All-regime Lagrangian-Remap numerical schemes
for the gas dynamics equations. Applications to
the low Mach regime

Christophe Chalons
LMV, Université de Versailles Saint-Quentin-en-Yvelines

Joint works with
- M. Girardin and S. Kokh (first part)
- F. Bouchut and S. Guisset (second part)

Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Outline

@ Introduction
© Low Mach regime

© Numerical strategy

@ Numerical results

2/49| Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Introduction

Outline

@ Introduction

3/49

ristophe Chalons All-regime Lagrangian-Remap numerical schemes



Introduction

Introduction

Motivation : numerical study of two-phase flows in nuclear
reactors

We consider the following model

Otp+ V- (pu)=0
Ie(pu) + V- (pu@u) +Vp =0
Ot(pE) + V- [(pE + p)u] =0

where p, u = (u, v)t, E denote respectively the density, the
velocity vector and the total energy of the fluid.

Lete=E — % be the specific and 7 = 1/p the covolume
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Introduction

Introduction

We are especially interested in the design of numerical schemes
when the dimensionless version of this model depends on a
parameter ¢ > 0 such that ¢ = O(1) (classical regime), e <<'1
(low ¢ regime) or ¢ — 0 (limit regime)

Our objective is to propose a numerical scheme that is

@ all-regime : uniform stability and uniform consistency w.r.t. €
@ able to deal with any equation of state

e multi-dimensional on (possibly) unstructured meshes

These requirements will be specified later on...
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Low Mach regime

Low Mach regime

Introducing the characteristic and non-dimensional quantities :

with up = vy = % €0 = popo and py = ,oocg, the non-dimensional
system is
Otp+V-(pu)=0
1
Ot(pu) + V- (pu @ u) + WVP =0
2
de(pe) + V - [(pe + p)u] + - (0¢(pu.u) + V - (pu.uu)) = 0

where M = ‘C’—g denotes the Mach number and plays the role of ¢
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Low Mach regime

Low Mach regime

Otp+V-(pu)=0
1
Ot(pu) + V- (pu @ u) + WVP =0
2
de(pe) + V - [(pe + p)u] + - (0¢(pu.u) + V - (pu.uu)) = 0
Remark 1. The flow is said to be in the low Mach regime if
M << 1 and Vp = O(M?)

Remark 2. Using asymptotic expansions of p, u, p, c in powers of M
in the governing equations of p, u, p, together with boundary
conditions on a given domain D (global argument), we get

Otpo + V - (poug) =0
1
O¢uo + (up - V)ug + —Vpr =0
2]
V- Up = 0
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Low Mach regime

Numerical issue in the Low Mach regime

Accurate time-explicit computations of solutions generally require

@ a mesh size h = o(M)
@ a time step At = O(hM)

which is out of reach in practice

More details can be found in the large body of literature on this
subject : A. Majda, E. Turkel, H. Guillard, C. Viozat, B. Thornber,
S. Dellacherie, P. Omnes, P-A. Raviart, F. Rieper, Y. Penel, P.
Degond, S. Jin, J.-G. Liu, P. Colella, K. Pao, E. Turkel, R. Klein,
J-P Vila, M.G., B. Després, M. Ndjinga, J. Jung, M. Sun, M.-H.
Vignal, G. Dimarco, R. Herbin, J.-C. Latché...
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Low Mach regime

A couple of definitions

Uniform stability

A scheme is said to be stable in the uniform sense if the CFL
condition is uniform with respect to e = M

Goal : to avoid stringent CFL restrictions At = O(he)

Uniform consistency

A scheme is said to be consistent in the uniform sense if the
truncation error is uniform with respect to e = M

Goal : to avoid mesh size restrictions h = o(¢)

All-regime scheme

A scheme is said to be all-regime if it is able to compute accurate
solutions with a mesh size h and a time step At independent of ¢
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Low Mach regime

Objectives

Our objective is to propose a numerical scheme that is

@ all-regime : uniform stability and uniform consistency w.r.t. €
@ able to deal with any equation of state

e multi-dimensional on (possibly) unstructured meshes

How to do that...
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Numerical strategy

How to reach these objectives

How to get the uniform stability ?

