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Abstract. In this paper, we propose a model describing the expansion of a
plasma in vacuum. Our starting point consists in a two-fluids Euler system
coupled with the Poisson equation. Since numerical simulations of this model
are very expensive, we investigate a quasi-neutral limit of it. We show that
electron emission happens at the plasma-vacuum interface. This emission is
well modeled by a Child-Langmuir law. The difficulty consists in accounting
for the motion of the plasma-vacuum interface. In this paper, we formally and
numerically justify why electron emission produces a reaction pressure which
slows down the plasma expansion.

1. Introduction

This paper is devoted to the study of a quasi-neutral plasma expansion in vacuum,
and more particularly to the description of the motion of the plasma-vacuum
interface. This configuration occurs in some diodes like those mentioned in [10]. So,
let us consider an external electric field applied between two electrodes and assume
that a quasi-neutral plasma constituted of ions and electrons is emitted from the
cathode. This plasma undergoes a thermal expansion towards the anode while
the electrons are emitted from the plasma-vacuum interface according to a Child-
Langmuir law [3, 7]. The gap between the interface and the anode is decreasing with
time and the extracted electron current is simultaneously increasing in accordance
with the Child-Langmuir law.

Our starting point is a one-dimensional Euler model for each species (ions and
electrons) coupled with the Poisson equation. However, due to the large plasma
densities, numerical simulations of this model are very expensive in practice. So,
we rather investigate a one-fluid Euler model obtained as a formal quasi-neutral
limit of the initial two-fluids model. Moreover, during the thermal expansion of
the plasma, electrons are emitted from the plasma-vacuum interface to the anode.
The quasi-neutral model is unable to describe their motion between the plasma-
vacuum interface and the anode but by means of a rescaling of the system, we show
that this emission is well modeled by a Child-Langmuir law. Then, the boundary
conditions at the interface X(t), which connect the two models, are determined
through two additional assumptions validated by numerical simulations.
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i) The electron emission is governed by the Child-Langmuir law with a max-
imal extracted electron current.

ii) Electron acceleration in vacuum produces a reaction pressure which acts
on the plasma-vacuum interface and slows down its motion.

A similar asymptotic analysis is performed in [4] for the isentropic Euler
system. Here we extend it to the full Euler system. We detail assumptions i) and
ii) and numerically justify them comparing simulations obtained on the one hand
with the two-fluids Euler system and on the other hand with the quasi-neutral
model.

2. Two-fluids Euler-Poisson model

Let us consider a pair of electrodes: the cathode is located at x̄ = 0 and the anode
at x̄ = L. A plasma constituted of ions and electrons is emitted from the cathode.
Let i and e be the index for ions and electrons. Then, mi,e are the mass of the
particles, Ni,e their density, Ui,e their velocity and Ti,e their temperature. The
total energy Wi,e is defined by

We =
1

γ − 1
Pe +

me Ne U2
e

2
, Wi =

1

γ − 1
Pi +

mi Ni U2
i

2

where γ = 5/3 and the pressure laws are given by Pi,e = Ni,e kB Ti,e where kB is
the Boltzmann constant. We start with the Euler system for each species, coupled
with the Poisson equation. Thus, the system for ions is given by:















Ni t̄
+ (Ni Ui)x̄ = 0,

mi

(

(Ni Ui)t̄ + (Ni U2
i )x̄

)

+ Pi x̄ = −q Ni Φx̄,

Wi t̄
+ (Wi Ui)x̄ + (Pi Ui)x̄ = −q Ni Ui Φx̄,

while electrons are described by:














Ne t̄
+ (Ne Ue)x̄ = 0,

me

(

(Ne Ue)t̄ + (Ne U2
e )x̄

)

+ Pe x̄ = q Ne Φx̄,

We t̄
+ (We Ue)x̄ + (Pe Ue)x̄ = q Ne Ue Φx̄,

where q > 0 is the elementary charge.
The Poisson equation is used to take into account the evolution of the electric

field, so that:

−Φx̄x̄ =
q

ε0

(Ni − Ne),

where Φ is the electric potential and ε0 is the vacuum permittivity.
We assume that a quasi-neutral plasma is emitted at x̄ = 0, with the same

velocities and temperatures for the two species. So, the boundary conditions for
the plasma are given by: Ni(x̄ = 0) = Ne(0) = N0, Ui(0) = Ue(0) = U0, Ti(0) =
Te(0) = T0, and those for the electric potential are: Φ(0) = 0, Φ(L) = ΦL.
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3. Quasi-neutral limit in the plasma region

Now, in order to get a quasi-neutral model, we scale these equations with the fol-
lowing characteristic sizes: the gap between the two electrodes L, the thermal ionic
velocity Uth =

√

T0/mi, the time τ = L/Uth, the density of the emitted plasma
N0, the temperature at the cathode T0, the anode potential ΦL and the internal
energy at the cathode W0 = N0T0. This leads us to introduce some parameters:

- the mass ratio: ε =
me

mi
,

- the ratio of the internal energy at the cathode to the applied potential

energy: η =
T0

qΦL
<< 1,

- the ratio of the applied potential energy to the coulombian interaction

energy: λ =
ε0ΦL

qN0L2
,

- the ratio of the emission velocity at the cathode to the thermal ionic

velocity: α =
U2

0

U2
th

.

Next, writing the Euler-Poisson system with the scaled variables: x, t, φ, ni,e, ui,e,
wi,e and pi,e where x̄ = Lx, t̄ = τ t, Φ = φLφ, Ni,e = N0 ni,e, Ui,e = U0 ui,e,
Wi,e = W0 wi,e and Pi,e = N0 T0 pi,e, we get:























ni t + (ni ui)x = 0,

(ni ui)t + (ni u2
i )x + pi x = −ni φx

η
,

wi t + (wi ui + pi ui)x = −ni ui φx

η
,

(1)























ne t + (ne ue)x = 0,

ε
(

(ne ue)t + (ne u2
e)x

)

+ pe x =
ne φx

η
,

we t + (we ue + pe ue)x =
ne ue φx

η
,

(2)

− λφxx = ni − ne, (3)

with

wi =
1

γ − 1
pi +

1

2
ni u2

i , we =
1

γ − 1
pe +

ε

2
ne u2

e, (4)

and the boundary conditions given by:


















ni(x = 0) = ne(0) = 1, ui(0) = ue(0) =
√

α,

wi(0) =

(

1

γ − 1
+

α

2

)

, we(0) =

(

1

γ − 1
+

ε α

2

)

,

pi(0) = pe(0) = 1, φ(0) = 0, φ(1) = 1.

(5)

We are now interested in the limit η → 0 with λ = O(1) and α = O(1). These
values agree with those computed in some high current diodes [10]. Because the
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forthcoming analysis is independent of whether ε is assumed to be small or not,
we assume ε = O(1).

So, let X(t) be the plasma-vacuum interface position at time t. Then, when
η goes to 0, we formally obtain that ne → n, ni → n, ue → u, ui → u and
(wi + we) → w. Furthermore, n, u and w, the density, the velocity and the total
energy of the quasi-neutral fluid, satisfy:























nt + (nu)x = 0,

(1 + ε)
(

(nu)t + (nu2)x

)

+ px = 0,

wt + (w u + p u)x = 0,

φ(x) = 0,

(6)

for all x ∈ [0,X(t)], where

w =
1

γ − 1
p + (1 + ε)

nu2

2
and p = pi + pe,

with the following boundary conditions:










n(x = 0) = 1, u(0) =
√

α,

w(0) =
2

γ − 1
+

α (1 + ε)

2
.

Let us notice that only the total pressure p = pi + pe is given. To compute each
pressure term, pe for example, we need to solve the additional non-conservative
equation (see [1] for more details):

pe t + ue pe x + γ pe ue x = 0.

