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PHILIPPE MONNIER

Abstract. It is known that the computation of the Poisson cohomology is
closely related to the classification of singularities of Poisson structures. In
this paper, we will first look for the normal forms of germs at (0,0) of Poisson
structures on K2 (K = R or C) and recall a result given by Arnold. Then we
will compute locally the Poisson cohomology of a particular type of Poisson
structure.

1. Introduction

The Poisson cohomology of a Poisson manifold gives several informations on the
geometry of the manifold. It was first introduced by Lichnerowicz in [L]. Unfortu-
nately, the computation of these cohomology spaces is quite complicated and few
explicit results have been found.
In the symplectic case, Poisson cohomology is naturally isomorphic to de Rham
cohomology. The case of regular Poisson manifolds is discussed, for instance, in
[V] and [X]. One can find some results on the Poisson cohomology of Poisson-Lie
groups in [GW]. Some explicit computations are also done, for instance, in [Co1],
[Co2] or [G].
In [Cr], Crainic links Poisson cohomology with the Morita equivalence. Finally, one
can find some discussion on Poisson cohomology and Poisson homology in [ELW],
[B] or [FT].
In the two-dimensional situation, some special cases on R2 have been studied. In
[V], Vaisman began to compute the cohomology of (x2 + y2) ∂

∂x ∧ ∂
∂y . His idea was

to consider the homomorphism ι∗: H•(R2) → H•(R2 \ {(0, 0)}) induced by the
inclusion ι : R2 \ {(0, 0)} ↪→ R2. A few years later, Nakanishi used this idea and
computed the Poisson cohomology of quadratic Poisson structures on R2 (see [N]).
In the present paper, our approach is more direct and uses some tools arising from
the theory of singularities. More precisely, we first study (in section 3) the normal
forms of the “most interesting” germs at (0,0) of Poisson structures vanishing at
(0,0), and we rediscover the list given by Arnold in [A]. These normal forms are of
type

Π = f(1 + h)
∂

∂x
∧ ∂

∂y
,

where f and h are quasihomogeneous polynomials (there is a relation between their
degrees).
Then, in section 4, we then compute locally the Poisson cohomology of Poisson
structures of this type.
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A generalisation of these results to the n-vectors on an n-dimensional manifold can
be found in [Mo2].

2. Quasi-homogeneity

Throughout this text, K will indicate the field R or C.
Let (ω1, ω2) ∈ N∗ × N∗. We denote by W the vector field ω1x

∂
∂x + ω2y

∂
∂y on

K2. Now, let T be a non zero p-vector (p ∈ {0, 1, 2}). We will say that T is
quasihomogeneous with weights ω1, ω2 and of (quasi)degree d ∈ Z if

LW T = dT ,

where LW indicates the Lie derivative with respect to W . This condition can be
written [W,T ] = dT where [.,.] indicates the Schouten bracket. Note that T is then
polynomial.
If f is a quasihomogeneous polynomial of degree d then d = iω1 + jω2 with
(i, j) ∈ N2; therefore, an integer is not necessarily the quasidegree of a polyno-
mial. If f ∈ K[

[x, y]
]
, we can write f =

∑∞
i=0 fi with fi quasihomogeneous of

degree i (we adopt the convention that fi = 0 if i is not a quasidegree); f is said
to be of order d (ord(f) = d) if all of its monomials have degree d or higher. For
more details consult [AGV].
It is important to notice that ∂

∂x is a quasihomogeneous vector field of degree
−ω1 (in the same way deg( ∂

∂y ) = −ω2); the minimal degree of a vector field is
−max(ω1, ω2). Note also that an integer can be the quasidegree of a vector field
without being the quasidegree of a polynomial. Finally, note that ∂

∂x ∧ ∂
∂y is quasi-

homogeneous of degree −ω1 − ω2.

3. Local models of Poisson structures in dimension 2

In the reference [A], Arnold gives a list of normal forms for Poisson structures
on a neighbourhood of (0, 0) in K2. In this section, we recall Arnold’s theorem and
we give the idea of a proof which is similar to Arnold’s (the approach is a little bit
different). For more details on this proof, consult [Mo1].
The particularity of the dimension two is that any 2-vector on a 2-dimensional
manifold is a Poisson structure. For an introduction to Poisson structures, consult
[CW] or [V].
The problem is the following: given Π = F ∂

∂x ∧ ∂
∂y , a germ at 0 of Poisson structures

on K2, we want to simplify its expression via a suitable local change of coordinates.

Notations : We denote by F(K2)
(
resp. X (K2),V(K2)

)
the vector space of germs

at (0,0) of (holomorphic if K = C , analytic or C∞ if K = R) functions (resp. vector
fields, 2-vectors). We also denote by Diff0(K2) the group of local diffeomorphisms
at (0,0) sending (0,0) to itself. Finally, Ft(K2)

(Xt(K2),Vt(K2)
)

indicates the space
of germs depending differentiably on t ∈ R.

