# Staggered pressure corrections scheme

#### for compressible flows

#### J.-C. Latché<sup>†</sup>

with T. Gallouët\*, D. Grapsas\*, R. Herbin\*, W. Kheriji†, T.T. Nguyen†, N. Therme†...

- ⋆ Université d'Aix-Marseille
- † Institut de Radioprotection et de Sûreté Nucléaire (IRSN)

CALIF<sup>3</sup>S: https://gforge.irsn.fr/gf/project/isis

#### **Outline**

- Schemes for Euler equations
  - Generic ingredients
  - A pressure correction scheme
  - Numerical tests
  - An explicit variant

Entropy estimates

Euler (Navier-Stokes) equations:

$$\begin{split} & \partial_t \varrho + \operatorname{div}(\varrho \boldsymbol{u}) = 0, \\ & \partial_t (\varrho \boldsymbol{u}) + \operatorname{div}(\varrho \boldsymbol{u} \otimes \boldsymbol{u}) - \operatorname{div} \boldsymbol{\tau} + \boldsymbol{\nabla} \boldsymbol{p} = 0, \\ & \partial_t (\varrho \boldsymbol{E}) + \operatorname{div} \left[ (\varrho \boldsymbol{E} + \boldsymbol{p}) \boldsymbol{u} \right] = \operatorname{div}(\boldsymbol{\tau} \boldsymbol{u}), \\ & \boldsymbol{p} = (\gamma - 1) \ \varrho \boldsymbol{e}, \quad \boldsymbol{E} = \frac{1}{2} \, |\boldsymbol{u}|^2 + \boldsymbol{e}. \end{split}$$

For regular functions, taking the scalar product of the momentum balance equation by u and using the mass balance equation yields the kinetic energy balance equation:

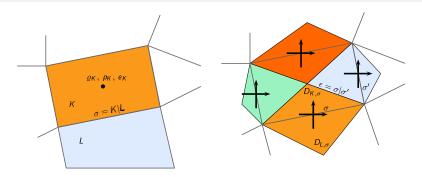
$$\partial_t(\varrho E_c) + \operatorname{div}(\varrho E_c \boldsymbol{u}) + \boldsymbol{\nabla} \boldsymbol{p} \cdot \boldsymbol{u} = \operatorname{div}(\boldsymbol{\tau}) \cdot \boldsymbol{u}, \qquad E_c = \frac{1}{2} \, |\boldsymbol{u}|^2.$$

Subtracting to the total energy balance yields the internal energy balance:

$$\partial_t(\varrho e) + \operatorname{div}(\varrho e u) + p \operatorname{div} u = \tau : \nabla u,$$

and, from this equation, we get  $e \ge 0$ .

### **Objectives**



Objective – derive a scheme for Euler (or Navier-Stokes) equations which is a natural extension of an existing scheme for low Mach number flows:

- staggered discretization,
- upwinding with respect to the material velocity,
- solution of the internal energy balance,
- pressure correction scheme.

Staggered schemes for compressible flows: Harlow & Amsden, Wesseling and co-workers, Goudon and co-workers. . .

#### Weak solutions and conservative schemes

► Weak solution:

$$\begin{split} \partial_t(s) + \operatorname{div}(F(s)) &= 0 \\ &\hookrightarrow \int_{\Omega \times (0,T)} -s \ \partial_t \varphi - F(s) \cdot \boldsymbol{\nabla} \varphi = 0, \quad \forall \varphi \in \operatorname{C}^\infty_c(\Omega \times (0,T)). \end{split}$$

► Rankine-Hugoniot conditions.

Let us suppose, in 1D, that s is discontinuous along a "line" in the  $\Omega \times (0, T)$  "plane", and let w be the slope of this line (the propagation speed of the shock). Then, if s is a weak solution:

$$w=\frac{[F(s)]}{[s]}.$$

▶ Consistency: let  $(s_h) \rightarrow \bar{s}$  (in strong enough norms); then  $\bar{s}$  is a weak solution.

