Schémas Bas-Froude pour le modèle Shallow Water multicouches WORKSHOP "Schémas numériques pour les écoulements à faible nombre de Mach".

R. Baraille¹ A. Duran²

¹Service Hydrographique et Océanographique de la Marine.

²Institut Camille Jordan, Université Claude Bernard Lyon 1.

Toulouse, 20 Novembre 2017

Travail en collaboration avec J.P. Vila et F. Couderc (IMT/INSA Toulouse).

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Plan

Généralités Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Résultats numériques

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

Présentation du modèle

$$\begin{cases} \partial_t h_i + div(h_i \mathbf{u}_i) = 0, \\ \partial_t(h_i \mathbf{u}_i) + div(h_i \mathbf{u}_i \otimes \mathbf{u}_i) + h_i \nabla \Phi_i = 0. \end{cases} \quad i = 1, \cdots, L.$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Présentation du modèle

$$\begin{cases} \partial_t h_i + div(h_i \mathbf{u}_i) = 0, \\ \partial_t(h_i \mathbf{u}_i) + div(h_i \mathbf{u}_i \otimes \mathbf{u}_i) + h_i \nabla \Phi_i = 0. \end{cases} \qquad i = 1, \cdots$$

Difficultés Structure⁽¹⁾ Non conservatif ▷ Hyperbolicité Cadre applicatif⁽²⁾ ▷ Bas-Froude Stabilité⁽³⁾ ▷ Energie Robustesse ▷ Etats d'équilibre

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

, L .

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

Audusse *et al.* **2014** (1,3), Monjarret **2014** (1), Duchène **2016** (1), Parisot, Vila **2015** (2), Bouchut *et al.* **2008** & **2010**₍₁(3).

Shallow Water multicouches

$$\begin{cases} \partial_t h_i + div(h_i \mathbf{u}_i) = 0, \\ \partial_t(h_i \mathbf{u}_i) + div(h_i \mathbf{u}_i \otimes \mathbf{u}_i) + h_i \nabla \Phi_i = 0. \end{cases}$$

$$i = 1, \cdots$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

. L.

Présentation du modèle

Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ > への

Shallow Water multicouches

$$\begin{cases} \partial_t h_i + div(h_i \mathbf{u}_i) = 0, \\ \partial_t(h_i \mathbf{u}_i) + div(h_i \mathbf{u}_i \otimes \mathbf{u}_i) + h_i \nabla \Phi_i = 0. \\ i = 1, \cdots, L \end{cases}$$

Bilan d'énergie (solutions régulières)

$$\triangleright \text{ Energie potentielle} : \partial_{\rho_i h_i} \mathcal{E} = \Phi_i = g \sum_{j=1}^{L} \frac{\rho_j h_j}{\rho_{max}(i,j)}.$$

$$\triangleright \text{ Energie cinétique} : \mathcal{K}_i = \frac{1}{2} \rho_i h_i ||\mathbf{u}_i||^2.$$

$$\triangleright \text{ Energie totale} : E = \mathcal{E} + \sum_{i=1}^{L} \mathcal{K}_i.$$

$$\partial_t E + \sum_{i=1}^{L} div \Big[\Big(\rho_i h_i \Phi_i + \mathcal{K}_i \Big) \mathbf{u}_i \Big] = 0.$$

くりゃく 前・ 本田・ 本田・ オロ・

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle

régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Shallow Water multicouches régularisé^(*)

$$\begin{cases} \partial_t h_i + div(h_i(\mathbf{u}_i - \delta \mathbf{u}_i)) = 0, \\ \partial_t(h_i \mathbf{u}_i) + div(h_i \mathbf{u}_i \otimes (\mathbf{u}_i - \delta \mathbf{u}_i)) + h_i \nabla \Phi_i = 0. \\ i = 1, \cdots, h_i \leq 0. \end{cases}$$

