Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References

On all-regime, high-order and well-balanced Lagrange-Projection type schemes for the shallow water equations

Maxime Stauffert

Université de Versailles Saint-Quentin (UVSQ) and Maison de la Simulation (MdIS)

Christophe Chalons, Pierre Kestener, Samuel Kokh and Raphaël Loubère

Workshop Bas Mach, Toulouse, November 2017

Introduction	Continuous equations	FV schemes	DG schemes	Theoretical results	Numerical results	MOOD approach	Conclusion	References
	000	00	000	00	00000000	00		

Contents

- Construction of a Discontinuous Galerkin (DG) scheme for Shallow Water equations (SWE)
- Theory based on Finite Volume (FV) Lagrange-Projection (L-P) type schemes for Euler equations¹ and for SWE²
- Low Froude number : fast acoustic waves vs. slow material transport waves
- Acoustic Transport operators decomposition (L-P like) :
 - \longrightarrow Impliciting fast phenomenons : less restrictive CFL condition
 - \longrightarrow Expliciting slow phenomenons : reasonable precision

¹Christophe Chalons, Mathieu Girardin, and Samuel Kokh. "An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes". In: *Communications in Computational Physics* 20.01 (2016), pp. 188–233. ²Christophe Chalons et al. "A large time-step and well-balanced Lagrange-Projection type scheme for the shallow-water equations". In: *Communic. Math. Sci.* 15.3 (2017), pp. 765–788.
 Introduction
 Continuous equations
 FV schemes
 DG schemes
 Theoretical results
 Numerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Contents

4 DG schemes

5 Theoretical results

 Introduction
 Continuous equations
 FV scheme
 DG scheme
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 •00
 00
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Shallow Water Equations

Euler System in 1D

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = 0, \\ \partial_t (\rho E) + \partial_x ((\rho E + p)u) = 0. \end{cases}$$

Shallow Water Sytem in 1D

$$\begin{cases} \partial_t h + \partial_x (hu) = 0, \\ \partial_t (hu) + \partial_x \left(hu^2 + g \frac{h^2}{2} \right) = -gh \partial_x z. \end{cases}$$

- \longrightarrow Two similar systems
- \longrightarrow Non-conservative source term in SWE

Introduction Continuous equations FV scheme DG scheme Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

Operators splitting

"Acoustic" / "Transport" decomposition

$$\begin{cases} \partial_t h + h \partial_x u + u \partial_x h = 0, \\ \partial_t (hu) + h u \partial_x u + \partial_x \left(g \frac{h^2}{2}\right) + u \partial_x (hu) = -g h \partial_x z. \end{cases}$$

Operators splitting

"Acoustic" / "Transport" decomposition

Introduction Continuous equations FV scheme DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References

Relaxation Method

- Change of variable : $h \longrightarrow \tau = 1/h$
- Approximation of $\tau(\cdot, t) \partial_x X$ by $\tau(\cdot, t^n) \partial_x X = \partial_m X$
- Variable π : linearisation of the pressure $\frac{g}{2\tau^2}$

Acoustic System

$$\begin{cases} \partial_t h + h \partial_x u = 0, \\ \partial_t (hu) + h u \partial_x u + \partial_x \left(g \frac{h^2}{2} \right) = -g h \partial_x z, \end{cases}$$

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References

Relaxation Method

• Change of variable : $h \longrightarrow \tau = 1/h$

- Approximation of $\tau(\cdot, t) \, \partial_x X$ by $\tau(\cdot, t^n) \partial_x X = \partial_m X$
- Variable π : linearisation of the pressure $\frac{g}{2\tau^2}$

Acoustic System

$$\begin{cases} \partial_t \tau - \tau \, \partial_x u = 0, \\ \partial_t u + \tau \, \partial_x \left(\frac{g}{2\tau^2} \right) = -g \partial_x z, \\ \partial_t z = 0. \end{cases}$$

Introduction Continuous equations FV scheme DG scheme Theoretical results Numerical results M00D approach 2D scheme Conclusion References 00 00 000 000 00 00 00 00 0000000 00

Relaxation Method

- Change of variable : $h \longrightarrow \tau = 1/h$
- Approximation of $\tau(\cdot, t) \partial_x X$ by $\tau(\cdot, t^n) \partial_x X = \partial_m X$
- Variable π : linearisation of the pressure $\frac{g}{2\tau^2}$

Acoustic System

$$\begin{cases} \partial_t \tau - \partial_m u = 0, \\ \partial_t u + \partial_m \left(\frac{g}{2\tau^2}\right) = -\frac{g}{\tau} \partial_m z, \\ \partial_t z = 0. \end{cases}$$

Introduction Continuous equations FV scheme DG scheme Theoretical results Numerical results M00D approach 2D scheme Conclusion References 00 00 000 000 00 00 00 00 0000000 00

Relaxation Method

- Change of variable : $h \longrightarrow \tau = 1/h$
- Approximation of $\tau(\cdot, t) \, \partial_x X$ by $\tau(\cdot, t^n) \partial_x X = \partial_m X$
- Variable π : linearisation of the pressure $\frac{g}{2\tau^2}$

Relaxed Acoustic System

$$\begin{aligned} \partial_t \tau - \partial_m u &= 0, \\ \partial_t u + \partial_m \pi &= -\frac{g}{\tau} \partial_m z, \\ \partial_t \pi + a^2 \partial_m u &= -\frac{\pi - \frac{g}{2\tau^2}}{\varepsilon} \\ \partial_t z &= 0. \end{aligned}$$

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References

Relaxation Method

- Change of variable : $h \longrightarrow \tau = 1/h$
- Approximation of $\tau(\cdot, t) \partial_x X$ by $\tau(\cdot, t^n) \partial_x X = \partial_m X$
- Variable π : linearisation of the pressure $\frac{g}{2\tau^2}$

Relaxed Acoustic System

$$\begin{cases} \partial_t \tau - \partial_m u = 0, \\ \partial_t u + \partial_m \pi = -\frac{g}{\tau} \partial_m z, \\ \partial_t \pi + a^2 \partial_m u = -\frac{\pi - \frac{g}{2\tau^2}}{\varepsilon} \\ \partial_t z = 0. \end{cases}$$

Prop: Viscous approximation of the Acoustic system under the sub-characteristic condition : $a > \max(hc) = \max(\frac{1}{\tau}\sqrt{\frac{g}{\tau}})$.

