POISSON COHOMOLOGY IN DIMENSION TWO

PHILIPPE MONNIER

ABSTRACT. It is known that the computation of the Poisson cohomology is
closely related to the classification of singularities of Poisson structures. In
this paper, we will first look for the normal forms of germs at (0,0) of Poisson
structures on K2 (K = R or C) and recall a result given by Arnold. Then we
will compute locally the Poisson cohomology of a particular type of Poisson
structure.

1. INTRODUCTION

The Poisson cohomology of a Poisson manifold gives several informations on the
geometry of the manifold. It was first introduced by Lichnerowicz in [L]. Unfortu-
nately, the computation of these cohomology spaces is quite complicated and few
explicit results have been found.

In the symplectic case, Poisson cohomology is naturally isomorphic to de Rham
cohomology. The case of regular Poisson manifolds is discussed, for instance, in
[V] and [X]. One can find some results on the Poisson cohomology of Poisson-Lie
groups in [GW]. Some explicit computations are also done, for instance, in [Col],
[Co2] or [G].

In [Cr], Crainic links Poisson cohomology with the Morita equivalence. Finally, one
can find some discussion on Poisson cohomology and Poisson homology in [ELW],
[B] or [FT].

In the two-dimensional situation, some special cases on R? have been studied. In
[V], Vaisman began to compute the cohomology of (z2 + yz)a% A 8%' His idea was
to consider the homomorphism *: H*(R?) — H*(R?\ {(0,0)}) induced by the
inclusion ¢ : R? \ {(0,0)} < R2. A few years later, Nakanishi used this idea and
computed the Poisson cohomology of quadratic Poisson structures on R? (see [N]).
In the present paper, our approach is more direct and uses some tools arising from
the theory of singularities. More precisely, we first study (in section 3) the normal
forms of the “most interesting” germs at (0,0) of Poisson structures vanishing at
(0,0), and we rediscover the list given by Arnold in [A]. These normal forms are of
type

0 0
M=f14+h)—AN—
FA+h)o T
where f and h are quasihomogeneous polynomials (there is a relation between their

degrees).
Then, in section 4, we then compute locally the Poisson cohomology of Poisson
structures of this type.

1991 Mathematics Subject Classification. 53D17.
Key words and phrases. Poisson structures, singularities, Poisson cohomology.

1



2 PHILIPPE MONNIER

A generalisation of these results to the n-vectors on an n-dimensional manifold can
be found in [Mo2].

2. QUASI-HOMOGENEITY

Throughout this text, K will indicate the field R or C.
Let (wy,w2) € N* x N*. We denote by W the vector field wlx% + wgya% on
K2. Now, let T be a non zero p-vector (p € {0,1,2}). We will say that T is
quasihomogeneous with weights w;,ws and of (quasi)degree d € Z if

LwT =dT,

where Ly indicates the Lie derivative with respect to W. This condition can be
written [W, T| = dT where [.,.] indicates the Schouten bracket. Note that T is then
polynomial.

If f is a quasihomogeneous polynomial of degree d then d = iw; + jws with
(i,j) € N?; therefore, an integer is not necessarily the quasidegree of a polyno-
mial. If f € K[[z,y]], we can write f = Y7 f; with f; quasihomogeneous of
degree i (we adopt the convention that f; = 0 if ¢ is not a quasidegree); f is said
to be of order d (ord(f) = d) if all of its monomials have degree d or higher. For
more details consult [AGV].

It is important to notice that % is a quasihomogeneous vector field of degree
—w; (in the same way deg(a%) = —wsy); the minimal degree of a vector field is
— max(w1,ws). Note also that an integer can be the quasidegree of a vector field
without being the quasidegree of a polynomial. Finally, note that % A a% is quasi-
homogeneous of degree —w; — ws.

3. LOCAL MODELS OF POISSON STRUCTURES IN DIMENSION 2

In the reference [A], Arnold gives a list of normal forms for Poisson structures
on a neighbourhood of (0,0) in K?. In this section, we recall Arnold’s theorem and
we give the idea of a proof which is similar to Arnold’s (the approach is a little bit
different). For more details on this proof, consult [Mol].

The particularity of the dimension two is that any 2-vector on a 2-dimensional
manifold is a Poisson structure. For an introduction to Poisson structures, consult
[CW] or [V].

