

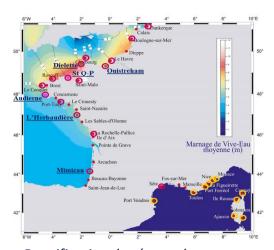
LE PROJET HOMONIM

HISTORIQUE, OBSERVATION, MODÉLISATION DES NIVEAUX MARINS AUDREY PASQUET, HÉLOÏSE MICHAUD, SOPHIE CASITAS

OBJECTIFS

Le projet HOMONIM est le volet technique de la « VVS », réponse au Plan de Submersion Rapide interministériel

Objectifs


Amélioration de la modélisation du niveau d'eau et des vagues en côtier

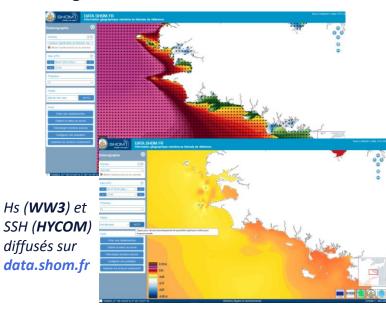
Bénéfices attendus Amélioration des systèmes d'alerte inondation

Un volet « base de données »

- Observations/mesures
- Modélisation numérique

Densification du réseau des marégraphes du SHOM

Un volet « temps réel »

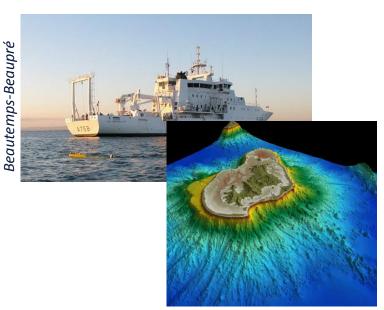

- Modèles de vagues et modèles de surcotes opérés plusieurs fois par jour en temps réel
- Mise à disposition du public des prévision

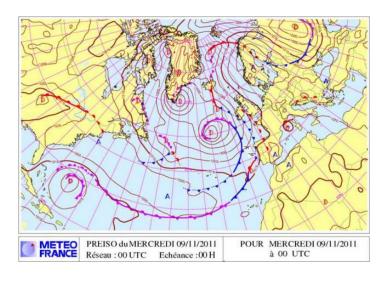
Carte d'alerte produite par Météo France, 06.02.2014

Un volet « amélioration des systèmes »

Modèle de surcote et modèle de vagues

UN EFFORT CONJOINT SHOM/METEO FRANCE


EXPERTISE ET MISSIONS DU SHOM ET DE METEO FRANCE


SHOM

Opérateur public pour l'information géographique maritime et littorale de référence

- · Hydrographie et sécurité de la navigation
- Soutien à la Défense
- Soutien aux politiques publiques de la mer et du littoral
- Expertises en bathymétrie, sédimentologie,
 hydrodynamique côtière, océanographie, campagnes,...

