PLASMA EXPANSION IN VACUUM: MODELING THE
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Abstract. We consider a system consisting of a vacuum gap delimited by two electrodes. A
quasineutral plasma (ions and electrons) is injected from the cathode and expands. Electrons are
emitted from the plasma-vacuum interface to the anode forming a beam. In this paper, from a two-
fluid isentropic system coupled with the Poisson equation, we perform a formal asymptotic analysis.
This leads to a quasineutral model for the plasma region and a Child-Langmuir model for the beam
region. The main point of the analysis is the connection between these two models. This is done by
studying a transmission layer problem. Finally, we numerically show the accuracy of the asymptotic
model comparing it to the original two-fluid one.
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1. Introduction. In this paper, we are interested in the modeling of a quasineu-
tral plasma expansion in the vacuum gap separating two electrodes. A high density
quasineutral plasma, constituted of ions and electrons, is emitted from the cathode.
This plasma undergoes a thermal expansion and simultaneously, electrons are ac-
celerated from the plasma-vacuum interface towards the anode, forming an electron
beam in the vacuum. The gap between the plasma-vacuum interface and the anode is
diminishing with time, thereby increasing the emitted electron current in the beam.

By a formal asymptotic analysis of the two-fluid Euler-Poisson model for the
electrons and the ions, we propose an asymptotic model which consists of a quasineu-
tral one-fluid model for the plasma region and a Child-Langmuir type model for the
beam. The main difficulty is to connect these two models through the moving plasma-
vacuum interface. For this purpose, we introduce a transmission problem which views
the plasma-vacuum interface at the microscopic level as a travelling-wave solution of
the two-fluid Euler-Poisson model. From the transmission problem, we deduce con-
nection relations between the plasma and the beam. We validate these relations by
numerical comparisons between our model and the original two-fluid Euler model.

We study this phenomenon in relation with two physical applications. The first
one concerns the development of plasma diodes (see e.g. [37]). In this case, the
plasma is used to increase the beam current as compared with conventional plane
parallel diodes which are limited by the Child-Langmuir law [10], [17]. The second
one concerns the appearance of electrical discharges on satellite solar cells. In this
case, the model can be used to describe the discharge to arc transition phenomenon
(see [4], [19] for more detail).

The starting point of the modeling is a one-dimensional isentropic Euler system
for each species (ions and electrons) coupled with the Poisson equation. In the plasma
region, electrical effects occur on very short space scales, of the order of the Debye
length. Hence, in numerical simulations, the space discretization of the Euler-Poisson
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model must resolve the Debye length, otherwise numerical instabilities develop. In
our case, due to the large density in the plasma region, the Debye length is very
small, which makes numerical simulations of the two-fluid model virtually impossible
in practical cases. Therefore, the two-fluid Euler-Poisson model cannot be used for
practical purposes.

For this reason, starting from the two-fluid system and using a convenient scaling
of the equations, we derive a quasineutral model describing the plasma as a single
fluid. This derivation is based on a formal asymptotic analysis. The noticeable point
of our approach is that the plasma current is not supposed equal to zero, contrary
to standard approaches. This is necessary to account for electron emission at the
plasma-vacuum interface and the formation of the beam.

In the beam region, the quasineutrality hypothesis is obviously inadequate, since
only one species (the electrons) is present in this region. Additionally, we expect that
the self-consistent electric field plays an important role. Therefore, to analyze the
beam region, we return to the Euler-Poisson problem and introduce different scaling
assumptions. This new scaling allows to derive a Child-Langmuir type model. This
model is a stationary pressureless Euler-Poisson model, and has analytic solutions.

The device is then divided in two zones which need to be connected through ade-
quate transmission conditions. This is delicate because different scaling assumptions
are used in the two zones, and none of the two models is appropriate to describe
the region close to the interface. In addition, numerical simulations of the two-fluid
Fuler-Poisson model show that, contrary to a classical fluid expansion in vacuum, the
plasma region is bordered by a shock. This is due to the counter-pressure exerted
by the acceleration of the electrons onto the plasma. This counter pressure must be
properly evaluated in order to correctly describe the interface motion. To this aim,
we introduce and analyze the transition region as a traveling-wave solution of the
two-fluid Euler-Poisson model, which connects on the plasma side to the quasineu-
tral model and on the beam side, to the Child-Langmuir model. With the help of
this transition model, we are able to propose convenient transmission conditions be-
tween the plasma and beam model, which make the overall system (at least formally)
well-posed. One of these conditions relates the plasma current to the electron beam
current. The other condition is nothing but Bohm’s sheath criterion [3], [30] when
the electron beam is viewed as a sheath. This condition tells us that the electrons
must enter the beam region with supersonic speed.