Relaxation Method

Operators splitting :

- Instantaneous relaxation step
- Homogeneous relaxed Acoustic system

Relaxed Acoustic System

$$\begin{cases} \partial_t \tau = 0, \\ \partial_t u = 0, \\ \partial_t \pi = -\frac{\pi - \frac{g}{2\tau^2}}{\varepsilon}, \\ \partial_t z = 0, \end{cases} \text{ and } \begin{cases} \partial_t \tau - \partial_m u = 0, \\ \partial_t u + \partial_m \pi + \frac{g}{\tau} \partial_m z = 0, \\ \partial_t \pi + a^2 \partial_m u = 0, \\ \partial_t z = 0. \end{cases}$$

Introduction Continuous equations **FV schemes** DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References

Contents

- Introduction
- 2 Continuous equations

3 FV schemes

- FV Discretization
- IMEX properties
- 4 DG schemes

5 Theoretical results

- 6 Numerical results
- MOOD approach
- 8 2D scheme
- Onclusion

 Introduction
 Continuous equations
 FV scheme
 DG scheme
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

FV Discretization

Acoustic step

$$\begin{cases} \tau_{j}^{n+1^{-}} = \tau_{j}^{n} + \frac{\Delta t}{\Delta x} \tau_{j}^{n} \left(u_{j+1/2}^{*,\alpha} - u_{j-1/2}^{*,\alpha} \right) = L_{j}^{\alpha} \tau_{j}^{n}, \\ u_{j}^{n+1^{-}} = u_{j}^{n} - \frac{\Delta t}{\Delta x} \tau_{j}^{n} \left(\pi_{j+1/2}^{*,\alpha} - \pi_{j-1/2}^{*,\alpha} \right) - \Delta t \tau_{j}^{n} \left\{ gh\partial_{x}z \right\}_{j}^{n}, \\ \pi_{j}^{n+1^{-}} = \pi_{j}^{n} - a_{j}^{2} \frac{\Delta t}{\Delta x} \tau_{j}^{n} \left(u_{j+1/2}^{*,\alpha} - u_{j-1/2}^{*,\alpha} \right). \end{cases}$$

Transport step

$$\begin{cases} h_j^{n+1} = L_j^{\alpha} h_j^{n+1^-} - \frac{\Delta t}{\Delta x} \left(h_{j+1/2}^{*,n+1^-} u_{j+1/2}^{*,\alpha} - h_{j-1/2}^{*,n+1^-} u_{j-1/2}^{*,\alpha} \right), \\ (hu)_j^{n+1} = L_j^{\alpha} (hu)_j^{n+1^-} - \frac{\Delta t}{\Delta x} \left((hu)_{j+1/2}^{*,n+1^-} u_{j+1/2}^{*,\alpha} - (hu)_{j-1/2}^{*,n+1^-} u_{j-1/2}^{*,\alpha} \right). \end{cases}$$

 $\alpha = n$ (full explicit scheme) or $n + 1^-$ (implicit-explicit scheme)

FV Discretization

Acoustic step

$$\begin{cases} \tau_{j}^{n+1^{-}} = \tau_{j}^{n} + \frac{\Delta t}{\Delta x} \tau_{j}^{n} \left(u_{j+1/2}^{*,\alpha} - u_{j-1/2}^{*,\alpha} \right) = L_{j}^{\alpha} \tau_{j}^{n}, \\ u_{j}^{n+1^{-}} = u_{j}^{n} - \frac{\Delta t}{\Delta x} \tau_{j}^{n} \left(\pi_{j+1/2}^{*,\alpha} - \pi_{j-1/2}^{*,\alpha} \right) - \Delta t \tau_{j}^{n} \left\{ gh\partial_{x} z \right\}_{j}^{n}, \\ \pi_{j}^{n+1^{-}} = \pi_{j}^{n} - a_{j}^{2} \frac{\Delta t}{\Delta x} \tau_{j}^{n} \left(u_{j+1/2}^{*,\alpha} - u_{j-1/2}^{*,\alpha} \right). \end{cases}$$

Transport step

$$\begin{cases} h_j^{n+1} = L_j^{\alpha} h_j^{n+1^-} - \frac{\Delta t}{\Delta x} \left(h_{j+1/2}^{*,n+1^-} u_{j+1/2}^{*,\alpha} - h_{j-1/2}^{*,n+1^-} u_{j-1/2}^{*,\alpha} \right), \\ (hu)_j^{n+1} = L_j^{\alpha} (hu)_j^{n+1^-} - \frac{\Delta t}{\Delta x} \left((hu)_{j+1/2}^{*,n+1^-} u_{j+1/2}^{*,\alpha} - (hu)_{j-1/2}^{*,n+1^-} u_{j-1/2}^{*,\alpha} \right). \end{cases}$$

 $\alpha = n$ (full explicit scheme) or $n + 1^-$ (implicit-explicit scheme)

IMEX properties

Hypothesis :

• Subcharacteristic condition : $a > \max_j (h_j c_j)$

• CFL condition :
$$\frac{\Delta t}{\Delta x} \max_j \left| u_{j+1/2}^* \right| \le \frac{1}{2}$$

Properties :

- Conservative for h (and for hu if z = cst)
- Degeneration to classical L-P scheme if $z = \operatorname{cst} (\{gh\partial_x z\} = 0)$

•
$$h_j^n > 0$$
, $\forall j, n$, provided that $h_j^0 > 0$, $\forall j$.