Ex. : passage to the limit for a conservative finite volume approximation of the flux term:

$$\sum_{K} \varphi_{K} \sum_{\sigma} |\sigma| \ F(s)_{\sigma} \cdot \mathbf{n}_{\sigma} = \sum_{\sigma} |D_{\sigma}| \ F(s)_{\sigma} \cdot \frac{|\sigma|}{|D_{\sigma}|} \ (\varphi_{L} - \varphi_{K}) \ \mathbf{n}_{\sigma} \simeq \int_{\Omega} F(s) \cdot \widetilde{\nabla} \varphi \, \mathrm{d}\mathbf{x}.$$

#### **Strategy**

How to obtain the correct weak solutions of Euler equations while solving the internal energy balance ?

Answer: Make the scheme "consistent" with total energy equation. . .

More precisely:

- 1- Build a (discrete) kinetic energy balance.
- 2- Suppose bounds and convergence for a sequence of discrete solutions, compatible with the regularity of the sought continuous solutions:
  - ightharpoonup control in BV and  $L^{\infty}$ ,
  - convergence in  $L^p$ , for  $p \ge 1$ .
- 3- Let  $\varphi$  a regular function,
  - ▶ interpolate,
  - test the kinetic energy balance,
  - test the internal energy balance,
  - > and pass to the limit in the scheme.

... and, on the basis of this computation, build corrective terms in the internal energy balance in such a way to recover, at the limit, the weak form of the total energy equation.

# Scheme (time semi-discrete setting):

Prediction step: 
$$\frac{1}{\delta t}(\varrho^*\tilde{\boldsymbol{u}}-\varrho^{**}\boldsymbol{u}^*)+\operatorname{div}(\varrho^*\tilde{\boldsymbol{u}}\otimes\boldsymbol{u}^*)-\operatorname{div}\boldsymbol{\tau}(\tilde{\boldsymbol{u}})+\boldsymbol{\xi}\boldsymbol{\nabla}\rho^*=0.$$

$$\begin{vmatrix} \frac{\varrho^*}{\delta t}(\boldsymbol{u}-\tilde{\boldsymbol{u}})+\boldsymbol{\nabla}\rho-\boldsymbol{\xi}\boldsymbol{\nabla}\rho^*=0,\\ \frac{1}{\delta t}(\varrho-\varrho^*)+\operatorname{div}(\varrho\boldsymbol{u})=0,\\ \frac{1}{\delta t}(\varrho\varrho-\varrho^*\boldsymbol{e}^*)+\operatorname{div}(\varrho\boldsymbol{e}\boldsymbol{u})+\rho\operatorname{div}\boldsymbol{u}=\boldsymbol{\mathcal{S}},\\ p=\wp(\varrho,\boldsymbol{e})=(\gamma-1)\;\varrho\boldsymbol{e}. \end{vmatrix}$$

- ▶ Time shift of the density discretization.
- Coupling of the mass and energy balance.
- ▶ Modification of the pressure gradient, corrective term in the internal energy balance.

Lemma – Since:

$$\frac{1}{\delta t}(\varrho^* - \varrho^{**}) + \operatorname{div}(\varrho^* \boldsymbol{u}^*) = 0,$$

Then:

$$\begin{split} \tilde{\pmb{u}} \cdot \left[ \frac{1}{\delta t} (\varrho^* \tilde{\pmb{u}} - \varrho^{**} \pmb{u}^*) + \operatorname{div}(\varrho^* \tilde{\pmb{u}} \otimes \pmb{u}^*) \right] &= \frac{1}{\delta t} (\varrho^* \tilde{\pmb{E}}_k - \varrho^{**} \pmb{E}_k^*) + \operatorname{div}(\varrho^* \tilde{\pmb{E}}_k \pmb{u}^*) + \mathcal{R}_1, \\ \text{with } \tilde{\pmb{E}}_k &= \frac{1}{2} |\tilde{\pmb{u}}|^2, \; E_k^* = \frac{1}{2} |\pmb{u}^*|^2 \; \text{and} \; \mathcal{R}_1 &= \frac{1}{2\delta t} \varrho^{**} |\tilde{\pmb{u}} - \pmb{u}^*|^2. \end{split}$$

▶ So, multiplying the prediction step by  $\tilde{u}$  yields:

$$\frac{1}{\delta t}(\varrho^* \tilde{\mathbf{E}}_k - \varrho^{**} \mathbf{E}_k^*) + \operatorname{div}(\varrho^* \tilde{\mathbf{E}}_k \mathbf{u}^*) + \frac{\xi}{\delta} \tilde{\mathbf{u}} \cdot \nabla p^* + \frac{\mathcal{R}_1}{2} = 0.$$