The problem is the following: givenII = F a% A 6%,
on K2, we want to simplify its expression via a suitable local change of coordinates.

a germ at 0 of Poisson structures

Notations : We denote by F(K?) (resp. X(K?),V(K?)) the vector space of germs
at (0,0) of (holomorphic if K = C , analytic or C* if K = R) functions (resp. vector
fields, 2-vectors). We also denote by Diff,(K?) the group of local diffeomorphisms
at (0,0) sending (0,0) to itself. Finally, F;(K?) (X;(K?),V,(K?)) indicates the space
of germs depending differentiably on ¢ € R.

Two germs II = f 6% A 6% and A = ga% A a% are called equivalent if there
exists ¢ € Diff,(K?) satisfying .1l = A. This condition yields g o ¢ = (Jacy)f
where Jacy indicates the Jacobian of ¢.

Two germs f and g are said to be R-equivalent if there exists ¢ € Diff,(K?)
satisfying go p = f.
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Actually, it is not possible to give normal forms for every Poisson structures.
We only study Poisson structures determined by the germs of functions F' whose
R-orbit is “interesting” enough. We will speak about it later.

The splitting theorem ([W]) allows us to assume that IT¢y gy = 0. Moreover, it is
quite easy to show that, if F' is regular at 0, then II is, up to a change of coordinates,
the germ xa% A 3%.

Remark 3.1. It is important to note that if two germs f and g are R-equivalent,
then the germ II = f % A a% will be equivalent to the germ of a Poisson structure

of type gaa% A 2 where a(0,0) # 0.

Oy
Now, we consider germs of Poisson structures of type
0] 0
II=fa—AN—,
/ or 0Oy

where f vanishes and is singular at (0,0), and a(0,0) # 0.

Moreover, we suppose that f is a quasihomogeneous polynomial of degree d > 0
with respect to W = wlm% + wgy% (w1 and wy are positive integers). This
additional assumption will be justified later.

Here and throughout, the quasihomogeneity will be with respect to W.

Arnold’s theorem is the following:

Theorem 3.2. [A] Up to a multiplicative constant, 11 is equivalent to the germ
of a Poisson structure of type f(1 + h)a% A 3% where h s a quasthomogeneous
polynomial of degree d — w1 — wa (on condition that d — w1 — wa s a quasidegree,

otherwise this term disappears).

It is possible to show (see [Mol]) that II is equivalent to a germ of Poisson
structures of type f(1+ h + R)a% A 8% where ord (j§°(R)) > d —wy —ws (j§°(R)
indicates the oo-jet of R at (0,0)) and h is a quasihomogeneous polynomial of degree
d— w1 — Wa.

Thus, in order to prove the former theorem, we have to “remove” the term R. We
are going to use Moser’s path method. For ¢t € R, we put II; = f(l—l—h—l—tR)a% A a%

and we try to prove the existence of X; € X;(K?) satisfying [X;, IT;] = — %L,

dt
Actually we will look for an X; of type a;W with oy € F;(K?).
W.(h+tR)
TThiR

Then, if we put R; = ﬁ and \t = d —w; —wy + it is sufficient to

prove the existence of a; in F;(K?), such that
Wat — AtOét = Rt (E) .

Let us note two things :

o if IT is analytic (C*) then so are R; and ),

e if d — wy; — wy is a quasidegree, then ord(jg"(Rt)) >d—w; —ws.
Now, we just have to show that there exists oy satisfying (E).

Resolubility of equation (E) : The results we give here will be useful in the
computation of the Poisson cohomology. That is why we are going to give quite
detailed proofs of them.

We can write Ay = (d — w; — wa) + ¢ where p; € F;(K?) satisfies 114(0,0) = 0. In
order to show that (F) admits a solution :

1- we prove that there exists 8; € F;(K?) satisfying W.3; — s 3¢ = 0 with 3;(0,0) #
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0
2- we prove that there exists v; € F;(K?) satisfying Wy, — (d — w1 — wa)y = By

T B
3- ay := By will then be a solution of (E).

1- In order to show the first claim, we need the following result whose proof
can be found in [R].

Theorem 3.3. Let X; be an element in X;(K?) having an isolated singularity at
(0,0). Moreover, suppose that the eigenvalues of its linear component at (0,0) do
not vanish. Take hy in C°(R?) flat at (0,0). Then there exists g, € C°(R?) flat at
(0,0) satisfying X¢.g: = hy for any t.

We also need the following lemma.