- implicit treatment of the fast phenomenon

- explicit treatment of the slow phenomenon (sake of accuracy)
— Lagrange-Projection strategy Coquel-Nguyen-Postel-Tran

How to get the uniform consistency ?
- modify the numerical fluxes to reduce the numerical diffusion
— Truncation errors in equivalent equations

How to deal with any (possibly strongly nonlinear) pressure law p?
- overcome the non linearities, " linearization”
— Relaxation strategy Suliciu, Jin-Xin, Bouchut, C.-Coquel, C.-Coulombel

How to deal with unstructured meshes in multi-D 7
- work on a fixed mesh (no need to deform unstructured meshes)
— Operator splitting strategy and rotational invariance
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Numerical strategy

Lagrange-Projection strategy

Let us first focus on the 1D system

0to + Oxou =0
drou+ Ox(ou® + p) =0
Ot(0E) + Ox(0Eu+ pu) =0
Using chain rule arguments, we also have
Or0 + udxo + 00xu =0
Orou + uOxpu + pudxu + Oxp =0
0t 0E + udy0E + 0EOyu + Oxpu =0
so that splitting the transport part leads to

0ro+ 00xu =10 Oro+ udxo =0

Orou + oudyu+ Oxp =0 Orou + udyou =0

0t0E + 0EOxu + Oxpu =0 0r0E + udy0E =0
Lagrangian-step Transport-step
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Numerical strategy

Lagrange-Projection strategy

The Lagrangian-step

0r0 + 00xu =0 0T — Omu =10
Orou + oudyu+ Oxp =0 also writes O+ Omp=0
0t 0E + 0EOxu + Oxpu =10 OtE + Ompu =0

with 7 =1/p and 70x = Opm.

e Eigenvalues are given by —pc, 0, pc

@ Usual CFL conditions for time-explicit schemes write

h hM
At < —— orequivalently At < ———
2 max(pc) 2 max(pc)

The idea is to propose a time-implicit scheme to avoid the
time-step restriction At = O(hM) in the low Mach regime
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Numerical strategy

Lagrange-Projection strategy

The Transport-step is

0t0 + uds0 =0 0t0 + Oxou — 00xu =0
Orou + udyou =0 also writes drou + Oxou?® — pudyu =0
0+0E + uOx0E =0 0:0E + Ox0Eu — 0EOxu =0

@ Eigenvalues are given by u

@ Usual CFL conditions for time-explicit schemes write

At < ————
~ 2max(Jul)

The idea is then to propose a standard time-explicit scheme to keep
accuracy on the slow phenomenon and At = O(h) in all regime
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Numerical strategy

Operator splitting strategy

We will consider the following two-step numerical scheme :

First step (t" — t128) : solve implicitly the acoustic system with
the solution at time t” as initial solution

Second step ('8 — t"*1) solve explicitly the transport system
with the solution at time 2 as initial solution
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Numerical strategy

A few words about the relaxation approach

The gas dynamics in Lagrangian coordinates

81-7' — 8mU =0
3tu + 3mp =0
OtE + Ompu =0
The relaxation system
0T — Omu =10
3tu + 8,7-,” = 0

8tE + amnu =0
O:N + a®Opmu = A(p — 1)

At least formally, observe that

lim M=p (if a>pc(r,e))

A—400

(see e.g. Chalons-Coulombel for a rigorous proof)
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Numerical strategy

A few words about the relaxation approach

The time-explicit Godunov scheme applied to the relaxation system
with initial data at equilibrium writes

. At
7 % — T+ %In(uf-i-lﬁ - “f—l/z)

Lag _ n t * *
u "t =l — m(Pj.H/z - Pj—l/z)

L t
Ny =n; - azﬂ(“ﬁrm — i)

At

L * * * !

B = B = ;Plajetivae = Pioajatiog)

with M7 = p(77", e[') and

. 1
Uiyrye = 5 (07 + uig) = 5 (Mg = 17)

* 1 n n a n n
Pit1/2 = 5(“1 +N7) — 5(“j+1 —uj’)
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Numerical strategy

A few words about the relaxation approach

The time-implicit Godunov scheme applied to the relaxation
system with initial data at equilibrium writes

Lag __ At * ok
=Tt %m(”m/z Uj-1/2)
uLag — " — t ( * % )

i T T A P12 T Pi1y2

Lag _ [n _ .2 t %
”j =N —a 7Am(“j+1/2 “j—1/2)

At
L * * * !
B = B = ;Plajetivae = Pioajatiog)

with M7 = p(77", e[') and

1 (nLag B I—Ieag)

23 Jj+1 j
« 10 L a, L
pj+1/2 = E(n_]ag + I_Iji%) — §(Ujj?: — uj ag)
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Numerical strategy

A few words about the relaxation approach

The time-implicit scheme
@ deals with (possibly strongly nonlinear) pressure laws
o is free of CFL restriction !