Regional DEM of Mayotte Island

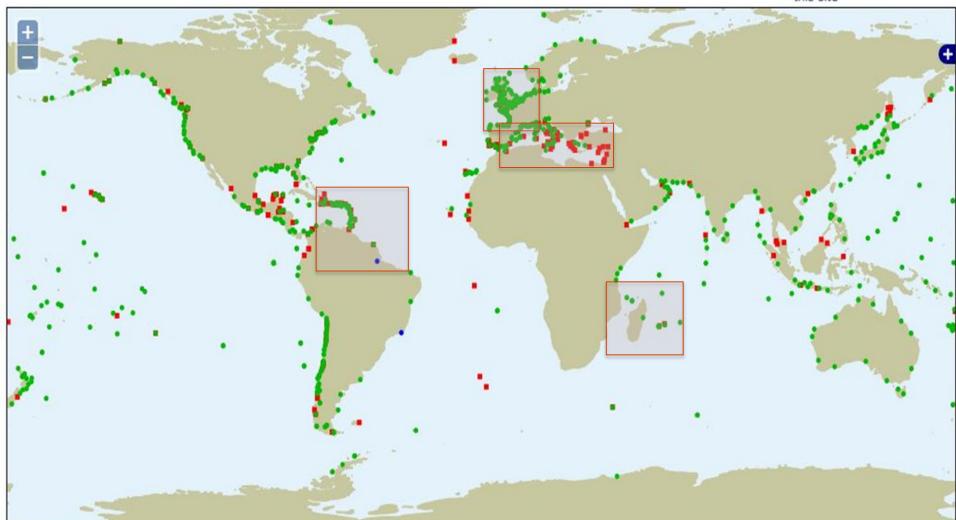
METEO FRANCE

Service climatologique et météorologique national

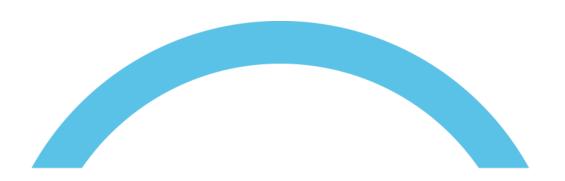
- Développement et maintenance d'un réseau d'observation
- Collecte et traitement de données climatologiques
- Prévision du temps
- Recherche dans les domaines de la mtétéorologie et du climat
- Opérateur de la VVS

MODÈLES DE VAGUE ET DE SURCOTE

FACADES COUVERTES PAR LES DEUX PREMIERES PHASES D'HOMONIM


Sealevel stations

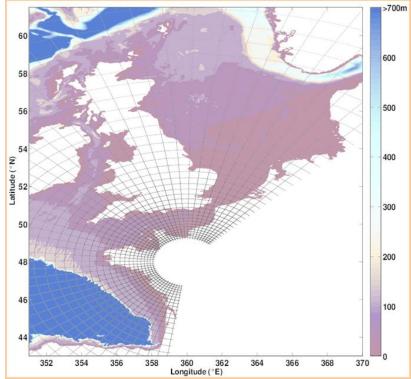
Status at 2017-09-07 07:36 GMT


Station is offline, or data is outdated

Station is online

Station is not available at this site

MODELISATION DES SURCOTES AVEC HYCOM


PERFORMANCE DU MODELE SUR LA FAÇADE METROPOLITAINE

DESCRIPTION ET PERFORMANCE DU MODELE HYCOM

FACADES METROPOLITAINES

Longitude (E)		
Indicateur statistique	ATL	MED
RMSE hautes mers (cm)	15	N/A
Déphasage sur les hautes mers (min)	16	N/A
RMSE sur les tempêtes (cm)	8	8
Erreur moyenne au max des surcotes (cm)	-9	-9

Performance de HYCOM

Hycom 2D

 Grille C Arakawa, Ordre 2, schéma FCT sur la masse, centré sur la quantité de mouvement, Leapforg+filtre d'Asselin, bancs découvrants

Modèles de façade ATLantique et MEDiterranée

- Mise en œuvre opérationnelle depuis janvier 2014 avec des mises à jours annuelles
- Version monocouche de HYCOM
- Coordonnées curvilignes
- Mise à jour des MNT
- Evaluation pour les marées, 11 événements de tempêtes sur ATL et MED avec des forçages réanalysés, 1run long

Specificités de la configuration ATL

- Résolution de 400m à 1 km
- Bancs découvrants
- Forçage de marée à la frontière: NEA 2011 (17 composantes, LEGOS)
- Forçage courants et hauteurs du modèle de vague
- Friction de fond variable spatialement