Lemma 3.4. If T, € F,(K?) satisfies T;(0,0) = 0, then there exists v; € F;(K?)
such that W.v, = T.

Proof of the lemma : ‘ ‘
Formal case : Assume that T} € Kq[[z,y]]; we have T, = Y, T\ where T\" is
()
quasihomogeneous of degree 4. If we put vy = ., Tti we get Wy = T;.
Analytical case : Assume that T} is analytic at (0,0). Imitate the former proof not-
ing that, so defined, 14 is analytic at (0,0).

C> case : Let T} = i (Ty) and & € Rt[[x,y]] be such that W.&; = T;. Borel’s

theorem ensures the existence of e, € C>®(R?) such that j°(e;) = &. Thus
W.ey = Ty + my where my is flat at (0,0). Let n; be flat at (0,0) and such that
Wy = —my (ng exists by theorem 3.3); vy = &4 + ny suits. =

Consequently, to prove 1-; we put 3; = expry, where v satisfies Wy = py.

2- Note first that if d —w; — wy is a quasidegree (for polynomials), then there
exists (7,7) in N? such that d — wy — wy = iw; + jws if not, d — wy — we = iwy — ws
(or —wj + iws) with ¢ € N. The following lemma will prove the second claim.

Lemma 3.5. i): Let k and | be in N and T, € F;(K?) with ord((j§°(13)) >
kwi +lwy. Then there exists v, € Fy(K?) satisfying Wy — (kwy + lwa)ye =
T;.

ii): Let k € N and T; € F,(K?); then there exists v, € F1(K?) satisfying
Wy — (kw1 —wa)ye = T

Proof : i) We use an induction :
For k =1 = 0: see lemma 3.4.
Now, assume that i) is true for (k,1) € N2. We are going to show that it is true for
k+1and ! (for k and [ + 1 the proof is the same).
Let T; € F;(K?) with ord(j(‘)’o(Tt)) > (k + 1wy + lws and &; € F(K?) verifying
W.6; — (kw1 +lw2)d; = 2. Then we define v by v (z,y) = I 8¢ (u,y) du for (z,y)
in a neighbourhood of (0,0). An easy computation shows that Wy, — ((k+ 1)wq +
lwa)y: = Ty.
ii) We use again an induction :
For k = 0: we know that there exists 6; € 7;(K?) such that W.6; = [ Ty(z, u) du.
If we put v = %—‘;‘ then we get Wy + woyy = Ty
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The end of the proof can be achieved as ini). m

A list of normal forms : We recall that a germ of Poisson structures on K™ is
determined by the choice of a germ of functions.

We consider a germ II = f % A a%v where f vanishes and is singular at (0,0). We
suppose, in addition, that the germ f is of finite codimension. It means that the
vector space Q¢ = F(K?)/I; (I is the ideal spanned by % and %) is of finite
dimension.

Why do we suppose that f is of finite codimension? In fact, one can see Iy as
the tangent space of the orbit of f (with respect to the R-equivalence). Thus, the
finite-codimensional germs are those whose orbit is “big” enough.

Remark 3.6. It is important to note the following fact:

According to Tougeron’s theorem (see for instance [AGV]), if f is of finite codimen-
sion, then f is R-equivalent to its k-jets for k sufficiently large. The set f~1({0}) is
then, from the topological point of view, the same as the set of zeroes of a polyno-
mial. Therefore, if g is a germ at 0 of functions which satisfies fg = 0, then g = 0.

Moreover, we suppose that the germ f is simple. It means that a sufficiently
small neighbourhood (with respect to Whitney’s topology; see [AGV]) of f inter-
sects only a finite number of R-orbits. Simple germs are those who present a certain
kind of stability under deformation.

Note that simple germs are necessarily of finite codimension (see for instance
[AGV)).

We have a classification of such germs in the following theorem.

Theorem 3.7. [AGV] Simple germs at (0,0) of functions are given, up to R-
equivalence, in the following list:

Ay, k>1|Dyp k>4 Eg Fr Eg
ZEyt |2yt L | Bty | Bt af | Bt

If K=C (orif k is even in the real Ay case), then the symbol + disappears.

It is important to note that these models are quasihomogeneous polynomials.
Now, applying theorem 3.2 to these models, we can state the following theorem.

