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Context

 Subject: 

Numerical Mesh-less Methods to solve Fragmentation in Transient Dynamics: 
Application to Aeronautics and Astronautics Structures

 Numerical Mesh-less Method: Smoothed Particle Hydrodynamics

 Fragmentation in Transient Dynamics :
• Material cracking process which could happen simultaneously at 

multiple points
• Driven by events occurring at high velocities and during short 

times

Taylor Impact tests
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SMOOTHED PARTICLE 
HYDRODYNAMICS

Basics
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SPH basics | Literature

 Literature

 Originally developed by Lucy [1] for astrophysical problems and by Gingold
& Monaghan [2,3,4] for hydrodynamic applications (incompressible free
surface flows)

 Adapted by Benz [5,6] to the solid dynamics

 Fluid Flows

 Monaghan [4] proposed an explicit formulation based on a Weakly-
Compressible assumption to handle incompressible flows (WCSPH)

[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis 82 (1977) 1013-1024.

[2] J. J. Monaghan, R. A. Gingold, Shock simulation by the particle method sph, Journal of Computational Physics 52 (1983) 374-389.

[3] J. J. Monaghan, Smoothed particle hydrodynamics 30 (1992) 543{574.

[4] J. Monaghan, Simulating free surface fows with sph, Journal of Computational Physics 110 (1994) 399{406.,

[5] W. Benz, Smooth Particle Hydrodynamics: A Review, Springer Netherlands, Dordrecht, 1990, pp. 269{288.,

[6] W. Benz, E. Asphaug, Impact simulations with fracture. i. method and tests, Icarus 107 (1994) 98{116.
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SPH basics | Approximation & Conservation Law [7,8]

 Smoothed Particle Approximation
 Set of Moving Particles (𝑥𝑖 𝑡 , 𝜔𝑖 𝑡 )𝑖∈𝑃
 Regularizing Kernel 𝑊(𝑟, ℎ)

2 spatial parameters: h smoothing length (half radius of the kernel support)
∆𝒙 particle spacing

• Approximation of a function 𝑓:

• Approximation of 𝛻𝑓:

With

W(r,h)W(r,h)

 Meshless Lagrangian Particle Method

 Computational domain discretized in interpolation points seen as particles
interacting between each other and carrying material properties

 Interactions evaluated thanks to approximation features

[7] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999 

[8] N. Lanson, J.-P. Vila, SIAM Journal on Numerical Analysis 46 
(4) (2008) 1912{1934.
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SPH basics | Approximation & Conservation Law [7,8]

 Additional derivative operators

 Consistency order increase using Renormalized Kernels 𝐴𝑖𝑗 = 𝐵𝑖𝑗𝜵𝑊𝑖𝑗

where 𝐵𝑖𝑗 is the symmetric renormalization matrix

𝛻Пℎ𝑓 does not exactly approximate 𝛻𝑓
both on regular and non regular 
distributions 

 Depends on the ratio 
𝒉

∆𝒙
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SPH basics | Approximation & Conservation Law [7,8]

 Approximation Properties

 Choosing kernels such that 𝑊 𝑥, ℎ = 𝑊 −𝑥, ℎ and 𝜵𝑊𝑗𝑖 = −𝜵𝑊𝑖𝑗 ensures

that −𝐷ℎ
∗ is the adjoint operator of 𝐷ℎ

 𝐷ℎ strongly approximates 𝛻 in a sense that for a regular function 𝜑

 Conservation Laws

 𝑣 ∈ ℝ𝑑 a regular velocity field
 𝐿𝑣 the transport operator
 Φ ∈ ℝ𝑝 the conserved variables vector
 𝐹 the flux vector
 𝑆 the source term
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SPH basics | Discretization [7,8]

 Discretization

 Weak Formulation:

With −𝐿𝑣
∗ the adjoint operator of 𝐿𝑣 such that:

 Discrete Scalar Product :

 Discretized Weak Formulation:

• ,

With 𝑅ℎ(Φ) the residual and 𝛻ℎ the derivative operator approximating 𝛻

 Choosing 𝛻ℎ = 𝐷ℎ gives the following discrete scheme
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SPH basics | Discretization [7,8]

 Properties of the Discrete Scheme

 Conservative in a sense that

According to the discrete scheme and considering antisymmetric residuals we get on the whole
particle domain the discrete version of the expected property

 Weakly Consistent with the conservation law according to a Lax Wendroff like
theorem while
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RESEARCH AXIS I
Literature
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Research Axis I

 SPH-ALE Versus Finite Volume: Vila M3AS 1999 [7]

𝐿𝑣0 Φ + 𝑑𝑖𝑣 𝐹𝐸 Φ −Φ⨂𝑣0 = 0

[7] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999 ,

 𝑣0 the arbitrary ALE velocity
 𝐿𝑣0 the transport operator

 Φ the conserved variables vector
 𝐹𝐸 the Eulerian flux vector

 Combination of Eulerian and Lagrangian descriptions
 Eulerian : Large deformations
 Lagrangian : Interface tracking
 Eulerian description recovered by choosing: 𝑣0 = 0
 Lagrangian description recovered by choosing: 𝑣0 = 𝑣

 ALE Formulation for Euler Equations

Φ = 𝜌, 𝜌𝑣𝑥 , 𝜌𝑣𝑦 , 𝜌𝑣𝑧
𝑇

𝐹𝐸 Φ =

𝜌𝑣𝑥
𝜌𝑣𝑥

2 + 𝑝

𝜌𝑣𝑦
𝜌𝑣𝑦𝑣𝑥

𝜌𝑣𝑧
𝜌𝑣𝑧𝑣𝑥

𝜌𝑣𝑥𝑣𝑦 𝜌𝑣𝑦
2 + 𝑝 𝜌𝑣𝑧𝑣𝑦

𝜌𝑣𝑥𝑣𝑧 𝜌𝑣𝑦𝑣𝑧 𝜌𝑣𝑧
2 + 𝑝
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Research Axis I

 Finite Volume Analogy [7,8]

 Interaction between 2 particles i and j

 Consider the following Riemann Problem at the interface 𝑥𝑖𝑗 =
1

2
𝑥𝑖 + 𝑥𝑗

 Reasonable choice for the flux is

Giving

With
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Research Axis I

[9] J. Monaghan, On the problem of penetration in particle methods, JCP 82 (1) (1989) 1-15 

 Riemann Solvers

 Global solution built on the combination of solutions to local Riemann Problems
 MUSCL HLLC Riemann Solver used as a reference [10]

 Increases the accuracy 
 Increases the solving complexity
 Limitations in Low-Mach regimes

 Regularizing Technics

 Move particles with smooth velocity as in Monaghan’s XSPH [3,9]
 Smart choice of 𝑣0 increases both stability and robustness by preventing  

the formation of anisotropic spatial particle distribution

[3] J. Monaghan, Smoothed Particle Hydrodynamics 30 (1992) 543-574 
[10] E. F. Toro, Riemann Solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 1997
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Research Axis I

 Finite Volume Low-Mach Scheme:

[11] N. Grenier, J. P. Vila, P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free surface flows, JCP 252 :1-19, 2013,

 Stabilizing velocity term proportional to the Pressure gradient

 Grenier, Vila, Villedieu [11] : Two-fluid free surface flows     
 SEMI IMPLICIT formulation

 Couderc, Duran, Vila [12] : Multilayer Shallow Water Model with Density stratification 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌⨂ 𝒗 − 𝛾ℎ𝛻𝑃 = 0

𝜕𝜌𝒗

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝒗⨂ 𝒗 − 𝛾ℎ𝛻𝑃 + 𝛻𝑃 = 0

[12] F. Couderc, A. Duran, J. P. Vila, An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, JCP, 2017

 EXPLICIT formulation

• h is the mesh size (representative of the volume)
• let 𝒗𝜸 = 𝜸𝒉𝜵𝑷 the stabilizing velocity term
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IMPROVED SMOOTHED PARTICLE
HYDRODYNAMICS