Moreover, the quasi-neutral model (6) deduced from (1, 5) in the limit η → 0, is
only valid when the density n is strictly positive. A rigorous proof of this limit was
given in [2] assuming the density strictly greater than a positive constant. The same
condition appears for the quasi-neutral limit of the drift-diffusion model in [8]. So,
the quasi-neutral model (6) is no more valid close to the interface X(t) where ions
and electrons are moving apart. Therefore, a different asymptotic regime must be
investigated in order to describe the behavior of the electrons in the region [X(t), 1]
(the “beam”).

4. Child-Langmuir limit in the beam region

Under the action of the anode potential, the electrons are accelerated while the
ions are slowed down. Beyond the interface X(t), there are no ions. The electrons
are described by equations (2, 3) with ni = 0. Due to the external electric field, the
electron velocity is increasing to reach a value of the order of (ε η)−1/2. In order
to investigate the behavior of electrons in the beam, we must rescale the electron
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velocity. So for all x ∈ [X(t), 1], we set ue = ūe/
√

ε η. This scaling transforms the
system (2, 3) into















































n̄e t +
1√
ε η

(n̄e ūe)x = 0,

ε

(

1√
ε η

(n̄e ūe)t +
1

ε η
(n̄e ū2

e)x

)

+ pe x =
n̄e φ̄x

η
,

η
√

ε η

γ − 1
pe t +

√
ε η

2

(

n̄e ū2
e

)

t
+

γ η

γ − 1
(pe ūe)x +

1

2
(n̄e ū3

e)x = n̄e ūe φ̄x,

−λ φ̄xx = −n̄e,

with the boundary conditions φ(X(t)) = 0, φ(1) = 1 and ue(X(t)) = 0.
When η goes to 0, we formally get a stationary model (which only depends

on time through the interface position: X(t)) such that for all x ∈ [X(t), 1]:






























(n̄e ūe)x = 0,

(n̄e ū2
e)x = n̄e φ̄x,

1

2
(n̄e ū3

e)x = n̄e ūe φ̄x,

−λ φ̄xx = −n̄e.

(7)

Note that the third equation can be easily deduced from the other ones. This
system is known as the Child-Langmuir model (see [3, 7]). Its solution depends on
a free parameter, the current j̄ = n̄e ūe, where j̄ ranges in the interval [0, j̄CL]. The
maximal value of j̄, called the Child-Langmuir current, is given by the relation

j̄CL =
4
√

2 λ

9 (1 − X)
2
,

and is associated with the additional boundary condition φ̄x(X(t)) = 0. We shall
assume that the emitted current coincides with the Child-Langmuir current, and
shall verify numerically that this hypothesis seems fulfilled.

5. A model for the plasma-beam interface

Now, we have to connect the quasi-neutral model (6) and the Child-Langmuir
model (7). The boundary conditions at X(t) result from the dynamics of the par-
ticles confined about the interface. A formal asymptotic analysis will be developed
in future work (see [5]). In the present work we shall rely on some hypotheses. We
set that the total momentum is preserved while electrons are crossing the interface.
The acceleration of the electrons towards the anode generates a reaction pressure
which slows down the motion of the plasma-vacuum interface.

So, let us determine this pressure term. Let σ = dX/dt be the interface
velocity. We denote by [f ] the jump of the function f across the interface, by f

−
the

limit of f on the left of X(t) and by f+ the one on the right. The Rankine-Hugoniot
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relations applied to the conservation of the ion density across the interface leads
to:

[ni (ui − σ)] = 0. (8)

Similarly, using the total momentum equation, we have:
[(

ni u2
i + ε ne u2

e + pe + pi −
λ

2 η
|φx|2

)

− σ (ni ui + ε ne ue)

]

= 0. (9)

Now, from equations (1, 3), the conservation of total energy can be written as:

(wi + we)t + (wi ui + pi ui + we ue + pe ue)x = −λ

η
(φx)t φx = − λ

2η
(φ2

x)t,

and applying the Rankine-Hugoniot conditions, we get:
[

(wi ui + pi ui + we ue + pe ue) − σ

(

wi + we +
λ

2η
|φx|2

)]

= 0. (10)