# Kinetic energy balance (2/2)

▶ Velocity correction equation (a computation from J.-L. Guermond):

$$\frac{\varrho^*}{\delta t}(\boldsymbol{u}-\tilde{\boldsymbol{u}})+\boldsymbol{\nabla}\rho-\boldsymbol{\xi}\boldsymbol{\nabla}\rho^*=0,$$

i.e.

$$(\frac{\varrho^*}{\delta t})^{\frac{1}{2}}\mathbf{u} + (\frac{\delta t}{\varrho^*})^{\frac{1}{2}}\nabla \rho = (\frac{\varrho^*}{\delta t})^{\frac{1}{2}}\tilde{\mathbf{u}} + \xi(\frac{\delta t}{\varrho^*})^{\frac{1}{2}}\nabla \rho^*.$$

Square this relation:

$$\frac{\varrho^*}{\delta t} E_k + \boldsymbol{u} \cdot \boldsymbol{\nabla} p + \frac{\delta t}{2\rho^*} |\boldsymbol{\nabla} p|^2 = \frac{\varrho^*}{\delta t} \tilde{E}_k + \boldsymbol{\xi} \tilde{\boldsymbol{u}} \cdot \boldsymbol{\nabla} p^* + \boldsymbol{\xi} \frac{\delta t}{2\rho^*} |\boldsymbol{\nabla} p^*|^2.$$

► Sum to obtain:

$$\frac{1}{\delta t}(\varrho^* E_k - \varrho^{**} E_k^*) + \operatorname{div}(\varrho^* \tilde{E}_k u^*) + u \cdot \nabla p + \frac{\mathcal{R}_1}{2} + \frac{\mathcal{R}_2}{2} = 0,$$

with 
$$\mathcal{R}_2 = \frac{\delta t}{2a^*} |\nabla p|^2 - \xi \frac{\delta t}{2a^*} |\nabla p^*|^2$$
.

▶ So

$$\xi = \left(\frac{\varrho^*}{\varrho^{**}}\right)^{\frac{1}{2}} \quad \hookrightarrow \quad \mathcal{R}_2 = \frac{\delta t}{2\varrho^*} |\nabla p|^2 - \frac{\delta t}{2\varrho^{**}} |\nabla p^*|^2$$

#### Scheme:

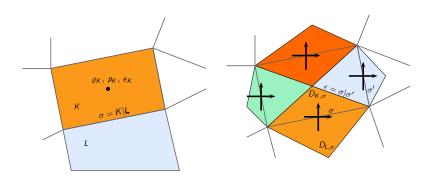
$$\text{Prediction step:} \qquad \frac{1}{\delta t} (\varrho^* \tilde{\textbf{\textit{u}}} - \varrho^{**} \textbf{\textit{u}}^*) + \operatorname{div} (\varrho^* \tilde{\textbf{\textit{u}}} \otimes \textbf{\textit{u}}^*) - \operatorname{div} \tau (\tilde{\textbf{\textit{u}}}) + \left[ \frac{\varrho^*}{\varrho^{**}} \right]^{1/2} \boldsymbol{\nabla} \rho^* = 0.$$

$$\begin{vmatrix} \frac{\varrho^*}{\delta t}(\boldsymbol{u} - \tilde{\boldsymbol{u}}) + \nabla p - \left[\frac{\varrho^*}{\varrho^{**}}\right]^{1/2} \nabla p^* = 0, \\ \frac{1}{\delta t}(\varrho - \varrho^*) + \operatorname{div}(\varrho \boldsymbol{u}) = 0, \\ \frac{1}{\delta t}(\varrho e - \varrho^* e^*) + \operatorname{div}(\varrho e \boldsymbol{u}) + p \operatorname{div} \boldsymbol{u} = \tau(\tilde{\boldsymbol{u}}) : \nabla \tilde{\boldsymbol{u}} + \boldsymbol{\mathcal{S}}, \\ p = \wp(\varrho, e) = (\gamma - 1) \varrho e, \end{vmatrix}$$