VOIES D'AMELIORATION DU SYSTEME

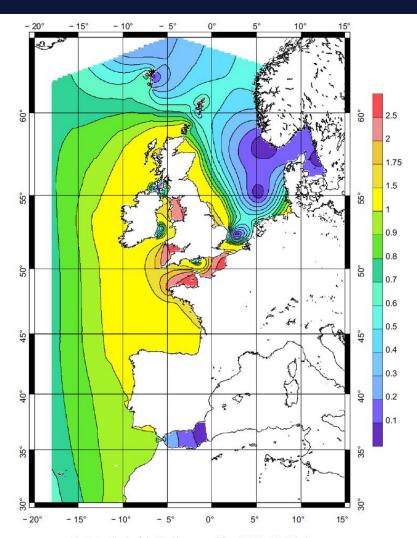


Fig. 2. Amplitude of the M2 tide computed from T-UGOm 2D. Units in meters

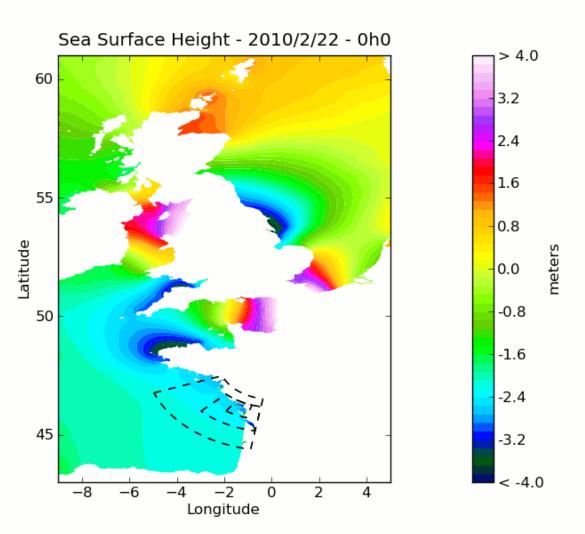
Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay ofBiscay. Part 1: Barotropic tides. I.L. Pairaud,, F. Lyard, F. Auclair, T. Letellier, P. Marsaleix. Continental Shelf Research 28 (2008) 1294–1315

Contraintes imposées

- Formulation monocouche
- Spectre limité aux frontières (17 ondes, NEA 2011)
- Qualité du modèle atmosphérique (temps réel)
- Relief du fond
- Erreurs de mesure

Paramètres ajustables

- Emprise du domaine
- Qualité du forçage aux frontières
- Qualité des champs de vent et pression
- Paramétrisation des tensions de vent
- Enrichissement du jeu d'équations
- Résolution
- Wave set-up
- Friction de fond
- Schémas numériques