Theory & Validation
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γ-SPH-ALE | Theory

 Discretizing Approach

 Conservation Law

 Equation Set 

 The idea is to choose 𝜵𝒉 such that the LHS term of the following equation can be 
recovered by generating conservative and consistent residuals
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γ-SPH-ALE | Theory

 Non linear stability analysis: Similarly to Grenier, Vila, Villedieu [11] , Lavalle, Vila et al. [13] and [12]

 The scheme has to be conservative, robust, stable and consistent

[11] N. Grenier, J. P. Vila, P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free surface flows, JCP 252 
:1-19, 2013,

[13] G. Lavalle, J.-P. Vila, G. Blanchard, C. Laurent, F. Charru, A numerical reduced model for thin liquid flms sheared by a gas ow, J. Comput. 
Phys. 301 (2015) 119-140.

 Conservation

We can show that

Enforcing the condition

Insures that 

While

 Robustness
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γ-SPH-ALE | Theory

 Stability

 We want a control on the total energy noted 𝓔. The idea is to complete the following 
process:

1. An energy balance is performed on the scheme, and the production terms coming from the 
kinetic and potential energy are exhibited

2. These terms are estimated and gathered to provide a global estimation of the energy 
production

3. A negativity condition on one part of the production estimate provides stability conditions 
on 𝛾 and 𝛼

4. The remaining production terms are evaluated under such stability conditions and provide
a finite energy bound noted 𝓔 𝑻
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γ-SPH-ALE | Theory

As a result of this estimation process, under the following stability conditions

We can show that

Ensuring the bounded behavior of the scheme total energy and gives the expected stability 
property.

 Regardless the expression of 𝒗𝟎 but depends on a geometrical constant C
 Not optimal du to Cauchy Schwarz’ inequality and 1st order time integrator

 In a Weakly-Compressible and Quasi-Lagrangian framework we have:
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γ-SPH-ALE | Theory

 Consistency [7]

𝑑

𝑑𝑡
𝜔𝑖Φ𝑖 +𝜔𝑖  

𝛼=1,…,𝑑

𝛻ℎ
𝛼,∗ 𝐹𝛼

𝑖 = 0

We have the current discretization:

𝑑

𝑑𝑡
𝜔𝑖Φ𝑖 + 𝜔𝑖  

𝛼=1,…,𝑑

𝐷ℎ
𝛼,∗ 𝐹𝛼

𝑖 = 𝜔𝑖𝑅ℎ Φ 𝑖

Which can be write has:

No convergence properties

Convergence previously introduced

 It remains to enforce (2) 

Weak Consistency achieved thanks to a Lax-Wendroff like theorem 

(1)

(2)

[7] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999 ,
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γ-SPH-ALE | Validation

 Rotating Square Patch of fluid: Colagrossi [14]

 Reference Work

 In Practice

[14] A. Colagrossi, A meshless lagrangian method for free-surface and interface fows with fragmentation, These, Universita di Roma.

Pressure fields at M=0,1

Classical SPH ALE SPH Riemann γ-SPH-ALE 

 Initial Velocity & Pressure fields
 Weakly-Compressible
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γ-SPH-ALE | Validation

 Rotating Square Patch of fluid:

 In Practice
 Comparison with a FE solution

Pressure fields at M=0,1

Classical SPH ALE SPH Riemann γ-SPH-ALE 

squarestandard.mp4
squarestandard.mp4
squaregaleef.mp4
squaregaleef.mp4
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γ-SPH-ALE | Validation
Pressure at the center of the Patch

 Convergence

 Pressure at the center of the patch for 3
different initial particle spacing ∆𝑥

 γ-SPH-ALE : Damping of the oscillations
 ALE SPH Riemann Solver DOES NOT

converge

 Acoustic

 Comparison with the ALE SPH Riemann
Solver

 Remaining oscillations corresponding to
the acoustic part of the flow: Weakly-
Compressible

aveccourbe.mp4
aveccourbe.mp4
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γ-SPH-ALE | Validation