Correction step:

with  $S = R_1$ 

### **Space discretization**



# The scheme (1/2)

► The scheme:

$$\forall \sigma \in \mathcal{E} \qquad \frac{|D_{\sigma}|}{\delta t} \left( \varrho_{D_{\sigma}}^{*} \tilde{\boldsymbol{u}}_{\sigma} - \varrho_{D_{\sigma}}^{**} \boldsymbol{u}_{\sigma}^{*} \right) + \sum_{\epsilon \in \mathcal{E}(D_{\sigma})} F_{\sigma,\epsilon}^{*} \tilde{\boldsymbol{u}}_{\epsilon} + T_{s} + \left[ \frac{\varrho_{D_{\sigma}}^{*}}{\varrho_{D_{\sigma}}^{**}} \right]^{1/2} (\nabla p^{*})_{\int_{D_{\sigma}}} = 0.$$

$$\forall \sigma \in \mathcal{E} \qquad \frac{|D_{\sigma}|}{\delta t} \varrho_{D_{\sigma}}^{*} (\boldsymbol{u}_{\sigma} - \tilde{\boldsymbol{u}}_{\sigma}) + (\nabla p)_{\int_{D_{\sigma}}} - \left[ \frac{\varrho_{D_{\sigma}}^{*}}{\varrho_{D_{\sigma}}^{**}} \right]^{1/2} (\nabla p^{*})_{\int_{D_{\sigma}}} = 0,$$

$$\forall K \in \mathcal{M} \qquad \frac{|K|}{\delta t} (\varrho_{K} - \varrho_{K}^{*}) + \sum_{\sigma \in \mathcal{E}(K)} F_{K,\sigma} = 0$$

$$\forall K \in \mathcal{M} \qquad \frac{|K|}{\delta t} (\varrho_{K} e_{K} - \varrho_{K}^{*} e_{K}^{*}) + \sum_{\sigma \in \mathcal{E}(K)} F_{K,\sigma} e_{\sigma} + p_{K} \sum_{\sigma \in \mathcal{E}(K)} |\sigma| \boldsymbol{u}_{\sigma} \cdot \boldsymbol{n}_{K,\sigma} = S_{K},$$

$$\forall K \in \mathcal{M} \qquad p_{K} = (\gamma - 1) \varrho_{K} e_{K},$$

with:

for 
$$\sigma = K|L$$
,  $(\nabla p)_{\int_{D_{\sigma}}} = |\sigma| (p_L - p_K) \mathbf{n}_{K,\sigma}$ ,  $F_{K,\sigma} = |\sigma| \varrho_{\sigma} \mathbf{u}_{\sigma} \cdot \mathbf{n}_{K,\sigma}$ ,  $\varrho_{\sigma}$  upwind,  $e_{\sigma}$  upwind,  $R_{\sigma} = \frac{|D_{\sigma}|}{\delta t} \varrho_{D_{\sigma}}^{**} |\tilde{\mathbf{u}}_{\sigma} - \mathbf{u}_{\sigma}^{*}|^{2}$ ,  $\tilde{\mathbf{u}}_{\epsilon}$  centered,  $T_{s} = \zeta \sum_{\epsilon \in \mathcal{E}(D_{\sigma})} h_{\epsilon}^{d-1}[\tilde{\mathbf{u}}]_{\epsilon}$ ,  $R_{\sigma} += \zeta \tilde{\mathbf{u}}_{\sigma} \cdot \sum_{\epsilon \in \mathcal{E}(D_{\sigma})} h_{\epsilon}^{d-1}[\tilde{\mathbf{u}}]_{\epsilon}$ ,  $R_{\sigma} \hookrightarrow S_{K}$ .

(IRSN/I2M - AMU)

### The scheme (2/2)

▶ By construction, the mass balance is satisfied over the dual cells

$$\frac{|D_{\sigma}|}{\delta t} \left(\varrho_{\scriptscriptstyle D_{\sigma}}^* - \varrho_{\scriptscriptstyle D_{\sigma}}^{**}\right) + \sum_{\epsilon \in \mathcal{E}(D_{\sigma})} F_{\sigma,\epsilon}^* = 0,$$

but it is not so easy to obtain

- ▶ Using the mass balance at the previous time step requires to use a constant time step. . .
- ► There is no "local" total energy equation: the kinetic energy balance is associated to the dual cells, while the internal energy one is associated to primal ones.