- Well-balanced : preservation of the "lake at rest" conditions (u = 0 and h + z = cst)
- It satisfies a discrete entropy inequality of the form :

$$\mathcal{U}_{j}^{n+1} - \mathcal{U}_{j}^{n} + \frac{\Delta t}{\Delta x_{j}} \left(\mathcal{F}_{j+1/2}^{n+1-} - \mathcal{F}_{j-1/2}^{n+1-} \right) \leq -\Delta t \left\{ ghu \partial_{x} z \right\}_{j}$$

Introduction Continuous equations **FV schemes** DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References

IMEX properties

Hypothesis :

• Subcharacteristic condition : $a > \max_j (h_j c_j)$

• CFL condition :
$$\frac{\Delta t}{\Delta x} \max_j \left| u_{j+1/2}^* \right| \le \frac{1}{2}$$

Properties :

- Conservative for h (and for hu if z = cst)
- Degeneration to classical L-P scheme if $z = \operatorname{cst} (\{gh\partial_x z\} = 0)$

•
$$h_j^n > 0$$
, $\forall j, n$, provided that $h_j^0 > 0$, $\forall j$.

- Well-balanced : preservation of the "lake at rest" conditions (u = 0 and h + z = cst)
- It satisfies a discrete entropy inequality of the form :

$$\mathcal{U}_{j}^{n+1} - \mathcal{U}_{j}^{n} + \frac{\Delta t}{\Delta x_{j}} \left(\mathcal{F}_{j+1/2}^{n+1-} - \mathcal{F}_{j-1/2}^{n+1-} \right) \leq -\Delta t \; \{ghu\partial_{x}z\}_{j}$$

Contents

- 1 Introduction
- 2 Continuous equations
- 3 FV schemes
- 4 DG schemes
 - Notations
 - Acoustic step
 - Transport step
- 5 Theoretical results

- 6 Numerical results
- MOOD approach
- 8 2D scheme
- Onclusion

Notations

- Based on work from Florent Renac³ at ONERA
- Wrote for SWE without topography⁴
- Lagrange polynomials on Gauss-Lobatto quadrature:

$$\rho(x) = \sum_{k=0}^{p} \rho_{k,j} \phi_{k,j}(x), \qquad \forall x \in \left[x_{j-1/2}, x_{j+1/2}\right]$$

with $\phi_{k,j}(x) = \ell_k \left(\frac{2}{\Delta x}(x - x_j)\right)$, $\ell_k(s_i) = \delta_{k,i}$ and s_i are the Gauss-Lobatto quadrature points on [-1, 1]

• Numerical integration on the same Gauss-Lobatto quadrature points:

$$\int_{x_{j-1/2}}^{x_{j+1/2}} f(x) \, \mathrm{d}x \simeq \frac{\Delta x}{2} \sum_{k=0}^{p} \omega_k f(x_{k,j}) = \frac{\Delta x}{2} \sum_{k=0}^{p} \omega_k f\left(x_j + \frac{\Delta x}{2} s_k\right)$$

³Florent Renac. "A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations". In: *Numerische Mathematik* (2016), pp. 1–27.

⁴Christophe Chalons and Maxime Stauffert. "A High-Order Discontinuous Galerkin Lagrange Projection Scheme for the Barotropic Euler Equations". In: *FVCA 8, Lille, France, June 2017.*

 Introduction
 Continuous equations
 FV scheme
 DG schemes
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 000
 00
 00
 00

Acoustic step

- Multiplication by a Lagrange polynomial and integration over a cell
- Development of the derivatives in time
- Numerical integration of the Lagrange polynomials
- Discretization of the derivatives in time

$$\begin{aligned} & \partial_t \tau - \partial_m u = 0, \\ & \partial_t u + \partial_m \pi = -\frac{g}{\tau} \partial_m z, \\ & \sum_{t=1}^{\infty} \partial_t \pi + a^2 \partial_m u = 0. \end{aligned}$$

 Introduction
 Continuous equations
 FV scheme
 DG schemes
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 000
 00
 00
 00

Acoustic step

- Multiplication by a Lagrange polynomial and integration over a cell
- Development of the derivatives in time
- Numerical integration of the Lagrange polynomials
- Discretization of the derivatives in time

$$\begin{cases} \int_{\kappa_j} \phi_{i,j} \partial_t \tau \, \mathrm{d}x - \int_{\kappa_j} \phi_{i,j} \partial_m u \, \mathrm{d}x = 0, \\ \int_{\kappa_j} \phi_{i,j} \partial_t u \, \mathrm{d}x + \int_{\kappa_j} \phi_{i,j} \partial_m \pi \, \mathrm{d}x = -\int_{\kappa_j} \phi_{i,j} \frac{g}{\tau} \partial_m z, \\ \int_{\kappa_j} \phi_{i,j} \partial_t \pi \, \mathrm{d}x + a^2 \int_{\kappa_j} \phi_{i,j} \partial_m u \, \mathrm{d}x = 0. \end{cases}$$

