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Sch for Euler i Generic ingredients

Euler equations. .. and "derived" forms

> Euler (Navier-Stokes) equations:
Oto + div(ou) =0,
Ot(ou) + div(ou ® u)—divr + Vp =0,
Ot(0E) + div[(0E + p)u] = div(Tu),
p=(y—1) oe, E:%|u|2+e.

» For regular functions, taking the scalar product of the momentum balance equation by
u and using the mass balance equation yields the kinetic energy balance equation:

1
O¢(0Ec) + div(gEcu) + Vp - u = div(T) - u, E. = > lul?.

Subtracting to the total energy balance yields the internal energy balance:
Ot (0e) + div(peu) + pdivu = 7: Vu,

and, from this equation, we get e > 0.
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Sch for Euler i G ic i di

Objectives

=%

Objective — derive a scheme for Euler (or Navier-Stokes) equations which is a natural
extension of an existing scheme for low Mach number flows:

> staggered discretization,
» upwinding with respect to the material velocity,
» solution of the internal energy balance,

> pressure correction scheme.

Staggered schemes for compressible flows: Harlow & Amsden, Wesseling and co-workers,
Goudon and co-workers. ..
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Sch for Euler i Generic ingredients

Weak solutions and conservative schemes

» Weak solution:

Be(s) + div(F(s)) = 0

— —sOep—F(s)- V=0, VpeC(x(0,T)).
Qx(0,T)

» Rankine-Hugoniot conditions.
Let us suppose, in 1D, that s is discontinuous along a "line" in the Q x (0, T) "plane",
and let w be the slope of this line (the propagation speed of the shock). Then, if s is a
weak solution:
L _ [F)

[s]

» Consistency: let (s5) — 3 (in strong enough norms); then 3 is a weak solution.

Ex. : passage to the limit for a conservative finite volume approximation of the flux
term:

o]

>k 3ol Fr - me = 32 10r| Fls)o 1 (o1 = o) e ~ [ F(9)- Todx.
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for Euler i Generic ingredients

Strategy

How to obtain the correct weak solutions of Euler equations while solving the internal energy
balance ?

Answer: Make the scheme "consistent" with total energy equation. ..

More precisely:
1- Build a (discrete) kinetic energy balance.

2- Suppose bounds and convergence for a sequence of discrete solutions, compatible with
the regularity of the sought continuous solutions:
» control in BV and L°°,
» convergence in LP, for p > 1.

3- Let ¢ a regular function,
> interpolate,
> test the kinetic energy balance,
> test the internal energy balance,
> and pass to the limit in the scheme.

...and, on the basis of this computation, build corrective terms in the internal energy
balance in such a way to recover, at the limit, the weak form of the total energy
equation.
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Sch for Euler i A pressure correction scheme

General form of the scheme

> Scheme (time semi-discrete setting):

1
(0"t — 0" u*) +div(e" it ® u™)—divr (i) + EVp* = 0.

Prediction step: 5t

S(u—@)+ Vp-cVp* =0,
s (0= ") +div(ow) =0,

Correction step:
1
E(Qe — o"e*) + div(eeu) + pdivu = S,

p=p(o,e)=(y—1) ce.

» Time shift of the density discretization.
» Coupling of the mass and energy balance.

» Modification of the pressure gradient, corrective term in the internal energy balance.
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Sch for Euler i A pressure correction scheme

Kinetic energy balance (1/2)

» Lemma — Since: 1
5*(9* —0") +div(e*u*) =0,
t
Then:
1 1 ~ ~
i [E(g*a — o™ u) + div(e* i ® u*)] = (0B — 0 E{) + div(e” Bw") + R,
*‘2.

- 1 1 1
ith E, = = ||, E} = —|u*|? and Ri= — o**|i1 —
w K 2IUI k 2IUI 1= 5509 i —u

> So, multiplying the prediction step by & yields:

1 = . * * ~ *
E(Q*Ek—g**’:—f)‘f'dlv(@ Exu™) +&i- Vp* +R1=0.
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Sch for Euler i A pressure correction scheme

Kinetic energy balance (2/2)
> Velocity correction equation (a computation from J.-L. Guermond):

Lu—@)+ Vp—cVp =

E g*

Square this relation:

0" _0 g ‘2
5t St '
» Sum to obtain:

1 o
E(Q*Ek — 0" E}) +div(¢"Exu™) +u - Vp+R1+R2 =0,

ot ot
with Ry = —£—|Vp*|2
20* 20*

> So 5
0" \1 t 2 |2
£=(—2)* < Ra=_—[Vpl*- **\V |
0+ 20 20
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Sch for Euler i A pressure correction scheme