$$\mathbf{R}_{\sigma} = \frac{|D_{\sigma}|}{\delta t} \; \varrho_{\scriptscriptstyle D_{\sigma}}^{**} \; \left| \tilde{\boldsymbol{u}}_{\sigma} - \boldsymbol{u}_{\sigma}^{*} \right|^{2} \hookrightarrow \boldsymbol{S}_{\boldsymbol{K}} = \sum_{\sigma \in \mathcal{E}(\boldsymbol{K})} \frac{|D_{\boldsymbol{K},\sigma}|}{\delta t} \; \varrho_{\boldsymbol{K}}^{**} \; \left| \tilde{\boldsymbol{u}}_{\sigma} - \boldsymbol{u}_{\sigma}^{*} \right|^{2},$$

with  $|D_{\sigma}| \varrho_{\sigma} = |D_{K,\sigma}| \varrho_{K} + |D_{L,\sigma}| \varrho_{L}$ 

When performing the consistency study of the scheme, we use:

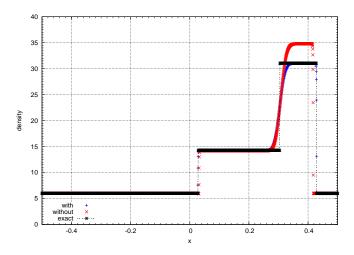
$$\sum_{(\mathbf{0},T)} \delta t \Big[ \sum_{\sigma \in \mathcal{E}} \frac{\mathcal{R}_{\sigma} \varphi_{\sigma}}{\mathcal{R}_{\sigma}} - \sum_{\mathbf{K} \in \mathcal{M}} \frac{\mathcal{S}_{\mathbf{K}} \varphi_{\mathbf{K}}}{\mathcal{S}_{\mathbf{K}}} \Big] \longrightarrow 0.$$

The rest R and corrective S terms compensate exactly when integrated over the domain, so the "total energy" is conserved.

This total energy includes an  $L^2$  norm of the pressure gradient (in other words, the scheme ensures a control of the pressure in  $L^{\infty}(0, T; H^1(\Omega))$ , with a  $\delta t/\rho^{1/2}$  weight).

(IRSN/I2M - AMU)

### A 1D Riemann problem



Riemann problem - Results obtained with and without corrective terms in the internal energy balance.

#### **Explicit variant**

Scheme (time semi-discrete setting):

$$\begin{split} &\frac{1}{\delta t}(\varrho-\varrho^*) + \operatorname{div}(\varrho^* \boldsymbol{u}^*) = 0, & \longrightarrow \varrho \\ &\frac{1}{\delta t}(\varrho e - \varrho^* e^*) + \operatorname{div}(\varrho^* e^* \boldsymbol{u}^*) + p^* \operatorname{div} \boldsymbol{u}^* = \mathcal{S}^*, & \longrightarrow e \\ &p = \wp(\varrho, e) = (\gamma - 1) \ \varrho e, \\ &\frac{1}{\delta t}(\varrho \boldsymbol{u} - \varrho^* \boldsymbol{u}^*) + \operatorname{div}(\varrho^* \boldsymbol{u}^* \otimes \boldsymbol{u}^*) + \nabla p = 0. & \longrightarrow \boldsymbol{u} \end{split}$$

- The kinetic energy balance is (still) derived by taking the inner product of the momentum energy balance by u → p\* divu\* in the internal energy balance.
- ▶ Upwinding of the convection term in the momentum balance (also).

#### Explicit variant: S

Kinetic energy identity (with an upwind discretization of the convection term):

$$\begin{aligned} \boldsymbol{u}_{\sigma} \cdot \left[ \frac{|D_{\sigma}|}{\delta t} (\varrho_{\scriptscriptstyle D_{\sigma}} \boldsymbol{u}_{\sigma} - \varrho_{\scriptscriptstyle D_{\sigma}}^* \boldsymbol{u}_{\sigma}^*) + \sum_{\epsilon = D_{\sigma} \mid D_{\sigma}'} F_{\sigma, \epsilon}^* \boldsymbol{u}_{\epsilon}^* \right] \\ &= \frac{1}{2} \frac{|D_{\sigma}|}{\delta t} (\varrho_{\scriptscriptstyle D_{\sigma}} |\boldsymbol{u}_{\sigma}|^2 - \varrho_{\scriptscriptstyle D_{\sigma}}^* |\boldsymbol{u}_{\sigma}^*|^2) + \frac{1}{2} \sum_{\epsilon = D_{\sigma} \mid D_{\sigma}'} F_{\sigma, \epsilon}^* \boldsymbol{u}_{\sigma}^* \cdot \boldsymbol{u}_{\sigma'}^* + \frac{\boldsymbol{R}_{\sigma}}{\delta t} \right] \end{aligned}$$