Two germs Π = f ∂
∂x ∧ ∂

∂y and Λ = g ∂
∂x ∧ ∂

∂y are called equivalent if there
exists ϕ ∈ Diff0(K2) satisfying ϕ∗Π = Λ. This condition yields g ◦ ϕ = (Jacϕ)f
where Jac ϕ indicates the Jacobian of ϕ.
Two germs f and g are said to be R-equivalent if there exists ϕ ∈ Diff0(K2)
satisfying g ◦ ϕ = f .
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Actually, it is not possible to give normal forms for every Poisson structures.
We only study Poisson structures determined by the germs of functions F whose
R-orbit is “interesting” enough. We will speak about it later.

The splitting theorem ([W]) allows us to assume that Π(0,0) = 0. Moreover, it is
quite easy to show that, if F is regular at 0, then Π is, up to a change of coordinates,
the germ x ∂

∂x ∧ ∂
∂y .

Remark 3.1. It is important to note that if two germs f and g are R-equivalent,
then the germ Π = f ∂

∂x ∧ ∂
∂y will be equivalent to the germ of a Poisson structure

of type ga ∂
∂x ∧ ∂

∂y where a(0, 0) 6= 0.
Now, we consider germs of Poisson structures of type

Π = fa
∂

∂x
∧ ∂

∂y
,

where f vanishes and is singular at (0, 0), and a(0, 0) 6= 0.
Moreover, we suppose that f is a quasihomogeneous polynomial of degree d > 0
with respect to W = ω1x

∂
∂x + ω2y

∂
∂y (ω1 and ω2 are positive integers). This

additional assumption will be justified later.
Here and throughout, the quasihomogeneity will be with respect to W .
Arnold’s theorem is the following:

Theorem 3.2. [A] Up to a multiplicative constant, Π is equivalent to the germ
of a Poisson structure of type f(1 + h) ∂

∂x ∧ ∂
∂y where h is a quasihomogeneous

polynomial of degree d− ω1 − ω2 (on condition that d− ω1 − ω2 is a quasidegree,
otherwise this term disappears).

It is possible to show (see [Mo1]) that Π is equivalent to a germ of Poisson
structures of type f(1 + h + R) ∂

∂x ∧ ∂
∂y where ord

(
j∞0 (R)

)
> d− ω1 − ω2 (j∞0 (R)

indicates the∞-jet of R at (0,0)) and h is a quasihomogeneous polynomial of degree
d− ω1 − ω2.
Thus, in order to prove the former theorem, we have to “remove” the term R. We
are going to use Moser’s path method. For t ∈ R, we put Πt = f(1+h+tR) ∂

∂x ∧ ∂
∂y

and we try to prove the existence of Xt ∈ Xt(K2) satisfying [Xt, Πt] = −dΠt

dt .
Actually we will look for an Xt of type αtW with αt ∈ Ft(K2).
Then, if we put Rt = R

1+h+tR and λt = d− ω1 − ω2 + W.(h+tR)
1+h+tR , it is sufficient to

prove the existence of αt in Ft(K2), such that

W.αt − λtαt = Rt (E) .

Let us note two things :
• if Π is analytic (C∞) then so are Rt and λt

• if d− ω1 − ω2 is a quasidegree, then ord
(
j∞0 (Rt)

)
> d− ω1 − ω2.

Now, we just have to show that there exists αt satisfying (E).

Resolubility of equation (E) : The results we give here will be useful in the
computation of the Poisson cohomology. That is why we are going to give quite
detailed proofs of them.
We can write λt = (d− ω1 − ω2) + µt where µt ∈ Ft(K2) satisfies µt(0, 0) = 0. In
order to show that (E) admits a solution :
1- we prove that there exists βt ∈ Ft(K2) satisfying W.βt−µtβt = 0 with βt(0, 0) 6=
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0
2- we prove that there exists γt ∈ Ft(K2) satisfying W.γt − (d− ω1 − ω2)γt = Rt

βt

3- αt := βtγt will then be a solution of (E).

1- In order to show the first claim, we need the following result whose proof
can be found in [R].

Theorem 3.3. Let Xt be an element in Xt(K2) having an isolated singularity at
(0,0). Moreover, suppose that the eigenvalues of its linear component at (0,0) do
not vanish. Take ht in C∞t (R2) flat at (0,0). Then there exists gt ∈ C∞t (R2) flat at
(0,0) satisfying Xt.gt = ht for any t.

We also need the following lemma.

Lemma 3.4. If Tt ∈ Ft(K2) satisfies Tt(0, 0) = 0, then there exists νt ∈ Ft(K2)
such that W.νt = Tt.