This work is a continuation of earlier work [13], [15]. In these works, the same
methodology was used but the plasma quasineutral model was current-free and the
counter-pressure exerted by the electrons onto the plasma was concentrated at the
interface. In the present paper (see also a summary in [14]), the major difference is
that the quasineutral model for the plasma is a current-carrying one and that the
connection relations between the plasma and the beam region are supported by the
analysis of the transmission problem. The numerical simulations show an excellent
agreement with the original two-fluid Euler-Poisson model, which the earlier models
did not achieve (see section 4.2). There is still a slight discrepancy between the two
models near the cathode. This difference certainly results from the presence of a
boundary layer at this point. The boundary layer analysis which would allow to
clarify this point is beyond the scope of the present work. It is important to note
that this boundary layer does not damage the quality of the results in the rest of the
domain. Indeed, the asymptotic and two-fluid models give similar results in the core
of the plasma region as well as in the beam region.
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The mathematical theory of the Euler-Poisson system has been investigated in
[29], [5] and more recently, in [20]. Quasineutral limits have been investigated in [8]
and [35] for the Euler equations and in [25], [28], [22] for the drift-diffusion model.
One of the first references on the Child-Langmuir law is [26]. Its mathematical aspects
have been studied in series of paper (see e.g. [17], [18], [1], [11], [12] and the review
[10]). The travelling-wave transition problem bears similarities with the shock profile
problem studied in [6] and [7]. The physical problem studied here has strong analogies
with the ion sheath problem, which have received much interest [21], [30], [31], [32],
[33], [34], [36], [2], [24] and references therein. The question of boundary conditions
at sheath edges has been numerically investigated in [27].

The paper is organized as follows. In Section 2, we introduce the two-fluid Euler-
Poisson model and the scaling. In Section 3, we present the asymptotic model, leaving
the proof of technical points to section 5. In Section 4, we numerically validate the
asymptotic model comparing it to the original two-fluid one.

2. The two-fluid Euler-Poisson model. We consider two electrodes sepa-
rated by a vacuum gap of size L, with the cathode located at x = 0 and the anode
at ¢ = L. A potential difference ¢y is applied between these two electrodes. A
quasineutral plasma constituted of one single charged species of ions and of electrons
is injected at the cathode.

The electrons of mass m., of charge qo = —q are described by their density n,
and their velocity u.; the ions of mass m;, of charge ¢; = +¢q by n; and u;. Assuming
the adiabaticity for each species, the pressure laws are given by p,(ne) = ca(na)?,
a = e, i, where v > 1 is the ratio of specific heats and ¢;, ¢, are given constants.

We consider the one-dimensional isentropic Euler system. Thus, n., n;, u. and
u; satisfy, for all t > 0, z € [0, L] and a = i, e:

(na)t + (naua)z =0, (2.1)
Ma((Nata)r + (naui)z) + (Pa)e = qana E .

The electric field E = —¢,, is given by the Poisson equation

_50¢wm = Q(ni - ne) . (23)

where ¢ is the vacuum permittivity.

At the beginning of the process, there is no plasma in the gap. Therefore, the
initial conditions are given by n;|i—o = nelt—o = 0 in [0, L], and w;|t—o, ue|t—o are
undefined. We assume that a quasineutral plasma is emitted from the cathode with
the same velocities for the two species. So, the boundary conditions for (2.1), (2.2)
are

nila):O = ne|:c=0 =MNyg, ui|w=0 = ue|w=0 =Uo, (24)

on R, where ng is the density of the injected plasma and wug its velocity. For a
hyperbolic system, the number of boundary conditions which can be prescribed de-
pends on the number of incoming characteristics. So, (2.4) should be understood as
follows: suppose we introduce a discretization of (2.1), (2.2) by means of a Godunov
scheme. Then, (2.4) will be used to compute the flux of the Riemann problem across
the domain boundary.

