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Introduction

Construction of a Discontinuous Galerkin (DG) scheme for Shallow
Water equations (SWE)
Theory based on Finite Volume (FV) Lagrange-Projection (L-P)
type schemes for Euler equations1 and for SWE2

Low Froude number : fast acoustic waves vs. slow material
transport waves
Acoustic - Transport operators decomposition (L-P like) :
−→ Impliciting fast phenomenons : less restrictive CFL condition
−→ Expliciting slow phenomenons : reasonable precision

1Christophe Chalons, Mathieu Girardin, and Samuel Kokh. “An all-regime
Lagrange-Projection like scheme for the gas dynamics equations on unstructured
meshes”. In: Communications in Computational Physics 20.01 (2016), pp. 188–233.

2Christophe Chalons et al. “A large time-step and well-balanced
Lagrange-Projection type scheme for the shallow-water equations”. In: Communic.
Math. Sci. 15.3 (2017), pp. 765–788.
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Shallow Water Equations

Euler System in 1D 
∂tρ+ ∂x (ρu) = 0,

∂t(ρu) + ∂x (ρu2 + p) = 0,
∂t(ρE ) + ∂x ((ρE + p)u) = 0.

Shallow Water Sytem in 1D
∂th + ∂x (hu) = 0,

∂t(hu) + ∂x

(
hu2 + g h2

2

)
= −gh∂x z .

−→ Two similar systems
−→ Non-conservative source term in SWE
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Operators splitting

"Acoustic" / "Transport" decomposition


∂th+ h ∂x u+ u ∂x h = 0,

∂t(hu)+ hu ∂x u + ∂x

(
g h2
2

)
+ u ∂x (hu) = −gh∂x z .
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Operators splitting

"Acoustic" / "Transport" decomposition

Acoustic
tn→tn+1−


∂th+ h ∂x u = 0,

∂t(hu)+ hu ∂x u + ∂x

(
g h2
2

)
= −gh∂x z ,

Transport
tn+1−→tn+1

{
∂th+ u ∂x h = 0,

∂t(hu)+ u ∂x (hu) = 0.
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Relaxation Method

Change of variable : h −→ τ = 1/h

Approximation of τ(·, t) ∂x X by τ(·, tn)∂x X = ∂mX
Variable π : linearisation of the pressure g

2τ 2

Acoustic System
∂th+ h ∂x u = 0,

∂t(hu)+ hu ∂x u + ∂x

(
g h2
2

)
= −gh∂x z ,

Prop : Viscous approximation of the Acoustic system under the
sub-characteristic condition : a > max(hc) = max( 1

τ

√ g
τ ).
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Relaxation Method

Operators splitting :
Instantaneous relaxation step
Homogeneous relaxed Acoustic system

Relaxed Acoustic System



∂tτ = 0,
∂tu = 0,

∂tπ = −
π − g

2τ 2

ε
,

∂tz = 0,

and



∂tτ − ∂mu = 0,

∂tu + ∂mπ + g
τ
∂mz = 0,

∂tπ + a2∂mu = 0,
∂tz = 0.

Prop : Viscous approximation of the Acoustic system under the
sub-characteristic condition : a > max(hc) = max( 1

τ

√ g
τ ).
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FV Discretization

Acoustic step
τn+1−

j = τn
j + ∆t

∆x τ
n
j

(
u∗,αj+1/2 − u∗,αj−1/2

)
= Lαj τn

j ,

un+1−
j = un

j −
∆t
∆x τ

n
j

(
π∗,αj+1/2 − π

∗,α
j−1/2

)
−∆t τn

j {gh∂x z}n
j ,

πn+1−
j = πn

j − a2j
∆t
∆x τ

n
j

(
u∗,αj+1/2 − u∗,αj−1/2

)
.

Transport step
hn+1

j = Lαj hn+1−
j − ∆t

∆x

(
h∗,n+1−

j+1/2 u∗,αj+1/2 − h∗,n+1−
j−1/2 u∗,αj−1/2

)
,

(hu)n+1
j = Lαj (hu)n+1−

j − ∆t
∆x

(
(hu)∗,n+1−

j+1/2 u∗,αj+1/2 − (hu)∗,n+1−
j−1/2 u∗,αj−1/2

)
.