Proof of the lemma :
Formal case : Assume that Tt ∈ Kt

[
[x, y]

]
; we have Tt =

∑
i>0 T

(i)
t where T

(i)
t is

quasihomogeneous of degree i. If we put νt =
∑

i>0
T

(i)
t

i we get W.νt = Tt.
Analytical case : Assume that Tt is analytic at (0,0). Imitate the former proof not-
ing that, so defined, νt is analytic at (0,0).
C∞ case : Let T̃t = j∞0 (Tt) and ε̃t ∈ Rt

[
[x, y]

]
be such that W.ε̃t = T̃t. Borel’s

theorem ensures the existence of εt ∈ C∞(R2) such that j∞0 (εt) = ε̃t. Thus
W.εt = Tt + mt where mt is flat at (0,0). Let nt be flat at (0,0) and such that
W.nt = −mt (nt exists by theorem 3.3); νt = εt + nt suits. �

Consequently, to prove 1-, we put βt = exp νt, where νt satisfies W.νt = µt.

2- Note first that if d− ω1 − ω2 is a quasidegree (for polynomials), then there
exists (i, j) in N2 such that d− ω1 − ω2 = iω1 + jω2 if not, d− ω1 − ω2 = iω1−ω2

(or −ω1 + iω2) with i ∈ N. The following lemma will prove the second claim.

Lemma 3.5. i): Let k and l be in N and Tt ∈ Ft(K2) with ord
(
(j∞0 (Tt)

)
>

kω1 + lω2. Then there exists γt ∈ Ft(K2) satisfying W.γt− (kω1 + lω2)γt =
Tt.

ii): Let k ∈ N and Tt ∈ Ft(K2); then there exists γt ∈ Ft(K2) satisfying
W.γt − (kω1 − ω2)γt = Tt.

Proof : i) We use an induction :
For k = l = 0: see lemma 3.4.
Now, assume that i) is true for (k, l) ∈ N2. We are going to show that it is true for
k + 1 and l (for k and l + 1 the proof is the same).
Let Tt ∈ Ft(K2) with ord

(
j∞0 (Tt)

)
> (k + 1)ω1 + lω2 and δt ∈ Ft(K2) verifying

W.δt− (kω1 + lω2)δt = ∂Tt

∂x . Then we define γt by γt(x, y) =
∫ x

0
δt(u, y) du for (x, y)

in a neighbourhood of (0,0). An easy computation shows that W.γt − ((k + 1)ω1 +
lω2)γt = Tt.
ii) We use again an induction :
For k = 0: we know that there exists δt ∈ Ft(K2) such that W.δt =

∫ y

0
Tt(x, u) du.

If we put γt = ∂δt

∂y then we get W.γt + ω2γt = Tt.
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The end of the proof can be achieved as in i). �

A list of normal forms : We recall that a germ of Poisson structures on Kn is
determined by the choice of a germ of functions.
We consider a germ Π = f ∂

∂x ∧ ∂
∂y , where f vanishes and is singular at (0, 0). We

suppose, in addition, that the germ f is of finite codimension. It means that the
vector space Qf = F(K2)/If (If is the ideal spanned by ∂f

∂x and ∂f
∂y ) is of finite

dimension.
Why do we suppose that f is of finite codimension? In fact, one can see If as
the tangent space of the orbit of f (with respect to the R-equivalence). Thus, the
finite-codimensional germs are those whose orbit is “big” enough.

Remark 3.6. It is important to note the following fact:
According to Tougeron’s theorem (see for instance [AGV]), if f is of finite codimen-
sion, then f is R-equivalent to its k-jets for k sufficiently large. The set f−1({0}) is
then, from the topological point of view, the same as the set of zeroes of a polyno-
mial. Therefore, if g is a germ at 0 of functions which satisfies fg = 0, then g = 0.

Moreover, we suppose that the germ f is simple. It means that a sufficiently
small neighbourhood (with respect to Whitney’s topology; see [AGV]) of f inter-
sects only a finite number of R-orbits. Simple germs are those who present a certain
kind of stability under deformation.
Note that simple germs are necessarily of finite codimension (see for instance
[AGV]).
We have a classification of such germs in the following theorem.

Theorem 3.7. [AGV] Simple germs at (0,0) of functions are given, up to R-
equivalence, in the following list:

Ak k ≥ 1 Dk k ≥ 4 E6 E7 E8

x2 ± yk+1 x2y ± yk−1 x3 ± y4 x3 + xy3 x3 + y5

If K = C (or if k is even in the real Ak case), then the symbol ± disappears.

It is important to note that these models are quasihomogeneous polynomials.
Now, applying theorem 3.2 to these models, we can state the following theorem.