Setting the origin of potential at the cathode, the boundary conditions for the
Poisson equation are given by

Ple=0 =0, @le=r = ¢ >0, (2.5)
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where ¢, is the cathode potential.

We now introduce a scaling of system (2.1)-(2.3). Let us choose the size of the
device L as characteristic length, the density ng and the velocity ug of the emitted
plasma at the cathode as characteristic density and velocity respectively, the time
7 = L/uy, the emitted ion pressure py = nom;uZ and the anode potential ¢, as char-
acteristic time, pressure and potential respectively. We introduce three dimensionless
parameters:

2
g = %, n= M, A= 60¢L2 = q¢L N1 (26)
m; aL arol?  ¢*/(eo (no L?)71)
respectively measuring the electron to ion mass ratio, the ratio of the thermal energy
of the plasma to the applied potential energy and the ratio of the applied potential
energy to the typical self-consistent potential energy. The scaled variables are defined
by %, t, ¢, Ra, Ge and P, where x = LE, ¢ = ¢ro, Ng = Nolla, Ua = Uolla and
Pa = PoPe- Then, omitting the bars, we get the scaled version of the two-fluid Euler-
Poisson system posed on [0, 1]:

(ni), + (niu;), =0, (2.7)
(nzuz) (TL,'LL + Di (nz)) = _n_lni¢w ) (2.8)
ne) (neue) =0, (2.9)
€ ((neue) + (neug)w) + (pe(ne))w = n_lne¢z > (2.10)
—Apze =N — N, (211)

with the following dimensionless boundary conditions:
nz’lq::O = ne|z:0 = ]-7 uz’|z=0 = Ue|z=0 = 17 ¢|z=0 = 07 ¢|z‘=1 =1. (212)

We are interested in the situation where X is of order 1 and 7 very small. These
values agree with those observed in some high current diodes (see [37]). In practice,
€ is small, but cannot be neglected. Indeed, although the inertia of the electrons is
small, they undergo large accelerations. Therefore, ¢ will be considered as an O(1)
quantity.

The numerical resolution of the two-fluid model (2.7)-(2.11) presents a very re-
strictive constraint related to the coupling with the Poisson equation. Indeed, the
dimensionless Debye length Ap = (ggm;u?/(¢*noL?))'/? = (n\)/? is the scale length
of electrostatic interactions in the plasma. It is a well established fact in the physics
literature that the space discretization Az must satisfies Az < Ap for a numerical
scheme to be stable. Therefore, for small 7, a very fine mesh is needed to solve the
problem, which is a very severe constraint for practical cases of interest. In order to
bypass this numerical restriction, we investigate the limit 7 — 0 of this model. This
program is performed in the next section.

3. The asymptotic model. We now present the asymptotic model obtained
when 7 — 0 in (2.7)-(2.11). In this section, we concentrate on the main steps of this
derivation and defer technical proofs to section 5. The asymptotic model is constituted
of a quasineutral model for the plasma region and a Child-Langmuir law for the beam
one.

At time ¢t = 0, both the electron and ion fluids are going to penetrate into the
diode. Because of the adiabatic law with v > 1, the interface of each fluid with the
vacuum is moving with finite speed. Let us denote by X, (¢) and X;(¢) the positions
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of the electron-vacuum and ion-vacuum interfaces. Since the electrons are accelerated
towards the anode by an electric field of order O(1/7), n < 1, the electron-vacuum
interface X,(t) is going to reach the anode z = 1 after a very short transient. We
shall neglect this transient and suppose that X.(t) = 1 as soon as t > 0. On the other
hand, X;(t) stays inside the gap (0,1). As n — 0, we assume that X;(¢t) = X (¢). The
quasineutral model corresponds to the limit 7 — 0 in the interval [0, X (t)], where
both fluids are present, while the Child-Langmuir model describes the electron fluid
in the beam [X (), 1].