α = n (full explicit scheme) or n + 1− (implicit-explicit scheme)
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IMEX properties

Hypothesis :
Subcharacteristic condition : a > maxj (hjcj)

CFL condition : ∆t
∆x maxj

∣∣∣u∗j+1/2

∣∣∣ ≤ 1
2

Properties :
Conservative for h (and for hu if z = cst)
Degeneration to classical L-P scheme if z = cst ({gh∂x z} = 0)
hn

j > 0, ∀j , n, provided that h0j > 0, ∀j .
Well-balanced : preservation of the "lake at rest" conditions
(u = 0 and h + z = cst)
It satisfies a discrete entropy inequality of the form :

Un+1
j − Un

j + ∆t
∆xj

(
Fn+1−

j+1/2 −F
n+1−
j−1/2

)
≤ −∆t {ghu∂x z}j
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Notations
Based on work from Florent Renac3 at ONERA
Wrote for SWE without topography4
Lagrange polynomials on Gauss-Lobatto quadrature:

ρ(x) =
p∑

k=0
ρk,jφk,j(x), ∀x ∈

[
xj−1/2, xj+1/2

]
with φk,j(x) = `k

( 2
∆x (x − xj)

)
, `k(si ) = δk,i and si are the

Gauss-Lobatto quadrature points on [−1, 1]
Numerical integration on the same Gauss-Lobatto quadrature points:

xj+1/2∫
xj−1/2

f (x) dx ' ∆x
2

p∑
k=0

ωk f (xk,j) = ∆x
2

p∑
k=0

ωk f
(

xj + ∆x
2 sk

)
3Florent Renac. “A robust high-order Lagrange-projection like scheme with large

time steps for the isentropic Euler equations”. In: Numerische Mathematik (2016),
pp. 1–27.

4Christophe Chalons and Maxime Stauffert. “A High-Order Discontinuous Galerkin
Lagrange Projection Scheme for the Barotropic Euler Equations”. In: FVCA 8, Lille,
France, June 2017.
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Acoustic step
Multiplication by a Lagrange polynomial and integration over a cell
Development of the derivatives in time
Numerical integration of the Lagrange polynomials
Discretization of the derivatives in time

Time discretization


∂tτ − ∂mu = 0,

∂tu + ∂mπ = −g
τ
∂mz ,

∂tπ + a2∂mu = 0.
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∫
κj

φi,j ∂tτ dx −
∫
κj

φi,j ∂mu dx = 0,∫
κj

φi,j ∂tu dx +
∫
κj

φi,j ∂mπ dx = −
∫
κj

φi,j
g
τ
∂mz ,∫

κj

φi,j ∂tπ dx + a2
∫
κj

φi,j ∂mu dx = 0.
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Acoustic step
Multiplication by a Lagrange polynomial and integration over a cell
Development of the derivatives in time
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Time discretization
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τn+1−
i,j = τn

i,j + 2∆t
ωi ∆x

∫
κj

φi,j ∂muα dx ,

un+1−
i,j = un

i,j −
2∆t
ωi ∆x

(∫
κj

φi,j ∂mπ
α dx +

∫
κj

φi,j
g
τn ∂mz dx

)
,

πn+1−
i,j = πn

i,j − a2 2∆t
ωi ∆x

∫
κj

φi,j ∂muα dx .
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Acoustic step
How to write equation on τ as in finite volume ?
Approximation of the integral of ∂mu
Integration by part (exact)
Introduction of the numerical fluxes

Space discretization

τn+1−
i,j = τn

i,j + 2∆t
ωi ∆x

∫
κj

φi,j ∂muα dx

←
→

τn+1−
j = τn

j + ∆t
∆x τ

n
j

(
u∗,αj+1/2 − u∗,αj−1/2

)
= Lαj τn

j
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Approximation of the integral of ∂mu
Integration by part (exact)
Introduction of the numerical fluxes

Space discretization

∫
κj

φi,j ∂muα dx ' ∆x
2 ωiτ

n
i,j∂x uαi,j = τn

i,j

∫
κj

φi,j ∂x uα dx

' τn
i,j

(
[φi,juα]−

∫
κj

uα ∂xφi,j dx
)

' τn
i,j

(
δi,pu∗,αj+1/2 − δi,0u∗,αj−1/2 −

p∑
k=0

ωkuαk,j ∂x`i (sk)
)
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Acoustic step
Source term treatmenta with a naive discretization.

aChristophe Chalons and Maxime Stauffert. “A well-balanced
Discontinuous-Galerkin Lagrange-Projection scheme for the Shallow Water Equations”.
Preprint. Oct. 2017.