Theorem 3.8. [A] Let f be a simple germ at (0,0) of finite codimension. Suppose
that f has at (0,0) a critical point with critical value 0. Then, the germ Π =
f ∂

∂x ∧ ∂
∂y is equivalent, up to a multiplicative constant, to a germ of type g ∂

∂x ∧ ∂
∂y ,

where g is in the following list:

A2p : x2 + y2p+1 p ≥ 1

A±2p−1 : (x2 ± y2p)(1 + λyp−1) p ≥ 1

D±
2p : (x2 ± y2p)(1 + λyp−1) p ≥ 2

D2p+1 : (x2y + y2p)(1 + λx) p ≥ 2

E6 : x3 + y4

E7 : (x3 + xy3)(1 + λy2)
E8 : x3 + y5

If K = C, the symbol ± disappears.
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4. Poisson cohomology

In this section we compute the Poisson cohomology of some Poisson structures.
In fact, we work locally and we study the “germified” Poisson cohomology. This
means that we work with germs of Poisson structures, functions, vector fields, 2-
vectors...
We recall that F(K2) (X (K2), V(K2)) indicates the space of germs at 0 of functions
(vector fields, 2-vectors).
Let Π be a germ of Poisson structure on K2. We have then the complex

0 δ0−→ F(K2) δ1−→ X (K2) δ2−→ V(K2) δ3−→ 0

where δ0 = 0, δ3 = 0, δ1(g) = [g, Π] and δ2(X) = [X, Π] ([.,.] indicates the Schouten
bracket).
We will denote by Zi(Π) = Ker δi+1, Bi(Π) = Im δi and Hi(Π) = Zi(Π)/Bi(Π).
If we assume that Π = F ∂

∂x ∧ ∂
∂y where F ∈ F(K2) then, for g ∈ F(K2) , we have

δ1(g) = F
∂g

∂y

∂

∂x
− F

∂g

∂x

∂

∂y
.

We will denote by Xg this vector field (it is the Hamiltonian of g with respect to
Π) and Hg the vector field ∂g

∂y
∂
∂x − ∂g

∂x
∂
∂y .

On the other hand, for X ∈ X (K2), we have

δ2(X) =
(
X.F − (divX)F

) ∂

∂x
∧ ∂

∂y
.

We will denote H2(F ) the space F(K2)/{X.F − (divX)F | X ∈ X (K2)}. This space
is clearly isomorphic to H2(Π).

Actually, we will compute the cohomology of Poisson structures of a particular
type.
Let (ω1, ω2) ∈ N∗ × N∗. Here and throughout, the quasihomogeneity will be un-
derstood as being in the sense of (ω1, ω2) (W will again indicate the vector field
ω1x

∂
∂x + ω2y

∂
∂y ).

We take a quasihomogeneous polynomial f of degree d and we assume that f is
a germ at 0 of finite codimension c (recall that it means that the vector space
Qf = F(K2)/If , where If is the ideal spanned by ∂f

∂x and ∂f
∂y , is of dimension

c). We also give us a quasihomogeneous polynomial h of degree d− ω1 − ω2 (if
d− ω1 − ω2 > 0).
Now we consider two germs of Poisson structures

Π0 = f
∂

∂x
∧ ∂

∂y
and Π = f(1 + h)

∂

∂x
∧ ∂

∂y

and we are going to compute the cohomology of these Poisson structures.
In the former section, we saw that the “most interesting” Poisson structures are of
this type.
Note that in the sequel,we do not suppose that the germ f is simple.

In our computation, it is very important to assume that f is of finite codimension
(see the role played by the second claim of lemma 4.2, and the remark 4.8).
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It is easy to see that, since f is of finite codimesion, the spaces H0(Π0) and H0(Π)
are isomorphic to K (see remark 3.6).

Remark 4.1. It is important to note that, since f is quasihomogeneous, the com-
putation of H•(Π0) can be done ”degree by degree”. For instance, if

∑
i X(i) is

the ∞-jet of X and if X is in Z1(Π0) (resp. B1(Π0)) then X(i) is also in Z1(Π0)
(resp. B1(Π0)) for each i. Moreover, if X is polynomial, then X is in Z1(Π0) (resp.
B1(Π0)) if and only if each of its quasihomogeneous components is in Z1(Π0) (resp.
B1(Π0)). We have the same properties for B2(Π0).
The computation of the cohomology of Π does not present this property. The
following result will be useful in the sequel.

Lemma 4.2. Let X be in X (K2).
1- If div X = 0, then there exists g ∈ F(K2) such that X = Hg.
2- If X.f = 0, then X = αHf with α ∈ F(K2).

Proof : We can write X = A ∂
∂x +B ∂

∂y . We consider the 1-form ω = −Bdx+Ady.
1- If div X = 0 then dω = 0, which implies that ω = dg with g ∈ F(K2), and so
X = Hg.
2- If X.f = 0 then df ∧ ω = 0. Since f has finite codimension, de Rham’s division
theorem (see [dR] or [M]) enables us to conclude. � the Poisson structure Π0 is
easier to manipulate;

4.1. Computation of H1. As the Poisson structure Π0 is easier to manipulate
than Π, we first compute the cohomology space H1(Π0) and then look at the space
H1(Π).

Computation of H1(Π0) :

Lemma 4.3. Let X ∈ Z1(Π0). Then there exists α ∈ F(K2) such that
X = αHf + divX

d W .

Proof : Direct application of lemma 4.2.

The main idea in the computation of the space H1(Π0), is to show that every
1-cocycle whose ∞-jet has a sufficiently large order is a cobord.

Lemma 4.4. Let X ∈ X (K2) be such that ord
(
j∞0 (X)

)
> d− ω1 − ω2.