with

$$R_{\sigma} = \frac{1}{2} \frac{|D_{\sigma}|}{\delta t} \varrho_{\nu_{\sigma}} |\mathbf{u}_{\sigma} - \mathbf{u}_{\sigma}^{*}|^{2} + \sum_{\epsilon = D_{\sigma}|D_{\sigma}'} \frac{|F_{\sigma,\epsilon}^{*}|}{2} (\mathbf{u}_{\sigma}^{*} - \mathbf{u}_{\sigma}^{*}) \cdot \mathbf{u}_{\sigma}^{*} + \sum_{\epsilon = D_{\sigma}|D_{\sigma}'} F_{\sigma,\epsilon}^{*} (\mathbf{u}_{\sigma} - \mathbf{u}_{\sigma}^{*}) \cdot (\mathbf{u}_{\sigma}^{*} - \mathbf{u}_{\sigma}^{*}).$$

▶ Up to a term tending to zero (under  $L^{\infty}$  and BV estimates for  $\boldsymbol{u}$ ),

$$egin{aligned} \mathcal{R}_{\sigma} &\simeq rac{1}{2} rac{|D_{\sigma}|}{\delta t} \; arrho_{_{\mathcal{D}_{\sigma}}} \; |oldsymbol{u}_{\sigma} - oldsymbol{u}_{\sigma}^{*}|^{2} + \sum_{\epsilon = D_{\sigma} \mid D_{\sigma}^{\prime}} rac{|F_{\sigma,\epsilon}^{*}|}{2} \; |oldsymbol{u}_{\sigma}^{*} - oldsymbol{u}_{\sigma^{\prime}}^{*}|^{2} \ &+ \sum_{\epsilon = D_{\sigma} \mid D_{\sigma}^{\prime}} F_{\sigma,\epsilon}^{*} \; (oldsymbol{u}_{\sigma} - oldsymbol{u}_{\sigma}^{*}) \cdot (oldsymbol{u}_{\sigma}^{*} - oldsymbol{u}_{\sigma^{\prime}}^{*}), \end{aligned}$$

which is non-negative under a CFL condition.

 $\triangleright$  The corrective term  $\mathcal S$  compensates this remainder term.

# Entropy estimates: formal computations (1/3)

► Expected result: obtain an *entropy inequality* for one specific entropy:

$$\partial_t \eta(\rho, e) + \operatorname{div} \big[ \eta(\rho, e) \, \textbf{\textit{u}} \big] \leq 0, \quad \eta(\rho, e) = \underbrace{\rho \, \log(\rho)}_{\varphi_\rho(\rho)} + \rho \, \underbrace{\left( -\frac{1}{\gamma - 1} \log(e) \right)}_{\varphi_e(e)}.$$

► Note:

$$\begin{split} \varphi_\rho'(\rho) &= 1 + \log(\rho) & \varphi_\rho''(\rho) = \frac{1}{\rho} & (\varphi_\rho \text{ is convex}) \\ \varphi_e'(e) &= -\frac{1}{\gamma - 1} \frac{1}{e} \leq 0 & \varphi_e''(e) = \frac{1}{\gamma - 1} \frac{1}{e^2} & (\varphi_e \text{ is convex}) \end{split}$$

# Entropy estimates: formal computations (2/3)

► From the mass balance equation:

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho \boldsymbol{u}) &= 0 \hookrightarrow \\ \partial_t \left( \varphi_\rho(\rho) \right) + \operatorname{div}\left( \varphi_\rho(\rho) \boldsymbol{u} \right) + \underbrace{\left( \rho \varphi_\rho'(\rho) - \varphi(\rho) \right)}_{= \rho} \operatorname{div} \boldsymbol{u} = 0. \end{split}$$

From the internal energy balance equation:

$$\partial_{t}(\rho e) + \operatorname{div}(\rho e u) + p \operatorname{div}(u) = S \hookrightarrow$$

$$\partial_{t}(\rho \varphi_{e}(e)) + \operatorname{div}(\rho \varphi_{e}(e) u) + \underbrace{\varphi'_{e}(e) p}_{=-\rho} \operatorname{div} u = \underbrace{\varphi'_{e}(e) S}_{<0}.$$

► Sum ...