Bilan d'énergie (solutions régulières)

$$\triangleright \text{ Energie potentielle} : \partial_{\rho_i h_i} \mathcal{E} = \Phi_i = g \sum_{j=1}^{L} \frac{\rho_j h_j}{\rho_{max}(i,j)}.$$

$$\triangleright \text{ Energie cinétique} : \mathcal{K}_i = \frac{1}{2} \rho_i h_i ||\mathbf{u}_i||^2.$$

$$\triangleright \text{ Energie totale} : E = \mathcal{E} + \sum_{i=1}^{L} \mathcal{K}_i.$$

$$\partial_t E + \sum_{i=1}^{L} div \left[\left(\rho_i h_i \Phi_i + \mathcal{K}_i \right) (\mathbf{u}_i - \delta \mathbf{u}_i) \right] = -\sum_{i=1}^{L} \rho_i h_i \delta \mathbf{u}_i. \nabla \Phi$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle

vers un modele régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Shallow Water multicouches régularisé^(*)

$$\begin{cases} \partial_t h_i + div(h_i(\mathbf{u}_i - \delta \mathbf{u}_i)) = 0, \\ \partial_t(h_i \mathbf{u}_i) + div(h_i \mathbf{u}_i \otimes (\mathbf{u}_i - \delta \mathbf{u}_i)) + h_i \nabla \Phi_i = 0. \\ i = 1, \cdots, \end{cases}$$

Bilan d'énergie (solutions régulières)

$$\triangleright \text{ Energie potentielle} : \partial_{\rho_i h_i} \mathcal{E} = \Phi_i = g \sum_{j=1}^{L} \frac{\rho_j h_j}{\rho_{max}(i,j)}.$$

▷ Energie cinétique : $\mathcal{K}_i = \frac{1}{2} \rho_i h_i ||\mathbf{u}_i||^2$. ▷ Energie totale : $E = \mathcal{E} + \sum_{i=1}^{L} \mathcal{K}_i$.

$$\partial_t E + \sum_{i=1}^{L} div \Big[\Big(\rho_i h_i \Phi_i + \mathcal{K}_i \Big) (\mathbf{u}_i - \delta \mathbf{u}_i) \Big] = -\sum_{i=1}^{L} \rho_i h_i \overleftarrow{\delta \mathbf{u}_i \cdot \nabla \Phi_i}.$$

(*) Grenier, Vila, Villedieu 2013, Parisot, Vila 2015. 🗆 🖌 🖉 🕨 🛪 🚍 🛌 🚊

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle

régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle

Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへぐ

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle

Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle

Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Plan

Généralités

Schéma semi-implicite sur grilles décalées Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Formalisme^(*)

Schéma semi-implicite

$$\begin{split} h_{K}^{n+1} &= h_{K}^{n} - \frac{\Delta t}{m_{K}} \sum_{e \in \partial K} \mathcal{F}_{e}^{n+1} . \vec{n}_{e,K} m_{e}, \qquad K \in \mathbb{T}, \\ h_{D}^{n+1} \mathbf{u}_{D}^{n+1} &= h_{D}^{n} \mathbf{u}_{D}^{n} - \frac{\Delta t}{m_{D}} \sum_{f \in \partial D} \left(\mathbf{u}_{D}^{n} \left(\mathcal{F}_{f}^{n+1} . \vec{n}_{f,D} \right)^{+} - \mathbf{u}_{D_{f}}^{n} \left(\mathcal{F}_{f}^{n+1} . \vec{n}_{f,D} \right)^{-} \right) m_{f} \\ &- \frac{\Delta t}{m_{D}} h_{D}^{n+1} \left(\nabla_{D} \Phi \right), \qquad D \in \mathbb{T}^{*}. \end{split}$$

(*) Ansanay-Alex, Babik, Latché, Vola 2010,

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Formalisme^(*)

Schéma semi-implicite

$$\begin{split} h_{K}^{n+1} &= h_{K}^{n} - \frac{\Delta t}{m_{K}} \sum_{e \in \partial K} \mathcal{F}_{e}^{n+1} . \vec{n}_{e,K} m_{e}, \qquad K \in \mathbb{T}, \\ h_{D}^{n+1} \mathbf{u}_{D}^{n+1} &= h_{D}^{n} \mathbf{u}_{D}^{n} - \frac{\Delta t}{m_{D}} \sum_{f \in \partial D} \left(\mathbf{u}_{D}^{n} \left(\mathcal{F}_{f}^{n+1} . \vec{n}_{f,D} \right)^{+} - \mathbf{u}_{D_{f}}^{n} \left(\mathcal{F}_{f}^{n+1} . \vec{n}_{f,D} \right)^{-} \right) m_{f} \\ &- \frac{\Delta t}{m_{D}} h_{D}^{n+1} \left(\nabla_{D} \Phi \right), \qquad D \in \mathbb{T}^{*}. \end{split}$$