If X ∈ Z1(Π0) then X ∈ B1(Π0).

Proof : first case : div X = 0. We then show that f divides X.
Since X.f−(div X)f = 0, we have X.f = 0 and then X = γHf (lemma 4.2) with γ ∈
F(K2). Note that, since ord

(
j∞0 (X)

)
> d− ω1 − ω2 and Hf is quasihomogeneous

of degree d− ω1 − ω2, we have ord
(
j∞0 (γ)

)
> 0.

We prove that f divides γ. Let µ ∈ F(K2) be such that W.µ = γ (µ exists according
to lemma 3.4). Note that, since ∂f

∂x (resp. ∂f
∂y ) is quasihomogeneous of degree N−ω1

(resp. N− ω2), the order of the ∞-jet of Hf .µ is strictly larger than d− ω1 − ω2.
We have

Hf .(W.µ) = W.(Hf .µ) + [Hf , W ].µ = W.(Hf .µ) +
(− (d− ω1 − ω2)Hf

)
.µ

(because Hf is of degree d− ω1 − ω2).
Since Hf .(W.µ) = Hf .γ = div X = 0, we have

W.(Hf .µ) = (d− ω1 − ω2)Hf .µ
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and so Hf .µ is either 0 or quasihomogeneous of degree d− ω1 − ω2.
Thus, as ord

(
j∞0 (Hf .µ)

)
> d− ω1 − ω2, we have Hf .µ = 0.

Now, Hµ.f = −Hf .µ = 0 so there exists ν ∈ F(K2) such that ∂µ
∂x = ν ∂f

∂x and
∂µ
∂y = ν ∂f

∂y (lemma 4.2). Therefore, W.µ = ν W.f , that is γ = ν(d× f).
We deduce that X = fZ with Z ∈ X (K2).
Finally, since X ∈ Z1(Π0), div Z = 0 and then Z = Hg for some g ∈ F(K2) (lemma
4.2). Hence X = fHg = Xg.

Second case : div X 6= 0. If we find β ∈ F(K2) such that div X = div Xβ , then the
1-cocycle X −Xβ satisfies div(X −Xβ) = 0, which implies (see the first case) that
X = Xβ + Xε where ε ∈ F(K2). Since div Xβ = Hβ .f = −Hf .β, we are looking
for β such that Hf .β = −div X.
We have X = αHf + div X

d W with α ∈ F(K2) (lemma 4.3) so that div X satisfies
the equation

W.(div X)− (d− ω1 − ω2)div X = −d×Hf .α .

Note that, if we write the ∞-jets at 0 in the relation X = αHf + div X
d W , we see

that the order of the ∞-jet of α is strictly positive so, according to lemma 3.4 we
can take β ∈ F(K2) such that W.β = d × α (the order of the ∞-jet of β is also
strictly positive). Since

W.(Hf .β) = Hf .(W.β) + [W,Hf ].β = d(Hf .α) +
(
(d− ω1 − ω2)Hf

)
.β ,

we have W.(div X + Hf .β) = (d− ω1 − ω2)(div X + Hf .β).
We deduce that div X+Hf .β is either 0 or quasihomogeneous of degree d− ω1 − ω2.
Therefore, div X = −Hf .β (because ord

(
j∞0 (div X + Hf .β)

)
> d− ω1 − ω2). �

For X ∈ Z1(Π0), we denote by [X]
Π0

its class modulo B1(Π0). We also denote by
{e1, ..., er} a basis of the vector space of quasihomogeneous polynomials of degree
d− ω1 − ω2 (in fact, in order to obtain a vector space, we have to add 0 to the set
of quasihomogeneous polynomials of degree d− ω1 − ω2).

Theorem 4.5. The family
{
[Hf ]Π0

, [e1W ]Π0
, ..., [erW ]Π0

}
is a basis of H1(Π0). In

particular, H1(Π0) is a finite-dimensional vector space of dimension r + 1.

Proof : First we prove that H1(Π0) is spanned by this family. Lemma 4.4 says
that every X in Z1(Π0) is cohomologous to a polynomial vector field of maxi-
mum degree d− ω1 − ω2. Indeed, if X ∈ Z1(Π0) then jd−ω1−ω2

0 (X) is also in
Z1(Π0) (jd−ω1−ω2

0 (X) indicates the jet of degree d− ω1 − ω2 of X at 0). Thus,
X−jd−ω1−ω2

0 (X) is in Z1(Π0) and the order of its ∞-jet at 0 is strictly higher than
d− ω1 − ω2.
Therefore, using remark 4.1, we can assume that X is quasihomogeneous of degree
d− ω1 − ω2 or lower.
- If X ∈ Z1(Π0) is quasihomogeneous with deg X < d− ω1 − ω2 then X = 0.
Indeed, according to lemma 4.3, we have X = div X

d W , and so

div X =
div X

d
div W + W.