- Multiplication by a Lagrange polynomial and integration over a cell
- Development of the derivatives in time
- Numerical integration of the Lagrange polynomials
- Discretization of the derivatives in time

$$\begin{cases} \sum_{k=0}^{p} \left(\int_{\kappa_{j}} \phi_{i,j} \phi_{k,j} \, \mathrm{d}x \right) \, \partial_{t} \tau_{k,j} - \int_{\kappa_{j}} \phi_{i,j} \, \partial_{m} u \, \mathrm{d}x = 0, \\ \sum_{k=0}^{p} \left(\int_{\kappa_{j}} \phi_{i,j} \phi_{k,j} \, \mathrm{d}x \right) \, \partial_{t} u_{k,j} + \int_{\kappa_{j}} \phi_{i,j} \, \partial_{m} \pi \, \mathrm{d}x = - \int_{\kappa_{j}} \phi_{i,j} \, \frac{g}{\tau} \, \partial_{m} z, \\ \sum_{k=0}^{p} \left(\int_{\kappa_{j}} \phi_{i,j} \phi_{k,j} \, \mathrm{d}x \right) \, \partial_{t} \pi_{k,j} + a^{2} \int_{\kappa_{j}} \phi_{i,j} \, \partial_{m} u \, \mathrm{d}x = 0. \end{cases}$$

 Introduction
 Continuous equations
 FV scheme
 DG schemes
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 000
 00
 00
 00

Acoustic step

- Multiplication by a Lagrange polynomial and integration over a cell
- Development of the derivatives in time
- Numerical integration of the Lagrange polynomials
- Discretization of the derivatives in time

$$\begin{cases} \frac{\Delta x}{2}\omega_i \partial_t \tau_{i,j} - \int_{\kappa_j} \phi_{i,j} \partial_m u \, \mathrm{d}x = 0, \\ \frac{\Delta x}{2}\omega_i \partial_t u_{i,j} + \int_{\kappa_j} \phi_{i,j} \partial_m \pi \, \mathrm{d}x = -\int_{\kappa_j} \phi_{i,j} \frac{g}{\tau} \partial_m z, \\ \frac{\Delta x}{2}\omega_i \partial_t \pi_{i,j} + a^2 \int_{\kappa_j} \phi_{i,j} \partial_m u \, \mathrm{d}x = 0. \end{cases}$$

 Introduction
 Continuous equations
 FV scheme
 DG schemes
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 000
 00
 00
 00

Acoustic step

- Multiplication by a Lagrange polynomial and integration over a cell
- Development of the derivatives in time
- Numerical integration of the Lagrange polynomials
- Discretization of the derivatives in time

$$\begin{cases} \tau_{i,j}^{n+1^{-}} = \tau_{i,j}^{n} + \frac{2\Delta t}{\omega_{i}\Delta x} \int_{\kappa_{j}} \phi_{i,j} \partial_{m} u^{\alpha} \, \mathrm{d}x, \\ u_{i,j}^{n+1^{-}} = u_{i,j}^{n} - \frac{2\Delta t}{\omega_{i}\Delta x} \left(\int_{\kappa_{j}} \phi_{i,j} \partial_{m} \pi^{\alpha} \, \mathrm{d}x + \int_{\kappa_{j}} \phi_{i,j} \frac{g}{\tau^{n}} \partial_{m} z \, \mathrm{d}x \right), \\ \pi_{i,j}^{n+1^{-}} = \pi_{i,j}^{n} - \partial^{2} \frac{2\Delta t}{\omega_{i}\Delta x} \int_{\kappa_{j}} \phi_{i,j} \partial_{m} u^{\alpha} \, \mathrm{d}x. \end{cases}$$

- How to write equation on τ as in finite volume ?
- Approximation of the integral of $\partial_m u$
- Integration by part (exact)
- Introduction of the numerical fluxes

Space discretization

 τ'_i

 Introduction
 Continuous equations
 FV scheme
 DG scheme
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 00
 00
 00
 00
 00

Acoustic step

- How to write equation on τ as in finite volume ?
- Approximation of the integral of $\partial_m u$
- Integration by part (exact)
- Introduction of the numerical fluxes

Space discretization

$$\int_{\kappa_j} \phi_{i,j} \,\partial_m u^\alpha \,\mathrm{d}x \simeq \frac{\Delta x}{2} \omega_i \tau_{i,j}^n \partial_x u_{i,j}^\alpha = \tau_{i,j}^n \int_{\kappa_j} \phi_{i,j} \,\partial_x u^\alpha \,\mathrm{d}x$$

 Introduction
 Continuous equations
 FV scheme
 DG scheme
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 000
 00
 00
 00

Acoustic step

- How to write equation on τ as in finite volume ?
- Approximation of the integral of $\partial_m u$
- Integration by part (exact)
- Introduction of the numerical fluxes

Space discretization

$$\int_{\kappa_j} \phi_{i,j} \partial_m u^{\alpha} \, \mathrm{d}x \simeq \frac{\Delta x}{2} \omega_i \tau_{i,j}^n \partial_x u_{i,j}^{\alpha} = \tau_{i,j}^n \int_{\kappa_j} \phi_{i,j} \partial_x u^{\alpha} \, \mathrm{d}x$$
$$\simeq \tau_{i,j}^n \left([\phi_{i,j} u^{\alpha}] - \int_{\kappa_j} u^{\alpha} \partial_x \phi_{i,j} \, \mathrm{d}x \right)$$

 Introduction
 Continuous equations
 FV scheme
 DG scheme
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 00
 00
 00
 00
 00

Acoustic step

- How to write equation on τ as in finite volume ?
- Approximation of the integral of $\partial_m u$
- Integration by part (exact)
- Introduction of the numerical fluxes

Space discretization

$$\begin{split} \int_{\kappa_j} \phi_{i,j} \partial_m u^\alpha \, \mathrm{d}x &\simeq \frac{\Delta x}{2} \omega_i \tau_{i,j}^n \partial_x u_{i,j}^\alpha = \tau_{i,j}^n \int_{\kappa_j} \phi_{i,j} \partial_x u^\alpha \, \mathrm{d}x \\ &\simeq \tau_{i,j}^n \left([\phi_{i,j} u^\alpha] - \int_{\kappa_j} u^\alpha \, \partial_x \phi_{i,j} \, \mathrm{d}x \right) \\ &\simeq \tau_{i,j}^n \left(\delta_{i,p} u_{j+1/2}^{*,\alpha} - \delta_{i,0} u_{j-1/2}^{*,\alpha} - \sum_{k=0}^p \omega_k u_{k,j}^\alpha \, \partial_x \ell_i(s_k) \right) \end{split}$$

Source term treatment^a with a naive discretization.