(*) Ansanay-Alex, Babik, Latché, Vola 2010,

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Formalisme^(*)

Schéma semi-implicite

$$\begin{split} h_{K}^{n+1} &= h_{K}^{n} - \frac{\Delta t}{m_{K}} \sum_{e \in \partial K} \mathcal{F}_{e}^{n+1} . \vec{n}_{e,K} m_{e}, \qquad K \in \mathbb{T}, \\ h_{D}^{n+1} \mathbf{u}_{D}^{n+1} &= h_{D}^{n} \mathbf{u}_{D}^{n} - \frac{\Delta t}{m_{D}} \sum_{f \in \partial D} \left(\mathbf{u}_{D}^{n} \left(\mathcal{F}_{f}^{n+1} . \vec{n}_{f,D} \right)^{+} - \mathbf{u}_{D_{f}}^{n} \left(\mathcal{F}_{f}^{n+1} . \vec{n}_{f,D} \right)^{-} \right) m_{f} \\ &- \frac{\Delta t}{m_{D}} h_{D}^{n+1} \left(\nabla_{D} \Phi \right), \qquad D \in \mathbb{T}^{*}. \end{split}$$

Hauteur d'eau et flux auxiliaires

$$|D^{e}|h_{D^{e}}^{n+1} = |D_{K}^{e}|h_{K}^{n+1} + |D_{K_{e}}^{e}|h_{K_{e}}^{n+1},$$
$$h_{D^{e}}^{n+1} = h_{D^{e}}^{n} - \frac{\Delta t}{m_{D^{e}}} \sum_{f \in \partial D^{e}} \mathcal{F}_{f}^{n+1}.\vec{n}_{f,D^{e}}m_{f}.$$

(*) Ansanay-Alex, Babik, Latché, Vola 2010,

Herbin, Kheriji, Latché 2013 & 2014, Latché, Saleh 2014 & 2017

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schéma sur la partie potentiel (L=1) Schéma sur \mathcal{E}_{K}

$$\frac{\mathcal{E}_{\mathcal{K}}^{n+1}-\mathcal{E}_{\mathcal{K}}^{n}}{\Delta t}+\mathcal{G}_{\mathcal{E},\mathcal{K}}^{n+1}-\mathcal{Q}_{\mathcal{E},\mathcal{K}}^{n+1}\leq\mathcal{R}_{\mathcal{E},\mathcal{K}}^{n+1}.$$

$$\mathcal{G}_{\mathcal{E},\mathcal{K}}^{n+1} = \frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} \Phi_e^{n+1} \mathcal{F}_e^{n+1} . \vec{n}_{e,\mathcal{K}} = \operatorname{div}_{\mathcal{K}}(\Phi^{n+1} \mathcal{F}^{n+1}).$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

・ロト ・雪ト ・雪ト ・雪ト ・白ト

Schéma sur la partie potentiel (L=1) Schéma sur \mathcal{E}_{K}

$$\frac{\mathcal{E}_{K}^{n+1}-\mathcal{E}_{K}^{n}}{\Delta t}+\mathcal{G}_{\mathcal{E},K}^{n+1}-\mathcal{Q}_{\mathcal{E},K}^{n+1}\leq\mathcal{R}_{\mathcal{E},K}^{n+1}.$$