@ is cheap in the sense that only a linear problem w.r.t. v and [l
has to be solved

In 1D, the following two equations are decoupled

O¢(M + au) + adx (M + au) =0
O0¢(N — au) — a0y (N — au) =0
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Numerical strategy

Formulation on unstructured meshes

On unstructured meshes, the time-explicit (§ = n) and
time-implicit (§ = Lag) schemes write

R RN ST,
keN(j) 1€

rleag =N7—7 At Y T k'(Jk)2
eniy 1Sl

e piaey o
keN()) 1€

Lag | |

E =5 -1At Z ] 7 Pik Uik
keN(j)

1 i 1 1 ik
Uy = 5 ﬁ(uq—l—u;{)—ﬂ(ﬂi—ﬂ?), Pix = 5(”?4‘“” é ﬁ(”i_uﬁ)
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Numerical strategy

Transport step

In order to approximate the solutions of the transport step

Otp+ (u-V)p =0 Otp+ V- (pu) —pV -u =0
Ot(pu) + (u-V)pu =0 < 0(pu)+V - -(pu®u)—puV-u =0
Ot(pE) + (u-V)pE =0 OtpE + V - (pEu) — pEV - u =0

we simply use the time-explicit upwind finite-volume scheme

n+l _  n+l— |rjk’ *  n+l— n+1— “_.Ik| *
Pt =it oA Y AL +AtpIT u
)

; Q]
keN(j kEN())
= ey >0
where © = p, pu, pE and 1" = ®j T Ujk
p = p,pu,p Pik {wzﬂ <0

This scheme is stable under a material CFL condition At = O(h)
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Numerical strategy

Objectives

Our objective is to propose a numerical scheme that is

@ all-regime : uniform stability and uniform consistency w.r.t. ¢
@ able to deal with any equation of state

e multi-dimensional on (possibly) unstructured meshes

What about the first objective ?
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Numerical strategy

Uniform consistency in the low Mach regime

Let us focus on the first step of the time-explicit scheme

At

1- * ¥

T =T %m(“m/z — Uiy
t

1—

qu’JF =ul - Am (Pf+1/2 - Pf_l/z)

t
+1— _ * B
Ej” = Ejn — E((Pu)ﬁ_yz - (pu)j—1/2)

with
. 1 1
Uit1/0 = E(Uj + Ujq) — 2(pj+1 - pj)

. 1 a
Pit1/2 = E(pj + Pjy1) — §(Uj+1 - u))
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Numerical strategy

Uniform consistency in the low Mach regime

In dimensionless form we get

At
+1— * *
T =1+ %m(uj+1/2 —Uui_q))
un+17 — "= i( * ok )
i T T A, P2 T P12

n - t * :
P = B — o ((pu)fae — (PU);yy2)

with, since pjy1 — pj = O(M?)

u+ u; MAm (Pjy1—P;) U +u
* _ 1 J+1 i’ J+1
Uipy)p = 5 aMZ A > +O(MAm)

: Pt P _ aAm (Uj+1 - “j) _ Pt R O(ﬂ)
Pi+1/2 = ~Hup2 M Am  2M? M
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Numerical strategy

Uniform consistency in the low Mach regime

We note that

- the numerical diffusion (or consistency error) is extremely small
on the first equation

- the numerical diffusion (or consistency error) is extremely large
on the second equation

Lt MAm (P =) Uty

Y= "3 " oamE am .~ 2 OWMAm)
. _PitP aAm(a — ) Pt P o Am
Pivi2="om2 T oM T Am | 2M? )
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Numerical strategy

Uniform consistency in the low Mach regime

The main problem comes from the numerical diffusion in p7+1/2

We get the uniform consistency with respect to M by introducing a
parameter 1, and setting

1 a
Pf+1/2 = E(Pf’ + Pf+1) - 9j+1/2§(uf+1 - an)

which gives the uniform consistency if 0,1/, = O(M)

) Pit P bir12Am
pj+1/2 = 2M?2 O( M

Note that the numerical diffusion in u?

