skewsymmetric, this last sum is zero. This implies
that A.I = 0, which is not compatible with our hypothesis.
We deduce that, in this case,

Hr
I (Π) = {0} .

3- Finally, we assume that I has r negative components.
We then show the following result.
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Proposition 3.5. We suppose that I has r negative components, for instance iu1 =
. . . = iur

= −1.
1- If there exists k 6∈ {u1, . . . , ur} such that αk 6= 0 then Hr

I (Π) = {0}.
2- If not, we have Hr

I (Π) = X r
I (Rn).

Proof : In this case, it is easy to see that Br
I (Π) = {0}.

Now, let us describe Zr
I (Π). Consider an element Λ in Zr

I (Π).
We can write Λ = λ ∂

∂xu1
∧ . . . ∧ ∂

∂xur
where λ is a real number.

Consequently,

∂r(Λ) = λ
∑

k 6∈{u1,...,ur}
αkxk

∂

∂xu1

∧ . . . ∧ ∂

∂xur

∧ ∂

∂xuk

.

We deduce that, if there exists k 6∈ {u1, . . . , ur} such that αk 6= 0 then Zr
I (Π) = {0}.

If not, then we have Zr
I (Π) = X r

I (Rn). �

Corollary 3.6. The space H1(Π) is given by H1(Π) = ⊕A.I=0X 1
I (Rn).

Proof : According to remark 3.4 and case 1- of the previous proposition, we have
H1

I (Π) = {0} whenever I has one negative component. �
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