# Entropy estimates: formal computations (3/3)

At the discrete level:

From the mass balance equation:

$$\begin{split} \partial_{t}\rho + \operatorname{div}(\rho \boldsymbol{u}) &= 0 \hookrightarrow \\ \partial_{t}\left(\varphi_{\rho}(\rho)\right) + \operatorname{div}\left(\varphi_{\rho}(\rho)\boldsymbol{u}\right) + \underbrace{\left(\rho\varphi_{\rho}'(\rho) - \varphi(\rho)\right)}_{==\rho} \operatorname{div}\boldsymbol{u} + \mathcal{R}_{\rho} &= 0. \end{split}$$

From the internal energy balance equation:

$$\begin{split} \partial_t(\rho e) + \operatorname{div}(\rho e \boldsymbol{u}) + p \operatorname{div}(\boldsymbol{u}) &= S \hookrightarrow \\ \partial_t(\rho \varphi_e(e)) + \operatorname{div}\left(\rho \varphi_e(e) \boldsymbol{u}\right) + \underbrace{\varphi_e'(e) \, p}_{=-\rho} \, \operatorname{div} \boldsymbol{u} + \underbrace{\mathcal{R}_e}_{<0} &= \underbrace{\varphi_e'(e) \, S}_{<0} \,. \end{split}$$

Then:

$$\mathcal{R}_{\rho} \geq 0$$
,  $\mathcal{R}_{e} \geq 0$  : entropy estimate,

 $\mathcal{R}_{o} + \mathcal{R}_{e} \geq \mathcal{R}_{n}$  with  $\mathcal{R}_{n}$  tending to zero: weak entropy estimate.

### Entropy estimates: implicit upwind scheme (1/2)

For the pressure correction scheme, the mass and internal energy balance equations read:

$$\frac{1}{\delta t}(\varrho - \varrho^*) + \operatorname{div}(\varrho \mathbf{u}) = 0,$$

$$\frac{1}{\delta t}(\varrho e - \varrho^* e^*) + \operatorname{div}(\varrho e \mathbf{u}) + p \operatorname{div} \mathbf{u} = +S,$$

$$p = (\gamma - 1) \varrho e,$$

i.e. as a standard implicit scheme.

# Entropy estimates: implicit upwind scheme

Lemma (m) – In time semi-discrete notations, with an upwind discretization of the convection term and if  $\varphi$  is convex:

$$\varphi'(\rho) \left[ \frac{1}{\delta t} (\varrho - \varrho^*) + \operatorname{div}(\varrho \mathbf{u}) \right] = \frac{1}{\delta t} \left( \varphi(\varrho) - \varphi(\varrho^*) \right) + \operatorname{div}(\varphi(\varrho) \mathbf{u}) + \left[ \rho \varphi'(\rho) - \varphi(\rho) \right] \operatorname{div}(\mathbf{u}) + \mathcal{R}_{\rho},$$
with  $\mathcal{R}_{\rho} > 0$ .

(2/2)

▶ Lemma (e) – Let us suppose that:

$$\frac{1}{\delta t}(\varrho - \varrho^*) + \operatorname{div}(\varrho \boldsymbol{u}) = 0.$$

Then, with an upwind discretization of the convection term and if  $\varphi$  is convex:

$$\varphi'(e) \left[ \frac{1}{\delta t} (\varrho e - \varrho^* e^*) + \operatorname{div}(\varrho e \boldsymbol{u}) \right] = \frac{1}{\delta t} (\varrho \varphi(e) - \varrho^* \varphi(e^*)) + \operatorname{div}(\varrho \varphi(e) \boldsymbol{u}) + \mathcal{R}_e,$$

with  $\mathcal{R}_e \geq 0$ .

► So exactly what is needed to obtain a discrete entropy inequality.