Source term treatment

∫
κj

φi,j
g
τn ∂mz ' ∆x

2 ωi τ
n
i,j

g
τn

i,j
∂x z ' τn

i,j

∫
κj

φi,j ghn∂x z

−→ τn
i,j

(
δi,p

∆x
2 {gh∂x z}n

j+1/2 + δi,0
∆x
2 {gh∂x z}n

j−1/2

+ ∆x
2 ωi {gh ∂x z}i,j

)
with {gh ∂x z}i,j = ghn

i,j ∂x z |i,j
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Acoustic step
Source term treatmenta with a proposed discretization by Manuel Castro.

aChristophe Chalons and Maxime Stauffert. “A well-balanced
Discontinuous-Galerkin Lagrange-Projection scheme for the Shallow Water Equations”.
Preprint. Oct. 2017.

Source term treatment

∫
κj

φi,j
g
τn ∂mz ' ∆x

2 ωi τ
n
i,j

g
τn

i,j
∂x z ' τn

i,j

∫
κj

φi,j ghn∂x z

−→ τn
i,j

(
δi,p

∆x
2 {gh∂x z}n

j+1/2 + δi,0
∆x
2 {gh∂x z}n

j−1/2

+ ∆x
2 ωi {gh ∂x z}i,j

)
with {gh ∂x z}i,j = ghn

i,j ∂x (hn + z)|i,j − ∂xπ
n|i,j
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Acoustic step

Global Acoustic step



τn+1−
i,j = τn

i,j + 2∆t
ωi ∆x τ

n
i,j

∫
κj

φi,j ∂x uα dx = Lαi,jτn
i,j ,

un+1−
i,j = un

i,j −
2∆t
ωi ∆x τ

n
i,j

(∫
κj

φi,j ∂xπ
α dx +

∫
κj

φi,j ghn∂x z dx
)
,

πn+1−
i,j = πn

i,j − a2 2∆t
ωi ∆x τ

n
i,j

∫
κj

φi,j ∂x uα dx .
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Transport step
How to write equation on X = h, hu as in finite volume ?
Rewriting the integral of u ∂x X = ∂x (Xu)− X ∂x u
Approximation of the integral of X ∂x uα to bring out Lαi,j
Integration by part (not exact)

Transport system

X n+1
i,j = X n+1−

i,j − 2∆t
ωi ∆x

∫
κj

uα φi,j ∂x X n+1− dx

←
→

X n+1
j = Lαj X n+1−

j − ∆t
∆x

(
X∗,n+1−

j+1/2 u∗,αj+1/2 − X∗,n+1−
j+1/2 u∗,αj−1/2

)
with X∗,n+1−

j+1/2 =
{

X n+1−
j , if u∗,αj+1/2 ≥ 0,

X n+1−
j+1 , otherwise.
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Transport step
How to write equation on X = h, hu as in finite volume ?
Rewriting the integral of u ∂x X = ∂x (Xu)− X ∂x u
Approximation of the integral of X ∂x uα to bring out Lαi,j
Integration by part (not exact)

Transport system


hn+1

i,j = Ln+1−
i,j hn+1−

i,j − 2∆t
wi ∆x

∫
κj

φi,j∂x (hn+1−uα) dx ,

(hu)n+1
i,j = Ln+1−

i,j (hu)n+1−
i,j − 2∆t

wi ∆x

∫
κj

φi,j∂x ((hu)n+1−uα) dx .
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Transport step
How to write equation on X = h, hu as in finite volume ?
Rewriting the integral of u ∂x X = ∂x (Xu)− X ∂x u
Approximation of the integral of X ∂x uα to bring out Lαi,j
Integration by part (not exact)

Global scheme



hn+1
i,j = hn

i,j −
2∆t

wi ∆x

∫
κj

φi,j∂x hn+1−uα dx ,

(hu)n+1
i,j = (hu)n

i,j −
2∆t

wi ∆x

(∫
κj

φi,j∂x ((hu)n+1−uα + πα) dx

+
∫
κj

φi,j ghn∂x z dx
)
.
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IMEX DG scheme

Hypothesis :
a > maxj maxihi,j

√
ghi,j

∆t
∆x maxj maxi ci,j ≤ 1

with ci,j = 2
ωi

(∫
κj

un+1−
j ∂xφi,j − δi,pu∗j+1/2,− + δi,0u∗j−1/2,+

)
Properties

If p = 0 : cj = u∗j−1/2,+ − u∗j+1/2,− −→ same CFL as in FV
Convex combination :