$$\begin{aligned} \mathcal{G}_{\mathcal{E},\mathcal{K}}^{n+1} &= \frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} \Phi_{e}^{n+1} \mathcal{F}_{e}^{n+1} . \vec{n}_{e,\mathcal{K}} = \operatorname{div}_{\mathcal{K}} (\Phi^{n+1} \mathcal{F}^{n+1}) \\ \mathcal{Q}_{\mathcal{E},\mathcal{K}}^{n+1} &= \frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} h_{D^{e}}^{n+1} \mathbf{u}_{D^{e}}^{n} . \delta \Phi_{e}^{n+1} m_{e} = \overline{(hu.\nabla\Phi)}_{\mathcal{K}} . \\ \mathcal{R}_{\mathcal{E},\mathcal{K}}^{n+1} &= -\frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} h_{D^{e}}^{n+1} \delta \mathbf{u}_{D^{e}}^{n} . \delta \Phi_{e}^{n+1} m_{e} . \\ \delta \Phi_{e}^{n+1} &= \frac{1}{2} \left(\Phi_{\mathcal{K}_{e}}^{n+1} - \Phi_{\mathcal{K}}^{n+1} \right) \vec{n}_{e,\mathcal{K}} . \end{aligned}$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

.

ション ふゆ ア キョン キョン ヨー もくの

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schéma sur la partie potentiel (L=1) Schéma sur \mathcal{E}_{κ}

$$\frac{\mathcal{E}_{K}^{n+1}-\mathcal{E}_{K}^{n}}{\Delta t}+\mathcal{G}_{\mathcal{E},K}^{n+1}-\mathcal{Q}_{\mathcal{E},K}^{n+1}\leq\mathcal{R}_{\mathcal{E},K}^{n+1}.$$

$$\begin{aligned} \mathcal{G}_{\mathcal{E},\mathcal{K}}^{n+1} &= \frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} \Phi_{e}^{n+1} \mathcal{F}_{e}^{n+1} . \vec{n}_{e,\mathcal{K}} = \operatorname{div}_{\mathcal{K}} (\Phi^{n+1} \mathcal{F}^{n+1}) \\ \mathcal{Q}_{\mathcal{E},\mathcal{K}}^{n+1} &= \frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} h_{D^{e}}^{n+1} \mathbf{u}_{D^{e}}^{n} . \delta \Phi_{e}^{n+1} m_{e} = \overline{(hu. \nabla \Phi)}_{\mathcal{K}} . \\ \mathcal{R}_{\mathcal{E},\mathcal{K}}^{n+1} &= -\frac{1}{m_{\mathcal{K}}} \sum_{e \in \partial \mathcal{K}} h_{D^{e}}^{n+1} \delta \mathbf{u}_{D^{e}}^{n} . \delta \Phi_{e}^{n+1} m_{e} . \\ \delta \Phi_{e}^{n+1} &= \frac{1}{2} \left(\Phi_{\mathcal{K}_{e}}^{n+1} - \Phi_{\mathcal{K}}^{n+1} \right) \vec{n}_{e,\mathcal{K}} . \end{aligned}$$

Équivalent discret

 $\partial_t \mathcal{E} + \operatorname{div} \left(\Phi h(\mathbf{u} - \delta \mathbf{u}) \right) - h \mathbf{u} \cdot \nabla \Phi = -h \delta \mathbf{u} \cdot \nabla \Phi \,.$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

.

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schéma sur la partie cinétique (L=1)

Schéma sur $\mathcal{K}_D = \frac{1}{2} h_D^n \|\mathbf{u}_D^n\|^2$

$$\frac{\mathcal{K}_D^{n+1}-\mathcal{K}_D^n}{\Delta t}+\mathcal{G}_{\mathcal{K},D}^{n+1}+\mathcal{Q}_{\mathcal{K},D}^{n+1}\leq \mathcal{R}_{\mathcal{K},D}^{n+1}.$$

$$\begin{aligned} \mathcal{G}_{\mathcal{K},D}^{n+1} &= \frac{1}{m_D} \sum_{f \in \partial D} \left(\frac{1}{2} \| \mathbf{u}_D^n \|^2 \left(\mathcal{F}_f^{n+1} . \vec{n}_{f,D} \right)^+ - \frac{1}{2} \| \mathbf{u}_{D_f}^n \|^2 \left(\mathcal{F}_f^{n+1} . \vec{n}_{f,D} \right)^- \right) \\ &= di v_D (\frac{1}{2} \| \mathbf{u}^{n+1} \|^2 \mathcal{F}^{n+1}) \,. \end{aligned}$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schéma sur la partie cinétique (L=1)

