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Context

 Subject: 

Numerical Mesh-less Methods to solve Fragmentation in Transient Dynamics: 
Application to Aeronautics and Astronautics Structures

 Numerical Mesh-less Method: Smoothed Particle Hydrodynamics

 Fragmentation in Transient Dynamics :
• Material cracking process which could happen simultaneously at 

multiple points
• Driven by events occurring at high velocities and during short 

times

Taylor Impact tests
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SMOOTHED PARTICLE 
HYDRODYNAMICS

Basics
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SPH basics | Literature

 Literature

 Originally developed by Lucy [1] for astrophysical problems and by Gingold
& Monaghan [2,3,4] for hydrodynamic applications (incompressible free
surface flows)

 Adapted by Benz [5,6] to the solid dynamics

 Fluid Flows

 Monaghan [4] proposed an explicit formulation based on a Weakly-
Compressible assumption to handle incompressible flows (WCSPH)

[1] L. B. Lucy, A numerical approach to the testing of the fission hypothesis 82 (1977) 1013-1024.

[2] J. J. Monaghan, R. A. Gingold, Shock simulation by the particle method sph, Journal of Computational Physics 52 (1983) 374-389.

[3] J. J. Monaghan, Smoothed particle hydrodynamics 30 (1992) 543{574.

[4] J. Monaghan, Simulating free surface fows with sph, Journal of Computational Physics 110 (1994) 399{406.,

[5] W. Benz, Smooth Particle Hydrodynamics: A Review, Springer Netherlands, Dordrecht, 1990, pp. 269{288.,

[6] W. Benz, E. Asphaug, Impact simulations with fracture. i. method and tests, Icarus 107 (1994) 98{116.
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SPH basics | Approximation & Conservation Law [7,8]

 Smoothed Particle Approximation
 Set of Moving Particles (𝑥𝑖 𝑡 , 𝜔𝑖 𝑡 )𝑖∈𝑃
 Regularizing Kernel 𝑊(𝑟, ℎ)

2 spatial parameters: h smoothing length (half radius of the kernel support)
∆𝒙 particle spacing

• Approximation of a function 𝑓:

• Approximation of 𝛻𝑓:

With

W(r,h)W(r,h)

 Meshless Lagrangian Particle Method

 Computational domain discretized in interpolation points seen as particles
interacting between each other and carrying material properties

 Interactions evaluated thanks to approximation features

[7] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999 

[8] N. Lanson, J.-P. Vila, SIAM Journal on Numerical Analysis 46 
(4) (2008) 1912{1934.
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SPH basics | Approximation & Conservation Law [7,8]

 Additional derivative operators

 Consistency order increase using Renormalized Kernels 𝐴𝑖𝑗 = 𝐵𝑖𝑗𝜵𝑊𝑖𝑗

where 𝐵𝑖𝑗 is the symmetric renormalization matrix

𝛻Пℎ𝑓 does not exactly approximate 𝛻𝑓
both on regular and non regular 
distributions 

 Depends on the ratio 
𝒉

∆𝒙
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SPH basics | Approximation & Conservation Law [7,8]

 Approximation Properties

 Choosing kernels such that 𝑊 𝑥, ℎ = 𝑊 −𝑥, ℎ and 𝜵𝑊𝑗𝑖 = −𝜵𝑊𝑖𝑗 ensures

that −𝐷ℎ
∗ is the adjoint operator of 𝐷ℎ

 𝐷ℎ strongly approximates 𝛻 in a sense that for a regular function 𝜑

 Conservation Laws

 𝑣 ∈ ℝ𝑑 a regular velocity field
 𝐿𝑣 the transport operator
 Φ ∈ ℝ𝑝 the conserved variables vector
 𝐹 the flux vector
 𝑆 the source term
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SPH basics | Discretization [7,8]

 Discretization

 Weak Formulation:

With −𝐿𝑣
∗ the adjoint operator of 𝐿𝑣 such that:

 Discrete Scalar Product :

 Discretized Weak Formulation:

• ,

With 𝑅ℎ(Φ) the residual and 𝛻ℎ the derivative operator approximating 𝛻

 Choosing 𝛻ℎ = 𝐷ℎ gives the following discrete scheme
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SPH basics | Discretization [7,8]

 Properties of the Discrete Scheme

 Conservative in a sense that

According to the discrete scheme and considering antisymmetric residuals we get on the whole
particle domain the discrete version of the expected property

 Weakly Consistent with the conservation law according to a Lax Wendroff like
theorem while
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RESEARCH AXIS I
Literature
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Research Axis I

 SPH-ALE Versus Finite Volume: Vila M3AS 1999 [7]

𝐿𝑣0 Φ + 𝑑𝑖𝑣 𝐹𝐸 Φ −Φ⨂𝑣0 = 0

[7] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999 ,

 𝑣0 the arbitrary ALE velocity
 𝐿𝑣0 the transport operator

 Φ the conserved variables vector
 𝐹𝐸 the Eulerian flux vector

 Combination of Eulerian and Lagrangian descriptions
 Eulerian : Large deformations
 Lagrangian : Interface tracking
 Eulerian description recovered by choosing: 𝑣0 = 0
 Lagrangian description recovered by choosing: 𝑣0 = 𝑣

 ALE Formulation for Euler Equations

Φ = 𝜌, 𝜌𝑣𝑥 , 𝜌𝑣𝑦 , 𝜌𝑣𝑧
𝑇

𝐹𝐸 Φ =

𝜌𝑣𝑥
𝜌𝑣𝑥

2 + 𝑝

𝜌𝑣𝑦
𝜌𝑣𝑦𝑣𝑥

𝜌𝑣𝑧
𝜌𝑣𝑧𝑣𝑥

𝜌𝑣𝑥𝑣𝑦 𝜌𝑣𝑦
2 + 𝑝 𝜌𝑣𝑧𝑣𝑦

𝜌𝑣𝑥𝑣𝑧 𝜌𝑣𝑦𝑣𝑧 𝜌𝑣𝑧
2 + 𝑝
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Research Axis I

 Finite Volume Analogy [7,8]

 Interaction between 2 particles i and j

 Consider the following Riemann Problem at the interface 𝑥𝑖𝑗 =
1

2
𝑥𝑖 + 𝑥𝑗

 Reasonable choice for the flux is

Giving

With
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Research Axis I

[9] J. Monaghan, On the problem of penetration in particle methods, JCP 82 (1) (1989) 1-15 

 Riemann Solvers

 Global solution built on the combination of solutions to local Riemann Problems
 MUSCL HLLC Riemann Solver used as a reference [10]

 Increases the accuracy 
 Increases the solving complexity
 Limitations in Low-Mach regimes

 Regularizing Technics

 Move particles with smooth velocity as in Monaghan’s XSPH [3,9]
 Smart choice of 𝑣0 increases both stability and robustness by preventing  

the formation of anisotropic spatial particle distribution

[3] J. Monaghan, Smoothed Particle Hydrodynamics 30 (1992) 543-574 
[10] E. F. Toro, Riemann Solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 1997
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Research Axis I

 Finite Volume Low-Mach Scheme:

[11] N. Grenier, J. P. Vila, P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free surface flows, JCP 252 :1-19, 2013,

 Stabilizing velocity term proportional to the Pressure gradient

 Grenier, Vila, Villedieu [11] : Two-fluid free surface flows     
 SEMI IMPLICIT formulation

 Couderc, Duran, Vila [12] : Multilayer Shallow Water Model with Density stratification 

𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌⨂ 𝒗 − 𝛾ℎ𝛻𝑃 = 0

𝜕𝜌𝒗

𝜕𝑡
+ 𝑑𝑖𝑣 𝜌𝒗⨂ 𝒗 − 𝛾ℎ𝛻𝑃 + 𝛻𝑃 = 0

[12] F. Couderc, A. Duran, J. P. Vila, An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification, JCP, 2017

 EXPLICIT formulation

• h is the mesh size (representative of the volume)
• let 𝒗𝜸 = 𝜸𝒉𝜵𝑷 the stabilizing velocity term
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IMPROVED SMOOTHED PARTICLE
HYDRODYNAMICS