X n+1
j =

∑p
i=0

ωi
2
(
1− ∆t

∆x ci,j
)

X n+1−
i,j

+ ∆t
∆x (−u∗j+1/2,−)X n+1−

0,j+1 + ∆t
∆x u∗j−1/2,+X n+1−

p,j−1

hn+1−
i,j > 0 and thus hn+1

j > 0, provided that hn
i,j > 0, ∀i , j
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IMEX DG scheme

Hypothesis :
a > maxj maxihi,j

√
ghi,j

∆t
∆x maxj maxi ci,j ≤ 1

with ci,j = 2
ωi

(∫
κj

un+1−
j ∂xφi,j − δi,pu∗j+1/2,− + δi,0u∗j−1/2,+

)
Properties

It satisfies a discrete entropy inequality of the form :

(hE )(Un+1
j )− (hE )

n
j

+ ∆t
∆x

[
((hE )∗j+1/2 + π∗j+1/2)u∗j+1/2

− ((hE )∗j−1/2 + π∗j−1/2)u∗j−1/2
]

≤ −∆t {ghu∂x z}j .
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WB properties

With naive discretization

Mean values
Hypothesis :

h0 + z0 = K and u0 = 0 with h0 and z0 polynomials of order ≤ p
Result :

WB for the mean values and only for the EXEX scheme

Nodal values
Hypothesis :

h0 + z0 = K and u0 = 0 with h0 and z0 polynomials of order ≤ p/2

Result :
WB for the nodal values for both the EXEX and the IMEX schemes
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WB properties

With discretization proposed by Manuel Castro

Unconditionnal WB property
Hypothesis :

h0 + z0 = K and u0 = 0 with any h0 and z0

Result :
WB for the nodal values for both the EXEX and the IMEX schemes
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WB property
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WB property

With naive discretization

r = 2 T = ∆t, mean values T = ∆t, nodal values

500-cell grid ‖h+z−15‖∞/15 ‖q/h‖∞ ‖h+z−15‖∞/15 ‖q/h‖∞

EXEX

p = 0 9.87 E−17 0.00 E−17 9.87 E−17 0.00 E−17

p = 1 9.87 E−17 4.47 E−16 9.87 E−17 3.88 E−5

p = 2 1.97 E−16 3.05 E−16 9.87 E−17 4.67 E−8

p = 3 1.97 E−16 2.63 E−16 9.87 E−17 1.34 E−11

p = 4 1.98 E−16 0.00 E−17 9.87 E−17 0.00 E−17

IMEX

p = 0 9.87 E−17 0.00 E−17 9.87 E−17 0.00 E−17

p = 1 1.97 E−6 3.89 E−5 2.67 E−6 1.93 E−4

p = 2 4.70 E−10 9.74 E−9 6.83 E−9 1.72 E−7

p = 3 3.45 E−14 6.86 E−13 1.78 E−12 3.97 E−11

p = 4 1.98 E−16 0.00 E−17 9.87 E−17 0.00 E−17
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Dam Break

NbCell : 1500, Tf : 50, variable H = h + z
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Dam Break
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Propagation of perturbation
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Efficiency curves
tC
PU

error
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Fluvial regime
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Fluvial regime
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Transcritical regime without shock
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Transcritical regime without shock
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Transcritical regime with a shock
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Transcritical regime with a shock
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Limitors

NbCell = 500, Tf = 20, p = 2, variable h
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Robustness approach
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⇒ no recomputation of DG solution when detector = 0
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2D scheme

Acoustic step 
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σjk u∗jk ,

Numerical fluxes

ajk ≥ max[(ρc)n
j , (ρc)n

k ],

u∗jk = 1
2nT

jk(uαj + uαk )− 1
2ajk

(παk − παj )− g
2ajk

hn
j + hn

k
2 (bk − bj),

π∗,θjk = 1
2(παj + παk )− ajkθjk

2 nT
jk(uαk − uαj ) + g

2
hn

j + hn
k

2 (bk − bj).
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Conclusion

Achievements
DG discretization for L-P schemes in framework of SWE
Well-balanced properties
Implementation of a compiled code compatible with MOOD
Study of low Froude truncation errors

Perspectives
Numerical results for MOOD
Implementation of a 2D code with unstructured mesh
Numerical results for low Froude regime flows
Experimental order of accuracy for the DG schemes
Study other systems that have some asymptotic regime (eg. MHD)
Use those schemes with AMR techniques in CanoP
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Thank you for your attention
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