12 is still very small...
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Numerical strategy

Remarks

The modifications give the uniform consistency and we recover the
classical scheme provided that 6;,,,, =1

The modifications apply directly on unstructured meshes

Considering the time-implicit treatment of the Lagrangian step
gives the uniform stability

The relaxation approach allows to consider any given pressure law
Recall that the unstructured mesh is fixed (not moving)

All the objectives are reached
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Numerical strategy

Remarks

How does the modifications affect the stability properties?
The whole scheme is

- conservative

- positive

- entropy satisfying under a suitable definition of # NOT
compatible in the asymptotic limit

0 = 0 is also possible! (numerical diffusion in the transport step)

How to get the entropy inequality in the asymptotic limit ?
By adding numerical diffusion on the first equation...
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Numerical strategy

A two-speed relaxation approach

The former relaxation system

0T — Oqu =10
8tu + aml_l = 0
0N+ 220mu = \(p — 1)
The two-speed relaxation system
OtT — Omv =10
8tu + 8mr| = O
Orv + (a/ay)Oml = ANu — v)
O+ a2, 0mv = A(p — M)
At least formally, observe that

lim MN=p and lim v=uif a>a, and aa, > p°c?
A——+400 A—400
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Numerical strategy

A two-speed relaxation system

The former sub-characteristic condition
a>pc
which gives a = O(1/M)
The new sub-characteristic condition
a>a, and aa, > p2c2

Here, the idea will be to take a, = O(1) and a = O(1/M?)!

32/49 Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Numerical strategy

A two-speed relaxation system

The former eigenvalues

The new eigenvalues
—a, 0, a

Therefore, the explicit CFL condition behaves like O(M?Ax) and
the Lagrangian step must be time-implicit again!

Remark. We are also able to design a time-explicit scheme, the
CFL of which behaves like O(Ax?)! The key idea is to equal the
errors of the numerical scheme in O(Ax) with the error to the
incompressible limit in O(M?) by replacing M with v/Ax
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Numerical strategy

A two-speed relaxation system

The former numerical fluxes
. 1 1
Viti/2 = §(Uj + Ujq) — Z(Pjﬂ - pj)
. 1 a
Pit12 = E(pj +Pj1) — §(Uj+1 - u;)
The new numerical fluxes

1 1 1

Uit1e = §(Uj + ujyq) — Tav(PjH - pj) = E(uj + ujy1) + O(Ax)!

X 1 a 1
Pir1j2 = 5P+ pj) = jv(“j+1 = ;) = 5 (P + Pis1) + O(Ax)!
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Numerical strategy

New properties

The whole scheme is now

conservative

positive

uniformly stable and uniformly consistent
entropy satisfying and of order 1
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Numerical results
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@ Numerical results
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Numerical results

rtex in a box : test case

The fluid is equipped with a perfect gas equation of state

p=(vy—1pe, y=14

We consider the domain QO = (0, 1).
The initial condition is given by

po(x,y)=1— %tanh (y — %) , uo(x,y) = 2sin?(mix)sin(mty)cos(mty)),
{ po(x,y) = 1000, vo(x, y) = —2sin(7tx) cos(mix)sin®(1y).

We impose a no-slip boundary condition.

This configuration leads to a Mach number of order 0.026, so that we are in
the low Mach regime.
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Numerical results

ex in a box (M : explicit scheme

We plot the flow speed magnitude at time T = 0.125s.

velocity Magnitude

explicit scheme explicit scheme reference solution
(86=1) (6=1) explicit scheme
Cartesian Mesh Cartesian Mesh (6=1)
50 * 50cells 400 * 400cells Triangular Mesh
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Numerical results

Vortex in a box (M#0.026) : modified explicit scheme

We plot the flow speed magnitude at time T = 0.125s.

velocity Magnitude

explicit scheme explicit scheme reference solution
(6=1) (05 = M) explicit scheme
Cartesian Mesh Cartesian Mesh (86=1)
50 x 50cells 50 * 50cells Triangular Mesh
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Numerical results

Vortex in a . : modified implicit scheme

We plot the flow speed magnitude at time T = 0.125s.

velocity Magnitude

implicit-explicit implicit-explicit reference solution
scheme (6 = 1) scheme (8; = M}) explicit scheme
Cartesian Mesh Cartesian Mesh (6=1)

50 x 50cells 50 * 50cells Triangular Mesh
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Numerical results

Vortex in a box (M#0.026) : CPU Time

EX:B=n IMEX:p = Lag.