Theory & Validation
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γ-SPH-ALE | Theory

 Discretizing Approach

 Conservation Law

 Equation Set 

 The idea is to choose 𝜵𝒉 such that the LHS term of the following equation can be 
recovered by generating conservative and consistent residuals
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γ-SPH-ALE | Theory

 Non linear stability analysis: Similarly to Grenier, Vila, Villedieu [11] , Lavalle, Vila et al. [13] and [12]

 The scheme has to be conservative, robust, stable and consistent

[11] N. Grenier, J. P. Vila, P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free surface flows, JCP 252 
:1-19, 2013,

[13] G. Lavalle, J.-P. Vila, G. Blanchard, C. Laurent, F. Charru, A numerical reduced model for thin liquid flms sheared by a gas ow, J. Comput. 
Phys. 301 (2015) 119-140.

 Conservation

We can show that

Enforcing the condition

Insures that 

While

 Robustness
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γ-SPH-ALE | Theory

 Stability

 We want a control on the total energy noted 𝓔. The idea is to complete the following 
process:

1. An energy balance is performed on the scheme, and the production terms coming from the 
kinetic and potential energy are exhibited

2. These terms are estimated and gathered to provide a global estimation of the energy 
production

3. A negativity condition on one part of the production estimate provides stability conditions 
on 𝛾 and 𝛼

4. The remaining production terms are evaluated under such stability conditions and provide
a finite energy bound noted 𝓔 𝑻
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γ-SPH-ALE | Theory

As a result of this estimation process, under the following stability conditions

We can show that

Ensuring the bounded behavior of the scheme total energy and gives the expected stability 
property.

 Regardless the expression of 𝒗𝟎 but depends on a geometrical constant C
 Not optimal du to Cauchy Schwarz’ inequality and 1st order time integrator

 In a Weakly-Compressible and Quasi-Lagrangian framework we have:
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γ-SPH-ALE | Theory

 Consistency [7]

𝑑

𝑑𝑡
𝜔𝑖Φ𝑖 +𝜔𝑖  

𝛼=1,…,𝑑

𝛻ℎ
𝛼,∗ 𝐹𝛼

𝑖 = 0

We have the current discretization:

𝑑

𝑑𝑡
𝜔𝑖Φ𝑖 + 𝜔𝑖  

𝛼=1,…,𝑑

𝐷ℎ
𝛼,∗ 𝐹𝛼

𝑖 = 𝜔𝑖𝑅ℎ Φ 𝑖

Which can be write has:

No convergence properties

Convergence previously introduced

 It remains to enforce (2) 

Weak Consistency achieved thanks to a Lax-Wendroff like theorem 

(1)

(2)

[7] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999 ,
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γ-SPH-ALE | Validation

 Rotating Square Patch of fluid: Colagrossi [14]

 Reference Work

 In Practice

[14] A. Colagrossi, A meshless lagrangian method for free-surface and interface fows with fragmentation, These, Universita di Roma.

Pressure fields at M=0,1

Classical SPH ALE SPH Riemann γ-SPH-ALE 

 Initial Velocity & Pressure fields
 Weakly-Compressible
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γ-SPH-ALE | Validation

 Rotating Square Patch of fluid:

 In Practice
 Comparison with a FE solution

Pressure fields at M=0,1

Classical SPH ALE SPH Riemann γ-SPH-ALE 

squarestandard.mp4
squarestandard.mp4
squaregaleef.mp4
squaregaleef.mp4
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γ-SPH-ALE | Validation
Pressure at the center of the Patch

 Convergence

 Pressure at the center of the patch for 3
different initial particle spacing ∆𝑥

 γ-SPH-ALE : Damping of the oscillations
 ALE SPH Riemann Solver DOES NOT

converge

 Acoustic

 Comparison with the ALE SPH Riemann
Solver

 Remaining oscillations corresponding to
the acoustic part of the flow: Weakly-
Compressible

aveccourbe.mp4
aveccourbe.mp4
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γ-SPH-ALE | Validation