3.1. The plasma region. The quasineutral plasma model is obtained as the
formal limit 7 — 0 in (2.7)-(2.11) in the interval [0, X (¢)].
PROPOSITION 3.1. We denote by n?, n}, ull, u], ¢" the solutions of the two-fluid
Euler-Poisson model (2.7)-(2.11). In [0, X (t)], the formal limit n — 0 gives:
ng,n] —-n, ul »u, ul s>u—j/n, ¢"—>0

where n, u, j and ¢ are solutions to the following quasineutral Euler model with
non-zero current:

ng+ (nu); =0, j,=0, ¢=0, (3.1)
(1+¢) ((nu)t+(nu2)z) + (pi(n)+pe(n)), +¢ (—2uj+%> =€j, (3.2)

The (formal) proof of proposition 3.1 is deferred to section 5. The quantity j is
the plasma current and is the limit of n]'u; —nu?l. Its value is unknown at this stage
and will be specified further. The formal proof does not ensure that the boundary
conditions (2.12) are kept. We shall assume that this holds true for n and w:

n|z:0 =1 , u|w:0 =1. (33)

Note that, if j # 0, the boundary conditions for u? is lost in the limit, since ue|z=0 =
1—j # 1. This is due to the appearance of a boundary layer at the cathode (see
Figure 4.8). The study of this boundary layer is deferred to future work.

In (3.2), the additional flux term e(—2uj + j2/n), is a reaction term due to the
electron acceleration. If j # 0, the system (3.1)-(3.2) is strictly hyperbolic if and only
if the plasma density n satisfies n > ng(j) with

» 1/(v+1)
) . (3.4)

N €J
() = ((ci +ce)y(1+¢)

In the domain of hyperbolicity n € [ng(j), 00), the characteristic velocities are given
by

T R 1 GRS LY i
* T+e Avern®) -

- 1+4+e)n

Since, there is no ion mass flux through the interface X (t), the plasma interface
must move with velocity wu:

dxX
= = u(X(0),1). (3.5)
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Now, we look at how many boundary conditions we must impose to the quasineutral
model (3.1)-(3.2) at « = X (¢). In a frame moving with the plasma-vacuum interface,
the boundary becomes fixed and the hyperbolic problem has eigenvalues | — u and
l+ — u. We shall be considering cases where 7 < 0. Indeed, electron emission at the
plasma-vacuum interface requires that electrons are accelerated to velocities larger
than the ion ones, thereby leading to a negative current. Then, obviously, I +u > 0
and the corresponding characteristic field is outgoing relative to the domain [0, X (¢)].
Now, an easy computation shows that [_ —u > 0 if and only if n < np(j) where

5\ (D)
) > nu(j). (3.6)

. €j

np(j) = ———

0= (@ien

Therefore, if n > np(j), we must impose one additional boundary condition at the

interface, while if ng(j) < n < np(j), no additional boundary condition is neces-

sary. The determination of the additional condition when n > np(j) will require the
analysis of the transition problem (see below).

3.2. The beam region. In the beam region [X (), 1], there are no ions and the
electron fluid satisfies a one-fluid Euler-Poisson system, which is deduced from the
two-fluid one by letting n; = 0:

(ne)t + (neu6)w = 07 _)‘(ﬁzz = TN, (37)
€ ((neue)t + (”eug)z) + (pE(ne))z = Tflne% ’ (3-8)

Since the anode electric field is of order O(1/7), electrons are accelerated to large
velocities. To estimate this velocity, we let the electron kinetic energy eu? be of the
order of the applied potential energy (1/1)¢|z=1 = 1/n. Then, in the beam, u, reaches
values of the order of 1/,/n > 1. Therefore, the appropriate scaling to describe the
beam is not the same as for the plasma and we need to rescale the electron velocity.
We set ue = (en) 21, in (3.7)-(3.8). We obtain the following system on [X (), 1]:

M(ne)t + (neﬂe)m =0, _/\(bzz = T, (39)
€ (\/‘% (neue)t + (neaz)w) +en (pe(ne))z =ENehs, (310)

where the boundary conditions at = X (¢) are such that ne, %., ¢ match the values
of the corresponding quantities for the 2-fluid Euler-Poisson model in the plasma
region. Note that since ue = O(1) in the plasma region, we have Ue|,—x() =
(en)?ue|,=x ) = O((en)'/?) — 0 as p — 0. Similarly, since ¢ — 0 in the plasma
region, we have ¢|,—x ) — 0 as n — 0. Finally, we recall that ¢|,—1 = 1.