Schéma sur $\mathcal{K}_D = \frac{1}{2} h_D^n \|\mathbf{u}_D^n\|^2$

$$\frac{\mathcal{K}_D^{n+1}-\mathcal{K}_D^n}{\Delta t}+\mathcal{G}_{\mathcal{K},D}^{n+1}+\mathcal{Q}_{\mathcal{K},D}^{n+1}\leq \mathcal{R}_{\mathcal{K},D}^{n+1}.$$

$$\begin{aligned} \mathcal{G}_{\mathcal{K},D}^{n+1} &= \frac{1}{m_D} \sum_{f \in \partial D} \left(\frac{1}{2} \| \mathbf{u}_D^n \|^2 \left(\mathcal{F}_f^{n+1} . \vec{n}_{f,D} \right)^+ - \frac{1}{2} \| \mathbf{u}_{D_f}^n \|^2 \left(\mathcal{F}_f^{n+1} . \vec{n}_{f,D} \right)^- \right) \\ &= di v_D \left(\frac{1}{2} \| \mathbf{u}^{n+1} \|^2 \mathcal{F}^{n+1} \right). \end{aligned}$$

$$\mathcal{Q}_{\mathcal{K},D}^{n+1} = h_D^{n+1} \mathbf{u}_D^n. (\nabla_D \Phi).$$

$$\mathcal{R}_{\mathcal{K},D}^{n+1} = \Delta t h_D^{n+1} \| \nabla_D \Phi \|^2.$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Schéma sur la partie cinétique (L=1)

Schéma sur $\mathcal{K}_D = \frac{1}{2} h_D^n \|\mathbf{u}_D^n\|^2$

$$\frac{\mathcal{K}_D^{n+1}-\mathcal{K}_D^n}{\Delta t}+\mathcal{G}_{\mathcal{K},D}^{n+1}+\mathcal{Q}_{\mathcal{K},D}^{n+1}\leq \mathcal{R}_{\mathcal{K},D}^{n+1}.$$

$$\begin{aligned} \mathcal{G}_{\mathcal{K},D}^{n+1} &= \frac{1}{m_D} \sum_{f \in \partial D} \left(\frac{1}{2} \| \mathbf{u}_D^n \|^2 \left(\mathcal{F}_f^{n+1} . \vec{n}_{f,D} \right)^+ - \frac{1}{2} \| \mathbf{u}_{D_f}^n \|^2 \left(\mathcal{F}_f^{n+1} . \vec{n}_{f,D} \right)^- \right) \\ &= div_D \left(\frac{1}{2} \| \mathbf{u}^{n+1} \|^2 \mathcal{F}^{n+1} \right). \end{aligned}$$

$$\mathcal{Q}_{\mathcal{K},D}^{n+1} = h_D^{n+1} \mathbf{u}_D^n. (\nabla_D \Phi).$$

$$\mathcal{R}^{n+1}_{\mathcal{K},D} = \Delta t h_D^{n+1} \| \nabla_D \Phi \|^2.$$

Équivalent discret

$$\partial_t \mathcal{K} + div \left(\frac{1}{2} h \| \mathbf{u} \|^2 (\mathbf{u} - \delta \mathbf{u}) \right) + h \mathbf{u} \cdot \nabla \Phi = 0.$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Générali<u>tés</u>

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Energie totale

Energie totale

$$\begin{split} E^{n+1} - E^n &= \sum_{D \in \mathbb{T}^*} m_D \left(\mathcal{K}_D^{n+1} - \mathcal{K}_D^n \right) + \sum_{K \in \mathbb{T}} m_K \left(\mathcal{E}_K^{n+1} - \mathcal{E}_K^n \right) \\ &\leq \Delta t \sum_{D \in \mathbb{T}^*} m_D \left(\mathcal{R}_{\mathcal{K},D}^{n+1} - \mathcal{Q}_{\mathcal{K},D}^{n+1} \right) \\ &+ \Delta t \sum_{K \in \mathbb{T}} m_K \left(\mathcal{R}_{\mathcal{E},K}^{n+1} + \mathcal{Q}_{\mathcal{E},K}^{n+1} \right) \,. \end{split}$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Energie totale