Theorem 3.8. [A] Let f be a simple germ at (0,0) of finite codimension. Suppose
that f has at (0,0) a critical point with critical value 0. Then, the germ II =
fa% A 6% is equivalent, up to a multiplicative constant, to a germ of type ga% A 6%’
where g is in the following list:
Agy o 2Py p>1
Apey = (@Y (L+ M) p21
(@®£y) L+ M"Y p>2
Dypi1 = (Py+y*)(1+Az) p>2
EG : I‘B + y4
Er o (@ +ay’) (14 My?)
Es : 23+49°
If K = C, the symbol + disappears.
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4. POISSON COHOMOLOGY

In this section we compute the Poisson cohomology of some Poisson structures.
In fact, we work locally and we study the “germified” Poisson cohomology. This
means that we work with germs of Poisson structures, functions, vector fields, 2-
vectors...

We recall that F(K?2) (X (K?), V(K?2)) indicates the space of germs at 0 of functions
(vector fields, 2-vectors).
Let II be a germ of Poisson structure on K. We have then the complex

0 2% F(K?) 25 X(K?) 22 V(K?) 2 0
where §p = 0, 5 = 0, 01(g9) = [g, 1] and d2(X) = [X,II] ([.,.] indicates the Schouten
bracket).
We will denote by Z*(II) = Ker 8,41, B{(Il) = Im 6; and H*(Il) = Z*(I)/ B*(1I).
If we assume that I = F-2 A 8% where F € F(K?) then, for g € F(K?), we have

dg 0 dg 0
é =Fr=—-F—=—.
1(9) Oy Ox dzx dy
We will denote by X this vector field (it is the Hamiltonian of g with respect to

IT) and H the vector field 2—5% - g—ga%.

On the other hand, for X € X(K?), we have

o 0
52(X) = (X.F = (divX)F) — N —.
2(X) = (X.F = (@ioX)F) 3 1 o
We will denote H2(F) the space F(K?)/{X.F — (divX)F| X € X(K?)}. This space
is clearly isomorphic to H?(II).

Actually, we will compute the cohomology of Poisson structures of a particular
type.
Let (w1,ws2) € N* x N*. Here and throughout, the quasihomogeneity will be un-
derstood as being in the sense of (wi,wsz) (W will again indicate the vector field
wlxa% + wgya%).
We take a quasihomogeneous polynomial f of degree d and we assume that f is
a germ at 0 of finite codimension c¢ (recall that it means that the vector space
Qs = F(K?)/I;, where I; is the ideal spanned by % and %’ is of dimension
¢). We also give us a quasihomogeneous polynomial h of degree d —w; —wy (if
d—wi —wy > O)
Now we consider two germs of Poisson structures

Hozf(%q/\(% and H:f(l—l—h)%/\%

and we are going to compute the cohomology of these Poisson structures.
In the former section, we saw that the “most interesting” Poisson structures are of
this type.
Note that in the sequel,we do not suppose that the germ f is simple.

In our computation, it is very important to assume that f is of finite codimension
(see the role played by the second claim of lemma 4.2, and the remark 4.8).
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It is easy to see that, since f is of finite codimesion, the spaces H(Ily) and H°(II)
are isomorphic to K (see remark 3.6).

Remark 4.1. It is important to note that, since f is quasihomogeneous, the com-
putation of H*(Ilp) can be done "degree by degree”. For instance, if ZiX(i) is
the oo-jet of X and if X is in Z'(Tly) (resp. B'(Ilp)) then X is also in Z*(Ily)
(resp. B*(Ilp)) for each i. Moreover, if X is polynomial, then X is in Z*(Ily) (resp.
Bl(Ily)) if and only if each of its quasihomogeneous components is in Z*(IIy) (resp.
B1(IIp)). We have the same properties for B2(Ily).

The computation of the cohomology of IT does not present this property. The
following result will be useful in the sequel.

Lemma 4.2. Let X be in X(K?).
1- If div X = 0, then there exists g € F(K?) such that X = H,.
2-If X.f =0, then X = aH with o € F(K?).

Proof : We can write X = A%JrB%. We consider the 1-form w = —Bdx+ Ady.
1- If div X = 0 then dw = 0, which implies that w = dg with g € F(K?), and so
X = H,.
2-If X.f =0 then df A w = 0. Since f has finite codimension, de Rham’s division
theorem (see [dR] or [M]) enables us to conclude. m the Poisson structure IIj is
easier to manipulate;

4.1. Computation of H'. As the Poisson structure Il is easier to manipulate
than II, we first compute the cohomology space H'(IIy) and then look at the space
H(II).