Scheme, time semi-discrete setting

» Scheme:
1
Prediction step: — (0"t — 0" u*) + div(e* o ® u™)—divr(ir) + [
51’ Q**
—(u— Vp - Vp* =0,
ot (u U) tve [g** } P

1
— (o — o) +div(eu) =0,
Correction step: ot

1
E(Qe — o"e*) +div(eeu) + pdivu = (1) : Vi + S,

p=p(o,e) = (v—1) ce,

with & = Ry.
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Sch

for Euler i A p correction scheme

Space discretization

=%
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Sch for Euler i A pressure correction scheme

The scheme (1/2)

» The scheme:

DU' o~ ok * o~
voce Dol ity — oy ul)+ D ”u5+Ts+[QD} (Vp*) o, =0.
ot o
ecE(Dy) b
Ds| o5, 11/2 .
VYo € & |5t|90,(" —ic) +(Vp) o, — [ *J (Vp*) o, =0,
*—Dv
K
VK e M |6|(QK—QK)+ Z FKU_O
ce&(K)
K * %
VYK e M |6t|(gKeK oxer) + Z Fk,oc€s + Pk Z l|o|us - nk 5 = Sk,
cEE(K) cEE(K)
VKeM pk=(y—1)ok ek,

with:
for o = KIL, (V) jo = lo| (PL — PK) M.

Fik,o = 0| 0o Us - Nk &, 0o upwind, es upwind,
|Ds| N 2
Rs = 5: Q;j "o_u:r| )
. centered, Ts =¢( Z h:’fl[&]67 Ro+= City - Z h;"_l[i‘l]67
cc€(Dy) cc£(Dy)
RO- — SK.
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for Euler i A pressure correction scheme

The scheme (2/2)
» By construction, the mass balance is satisfied over the dual cells

ID I * * % *
5: (QD, — @p, ) + Z Fo‘,e = 07
ec&(Dy)

but it is not so easy to obtain. ..
» Using the mass balance at the previous time step requires to use a constant time step. ..

» There is no "local" total energy equation: the kinetic energy balance is associated to
the dual cells, while the internal energy one is associated to primal ones.

D . D -
R, = ‘60‘ or* |ua—u;‘,|z%SK: E [Dr.o| oK !ua—uz‘,|2,
t ot
occ&(K)

with |Ds| 0o = |Dk,o| 0k + |DL,s| oOL-
When performing the consistency study of the scheme, we use:

Z 6t[z Rops — Z SK@K] — 0.
(0,7)

o€l KeM

» The rest R and corrective S terms compensate exactly when integrated over the
domain, so the "total energy" is conserved.
This total energy includes an L? norm of the pressure gradient (in other words, the
scheme ensures a control of the pressure in L>°(0, T; H1(Q)), with a §t/p'/? weight).
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for Euler i N ical tests

A 1D Riemann problem

40
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Riemann problem — Results obtained with and without corrective terms in the internal energy
balance.
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for Euler i An explicit variant

Explicit variant

> Scheme (time semi-discrete setting):

%(Q—Q*)ﬁ-div(g*u*):& .,
%(QE—g*e*) + div(g*e*u*) + p* divu* = S*, e
p=glo.e)=(y—1) ce,

%t(gu_Q*u*)+div(g*u*®u*)+vp:0. Y

> The kinetic energy balance is (still) derived by taking the inner product of the
momentum energy balance by u ~~ p* divu™ in the internal energy balance.

» Upwinding of the convection term in the momentum balance (also).
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for Euler i An explicit variant

Explicit variant: S

> Kinetic energy identity (with an upwind discretization of the convection term):

D
wo [P (oo — 0y up) Y Fiu]

e=Dq |D/,
1|Ds| 1
= E 5: (QDH uO“z QD,,‘ ‘2) + E Z F;,s u: : u:" + R”
e=Ds |D/,
with
10| 2 |Fs el ,
Ry = = , U —ul|+ ur —ul,)) ul
o > ot D, o o'| [:DZ‘D/ 2 ( C,/)
3 Rl (e — ) (uf —u).
e=Dg|D],

» Up to a term tending to zero (under L>° and BV estimates for u),

1|Ds| 2 IF5el
Ro >~ = L ut — o, |?
=g e mufe 3 S5 -
+ Z F;,e (ua—u;)~(u;—u;,),
e=Ds|D/,

which is non-negative under a CFL condition.
» The corrective term S compensates this remainder term.
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Entropy estimates

Entropy estimates: formal computations

(1/3)

» Expected result: obtain an entropy inequality for one specific entropy:

Den(p, €) + div[n(p, e)u] <0, n(p, ) = plog(p) + p(~ - log(e).