^aChristophe Chalons and Maxime Stauffert. "A well-balanced Discontinuous-Galerkin Lagrange-Projection scheme for the Shallow Water Equations". Preprint. Oct. 2017.

Source term treatment

Source term treatment^a with a proposed discretization by Manuel Castro.

^aChristophe Chalons and Maxime Stauffert. "A well-balanced Discontinuous-Galerkin Lagrange-Projection scheme for the Shallow Water Equations". Preprint. Oct. 2017.

Source term treatment

Global Acoustic step

$$\begin{cases} \tau_{i,j}^{n+1^{-}} = \tau_{i,j}^{n} + \frac{2\Delta t}{\omega_{i}\Delta x}\tau_{i,j}^{n}\int_{\kappa_{j}}\phi_{i,j}\partial_{x}u^{\alpha}\,\mathrm{d}x = L_{i,j}^{\alpha}\tau_{i,j}^{n},\\ u_{i,j}^{n+1^{-}} = u_{i,j}^{n} - \frac{2\Delta t}{\omega_{i}\Delta x}\tau_{i,j}^{n}\left(\int_{\kappa_{j}}\phi_{i,j}\partial_{x}\pi^{\alpha}\,\mathrm{d}x + \int_{\kappa_{j}}\phi_{i,j}\,gh^{n}\partial_{x}z\,\mathrm{d}x\right),\\ \pi_{i,j}^{n+1^{-}} = \pi_{i,j}^{n} - a^{2}\frac{2\Delta t}{\omega_{i}\Delta x}\tau_{i,j}^{n}\int_{\kappa_{j}}\phi_{i,j}\partial_{x}u^{\alpha}\,\mathrm{d}x.\end{cases}$$

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

Transport step

- How to write equation on X = h, hu as in finite volume ?
- Rewriting the integral of $u \partial_x X = \partial_x (Xu) X \partial_x u$
- Approximation of the integral of $X \partial_x u^{\alpha}$ to bring out $L^{\alpha}_{i,i}$
- Integration by part (not exact)

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

Transport step

- How to write equation on X = h, hu as in finite volume ?
- Rewriting the integral of $u \partial_x X = \partial_x (Xu) X \partial_x u$
- Approximation of the integral of $X \partial_x u^{\alpha}$ to bring out $L^{\alpha}_{i,i}$
- Integration by part (not exact)

$$\int_{\kappa_j} u^{\alpha} \phi_{i,j} \partial_x X^{n+1^-} = \int_{\kappa_j} \phi_{i,j} \partial_x (X^{n+1^-} u^{\alpha}) - \int_{\kappa_j} X^{n+1^-} \phi_{i,j} \partial_x u^{\alpha}$$

 Introduction
 Continuous equations
 FV scheme
 DG scheme
 Theoretical results
 MUmerical results
 MOOD approach
 2D scheme
 Conclusion
 References

 000
 00
 00
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Transport step

- How to write equation on X = h, hu as in finite volume ?
- Rewriting the integral of $u \partial_x X = \partial_x (Xu) X \partial_x u$
- Approximation of the integral of $X \partial_x u^{\alpha}$ to bring out $L_{i,i}^{\alpha}$
- Integration by part (not exact)

$$\begin{split} \int_{\kappa_j} u^{\alpha} \phi_{i,j} \partial_x X^{n+1^-} &= \int_{\kappa_j} \phi_{i,j} \partial_x (X^{n+1^-} u^{\alpha}) - \int_{\kappa_j} X^{n+1^-} \phi_{i,j} \partial_x u^{\alpha} \\ &\simeq \int_{\kappa_j} \phi_{i,j} \partial_x (X^{n+1^-} u^{\alpha}) - X^{n+1^-}_{i,j} \int_{\kappa_j} \phi_{i,j} \partial_x u^{\alpha} \end{split}$$

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

Transport step

- How to write equation on X = h, hu as in finite volume ?
- Rewriting the integral of $u \partial_x X = \partial_x (Xu) X \partial_x u$
- Approximation of the integral of $X \partial_x u^{\alpha}$ to bring out $L^{\alpha}_{i,i}$
- Integration by part (not exact)

$$\begin{split} \int_{\kappa_j} u^{\alpha} \phi_{i,j} \partial_x X^{n+1^-} &= \int_{\kappa_j} \phi_{i,j} \partial_x (X^{n+1^-} u^{\alpha}) - \int_{\kappa_j} X^{n+1^-} \phi_{i,j} \partial_x u^{\alpha} \\ &\simeq \int_{\kappa_j} \phi_{i,j} \partial_x (X^{n+1^-} u^{\alpha}) - X^{n+1^-}_{i,j} \int_{\kappa_j} \phi_{i,j} \partial_x u^{\alpha} \\ &\simeq \left[\phi_{i,j} X^{n+1^-} u^{\alpha} \right] - \int_{\kappa_j} X^{n+1^-} u^{\alpha} \partial_x \phi_{i,j} - X^{n+1^-}_{i,j} \int_{\kappa_j} \phi_{i,j} \partial_x u^{\alpha} \\ &\longrightarrow \left[\phi_{i,j} X^{n+1^-} u^{\alpha} \right] = \delta_{i,p} X^{*,n+1^-}_{j+1/2} u^{*,\alpha}_{j+1/2} - \delta_{i,0} X^{*,n+1^-}_{j+1/2} u^{*,\alpha}_{j-1/2} \end{split}$$
Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