Computation of H(Iy) :

Lemma 4.3. Let X € Z'(Ily). Then there exists a € F(K?) such that
X = aHy + ¥XW.

Proof : Direct application of lemma 4.2.

The main idea in the computation of the space H'(Ilp), is to show that every
1-cocycle whose oco-jet has a sufficiently large order is a cobord.

Lemma 4.4. Let X € X(K?) be such that ord(j§°(X)) > d — wy — wa.
If X € Z\(IIy) then X € B(ITy).

Proof : first case : div X = 0. We then show that f divides X.
Since X.f—(div X)f =0, we have X.f = 0 and then X = yvH (lemma4.2) withy €
F(K?). Note that, since ord(j{)x’ (X)) >d —w; — w2 and H; is quasihomogeneous
of degree d — w; — wy, we have ord(jg"(v)) > 0.
We prove that f divides 7. Let u € F(K?) be such that W.u = ~y (u exists according
to lemma 3.4). Note that, since % (resp. %) is quasihomogeneous of degree N —w;
(resp. N —wy), the order of the oo-jet of Hy.pu is strictly larger than d — w; — ws.
We have

Hp (W.p) = W.(Hpp) + [Hp, W] = W.(Hy.p) + (= (d —wy — wo)Hy) .

(because Hy is of degree d — wq — w2).
Since Hy.(W.p) = Hy.y = div X = 0, we have

W.(Hy.p) = (d—wi —w2)Hy.p
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and so Hy.u is either 0 or quasihomogeneous of degree d — w; — wo.

Thus, as ord (j§°(Hy.p)) > d — w1 — wa, we have Hy.pu = 0.

Now, H,.f = —Hj.u = 0 so there exists v € F(K?) such that % = 1/% and
g—’; = I/% (lemma 4.2). Therefore, W.u = v W.f, that is v = v(d x f).

We deduce that X = fZ with Z € X (K?).

Finally, since X € Z'(Ily), div Z = 0 and then Z = H, for some g € F(K?) (lemma
4.2). Hence X = fH, = X,,.

Second case : div X # 0. If we find 3 € F(K?) such that div X = div Xg, then the
1-cocycle X — X satisfies div(X — Xg) = 0, which implies (see the first case) that
X = Xj + X. where ¢ € F(K?). Since div Xg = Hg.f = —H.3, we are looking
for 3 such that H;.8 = —div X.

We have X = aHy + d“’TXW with a € F(K?) (lemma 4.3) so that div X satisfies
the equation

W.(divX)—(d—w —ws)divX = —-dx Hy.a.
Note that, if we write the co-jets at 0 in the relation X = aHy + digX W, we see
that the order of the oco-jet of « is strictly positive so, according to lemma 3.4 we

can take 8 € F(K?) such that W.8 = d x « (the order of the co-jet of 3 is also
strictly positive). Since
W(Hfﬁ) = Hf(Wﬂ) + [VV, Hf]ﬂ = d(HfOé) + ((d — w1 — WQ)Hf).ﬂ,

we have W.(div X + Hy.3) = (d — w1 —wo)(div X + Hy.53).
We deduce that div X +H.3 is either 0 or quasihomogeneous of degree d — w; — wa.
Therefore, div X = —Hy.( (because ord (j§°(div X + Hy.0)) >d —wy —wz). =

For X € Z!(Ily), we denote by [X]H0 its class modulo B*(IIy). We also denote by
{e1,...,e,} a basis of the vector space of quasihomogeneous polynomials of degree
d — w1 — ws (in fact, in order to obtain a vector space, we have to add 0 to the set
of quasihomogeneous polynomials of degree d — wy — ws).

Theorem 4.5. The family {[Hy]y, , [0 W]y, s - [e:W]y, } is a basis of H' (Tp). In
particular, H'(Ily) is a finite-dimensional vector space of dimension r -+ 1.

Proof : First we prove that H'(Ily) is spanned by this family. Lemma 4.4 says
that every X in Z!(Ily) is cohomologous to a polynomial vector field of maxi-
mum degree d —w; —wy. Indeed, if X € Z'(ITy) then ji “'~“2(X) is also in
ZY (M) (§5~“~*2(X) indicates the jet of degree d —w; —wy of X at 0). Thus,
X —jim17%2(X) is in Z'(Tly) and the order of its oo-jet at 0 is strictly higher than
d— w1 — wWa.