 Résolution de 30m sur les Pertuis Charentais

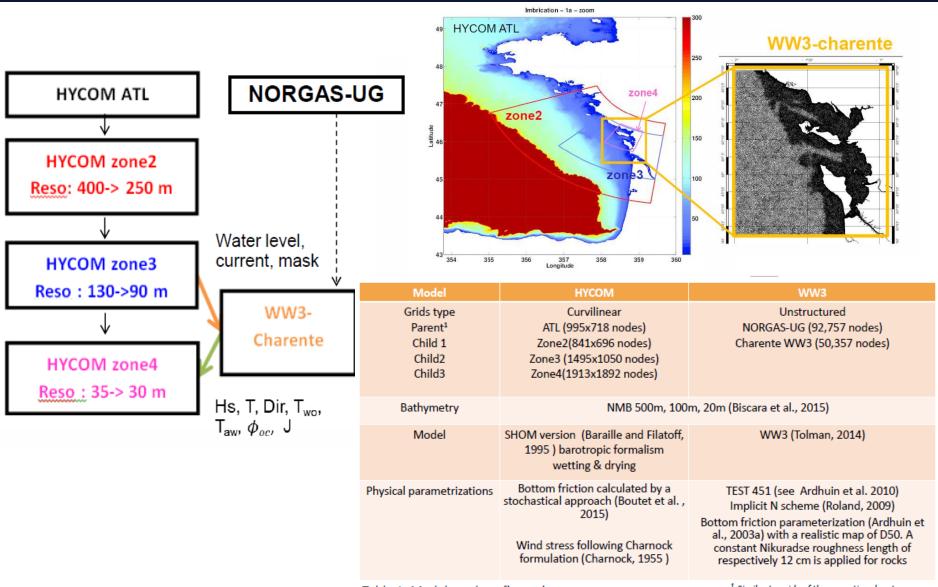
Zones découvrantes

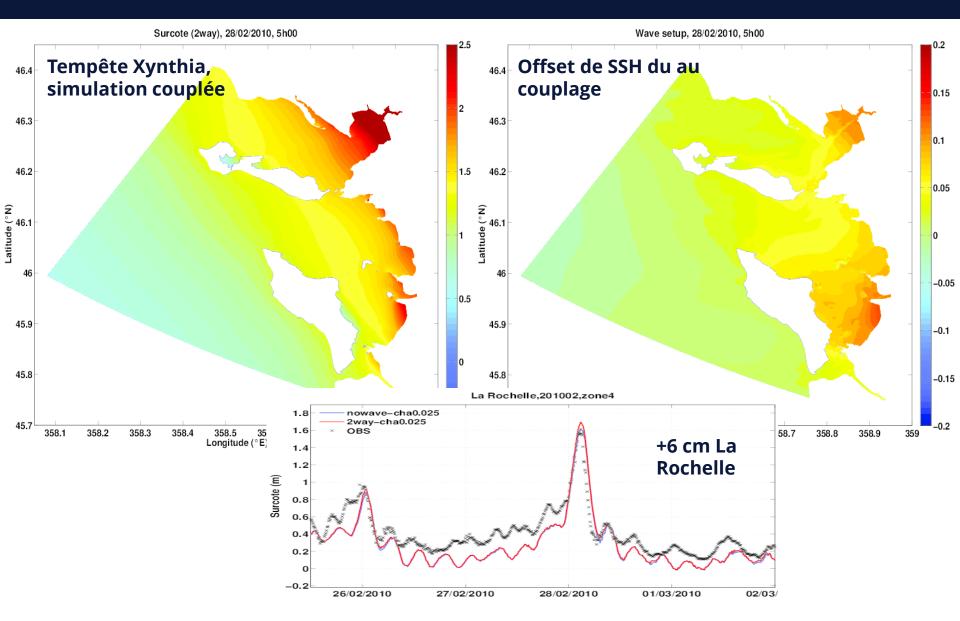
Coupleur OASIS MCT 3.0 *

Phare de Chassiron, île d'Oléron

* Craig A., Valcke S., Coquart L., 2017, *Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0*, Geosci. Model Dev., https://doi.org/10.5194/gmd-2017-64

AMELIORATION: COUPLAGE VAGUE/COURANT




Table 1: Models and configurations

¹ Similar to grids of the operational system See Pasquet et al. 2014, Michaud et al . 2015

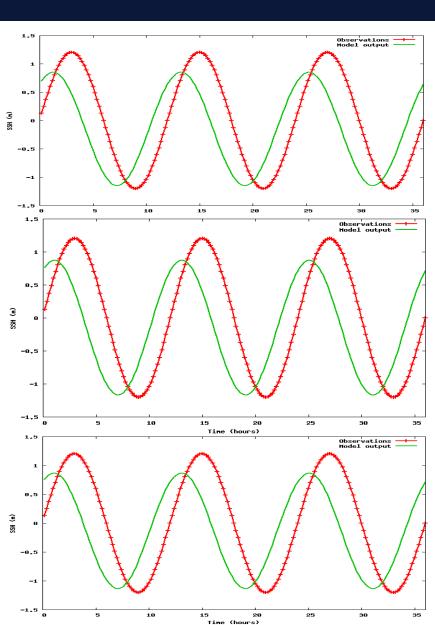
AMELIORATION: COUPLAGE VAGUE/COURANT

THE PERTUIS-CHARENTE CASE - COUPLING METHOD WW3/HYCOM

AMELIORATION: ESTIMATION DE LA FRICTION DE FOND

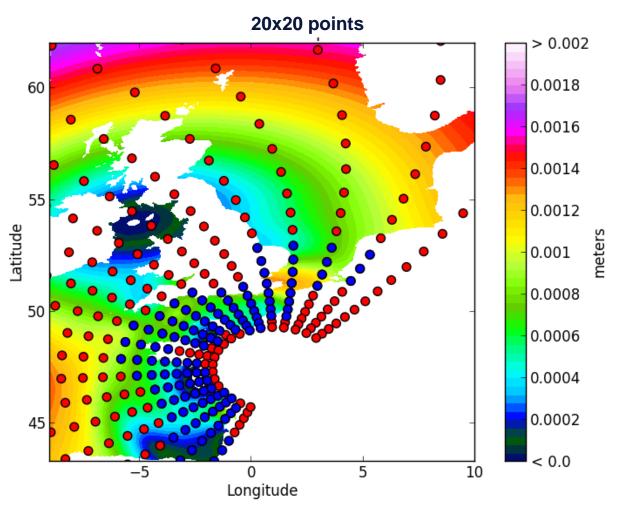
$$u_t + \dots + \frac{1}{H} (C_Q |u| + C_L) u = 0$$

A chaque nouvelle version est associée une carte de friction de fond.


Paramètres de l'algorithme (optimisation stochastique)

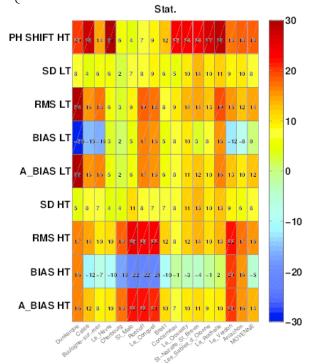
- Vecteur de contrôle
 - Rugosité de fond (quadratique/linéaire)
 - Echelles
- Observations
 - Marégraphes (marée totale prédite?), radars HF
- Fonction coût
 - Type d'erreur:
 - X Signal total
 - X Erreurs de phase ou d'amplitude, biais
 - X Métrique MF: RMSE sur les pics de marée
- Critère d'arrêt