Energie totale

$$egin{aligned} E^{n+1}-E^n&=\sum_{D\in\mathbb{T}^*}m_D\left(\mathcal{K}_D^{n+1}-\mathcal{K}_D^n
ight)+\sum_{K\in\mathbb{T}}m_K\left(\mathcal{E}_K^{n+1}-\mathcal{E}_K^n
ight)\ &\leq\Delta t\sum_{D\in\mathbb{T}^*}m_D\left(\mathcal{R}_{\mathcal{K},D}^{n+1}-\mathcal{Q}_{\mathcal{K},D}^{n+1}
ight)\ &+\Delta t\sum_{K\in\mathbb{T}}m_K\left(\mathcal{R}_{\mathcal{E},K}^{n+1}+\mathcal{Q}_{\mathcal{E},K}^{n+1}
ight)\,. \end{aligned}$$

Termes en Q.

Contributions au niveau d'un élément dual D^e :

▷ Partie cinétique $(D^e \in \mathbb{T}^*)$: $-\Delta tm_{D^e}(h_{D^e}^{n+1}\mathbf{u}_{D^e}^n).(\nabla_{D^e}\Phi)$ ▷ Partie potentiel $(K, K_e \in \mathbb{T})$: $2\Delta t(h_{D^e}^{n+1}\mathbf{u}_{D^e}^n).\delta\Phi_e^{n+1}m_e$

$$\rightarrow \left(\nabla_{D^e} \Phi\right) = 2 \frac{m_e}{m_{D^e}} \delta \Phi_e^{n+1} = \frac{m_e}{m_{D^e}} \left(\Phi_{K_e}^{n+1} - \Phi_K^{n+1}\right) \vec{n}_{e,K} \,.$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Energie totale

Energie totale

$$\begin{split} E^{n+1} - E^n &= \sum_{D \in \mathbb{T}^*} m_D \left(\mathcal{K}_D^{n+1} - \mathcal{K}_D^n \right) + \sum_{K \in \mathbb{T}} m_K \left(\mathcal{E}_K^{n+1} - \mathcal{E}_K^n \right) \\ &\leq \Delta t \sum_{D \in \mathbb{T}^*} m_D \left(\mathcal{R}_{\mathcal{K},D}^{n+1} - \mathcal{Q}_{\mathcal{K},D}^{n+1} \right) \\ &+ \Delta t \sum_{K \in \mathbb{T}} m_K \left(\mathcal{R}_{\mathcal{E},K}^{n+1} + \mathcal{Q}_{\mathcal{E},K}^{n+1} \right) \,. \end{split}$$

Termes en \mathcal{R} .

Contributions au niveau d'un élément dual D^e :

- \triangleright Partie cinétique $(D^e \in \mathbb{T}^*)$: $(\Delta t)^2 m_{D^e} h_{D^e}^{n+1} \| \nabla_{D^e} \Phi \|^2$
- ▷ Partie potentiel $(K, K_e \in \mathbb{T})$: $-2\Delta t(h_{D^e}^{n+1} \delta \mathbf{u}_{D^e}^n) . \delta \Phi_e^{n+1} m_e$

$$\rightarrow \delta \mathbf{u}_{D^e}^n = 2\gamma \Delta t \frac{m_e}{m_{D^e}} \, \delta \Phi_e^{n+1} \quad , \quad \gamma \ge 1 \, .$$

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Plan

Généralités

Schéma semi-implicite sur grilles décalées

Résultats numériques Ondes linéaires Perturbation d'un état d'équilibre Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Ondes linéaires

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Perturbation d'un état d'équilibre

Schémas Bas-Froude SW multicouches

Baraille, Duran

Généralités

Présentation du modèle Vers un modèle régularisé

Schéma semi-implicite sur grilles décalées

Schéma numérique Partie potentiel Partie cinétique Bilan

Résultats numériques

Ondes linéaires Perturbation d'un état d'équilibre

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