Transport step

- How to write equation on X = h, hu as in finite volume ?
- Rewriting the integral of $u \partial_x X = \partial_x (Xu) X \partial_x u$
- Approximation of the integral of $X \partial_x u^{\alpha}$ to bring out $L^{\alpha}_{i,i}$
- Integration by part (not exact)

Transport system

$$\begin{cases} h_{i,j}^{n+1} = L_{i,j}^{n+1-} h_{i,j}^{n+1-} - \frac{2\Delta t}{w_i \Delta x} \int_{\kappa_j} \phi_{i,j} \partial_x (h^{n+1-} u^{\alpha}) \, \mathrm{d}x, \\ (hu)_{i,j}^{n+1} = L_{i,j}^{n+1-} (hu)_{i,j}^{n+1-} - \frac{2\Delta t}{w_i \Delta x} \int_{\kappa_j} \phi_{i,j} \partial_x ((hu)^{n+1-} u^{\alpha}) \, \mathrm{d}x. \end{cases}$$

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

Transport step

- How to write equation on X = h, hu as in finite volume ?
- Rewriting the integral of $u \partial_x X = \partial_x (Xu) X \partial_x u$
- Approximation of the integral of $X \partial_x u^{\alpha}$ to bring out $L_{i,j}^{\alpha}$
- Integration by part (not exact)

Global scheme

$$\begin{cases} h_{i,j}^{n+1} = h_{i,j}^n - \frac{2\Delta t}{w_i \Delta x} \int_{\kappa_j} \phi_{i,j} \partial_x h^{n+1^-} u^{\alpha} \, \mathrm{d}x, \\ (hu)_{i,j}^{n+1} = (hu)_{i,j}^n - \frac{2\Delta t}{w_i \Delta x} \left(\int_{\kappa_j} \phi_{i,j} \partial_x ((hu)^{n+1^-} u^{\alpha} + \pi^{\alpha}) \, \mathrm{d}x \right. \\ \left. + \int_{\kappa_j} \phi_{i,j} \, g h^n \partial_x z \, \mathrm{d}x \right). \end{cases}$$

Continuous equations	FV schemes	DG schemes	Theoretical results	Numerical results	MOOD approach	Conclusion	References
000	00	000	00	00000000	00		

Contents

- Introduction
- 2 Continuous equations
- 3 FV schemes
- 4 DG schemes
- 5 Theoretical results• IMEX DG scheme
 - WB properties

- 6 Numerical results
- MOOD approach
- 8 2D scheme
- Onclusion

IMEX DG scheme

Hypothesis :

• $a > \max_j max_i h_{i,j} \sqrt{gh_{i,j}}$

•
$$\frac{\Delta t}{\Delta x} \max_j \max_i c_{i,j} \leq 1$$

with
$$c_{i,j} = \frac{2}{\omega_i} \left(\int_{\kappa_j} u_j^{n+1-} \partial_x \phi_{i,j} - \delta_{i,\rho} u_{j+1/2,-}^* + \delta_{i,0} u_{j-1/2,+}^* \right)$$

Properties

$$\overline{X}_{j}^{n+1} = \sum_{i=0}^{p} \frac{\omega_{i}}{2} \left(1 - \frac{\Delta t}{\Delta x} c_{i,j} \right) X_{i,j}^{n+1-} + \frac{\Delta t}{\Delta x} (-u_{j+1/2,-}^{*}) X_{0,j+1}^{n+1-} + \frac{\Delta t}{\Delta x} u_{j-1/2,+}^{*} X_{p,j-1}^{n+1-}$$

• $h_{i,j}^{n+1^-} > 0$ and thus $\overline{h}_j^{n+1} > 0$, provided that $h_{i,j}^n > 0$, $\forall i, j$

Introduction
Continuous equations
FV scheme
DG scheme
Theoretical results
M000 approach
2D scheme
Conclusion
References

000
000
000
000
000
000
00
000
00
000
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00<

IMEX DG scheme

Hypothesis :

• $a > \max_j max_i h_{i,j} \sqrt{gh_{i,j}}$

•
$$\frac{\Delta t}{\Delta x} \max_j \max_i c_{i,j} \leq 1$$

with
$$c_{i,j} = \frac{2}{\omega_i} \left(\int_{\kappa_j} u_j^{n+1-} \partial_x \phi_{i,j} - \delta_{i,p} u_{j+1/2,-}^* + \delta_{i,0} u_{j-1/2,+}^* \right)$$

Properties

• If
$$p = 0$$
 : $c_j = u^*_{j-1/2,+} - u^*_{j+1/2,-} \longrightarrow$ same CFL as in FV

• Convex combination :

$$\begin{split} \overline{X}_{j}^{n+1} &= \sum_{i=0}^{p} \frac{\omega_{i}}{2} \left(1 - \frac{\Delta t}{\Delta x} c_{i,j} \right) X_{i,j}^{n+1-} \\ &+ \frac{\Delta t}{\Delta x} (-u_{j+1/2,-}^{*}) X_{0,j+1}^{n+1-} + \frac{\Delta t}{\Delta x} u_{j-1/2,+}^{*} X_{p,j-1}^{n+1-} \end{split}$$

•
$$h_{i,j}^{n+1^-}>0$$
 and thus $\overline{h}_j^{n+1}>0$, provided that $h_{i,j}^n>0$, $orall i,j$

IMEX DG scheme

Hypothesis :