 Low-Mach Behavior

ALE SPH Riemann

γ-SPH-ALE 

Pressure fields at M=0,01

t=0,12s t=0,24s t=0,4s

 Riemann Solver too dissipative if 
the Mach is decreased in spite of 
particle refinement 

 γ-SPH-ALE stays in agreements 
with the FE solution
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γ-SPH-ALE | Validation

 2D Isentropic shock tube:

See Marongiu [15] and Leduc [16] for similar
tests to evaluate SPH Riemann Solver

 
𝜌𝐿 = 1100
𝑣𝐿 = 0

 
𝜌𝑅 = 1000
𝑣𝑅 = 0

 Initial state:

[15] J.-C. Marongiu, Methode numerique lagrangienne pour la simulation d'ecoulements a surface libre : application aux turbines pelton, Theses, Ecole Centrale de Lyon 
(2007).
[16] J. Leduc, Etude physique et numerique de l'ecoulement dans un dispositif d'injection de turbine Pelton, Theses, Ecole Centrale de Lyon (Dec 2010).
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MULTIPHASE SPH
Theory & Validation
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Research Axis II

 Multi-Fluid SPH: [2,7,8,9]

 Volume Fraction Formulation
 An equilibrium between all phases for each SPH particle
 𝛼𝑘 the volume fraction of fluid k
 𝜑𝑚 a mixture variable

 Bi-Fluid particular case
 𝛼 the volume fraction of fluid 1 giving: 𝛼1 = 𝛼 , 𝛼2 = 1 − 𝛼
 Same equation set using the mixture variables: ω, 𝜌, 𝑣
 Evolution of  𝜌1 = 𝛼𝜌1 giving  𝜌2 = 𝜌 −  𝜌1
 Pressure equilibrium giving 𝛼

[2] N. Grenier, J. P. Vila, P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free surface flows, JCP 252 :1-19, 2013,

[19] N. Grenier. Modelisation numerique par la methode SPH de la separation eau-huile dans les separateurs gravitaires. PhD thesis, 2009.

[17] G, Chanteperdrix, Modelisation et simulation numerique d’ecoulements diphasiques ~A interface libre. Application a l’etude des mouvements de liquides dans les 
reservoirs de vehicules spatiaux. Theses, ISAE, 2004.

1 =  

𝑘

𝛼𝑘

𝜑𝑚 =  

𝑘

𝛼𝑘𝜑𝑘

𝜕  𝜌1
𝜕𝑡

+ 𝑑𝑖𝑣  𝜌1𝒗 = 0 𝑝1
 𝜌1
𝛼

= 𝑝2
 𝜌2

1 − 𝛼

[18] P. V. Cueille. Modelisation par Smoothed Particle Hydrodynamic des phenomesnes de diffusion presents dans un ecoulement. PhD thesis, INSA Toulouse, 2005
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γ-SPH-ALE | Validation

 Bi-Fluid γ-SPH-ALE : 

Reference IMPETUS

 Rayleigh-Taylor Instability

 2D Dam Break

 Exchange Flow

Reference
[18]

IMPETUS

 Comparison between γ-SPH-ALE 
Monofluid (top) and bi-Fluid (bottom)

t=1,48st=0,4s

RT.mp4
RT.mp4
DamMono.mp4
DamMono.mp4
echange.mp4
echange.mp4


29

Conclusion & Prospects

 Implementation of a mathematical and mechanical framework handling
the dynamic fragmentation via meshless methods

o Hydrodynamics Context

 New meshless scheme γ-SPH-ALE
 ALE formulation
 FV Low-Mach scheme

 Non linear stability analysis
 Calibrated stabilizing parameters
 CFL conditions

 Multiphase formulation
 Two Phase

o Solid Dynamics Context

 Stability when dealing with 
solid materials
 Purely Lagrangian
 HVI cases
 Monolithic code

 Fragmentation process
 Fracture treatment
 Warhead fragmentation

 Multiphase formulation
 Under Water Explosions
 Buried Mine Blast

Prospects