Therefore, using remark 4.1, we can assume that X is quasihomogeneous of degree
d — w1 — wy or lower.

- If X € Z'(Ilp) is quasihomogeneous with deg X < d —w; —wy then X = 0.
Indeed, according to lemma 4.3, we have X = %W, and so

div X div X
7 )

div X = di’UW+W(

which implies that (d —w; — wy — deg X)div X = 0.
- Let X € Z'(Ilp) be quasihomogeneous of degree d — w; — wa. We have (lemma
43) X =aH;+ d“’TXW where o € K and div X is a quasihomogeneous polynomial
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of degree d — wy — ws.

Therefore the family generates H(IIp).

Now, we prove that this family is free. Suppose that >, \ie;W + aHy € B(II)
where a, A1, ..., A\, are scalars. Then ), \ie;W +aHy = 0. Indeed, if g is a quasi-
homogeneous polynomial, then deg X, = deg Hy + degg = d —w; —ws + degg,
which is strictly larger than d — w; — wy as soon as g # 0.

Consequently, div(zi AieiW + aHf) = 0ie > ,Ne; = 0. We deduce that
Al,..., A are0,andsoa=0. =

Computation of H'(II) :
If X € Z(II) we denote by [X], its class modulo B! (II).
Theorem 4.6. {[(1+h)H/],, [(1+h)es W]y, ..., [(1+h)e, W], } is a basis of H*(II).
In particular, H'(I1) ~ H'(IIy).
Proof : It is sufficient to notice that X € Z1(II) (resp. X € B(I)) if and only

if Hih € Z'(Ily) (resp. B(Ily)). m

4.2. Computation of H2. Here again, we first compute the cohomology space
H?(IIp) and then the space H?(II). We will then see that these two spaces are
isomorphic.

Computation of H*(Iy) :

Lemma 4.7. Let g be a germ at 0 of functions on K2.
1. If the co-jet at 0 of g does not contain a component of degree 2d —wy — wo then

geB}f)egels.
2. If g is quasihomogeneous of degree 2d — w1 — wo then

geB*(f)=g€l;.

Proof : If g = X.f — (div X) f € B%(f) where X € X(K?) then , if we put

v X
Y:X—dw

w,

we have g =Y. f
This proves the second claim and the first part of the first one.
Now, we prove the converse of the first claim: we assume that g € Iy (and the
oo-jet of g does not contain a component of degree 2d —w; — ws) and we are going
to show that g € B2(f).
Formal case : Let g = Zg(i) € K[z, y]] and X = Z XD (with ¢

i>0 1>d—max(w1,ws2)
of degree i and X =4 of degree i—d) such that g = X.f. Note that X(d-«1-w2) — (.
If we put

div X (=4

Y =X —
+ 2d—w1—w2—i

7;;£2d7w1 —Ww2
a direct computation gives Y.f — (divY)f = X.f = g.
Analytical case : If X is analytic at (0,0), then div X is analytic too and since
limi_,+oom = 0 the vector field defined above is also analytic in (0,0).



10 PHILIPPE MONNIER

C™ case : Let us denote by § = j5°(g) and X = j3°(X). )
If we write the oo-jets in the relation g = X.f, we get g = X.f. Thus, there exists
a formal vector field Y such that

G=Y.f—(divY)f.
Let Y be a C* vector field such that ¥ = jg°(Y). Since Y.f — (divY) f and g have
the same oo-jet, this vector field satisfies

Yf—([diwY)f=g+e¢

where ¢ is flat at 0.

Now, since Y.f — (divY)f € I; (see the beginning of the proof), ¢ is in Iy so
that ¢ = P.f where P is a flat vector field. According to lemma 3.5, there ex-
ists a € F(K?) such that W.ao — (d — w; — wq)ar = —div P. Consequently, setting
Z=P+aW,wehave Z.f — (divZ)f =e. =

Remark 4.8. 1- This lemma is true even if f is not of finite codimension.

2- This lemma gives B%(f) C Iy. Thus, there is a surjection from H?(f) onto Q.
Therefore, if f is not of finite codimension, then H?(Ily) is an infinite-dimensional
vector space.

3- Finally, according to this lemma, if £ € Iy, then there exists a quasihomogeneous
polynomial £ of degree 2d — w; — ws such that & + & € B2(f).