(div X

d

)
,

which implies that (d− ω1 − ω2 − deg X)div X = 0.
- Let X ∈ Z1(Π0) be quasihomogeneous of degree d− ω1 − ω2. We have (lemma
4.3) X = αHf + div X

d W where α ∈ K and div X is a quasihomogeneous polynomial
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of degree d− ω1 − ω2.
Therefore the family generates H1(Π0).
Now, we prove that this family is free. Suppose that

∑
i λieiW + αHf ∈ B1(Π)

where α, λ1, . . . , λr are scalars. Then
∑

i λieiW +αHf = 0. Indeed, if g is a quasi-
homogeneous polynomial, then deg Xg = deg Hf + deg g = d− ω1 − ω2 + deg g,
which is strictly larger than d− ω1 − ω2 as soon as g 6= 0.
Consequently, div

(∑
i λieiW + αHf

)
= 0 i.e.

∑
i λiei = 0. We deduce that

λ1, . . . , λr are 0, and so α = 0. �

Computation of H1(Π) :
If X ∈ Z1(Π) we denote by [X]Π its class modulo B1(Π).

Theorem 4.6.
{
[(1+h)Hf ]Π , [(1+h)e1W ]Π , ..., [(1+h)erW ]Π

}
is a basis of H1(Π).

In particular, H1(Π) ' H1(Π0).

Proof : It is sufficient to notice that X ∈ Z1(Π) (resp. X ∈ B1(Π)) if and only
if X

1+h ∈ Z1(Π0) (resp. B1(Π0)). �

4.2. Computation of H2. Here again, we first compute the cohomology space
H2(Π0) and then the space H2(Π). We will then see that these two spaces are
isomorphic.

Computation of H2(Π0) :

Lemma 4.7. Let g be a germ at 0 of functions on K2.
1. If the ∞-jet at 0 of g does not contain a component of degree 2d−w1−w2 then

g ∈ B2(f) ⇔ g ∈ If .

2. If g is quasihomogeneous of degree 2d− w1 − w2 then

g ∈ B2(f) ⇒ g ∈ If .

Proof : If g = X.f − (div X)f ∈ B2(f) where X ∈ X (K2) then , if we put

Y = X − div X

d
W ,

we have g = Y.f
This proves the second claim and the first part of the first one.
Now, we prove the converse of the first claim: we assume that g ∈ If (and the
∞-jet of g does not contain a component of degree 2d−w1−w2) and we are going
to show that g ∈ B2(f).
Formal case : Let g =

∑

i≥0

g(i) ∈ K[[x, y]] and X =
∑

i≥d−max(ω1,ω2)

X(i−d) (with g(i)

of degree i and X(i−d) of degree i−d) such that g = X.f . Note that X(d−ω1−ω2) = 0.
If we put

Y = X +
∑

i 6=2d−ω1−ω2

div X(i−d)

2d− ω1 − ω2 − i
W ,

a direct computation gives Y.f − (div Y )f = X.f = g.
Analytical case : If X is analytic at (0,0), then div X is analytic too and since
limi→+∞ 1

2d−ω1−ω2−i = 0 the vector field defined above is also analytic in (0,0).
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C∞ case : Let us denote by g̃ = j∞0 (g) and X̃ = j∞0 (X).
If we write the ∞-jets in the relation g = X.f , we get g̃ = X̃.f . Thus, there exists
a formal vector field Ỹ such that

g̃ = Ỹ .f − (div Ỹ )f .

Let Y be a C∞ vector field such that Ỹ = j∞0 (Y ). Since Y.f − (div Y )f and g have
the same ∞-jet, this vector field satisfies

Y.f − (div Y )f = g + ε

where ε is flat at 0.
Now, since Y.f − (div Y )f ∈ If (see the beginning of the proof), ε is in If so
that ε = P.f where P is a flat vector field. According to lemma 3.5, there ex-
ists α ∈ F(K2) such that W.α − (d− ω1 − ω2)α = −div P . Consequently, setting
Z = P + αW , we have Z.f − (div Z)f = ε. �

Remark 4.8. 1- This lemma is true even if f is not of finite codimension.
2- This lemma gives B2(f) ⊂ If . Thus, there is a surjection from H2(f) onto Qf .
Therefore, if f is not of finite codimension, then H2(Π0) is an infinite-dimensional
vector space.
3- Finally, according to this lemma, if ξ ∈ If , then there exists a quasihomogeneous
polynomial ξ of degree 2d− ω1 − ω2 such that ξ + ξ ∈ B2(f).
If g ∈ F(K2), [g]Π0

indicates its class modulo B2(f). Recall that {e1, . . . , er} is a
basis of the space of quasihomogeneous polynomials of degree d− ω1 − ω2. Finally,
we denote by {u1, ..., uc} a monomial basis of Qf = F(K2)/If (for the existence of
such a basis, see [AGV]).

Theorem 4.9. The family
{
[e1f ]Π0

, ..., [erf ]Π0
, [u1]Π0

, ..., [uc]Π0

}
is a basis of H2(f).

In particular, H2(Π0) is a finite-dimensional vector space of dimension r + c.