For the pressure correction scheme, the mass and internal energy balance equations read:

$$\begin{split} &\frac{1}{\delta t}(\varrho-\varrho^*) + \operatorname{div}(\varrho^* \boldsymbol{u}^*) = 0, \\ &\frac{1}{\delta t}(\varrho e - \varrho^* e^*) + \operatorname{div}(\varrho^* e^* \boldsymbol{u}^*) + p^* \operatorname{div} \boldsymbol{u}^* = +\mathcal{S}, \\ &p^* = (\gamma - 1) \ \varrho^* e^*, \end{split}$$

i.e. as a standard explicit scheme.

- ► Lemma (e) still hods, under a CFL condition.
- ▶ But Lemma (m) is no more valid (some kind of mixing of time levels...).
- ► Possibility to derive a weak entropy estimate?

► Some definitions:

$$\begin{split} \|z\|_{\mathcal{T},t,\mathrm{BV}} &= \sum_{n=0}^{N} \sum_{K \in \mathcal{M}} |K| \; |z_{K}^{n+1} - z_{K}^{n}| \\ \|z\|_{\mathcal{T},x,\mathrm{BV}} &= \sum_{n=0}^{N} \delta t \sum_{\sigma \in \mathcal{K}|L \in \mathcal{E}_{\mathrm{int}}} |\sigma| \; |z_{L}^{n} - z_{K}^{n}| \\ \|R\|_{-1,1,\star} &= \sup_{\psi \in \mathrm{C}_{c}^{\infty}([0,T) \times \bar{\Omega})} \; \frac{1}{\sup_{x \in \Omega, \; t \in (0,T)} \|\nabla \psi(x,t)\|} \left[ \sum_{n=0}^{N} \delta t \sum_{K \in \mathcal{M}} |K| \; R_{K}^{n} \psi_{K}^{n} \right] \\ \|\boldsymbol{u}\|_{L^{q}(0,T;W_{\mathcal{M}}^{1,q})}^{q} &= \sum_{i=1}^{d} \sum_{n=0}^{N} \delta t \sum_{K \in \mathcal{M}} \sum_{(\sigma,\sigma') \in \mathcal{E}(K)^{2}} |K| \left( \frac{u_{\sigma,i}^{n} - u_{\sigma',i}^{n}}{h_{K}} \right)^{q}. \\ \underline{h}_{\mathcal{M}} &= \min_{K \in \mathcal{M}} \frac{|K|}{\sum_{\sigma \in \mathcal{E}(K)} |\sigma|}. \end{split}$$

# Entropy estimates: explicit upwind scheme

(3/3)

Estimate of the liminf of the rest – Under a (mild) regularity assumption on the mesh, a CFL assumption:

$$\|\mathcal{R}_{\eta}\|_{L^{1}} \leq C \left(\|\rho\|_{\mathcal{T},t,\mathrm{BV}} + \|e\|_{\mathcal{T},t,\mathrm{BV}}\right) \frac{\delta t}{\underline{h}_{\mathcal{M}}}$$

and

$$\|\mathcal{R}_{\boldsymbol{\eta}}\|_{L^{1}} \leq C \|\boldsymbol{\rho}\|_{\mathcal{T},t,\mathrm{BV}}^{1/p} \|\boldsymbol{u}\|_{L^{\boldsymbol{q}}(0,\mathcal{T};W^{1,\boldsymbol{q}}_{\mathcal{M}})} \delta t^{1/p}$$

where  $p \ge 1$ ,  $q \ge 1$  and  $\frac{1}{p} + \frac{1}{q} = 1$ , and C is an increasing function of  $\max(\|\rho\|_{\infty}, \|1/\rho\|_{\infty}, \|e\|_{\infty}, \|1/e\|_{\infty})$ .

► How to use it: nonlinear stabilization?

## Entropy estimates: under a "mild upwinding assumption"

Under a "mild upwinding assumption":

Strong (weak) entropy inequalities 

weak entropy inequalities with a (an additional) remainder term  $\mathcal{R}_{\eta,\mathrm{add}}$  satisfying:

$$\|\mathcal{R}_{\eta,\mathrm{add}}\|_{-1,1,\star} \leq C \Big( \|\rho\|_{\mathcal{T},x,\mathrm{BV}} + \|e\|_{\mathcal{T},x,\mathrm{BV}} \Big) \ h_{\mathcal{M}}$$

... unfortunately excepted the last one ....