®p(p)
» Note: 1
¢, (p) =1+ log(p) pp(p) =~
1 1 r 1 1
pule)=——"<0  Qlle)= =,
y—1le y—1le

T Y TR e, corr. scheme for comp. reactive flows
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Entropy estimates

Entropy estimates: formal computations (2/3)

» From the mass balance equation:
Otp + div(pu) =0 —
9t (p(p)) + div(ep(p)u) + (pv),(p) — ¢(p)) divu = 0.
—:,p_«
» From the internal energy balance equation:
Ot(pe) + div(peu) + pdiv(u) = S —
At (ppe(e)) + div(ppe(e)u) + pe(e) p divu = pe(e) S.
==

» Sum ...
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Entropy estimates

Entropy estimates: formal computations (3/3)

At the discrete level:
» From the mass balance equation:

Orp + div(pu) =0 —
Ot (0p(p)) + div(ep(p)u) + (p),(p) — ¢(p)) divu + R, = 0.
T
» From the internal energy balance equation:
Ot (pe) + div(peu) + pdiv(u) = S —
9t (ppe(e)) + div(ppe(e)u) + e(e) p divu + Re = we(e) S .
=% =

Then:
Rp >0, Re >0 : entropy estimate,

Rp + Re > Ry with Ry, tending to zero: weak entropy estimate.

(IRSN/I2M - AMU) Pres. corr. scheme for comp. reactive flows Toulouse, November 2017

19 / 25



Entropy estimates

Entropy estimates: implicit upwind scheme (1/2)

For the pressure correction scheme, the mass and internal energy balance equations read:

1 . .
~(0— ¢%) +div(eu) =0,

ot

1

é—t(ge — o"e*) + div(eeu) + pdivu = 4S8,
p=(y—1) ce,

i.e. as a standard implicit scheme.
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Entropy estimates

Entropy estimates: implicit upwind scheme (2/2)

» Lemma (m) — In time semi-discrete notations, with an upwind discretization of the
convection term and if ¢ is convex:

©'(p) [%(Q—g*)eriV(QU)] = %(so(g)—w(e*))eriV(sO(g)u)Jr (9" (p)—¢(p)] div(u)+R,,
with R, > 0.

> Lemma (e) — Let us suppose that:

%(g —¢") +div(eu) = 0.

Then, with an upwind discretization of the convection term and if ¢ is convex:

¢'(e) [%(Qe —o"e*) + diV(@eU)] = %(gtp(e) —0*p(e")) +div(ep(e)u) + Re,
with Re > 0.

> So exactly what is needed to obtain a discrete entropy inequality.
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Entropy estimates

Entropy estimates: explicit upwind scheme (1/3)

For the pressure correction scheme, the mass and internal energy balance equations read:

1 . * ok
—(o—0") +div(e"u™) =0,

ot

1

é—t(ge —o"e*) +div(e*e"u*) + p* divu* = +S,
pr=(y—1)c"e,

i.e. as a standard explicit scheme.

> Lemma (e) still hods, under a CFL condition.

» But Lemma (m) is no more valid (some kind of mixing of time levels. . .).

» Possibility to derive a weak entropy estimate ?
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Entropy estimates

Entropy estimates: explicit upwind scheme

» Some definitions:

N
Izllremv =2 > IKl |z —zg|

(2/3)

n=0 KeM
N
Izl7 v =3 8t 37 ol |2 — zkl
n=0  o=K|LEEin
1 N
”R”fl.,l.,* = sup _ sup va(x t)” [Zét Z |K‘ R;w;]
P eCE(0,T)xQ) o 0.7 ’ =0 KeM
d N un . — U"/ A\ 49
o,i ol i
IS 3 SU'S SIS SR (T) |
T i1n=0 KeM (0,0')cE(K)? K
= min |K‘
M7 Kem S ol

(IRSN/I2M - AMU)
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Entropy estimates

Entropy estimates: explicit upwind scheme (3/3)

> Estimate of the liminf of the rest — Under a (mild) regularity assumption on the mesh,
a CFL assumption:

t
IRllis < € (Ipllz.epv +lelr.env) 7
LYV

and

1 1
IRollix < € lpllzesv™ lull o, 7. wt.0) 567

1 1
where p > 1, g>1and — + — =1, and C is an increasing function of

P q
max([|plloo, 11/plloo, llelloo, lI1/€lloo)-

» How to use it: nonlinear stabilization ?
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Entropy estimates

Entropy estimates: under a "mild upwinding assumption"

» Under a "mild upwinding assumption":

» Strong (weak) entropy inequalities — weak entropy inequalities with a (an additional)
remainder term R, ,qq satisfying:

IR aaall 1,1, < C (ol x,8v + el e 3v) hag

... unfortunately excepted the last one ...
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