Numerical scheme EX(0 =1) EX(6 =1) EX(0; = M)
(Mesh 400 = 400) (Mesh 50 % 50)  (Mesh 50 = 50)
Number of iterations 18 457 2 306 2 305
CPU time (s) 9 263.04 (2h34min) 17.14 19.3

Speed up (6 =1 — 0 = Mj;) =480

Numerical scheme IMEX(6 =1) IMEX(0; = Mj)
(Mesh 50 % 50)  (Mesh 50 = 50)

Number of iterations 43 56
CPU time (s) 3.75 5.77

Speed up (explicit— implicit-explicit)= 3.3

41/49| Christophe Chalons All-regime Lagrangian-Remap numerical schemes



Numerical results

We plot a 1D-cut at x = 0.5 of the flow speed magnitude at time T = 0.125s.

Velocity Magnitude - Cartesian Mesh Velocity Magnitude - Triangular Mesh

Cartesian Mesh Triangular Mesh
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Numerical results

2D-Riemann problem : test case

The fluid is equipped with a perfect gas equation of state
p=(y—1pe, y=14

We consider the domain Q = (0,1)?.
The initial condition corresponds to a 2D Riemann problem that consists of 4
shock waves. We impose Neumann boundary conditions.

This configuration leads to a Mach number that ranges from 107> to 3.15, so
that we have both low Mach and order 1 Mach values.
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Numerical results

2D-Riemann problem . : modified explicit scheme

We plot the flow speed magnitude at time T = 0.4s.

velocity Magnitude
716993
1.6
*51.2
—0.8
EU.A .'
0

explicit scheme explicit scheme reference solution
(6=1) (6=0) explicit scheme
Cartesian Mesh Cartesian Mesh (8=1)
50 * 50cells 50 x 50cells Triangular Mesh
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Numerical results

2D-Riemann problem M € (107°,3.15) : modified implicit scheme

We plot the flow speed magnitude at time T = 0.4s.

velocity Magnitude
716993
*1 2
0

implicit-explicit implicit-explicit reference solution
scheme (6 = 1) scheme (6 = 0) explicit scheme
Cartesian Mesh Cartesian Mesh (6=1)

50 * 50cells 50 * 50cells Triangular Mesh
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Numerical results

2D-Riemann problem M € (1073,3.15) : CPU time

Numerical scheme EX(6 =1) EX(6 =0)
(Mesh 50 % 50)  (Mesh 50 * 50)
Number of iterations 323 343
CPU time (s) 2.59 2.79

Speedup (6=1—-0=0)~1

Numerical scheme IMEX(6 = 1) IMEX(6 = 0)
(Mesh 50 % 50)  (Mesh 50 % 50)

Number of iterations 216 218
CPU time (s) 10.28 10.33

Speed up (explicit— implicit-explicit)= 0.25
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Numerical results

flow in a nnel with bump

The fluid is equipped with a mixture of two perfect gas with different adiabatic
coefficients equation of state : y1 =2, y» = 1.4.

We consider for the domain a channel with a 20% sinusoidal bump.

The initial condition corresponds to a constant state
(p, Y, pyu,v)=(7.81,0,3124,0,0).

We impose inlet/outlet and Wall boundary conditions.

This configuration leads to a subsonic flow for uj, = 0.2 and a transonic flow
for uj, = 12.
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Numerical results

flow in a channel with bump : subsonic flow

We plot the results obtained for the subsonic test case (uj, =0.2) on a 80 x 20
quadrangular mesh at time T = 2s with 3 = Lag and 0;; = Mj;

(a) velocity Magnitude (b)pressure

‘\\\\\\\\\‘\\\\\\\\028 3]239\\\\\\\3]‘24\\\\\ 31241

03 3123 87 3124.12
(c) Mass Fraction (d)MachNumber
0.012

F?HH\HP‘E\)\HHHQZ% OOOS\I\\\\\\“I\\\\\\

1 0007 0013

Flow speed animation
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Numerical results

flow in a channel with bump ansonic flow

49/49

We plot the results obtained for the transonic test case (uj» = 12) on a 80 x 20
quadrangular mesh at time T =2s with 3 =nand 0;; =0

(a) velocny Magnlfude (b)pressure

20 2400 2800 3200
m‘mmmluHmu‘m\m[ HHI\H‘H\[!HH‘\

10

22]753 35625
(c)Mass Fract|0n (d)MachNumber
0.75 0.4 1
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1036

B "B

Flow speed animation
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