Proof :- This family generates H2(f):
Let g ∈ F(K2). We can write g =

∑c
i=1 λiui + ξ where λi ∈ K and ξ ∈ If .

According to lemma 4.7 (and remark 4.8), we can write

g =
c∑

i=1

λiui + g mod B2(f)

where g is a quasihomogeneous polynomial of degree 2d− ω1 − ω2.
We can again write g =

∑c
i=1 λiui mod If where λi ∈ K. Now, we know (see

[AGV] p.200) that max{deg u1, ..., deg uc} = 2d− 2ω1 − 2ω2 which is strictly lower
than deg g. So, g is in If , i.e. g = X.f with X quasihomogeneous of degree
d− ω1 − ω2.
Therefore, g = (div X)f +

(
X.f−(div X)f

)
with div X quasihomogeneous of degree

d− ω1 − ω2.
- This family is free: Let g1 =

∑r
i=1 λiei and g2 =

∑c
j=1 µjuj with λi and µj in K

for any i and j. We assume that g1f + g2 ∈ B2(f). Since max{deg u1, ..., deg uc} <
deg(g1f), g1f and g2 are both in B2(f) (see remark 4.1).
On the one hand, we then have g2 ∈ If which is possible only if µ1 = ... = µc = 0.
On the other hand, since g1f = X.f − (div X)f for some quasihomogeneous vec-
tor field X of degree d− ω1 − ω2, if Y denotes the vector field g1+div X

d W then
(X − Y ).f = 0. Therefore (lemma 4.2), X = Y + αHf with α ∈ K. Hence
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X.f − (div X)f = 0, which implies λ1 = ... = λr = 0. �

Computation of H2(Π) :

Lemma 4.10. Let g ∈ F(K2). If the order of the ∞-jet of g is larger than or
equal to 2d− ω1 − ω2, then there exists a quasihomogeneous polynomial ε of degree
d− ω1 − ω2 such that g = εf modB2(f + fh).

Proof : According to theorem 4.9, we can write

g

1 + h
=

c∑

i=1

λiui + εf + X.f − (div X)f

where the λi are in K and ε is quasihomogeneous of degree d− ω1 − ω2.
But since ord

(
j∞0

(
g

1+h

)) ≥ 2d − ω1 − ω2 > max{deg u1, . . . , deg uc}, if we write
the ∞-jets in the former relation, we see that the λi are zero and that the order of
the ∞-jet of X is higher than d− ω1 − ω2.
Now,

X.(f + fh)− (div X)(f + fh) = g + f(X.h)− εf(1 + h) .

We put λ = (d− ω1 − ω2)
(
1 + h

1+h

)
. If X.h − εh = 0, then the lemma is shown.

Now, if we suppose that X.h − εh is not 0, the order of its ∞-jet is strictly larger
than d − ω1 − ω2, and so we can take α ∈ F(K2) such that W.α − λα = X.h−εh

1+h

(see the ”Resolubility of equation (E)” in the former section).
If we put Z = X + αW , we have Z.(f + fh)− (div Z)(f + fh) + fε = g. �

Theorem 4.11. The family
{
[e1f ]Π , ..., [erf ]Π , [u1]Π , ..., [uc]Π

}
is a basis of H2(f +

fh). In particular, H2(f + fh) ' H2(f) (the space H2(Π) is then of dimension
r + c).

Proof :
- This family generates H2(f + fh).
Given g ∈ F(K2), we have g =

∑c
i=1 λi,0ui + P0f + X0.f − (div X0)f (theorem

4.9) where P0 is a quasihomogeneous polynomial of degree d− ω1 − ω2, λi,0 ∈ K
for any i and ord

(
j∞0 (X0)

) ≥ −max(ω1, ω2) (remember that −max(ω1, ω2) is the
smallest degree for quasihomogeneous vector fields). Since

X0.(f + fh)− (div X0)(f + fh) = g −
c∑

i=1

λi,0ui − P0f + X0.(fh)− (div X0)(fh) ,

we can write

g =
c∑

i=1

λi,0ui + P0f −
(
X0.(fh)− (div X0)(fh)

)
modB2(f + fh).

Now, we have X0.(fh)− (div X0)fh = −∑
λi,1ui−P1f + X1.f − (div X1)f where

λi,1 is in K for any i, P1 is a quasihomogeneous polynomial of degree d− ω1 − ω2

and ord
(
j∞0 (X1)

) ≥ d− ω1 − ω2 −max(ω1, ω2). So, in the same way,

X0.(fh)−(div X0)fh = −
c∑

i=1

λi,1ui−P1f−
(
X1.(fh)−(div X1)(fh)

)
mod B2(f+fh).
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Hence

g =
c∑

i=1

(λi,0 + λi,1)ui + (P0 + P1)f −
(
X1.(fh)− (div X1)(fh)

)
mod B2(f + fh).