Moreover, we suppose that the quasi-neutral limit is still valid up to the interface
X(t), such that:

ne− = n
−

, ni− = n
−

, ui− = u
−

, ue− = u
−

, (11)

where n
−

and u
−

denote the limit of the quasi-neutral quantities on the left of the
interface.
There are no ions beyond the interface, hence

ni+ = 0, and wi+ = 0. (12)

With the condition of maximal current given by the Child-Langmuir law and the
quasi-neutrality of the plasma, we get: φx−

= φx+ = 0. Next, assuming that the
electron density has no jump across the interface, we obtain: ne+ = n

−
. We have

seen that the electron flow in the gap between X(t) and the anode is given by the
Child-Langmuir current such that: jCL = j̄CL/

√
ε η = ne+ (ue+ − σ). From (8)

we deduce the interface velocity:

dX

dt
= σ = u

−
. (13)

and (9) reduces to:

ε [ne ue (ue − σ)] + [pe + pi] = 0.

Therefore, since ue− = u
−

= σ, ne+ (ue+ − σ) = jCL, pi+ = 0 and ne+ = n
−

, we
have:

p
−

= pe− + pi− = εjCLue+ + pe+ = ε jCL

(

jCL

n
−

+ σ

)

+ pe+. (14)

Using wi+ = 0, ui− = σ and φx−
= φx+ = 0, (10) becomes

[pi ui + we ue + pe ue − σ we] = 0.

Now from (11) and (12), we deduce:

p
−

u
−

= pi−ui− + pe−ue− = we+ (ue+ − σ) + pe+ue+ ,
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then thanks to the definition of we+ and to the relation ne+ (ue+ − σ) = jCL we
get

p
−

u
−

= pe+

(

γ

γ − 1

jCL

n
−

+ σ

)

+
ε

2
jCL

(

jCL

n
−

+ σ

)2

. (15)

Solving the system (14) and (15) we determine pe+ and p
−

. The pressure term
pe+ is given by:

pe+ =
ε

2

(

γ − 1

γ

)

n
−

(

u2
−
−
(

jCL

n
−

)2
)

.

Therefore, substituting this expression in (14) , we can deduce the momentum flux
p
−

in the plasma resulting from the electronic emission at the interface and finally
the energy flux p

−
u
−

.

6. Numerical validation of the asymptotic model

This section is devoted to the numerical study of the quasi-neutral model for the
plasma (6) coupled with the Child-Langmuir model (7) for the “beam” by the
momentum and energy fluxes p

−
and p

−
u
−

. So, let us consider the quasi-neutral
system (6) written in the conservative form (see [9],[11]):

∂V

∂t
+

∂F (V )

∂x
= 0, V (0, x) = 0, V (t, 0) = V0 (16)

where V = (n, (1 + ε)nu, w)
T

and F (V ) =
(

nu, (1 + ε)nu2 + p, wu + pu
)T

.
Let us consider a uniform grid constituted by N cells (mk)k=1,··· ,N of size ∆x. We
denote by ∆t the time step and we set tn = n∆t for all n ≥ 0. Then for n ≥ 0 and
k ∈ {1, · · · , N}, V n

k is an approximation of V at time tn on the cell mk and Xn

is that of the plasma-vacuum interface position X at time tn. Let us denote by
mk0

(k0 ∈ {1, · · · , N}) the cell such that Xn ∈ mk0
. Using the evolution equation

of the interface velocity (13), we get: Xn+1 = Xn + ∆tun
k0

. The system (16) is
discretized with a classical finite volume method (see [11]). So, we describe the
scheme only in the last cell occupied by the plasma: mk0

.
Using the Green formula and taking into account the interface motion, we

have
(

Xn+1 − Xk0−1/2

)

Ṽ −
(

Xn − Xk0−1/2

)

V n
k0

= ∆t
(

gn
k0−1/2 − gn

+

)

where gn
k0−1/2

is the numerical flux through the interface between the cells mk0−1

and mk0
at time tn. It is computed using classical schemes like the HLLE scheme or

the “polynomial” upwind scheme (see [6],[11]). Moreover, gn
+ is the numerical flux

through the interface, we set gn
+ = (0, (p

−
)
n

, (p
−

u
−

)
n
)
T
. Finally if Xn+1 ∈ mk0

,
that is if the plasma-vacuum interface did not leave the cell mk0

during the time

step, we set V n+1

k0
= Ṽ , else if Xn+1 ∈ mk0+1 we set V n+1

k0
= V n+1

k0+1
= Ṽ .