• $a > \max_j max_i h_{i,j} \sqrt{gh_{i,j}}$

•
$$\frac{\Delta t}{\Delta x} \max_j \max_i c_{i,j} \leq 1$$

with
$$c_{i,j} = \frac{2}{\omega_i} \left(\int_{\kappa_j} u_j^{n+1-} \partial_x \phi_{i,j} - \delta_{i,\rho} u_{j+1/2,-}^* + \delta_{i,0} u_{j-1/2,+}^* \right)$$

Properties

• It satisfies a discrete entropy inequality of the form :

$$(hE)(\overline{U}_{j}^{n+1}) - \overline{(hE)}_{j}^{n} + \frac{\Delta t}{\Delta x} \Big[((hE)_{j+1/2}^{*} + \pi_{j+1/2}^{*}) u_{j+1/2}^{*} \\ - ((hE)_{j-1/2}^{*} + \pi_{j-1/2}^{*}) u_{j-1/2}^{*} \Big] \\ \leq -\Delta t \{ghu\partial_{x}z\}_{j}.$$

WB properties

With naive discretization

Mean values

Hypothesis :

 $h^0 + z^0 = K$ and $u^0 = 0$ with h^0 and z^0 polynomials of order $\leq p$ Result :

WB for the mean values and only for the EXEX scheme

Nodal values

Hypothesis :

 $h^0+z^0=K$ and $u^0=0$ with h^0 and z^0 polynomials of order \leq P/2

Result :

WB for the nodal values for both the EXEX and the IMEX schemes

WB properties

With naive discretization

Mean values

Hypothesis :

 $h^0 + z^0 = K$ and $u^0 = 0$ with h^0 and z^0 polynomials of order $\leq p$ Result :

WB for the mean values and only for the EXEX scheme

Nodal values

Hypothesis :

 $h^0+z^0=K$ and $u^0=0$ with h^0 and z^0 polynomials of order \leq $^{p/2}$

Result :

WB for the nodal values for both the EXEX and the IMEX schemes

	Continuous equations	FV schemes	DG schemes	Theoretical results	Numerical results	MOOD approach	Conclusion	References
				00				
WB	properties	S						

With discretization proposed by Manuel Castro

Unconditionnal WB property

Hypothesis :

$$h^0 + z^0 = K$$
 and $u^0 = 0$ with any h^0 and z^0

Result :

WB for the nodal values for both the EXEX and the IMEX schemes

Contents

Introduction

2 Continuous equations

3 FV schemes

- 4 DG schemes
- 5 Theoretical results

6 Numerical results

- WB property
- Dam Break
- Propagation of perturbation
- Fluvial regime
- Trans. regime without shock
- Trans. regime with a shock
- Limitors

MOOD approach

8 2D scheme

Onclusion

WB property

With naive discretization

r = 2		$T=\Delta t$, n	nean values	$T=\Delta t$, nodal values			
500-cell grid		$\left\ \overline{h+z}-15\right\ _{\infty}/15$	$\ \overline{q}/\overline{h}\ _{\infty}$	$\ h+z-15\ _{\infty}/15$	$\ q/h\ _{\infty}$		
	<i>p</i> = 0	9.87 E-17	0.00 E-17	9.87 E-17	0.00 E-17		
EXEX	p = 1	9.87 E-17	4.47 E-16	9.87 E-17	3.88 E-5		
	<i>p</i> = 2	1.97 E-16	3.05 E-16	9.87 E-17	4.67 E-8		
	<i>p</i> = 3	1.97 E-16	2.63 E-16	9.87 E-17	1.34 E-11		
	<i>p</i> = 4	1.98 E-16	0.00 E-17	9.87 E-17	0.00 E-17		
	p = 0	9.87 E-17	0.00 E-17	9.87 E-17	0.00 E-17		
IMEX	p = 1	1.97 E-6	3.89 E-5	2.67 E-6	1.93 E-4		
	<i>p</i> = 2	4.70 E-10	9.74 E-9	6.83 E-9	1.72 E–7		
	<i>p</i> = 3	3.45 E-14	6.86 E-13	1.78 E-12	3.97 E-11		
	<i>p</i> = 4	1.98 E-16	0.00 E-17	9.87 E-17	0.00 E-17		

WB property

With discretization proposed by Manuel Castro

<i>r</i> = 2		$T=\Delta t$, m	nean values	$T = \Delta t$, nodal values			
500-cell grid		$\left\ \overline{h+z}-15\right\ _{\infty}/15$	$\ \overline{q}/\overline{h}\ _{\infty}$	$\ h+z-15\ _{\infty}/15$	$\ q/h\ _{\infty}$		
	p = 0	9.87 E-17	0.00 E-17	9.87 E-17	0.00 E-17		
EXEX	p = 1	9.87 E-17	0.00 E-17	9.87 E-17	0.00 E-17		
	<i>p</i> = 2	1.97 E-16	0.00 E-17	9.87 E-17	0.00 E-17		
	<i>p</i> = 3	1.97 E-16	0.00 E-17	9.87 E-17	0.00 E-17		
	<i>p</i> = 4	1.97 E-16	0.00 E-17	9.87 E-17	0.00 E-17		
	p = 0	9.87 E-17	0.00 E-17	9.87 E-17	0.00 E-17		
IMEX	p = 1	9.87 E-17	0.00 E-17	9.87 E-17	0.00 E-17		
	<i>p</i> = 2	1.97 E-16	0.00 E-17	9.87 E-17	0.00 E-17		
	<i>p</i> = 3	1.97 E-16	0.00 E-17	9.87 E-17	0.00 E-17		
	<i>p</i> = 4	1.97 E-16	0.00 E-17	9.87 E-17	0.00 E-17		