In this way, we get

g =
c∑

i=1

(λi,0+...+λi,k)ui+(P0+...+Pk)f−(
Xk.(fh)−(div Xk)(fh)

)
mod B2(f+fh)

where k is the smallest integer such that k(d− ω1 − ω2) −max(ω1, ω2) ≥ 0, Pj is
a quasihomogeneous polynomial of degree d− ω1 − ω2 for any j, λi,j ∈ K for any i
and j and ord

(
j∞0 (Xk)

) ≥ k(d− ω1 − ω2)−max(ω1, ω2).
But since

ord
(
j∞0 (Xk.(fh)− (div Xk)fh)

) ≥ 2d− ω1 − ω2 + k(d− ω1 − ω2)−max(ω1, ω2)
≥ 2d− ω1 − ω2 ,

lemma 4.10 gives Xk − (div Xk)f = Qf mod B2(f + fh) for some quasihomoge-
neous polynomial Q of degree d− ω1 − ω2.
- This family is free. Let λ1, ...λr be scalars and P a quasihomogeneous polynomial
of degree d− ω1 − ω2. Suppose that

c∑

i=1

λiui + Pf = X.(f + fh)− (div X)(f + fh) (∗)

with X ∈ X (K2). Since fh is quasihomogeneous of degree 2d − ω1 − ω2 and the
order of the ∞-jet of X is larger than −max(ω1, ω2), we have

ord
(
j∞0 (X.(fh)− (div X)(fh))

) ≥ 2d− ω1 − ω2 −max(ω1, ω2)
> 2(d− ω1 − ω2) = max{degu1, ..., deguc} .

Therefore, if we write the ∞-jets in the relation (∗), we have
∑c

i=1 λiui ∈ B2(f)
and so λ1 = , . . . , = λc = 0 (theorem 4.9).
We obtain

Pf = X.(f + fh)− (div X)(f + fh) (∗∗) ,

where Pf is a quasihomogeneous polynomial of degree 2d− ω1 − ω2.
Now, we can write j∞0 (X) =

∑
i≥δ X(i) (X(i) is quasihomogeneous of degree i). If

δ < d− ω1 − ω2 then X(δ) ∈ Z1(Π0) and so, X(δ) = 0 (cf proof of theorem 4.5).
In the same way, we can prove that X(i) = 0 for any i < d− ω1 − ω2.
Consequently, if we write the ∞-jets in the relation (∗∗), we get

Pf = X(d−ω1−ω2).f − div X(d−ω1−ω2)f

that is, Pf ∈ B2(f), which is possible only if P = 0 (cf proof of theorem 4.9). �

4.3. Examples. We are going to make explicit the cohomology of some Poisson
structures given in theorem 3.8.

The regular case : We suppose that Π = x ∂
∂x ∧ ∂

∂y .
In this case, ω1 = ω2 = d = 1, and so d− ω1 − ω2 < 0. Moreover, Qx = {0}.
Therefore, H1(Π) ' K ∂

∂y and H2(Π) = {0}.
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Morse’s singularity (A1): We suppose that Π = (x2 + y2) ∂
∂x ∧ ∂

∂y .
Here, we have ω1 = ω2 = 1 and d = 2. The only monomials of degree d− ω1 − ω2

are the scalars. Moreover, Qx2+y2 ' K.1. Then, we have

H1(Π) ' K.(y
∂

∂x
− x

∂

∂y
)⊕K.(x

∂

∂x
+ y

∂

∂y
)

and H2(Π) ' K.
∂

∂x
∧ ∂

∂y
⊕K.f

∂

∂x
∧ ∂

∂y
.

The singularity D2p+1 (p ≥ 2): We suppose that Π = (x2y + y2p)(1 + x) ∂
∂x ∧ ∂

∂y .
In this case, we can see that ω1 = 2p − 1, ω2 = 2 and d = 4p. The only mono-
mials of degree d − ω1 − ω2 are of type λx (with λ ∈ K). Moreover, the family
{1, x, y, y2, · · · , y2p} is a monomial basis of Qx2y+y2p .
Therefore,
the family

{[
(1+x)

(
(x2 +2py2p−1) ∂

∂x−2xy ∂
∂y

)]
,
[
(1+x)x W

]}
is a basis of H1(Π)

and the family{[
x(x2y + y2p) ∂

∂x ∧ ∂
∂y

]
,
[

∂
∂x ∧ ∂

∂y

]
,
[
x ∂

∂x ∧ ∂
∂y

]
,
[
y ∂

∂x ∧ ∂
∂y

]
,
[
y2 ∂

∂x ∧ ∂
∂y

]
, . . . ,

. . . ,
[
y2p ∂

∂x ∧ ∂
∂y

]}
is a basis of H2(Π).

In particular, H1(Π) is of dimension 2 and H2(Π) of dimension 2p + 3.

Remark 4.12. Our first approach to these problems was to use the spectral se-
quence associated to our complex, filtred by the valuation (whith respect to the
quasihomogeneous degree). But the method we present here gives better results.
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Geom., 12 (1977), 253-300.
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gies de Poisson et de Nambu-Poisson, Thesis (2001), Université de Montpellier.
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