Let us denote by n?, u?, ¢" a solution of system (3.9)-(3.10) with the above
specified boundary conditions. The limit n — 0 is analyzed in the following:

PROPOSITION 3.2. . Asn — 0, nl, @l, ¢" converge to n., ., ¢, a solution of
the Child-Langmuir problem on [X (t),1]:

(nette), =0, (neﬁg)w =Ne@y, —APpz = —TNe, (3.11)
with the following boundary conditions
Uelo=x(t) =0, Blo=x@) =0, @lo=1=1. (3.12)

Denote by jo = netie. Then, je is independent of x on [X(t),1]. We introduce the
Child-Langmuir current:

44/2)

X (3.13)

jor(t) =
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Then, for any value j. € [0,jcor(t)], there exists a unique solution n., te, ¢, with ¢
strictly positive on (X (t),1], given by n. = j./v/2¢, 4. = v/2¢. The potential ¢ is
implicitly determined by

(z)
/ ’ dy - X)), (3.14)
o \Ju 22N

where p is determined such that @|,—1 = 1 or equivalently, such that (3.14) holds
with * = 1 and ¢ = 1. In particular, for j. = jor(t), we have p = 0 and ¢ =
((x — X)/(1 — X))*3. There is no solution for j. € [0,jcr(t)].

The formal proof of the convergence of the solutions of system (3.9)-(3.10) towards
those of system (3.11) is obvious. That the solutions of (3.11) are given by (3.14) is
classical. We refer the reader for instance to [17].

We note that p = (¢z)|s—x¢). We have p € [0,1/(1 — X)]. Indeed, p cannot
become negative because ¢ has to stay positive. Similarly, if 4 > 1/(1 — X), then the
potential cannot remain a convex function and match the boundary condition ¢ =1 at
z = 1. But, if ¢ becomes concave, this means that n. is negative, which is forbidden.
Relation (3.14) (for z = 1 and ¢ = 1) defines a one-to-one, onto mapping p — J.
which is a decreasing function from [0,1/(1 — X)] to [0, jcr(t)]. Going back to the
scaling used for the quasineutral model, the electron flux j. and the Child-Langmuir
current jor are given by je, jor = (€n) " Y?je, jor-

The Child-Langmuir problem has been thoroughly analyzed in the literature (see
e.g. [10], [17]).

3.3. The transition region. Now, the key point of the modeling consists in
connecting the quasineutral model (3.1)-(3.2) with the Child-Langmuir one (3.11).
So far, none of the two models is closed because certain data are still to be specified.
These lacking relations are: the value of the current j and the additional boundary
condition(s) at x = X (¢) for the quasineutral model (see the discussion at the end
of section 3.1) and the value of the electron flux j. for the Child-Langmuir model.
We recall that the plasma boundary X (t) moves with the velocity u according to
(3.5). The values of j, j. and the additional boundary condition at z = X (t) is found
through the analysis of a transmission problem and will connect the two models.

The transmission layer problem is deduced from the original two-fluid model by
stretching the space variable about the plasma-vacuum interface. We change the
position variable z to the stretched variable ¢ = (z — X (t))/n'/? and we let n(z,t) =
fie(£,t) and similarly for n;, u. and u;. The potential is rescaled according to ¢(z,t) =
ne(&,t). Inserting this change of variables into (2.7)-(2.11) and denoting by o = dX/dt
the interface velocity, we get (dropping the tildes for simplicity):

n'?(ni), + (ni(ui — 0))¢ = 0, (3.15)
1/2 (niui), + (ngui(ui — 0) + pi(ni))e = —nige (3.16)
"2 (ne)y + (ne(ue — 0))e =0, (3.17)

en'/? (neue), + (Encue(ue — o) + Pe(ne))e = mede (3.18)
—APgz = Ni — Ne, (3.19)

Neglecting terms of order O(5'/?), we obtain the following travelling-wave problem
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for the two-fluid Euler-Poisson problem:

(ni(u; — 0))" =0, (3.20)
(nju;(u; — o) +pi(ni))' = —n;¢, (3.21)
(ne(ue —0))' =0, (3.22)
(enetie(ue — 0) + pe(ne)) = ned', (3.23)
—-A¢" =ni —ne, (3.24)

where primes denote &-derivatives for simplicity.