Dam Break

NbCell : 1500, Tf : 50, variable H = h + z

Dam Break

NbCell : 1500, Tf : 50, variable H = h + z

Dam Break

NbCell : 1500, Tf : 50, variable H = h + z

Propagation of perturbation

NbCell : 1000, Tf : 0.2, variable u

Propagation of perturbation

Efficiency curves

Fluvial regime

NbCell : 1600, Tf : 200, variable H = h + z

Fluvial regime

NbCell : 1600, Tf : 200, variable q

Introduction Continuous equations FV schemes DG schemes Theoretical results Mumerical results M00D approach 2D scheme Conclusion References

Transcritical regime without shock

NbCell : 1600, Tf : 200, variable H = h + z

Transcritical regime without shock

Introduction Continuous equations FV schemes DG schemes Theoretical results Mumerical results M00D approach 2D scheme Conclusion References

Transcritical regime with a shock

NbCell : 1600, Tf : 200, variable H = h + z

Introduction Continuous equations FV schemes DG schemes Theoretical results Numerical results M00D approach 2D scheme Conclusion References 000 000 000 000 000 000 000 000

Transcritical regime with a shock

Contents

- 1 Introduction
- 2 Continuous equations
- 3 FV schemes
- 4 DG schemes
- 5 Theoretical results

- O Numerical result
- MOOD approach
 - Naive approach
 - Robustness approach
- 8 2D scheme
- Onclusion

Naive approach

Naive approach

Problem : Reconstruction \circ Projection \neq Identity

Introduction Continuous equations	FV schemes	DG schemes	Theoretical results	Numerical results	MOOD approach	2D scheme	Conclusion	References
000	00	000	00	00000000	00			

Contents

Introduction Continuous equations FV scheme DG schemes Theoretical results Numerical results MOOD approach 2D scheme Conclusion References 000 000 000 000 000 00

2D scheme

Acoustic step

$$\begin{cases} \mathbf{u}_{j}^{n+1-} = \mathbf{u}_{j}^{n} - \tau_{j}^{n} \Delta t \sum_{k \in \mathcal{N}(j)} \sigma_{jk} \pi_{jk}^{*,\theta} \mathbf{n}_{jk}, \\ \pi_{j}^{n+1-} = \pi_{j}^{n} - \tau_{j}^{n} \Delta t \sum_{k \in \mathcal{N}(j)} \sigma_{jk} (a_{jk})^{2} u_{jk}^{*}, \\ \tau_{j}^{n+1-} = \tau_{j}^{n} + \tau_{j}^{n} \Delta t \sum_{k \in \mathcal{N}(j)} \sigma_{jk} u_{jk}^{*}, \end{cases}$$

Numerical fluxes

$$\begin{aligned} \mathbf{a}_{jk} &\geq \max[(\rho c)_{j}^{n}, (\rho c)_{k}^{n}], \\ u_{jk}^{*} &= \frac{1}{2} \mathbf{n}_{jk}^{T} (\mathbf{u}_{j}^{\alpha} + \mathbf{u}_{k}^{\alpha}) - \frac{1}{2a_{jk}} (\pi_{k}^{\alpha} - \pi_{j}^{\alpha}) - \frac{g}{2a_{jk}} \frac{h_{j}^{n} + h_{k}^{n}}{2} (b_{k} - b_{j}), \\ \pi_{jk}^{*,\theta} &= \frac{1}{2} (\pi_{j}^{\alpha} + \pi_{k}^{\alpha}) - \frac{a_{jk} \theta_{jk}}{2} \mathbf{n}_{jk}^{T} (\mathbf{u}_{k}^{\alpha} - \mathbf{u}_{j}^{\alpha}) + \frac{g}{2} \frac{h_{j}^{n} + h_{k}^{n}}{2} (b_{k} - b_{j}). \end{aligned}$$
Introduction Continuous	equations FV scheme	s DG schemes	Theoretical results	Numerical results	MOOD approach	Conclusion	References
000	00	000	00	00000000	00		

Contents

Continuous equations	FV schemes	DG schemes	Theoretical results	Numerical results	MOOD approach	Conclusion	References
000	00	000	00	00000000	00		

Conclusion

Achievements

- DG discretization for L-P schemes in framework of SWE
- Well-balanced properties
- Implementation of a compiled code compatible with MOOD
- Study of low Froude truncation errors

Perspectives

- Numerical results for MOOD
- Implementation of a 2D code with unstructured mesh
- Numerical results for low Froude regime flows
- Experimental order of accuracy for the DG schemes
- Study other systems that have some asymptotic regime (eg. MHD)
- Use those schemes with AMR techniques in CanoP

 Introduction
 Continuous equations
 FV schemes
 DG schemes
 Theoretical results
 Numerical results
 MOOD approach
 2J scheme
 Conclusion
 References

 000
 000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Bibliography

- Christophe Chalons, Mathieu Girardin, and Samuel Kokh. "An all-regime Lagrange-Projection like scheme for the gas dynamics equations on unstructured meshes". In: *Communications in Computational Physics* 20.01 (2016), pp. 188–233.
- Christophe Chalons and Maxime Stauffert. "A High-Order Discontinuous Galerkin Lagrange Projection Scheme for the Barotropic Euler Equations". In: *FVCA 8, Lille, France, June 2017.*
 - Christophe Chalons and Maxime Stauffert. "A well-balanced Discontinuous-Galerkin Lagrange-Projection scheme for the Shallow Water Equations". Preprint. Oct. 2017.

Christophe Chalons et al. "A large time-step and well-balanced Lagrange-Projection type scheme for the shallow-water equations". In: *Communic. Math. Sci.* 15.3 (2017), pp. 765–788.

Florent Renac. "A robust high-order Lagrange-projection like scheme with large time steps for the isentropic Euler equations". In: *Numerische Mathematik* (2016), pp. 1–27.

Introduction	Continuous equations	FV schemes	DG schemes	Theoretical results	Numerical results	MOOD approach	2D scheme	Conclusion	References

Thank you for your attention