If g € F(K?), (9], indicates its class modulo B2(f). Recall that {ej,...,e,} is a
basis of the space of quasihomogeneous polynomials of degree d — wy — wy. Finally,
we denote by {u,...,u.} a monomial basis of Qs = F(K?)/I; (for the existence of
such a basis, see [AGV]).

Theorem 4.9. The family {[elf]no sooes (€ g » [u] (el } is a basis of H*(f).
In particular, H*(Ily) is a finite-dimensional vector space of dimension r + c.

oo **

Proof :- This family generates H?(f):
Let g € F(K?). We can write g = > i, \iu; + & where \; € K and £ € Iy.
According to lemma 4.7 (and remark 4.8), we can write

9= Z)\iui +7 mod B*(f)
i=1

where g is a quasihomogeneous polynomial of degree 2d — w1 — ws.
We can again write g = Zle Aju; mod Iy where X € K. Now, we know (see
[AGV] p.200) that max{degus, ...,degu.} = 2d — 2w; — 2wy which is strictly lower
than degg. So, g is in I¢, i.e. § = X.f with X quasihomogeneous of degree
d— w1 — Wa.
Therefore, g = (div X) f+ (X.f— (div X)f) with div X quasihomogeneous of degree
d—wi — ws.
- This family is free: Let g1 = Y ;_; Aie; and go = 25:1 piu; with Ay and p; in K
for any i and j. We assume that g1 f + g2 € B2(f). Since max{deguy, ...,degu.} <
deg(g1f), g1f and go are both in B?(f) (see remark 4.1).
On the one hand, we then have g € Iy which is possible only if 1 = ... = . = 0.
On the other hand, since g1f = X.f — (div X)f for some quasihomogeneous vec-
tor field X of degree d —w; — wo, if Y denotes the vector field WW then
(X —Y).f = 0. Therefore (lemma 4.2), X =Y + oHy with o € K. Hence
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X.f — (divX)f =0, which implies A\ =... =\, =0. =

Computation of H*(II) :

Lemma 4.10. Let g € F(K?). If the order of the co-jet of g is larger than or
equal to 2d — w1 — wa, then there exists a quasihomogeneous polynomial € of degree
d — w1 —wy such that g =ef mod B2(f + fh).

Proof : According to theorem 4.9, we can write

9

—— = Nui+ef + X.f — (divX)f
1+h

where the \; are in K and ¢ is quasihomogeneous of degree d — w; — ws.
But since ord(jf(ﬁ)) > 2d — wy; — wy > max{deguy,...,degu.}, if we write
the oo-jets in the former relation, we see that the \; are zero and that the order of
the oco-jet of X is higher than d — wy — ws.
Now,

X.(f 4 fh) = (div X)(f + fh) = g+ f(X.h) —f(1+h).
We put A = (d —w; —w2)(1 + J—h) If X.h —eh = 0, then the lemma is shown.
Now, if we suppose that X.h — ¢h is not 0, the order of its oco-jet is strictly larger
than d — w; — wo, and so we can take a € F(K?) such that W.a — A = X:h=ch

1+h
(see the ”Resolubility of equation (E)” in the former section).
If we put Z = X + oW, we have Z.(f + fh) — (divZ)(f+ fh)+ fe=9. =

Theorem 4.11. The family {[e1f]y, ., [er fln, [Ut] s - [Ucly | is a basis of H2(f+
fh). In particular, H*>(f + fh) ~ H?(f) (the space H?(I1) is then of dimension
r+c).

Proof :
- This family generates H?(f + fh).
Given g € F(K?), we have g = > i, Niou; + Pof + Xo.f — (div Xo)f (theorem
4.9) where P, is a quasihomogeneous polynomial of degree d —w; —wa, Ajg € K
for any i and ord(j§°(Xo)) > —max(wy,ws) (remember that —max(wy,ws) is the
smallest degree for quasihomogeneous vector fields). Since

Xo.-(f + fh) = (div Xo)(f + fh) = g = > _ Aioui — Pof + Xo-(fh) — (div Xo)(fh) ,

i=1

we can write

C
9= Niowi + Pof — (Xo.(fh) — (div Xo)(fh)) mod B*(f + fh).
i=1
Now, we have Xo.(fh) — (div Xo)fh = = > Xiqw; — P f + X1.f — (div X7) f where
Ai1 is in K for any ¢, P, is a quasihomogeneous polynomial of degree d — w; — ws
and ord (j§°(X1)) > d — w1 — wa — max(wy,ws2). So, in the same way,