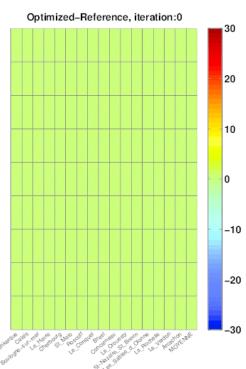
convergence, échelles spatiales, temps de calcul


* Spall J.C. (2000), Adaptive Stochastic Approximation by the Simultaneous Perturbation Method, IEEE Transactions on Automatic Control, vol.45, pp.1839-1853

Boutet M., Lathuilière C., Hoang H.S., Baraille R. (2014), Estimation of friction parameters in a barotropic tide model using stochastic methods, Tellus A

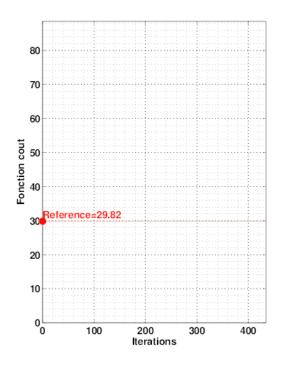
Localisation des points de collocation


- Point du vecteur de contrôle
- Valeur constante, non optimisée



Modèta ដាម្ភាជាជា :numérique basé sur les travaux de Couderc, Duran, Vila, Villedieu:

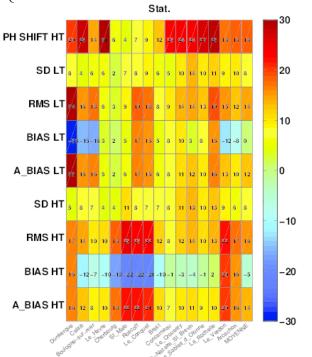
$$\begin{cases} \frac{\partial}{\partial t}h + \frac{\partial(h\widetilde{u})}{\partial x} = 0\\ \frac{\partial(hu)}{\partial t} + u\frac{\partial(uh\widetilde{u})}{\partial x} + g\frac{\partial h}{\partial x} = 0 \end{cases} \longrightarrow \frac{\partial E_T}{\partial t} + \frac{\partial}{\partial x}((E_c + 2E_p)\widetilde{u}) \le 0$$

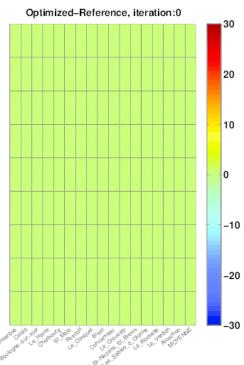

$$\widetilde{u} = u - \gamma \frac{\partial h}{\partial x}$$

Contexte:

- · Simulation sur un mois
- Minimisation des écarts quadratiques aux plus hautes et basses mers pour des forts coefficients de marée
- 20x20 points de colocation

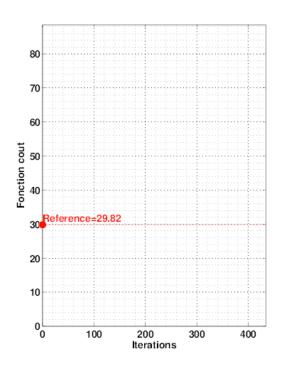
DEVELOPMENTS TO IMPROVE STORM SURGE FORECASTING





Nouveau schéma numérique basé sur les travaux de Couderc, Duran, Vila, Villedieu:

$$\begin{cases} \frac{\partial}{\partial t}h + \frac{\partial(h\widetilde{u})}{\partial x} = 0\\ \frac{\partial(hu)}{\partial t} + u\frac{\partial(uh\widetilde{u})}{\partial x} + g\frac{\partial h}{\partial x} = 0 \end{cases} \longrightarrow \frac{\partial E_T}{\partial t} + \frac{\partial}{\partial x} \left(\left(E_c + 2E_p \right) \widetilde{u} \right) \leq 0$$


$$\widetilde{u} = u - \gamma \frac{\partial h}{\partial x}$$

Contexte:

- Simulation sur un mois
- Minimisation des écarts quadratiques aux plus hautes et basses mers pour des forts coefficients de marée
- 20x20 points de colocation

lecherche conjointe Institut de Mathématiques de oulouse/SHOM.
émonstration des qualités théoriques et applicatives de la néthode.
nsertion dans le code opérationnel HYCOM et code MF.
éduction des erreurs de modélisation de la marée arotrope.
Sestion des fronts secs améliorée.
emps de calcul divisé par au moins 3, selon les onfigurations.

MERCI DE VOTRE ATTENTION!