 Low-Mach Behavior

ALE SPH Riemann

γ-SPH-ALE 

Pressure fields at M=0,01

t=0,12s t=0,24s t=0,4s

 Riemann Solver too dissipative if 
the Mach is decreased in spite of 
particle refinement 

 γ-SPH-ALE stays in agreements 
with the FE solution
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γ-SPH-ALE | Validation

 2D Isentropic shock tube:

See Marongiu [15] and Leduc [16] for similar
tests to evaluate SPH Riemann Solver

 
𝜌𝐿 = 1100
𝑣𝐿 = 0

 
𝜌𝑅 = 1000
𝑣𝑅 = 0

 Initial state:

[15] J.-C. Marongiu, Methode numerique lagrangienne pour la simulation d'ecoulements a surface libre : application aux turbines pelton, Theses, Ecole Centrale de Lyon 
(2007).
[16] J. Leduc, Etude physique et numerique de l'ecoulement dans un dispositif d'injection de turbine Pelton, Theses, Ecole Centrale de Lyon (Dec 2010).
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MULTIPHASE SPH
Theory & Validation
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Research Axis II

 Multi-Fluid SPH: [2,7,8,9]

 Volume Fraction Formulation
 An equilibrium between all phases for each SPH particle
 𝛼𝑘 the volume fraction of fluid k
 𝜑𝑚 a mixture variable

 Bi-Fluid particular case
 𝛼 the volume fraction of fluid 1 giving: 𝛼1 = 𝛼 , 𝛼2 = 1 − 𝛼
 Same equation set using the mixture variables: ω, 𝜌, 𝑣
 Evolution of  𝜌1 = 𝛼𝜌1 giving  𝜌2 = 𝜌 −  𝜌1
 Pressure equilibrium giving 𝛼

[2] N. Grenier, J. P. Vila, P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free surface flows, JCP 252 :1-19, 2013,

[19] N. Grenier. Modelisation numerique par la methode SPH de la separation eau-huile dans les separateurs gravitaires. PhD thesis, 2009.

[17] G, Chanteperdrix, Modelisation et simulation numerique d’ecoulements diphasiques ~A interface libre. Application a l’etude des mouvements de liquides dans les 
reservoirs de vehicules spatiaux. Theses, ISAE, 2004.

1 =  

𝑘

𝛼𝑘

𝜑𝑚 =  

𝑘

𝛼𝑘𝜑𝑘

𝜕  𝜌1
𝜕𝑡

+ 𝑑𝑖𝑣  𝜌1𝒗 = 0 𝑝1
 𝜌1
𝛼

= 𝑝2
 𝜌2

1 − 𝛼

[18] P. V. Cueille. Modelisation par Smoothed Particle Hydrodynamic des phenomesnes de diffusion presents dans un ecoulement. PhD thesis, INSA Toulouse, 2005
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γ-SPH-ALE | Validation

 Bi-Fluid γ-SPH-ALE : 

Reference IMPETUS

 Rayleigh-Taylor Instability

 2D Dam Break

 Exchange Flow

Reference
[18]

IMPETUS

 Comparison between γ-SPH-ALE 
Monofluid (top) and bi-Fluid (bottom)

t=1,48st=0,4s

RT.mp4
RT.mp4
DamMono.mp4
DamMono.mp4
echange.mp4
echange.mp4
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Conclusion & Prospects

 Implementation of a mathematical and mechanical framework handling
the dynamic fragmentation via meshless methods

o Hydrodynamics Context

 New meshless scheme γ-SPH-ALE
 ALE formulation
 FV Low-Mach scheme

 Non linear stability analysis
 Calibrated stabilizing parameters
 CFL conditions

 Multiphase formulation
 Two Phase

o Solid Dynamics Context

 Stability when dealing with 
solid materials
 Purely Lagrangian
 HVI cases
 Monolithic code

 Fragmentation process
 Fracture treatment
 Warhead fragmentation

 Multiphase formulation
 Under Water Explosions
 Buried Mine Blast

Prospects