Xo(fh)—(d?/l} Xo)fh = — Z /\i)lui—Plf—(Xl.(fh)—(diU Xl)(fh)) mod B2(f—|-fh)

i=1
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Hence

C

9= (Nio+Xin)ui+ (Po+ P)f — (X1.(fh) — (div X1)(fh)) mod B*(f + fh).
=1
In this way, we get

C

g= Z(Aiyo—s—...—i—)\i’k)ui+(P0+...+Pk)f— (Xp.(fh)—(div X)) (fh)) mod B*(f+fh)
i=1

where k is the smallest integer such that k(d — w; — we) — max(wi,wz) > 0, P; is

a quasihomogeneous polynomial of degree d — w; — ws for any j, A; ; € K for any ¢

and j and ord (j§°(X%)) > k(d — wy — wa) — max(wy, ws).

But since

ord (jig® (Xp.(fh) — (div Xi,) fh)) 2d — w1 — wo + k(d — w1 — we) — max(w,ws)

>

Z 2d — Wy — w2,

lemma 4.10 gives Xy — (div Xx)f = Qf mod B2(f + fh) for some quasihomoge-
neous polynomial @ of degree d — wy — wo.

- This family is free. Let A1, ...\ be scalars and P a quasihomogeneous polynomial
of degree d — w; — wy. Suppose that

Y A+ Pf=X.(f+ fh) = (div X)(f + fh) (¥)

i=1
with X € X(K?). Since fh is quasihomogeneous of degree 2d — w; — wy and the
order of the co-jet of X is larger than —max(wq,ws), we have
ord (5 (X.(fh) — (div X)(fh))) > 2d—w; —ws — max(wi,ws)
> 2(d — wy — we) = max{deguy, ..., degu.} .
Therefore, if we write the co-jets in the relation (x), we have Y;_, \iu; € B*(f)

and so A\; =, ..., = A, = 0 (theorem 4.9).
We obtain

Pf=X.(f+fh) = (div X)(f + fh) (xx),
where Pf is a quasihomogeneous polynomial of degree 2d — wy — ws.
Now, we can write j&°(X) = Y_,55 X (X@ is quasihomogeneous of degree 7). If
§ < d—w; —wy then X € Z1(TIy) and so, X®) = 0 (cf proof of theorem 4.5).
In the same way, we can prove that X =0 for any i < d — w; — wy.
Consequently, if we write the co-jets in the relation (xx), we get

Pf _ X(dfwlfwz).f . divX(d7w17w2)f
that is, Pf € B?(f), which is possible only if P = 0 (cf proof of theorem 4.9). =

4.3. Examples. We are going to make explicit the cohomology of some Poisson
structures given in theorem 3.8.

The regular case : We suppose that II = xa% A a%.
In this case, w1 =ws =d =1, and so d — w1 — ws < 0. Moreover, @, = {0}.
Therefore, H*(IT) ~ Ka% and H?(IT) = {0}.
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Morse’s singularity (A1): We suppose that IT = (22 + y ) A5
Here, we have w; = wy = 1 and d = 2. The only monormals of degree d—w; —ws
are the scalars. Moreover, Q;21,2 ~ K.1. Then, we have

0 7] 0

0
HY(T) ~ Ky——2—)0K(z5 +y=—
(1) U way)@ (x8x+y8y)
o 0 8
d H*(II) ~ K.—A—
and H*(IT) oz "oy U8 f Moy
The singularity Da,11 (p > 2): We suppose that IT = (:c y+y*)(1+ I)% A 8%'

In this case, we can see that w; = 2p — 1, wy = 2 and d = 4p. The only mono-
mials of degree d — wy; — wo are of type Az (with A € K). Moreover, the family
{1,2,y,9% - ,y?"} is a monomial basis of Q2,4 ,2».

Therefore,

the family { [(1+2)((2?+2py?~ 1) E Zmya )], [ +z)a W] } is a basis of H(II)
and the family
o A D ) o A D o A D
{[ @y +y")E NG (SN L] e AL R A S PR AS) -
S e A ]} is a basis of H2(II).
In particular, H L(TI) is of dimension 2 and H?(II) of dimension 2p + 3.

Remark 4.12. Our first approach to these problems was to use the spectral se-
quence associated to our complex, filtred by the valuation (whith respect to the
quasihomogeneous degree). But the method we present here gives better results.
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