We compare simulations given by the two-fluids and the asymptotic models.
We use ∆x = 2.10−4, γ = 5/3, ε = 5.10−1, η = 10−4, λ = 10−3 and α = 1.
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Figures 1 and 2 are devoted to the study of the plasma between the cathode and
the interface X(t). Contrary to a classical fluid expansion in vacuum, in our case
the ionic fluid is slowing down. The interface velocity given by the asymptotic
model seems to be correct in a qualitative way. The values numerically used for
the momentum and energy fluxes p

−
and p

−
u
−

are here: βp
−

and βp
−

u
−

. The
parameter β has to be adjusted according to the two-fluids simulations. Here,
β = 0.5, note that without this correction the interface velocity given by the quasi-
neutral model is a little lower than that of the two-fluids model but is correct in
order of magnitude.

Figure 3 shows the electron dynamics in the beam. Plotting the electron
velocity, we can see that the acceleration of electrons from the interface to the
anode is well approximated by the Child-Langmuir law.

Figure 4 gives the electric potential computed from the Poisson equation on
the one hand and by the Child-Langmuir model on the other hand. We can observe
that the potential is equal to zero between the cathode and the interface, which
justifies the quasi-neutral approach. We also show ( right picture) that considering
a constant Child-Langmuir current in the gap between X(t) and the anode is a
good approximation.
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Figure 1. Densities and speeds of the ionic fluid given by the 2-
fluids model compared to those given by the quasi-neutral model:
values observed between the cathode x = 0 and the interface at
times t = 0.04τ , t = 0.08τ , t = 0.12τ .
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C. R. Acad. Sci. Paris, 335 (2002), 399–404.

[5] P. Degond, C. Parzani, M.H. Vignal, One dimensional modeling of plasma expansion

in vacuum, in preparation.

[6] P. Degond, F. Peyrard, G. Russo, Ph. Villedieu, Polynomial upwind schemes for

hyperbolic systems, C. R. Acad. Sci. Paris, 328 (1999), 479–483.



10 P. Degond,C. Parzani,M.H. Vignal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

Distance cathode-anode

E
le

ct
ri

c
p
ot

en
ti

al

Poisson
Child-Langmuir

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

cu
rr

en
t

neue(x = 1)
jCL

Figure 4. Electric potential computed on the one hand by the
Poisson equation, on the other hand by the Child-Langmuir
model: values observed between the interface and the anode x = 1
at times t = 0.04τ , t = 0.08τ , t = 0.12τ (left picture). Electronic
current at the anode given by the Child-Langmuir model and by
the 2-fluids model (right picture)

[7] P. Degond, P.A. Raviart, An Asymptotic Analysis of the One-Dimensional Vlasov-

Poisson System: the Child-Langmuir Law, Asymptotic Analysis, 4 (1991), 187–214.

[8] I. Gasser, L. Hsiao, P.A. Markowich, S. Wang, Quasineutral limit of a nonlinear drift

diffusion model for semiconductors, J. Math. Anal. Appl., 268 (2002), 184–199.

[9] E. Godlewski, P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Con-

servation Laws, Springer, 1996.

[10] H. Sze, J. Benford, W. Woo, B. Harteneck, Dynamics of a virtual cathode oscillator

driven by a pinched diode, Phys. Fluids, 29 no 11 (1986), 3873–3880.

[11] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer,
1999.

MIP,UMR 5640
University Paul Sabatier Toulouse 3,
118, route de Narbonne
31062 TOULOUSE cedex, FRANCE
E-mail address: {degond,parzani,mhvignal}@mip.ups-tlse.fr