We look for solutions of this travelling-wave problem which reconnect to the
solutions of the quasineutral model on the left-hand side, i.e. for £ - —oo and to
the solutions of the Child-Langmuir problem on the right-hand side, i.e. for £ —
00. Additionally, since the interface is located at & = 0, we let n; = 0 for £ > 0.
Furthermore, we demand that n; be continuous at £ = 0. Indeed, the ion fluid in the
two-fluids Euler-Poisson model is an ordinary fluid. For an ordinary fluid, we know
that no shock can border the vacuum [38], otherwise the Rankine-Hugoniot condition
for the momentum equation cannot be satisfied across the interface. Therefore, we
must disregard solutions of the transition problem for which n; exhibits a discontinuity
at the interface £ = 0.

The boundary conditions are, for £ - —oo:

Ni,Me >Ny U U, U —U_—F/Nn_, ¢,Pe—0, (3.25)

where we denote by n_ = n|xu)—0, u- = u|x()—o the limit values taken by the
solution of the quasineutral model at the interface, and j is the plasma current of the
quasineutral model.

For £ — 00, u, must reconnect to the Child-Langmuir velocity, which is large of
the order O(n~1/2), because of the change of scale in the beam region (see discussion
at the beginning of section 3.2). Therefore, for £ — 0o, u, ~ 1~ 1/2 while ¢ is of order
O(1). We deduce that ne(ue — o) ~ neu. as §£ - oo and the reconnection to the
Child-Langmuir region implies therefore that

Ne(Ue —0) = Je, as&— oo, (3.26)

where j. is the electron flux of the Child-Langmuir problem. Finally, we shall be
looking for a solution such that n. is bounded as £ — oo, otherwise the travelling-
wave solution cannot be used to reconnect the two models.

Now, for the existence of solutions of travelling-wave solutions, we have the fol-
lowing

ProprosITION 3.3. Let 0, n_ > 0, u_, j and j. by given. Let us suppose
additionally that v > 2. Then, there exists a (smooth or unsmooth) solution to the
travelling-wave problem (3.20)-(3.24), satisfying (3.25) for & - —oo, (8.26) for & —
400, and such that n. is bounded, n; = 0 for £ > 0, and n; is continuous across
& =0, if and only if the following relations hold:

j==Jes u-=0, n_€nu(j),neri)], (3.27)

where ng(j) and np(j) are given by (3.4) and (3.6).
This proposition is proved in section 5. The condition v > 2 is a technical one.
It can probably be removed at the expense of more analytical work.
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Egs. (3.27) provide some of the closure relations which connect the plasma and
the beam models, but not all of them. That u_ must be equal to ¢ is obvious. It is
just a rephrasing of (3.5) and states that there is no ion flux through the interface.
The two other relations of (3.27) are more informative. The first one says that the
plasma current of the quasineutral model must be equal to the electron flux in the
beam region (up to a sign, due to the definitions of these quantities). However, it
does not provide the exact value of this current. From the Child-Langmuir problem
(see proposition 3.2), we know that 0 < j. < jor-

The last relation (3.27) provides an inequality constraint for the boundary con-
dition at x = X(t) of the quasineutral model. In view of the discussion at the end
of section 3.1, if n_ < np(j), no additional condition at X (¢) is necessary since then,
the fluid is supersonic. Therefore, condition (3.27) fully determines the boundary
conditions for the quasineutral model at the interface. This condition is nothing but
the Bohm sheath criterion when the beam region is viewed as a sheath (see e.g. [3],
[30] and the bibliography on plasma sheaths given in the introduction).

In order to close the model, we now have to assign a value to j. = —j € [0, joL],
since this value cannot be found from the formal asymptotic analysis. Based on our
numerical experiments, we shall assume the following:

44/2)

TS ik (3.28)

je = —j = jor = (en) /2

3.4. The asymptotic model: summary. We now summarize our asymptotic
model for the plasma expansion problem. It consists of:
(i) The quasineutral model (3.1)-(3.2) on [0, X (¢)] with boundary conditions (3.3) at
z =0;
(ii) The Child-Langmuir model (3.11) on [X (¢), 1] with boundary conditions (3.12);
(iii) Eq. (3.5) for the motion of X (¢);
(iv) Eqgs. (3.28) which specifies the value of the currents in the quasineutral and Child-
Langmuir models and the third condition (3.27) which constrains the limit value of n
at the interface X (¢) for the quasineutral model.

4. Numerical simulations .

4.1. Numerical method. In this section, we present the numerical methods.
We shall concentrate on the resolution of the asymptotic model (section 3.4). A few
remarks about the two-fluid Euler-Poisson model will be made at the end of this
section.

First, we write the quasineutral model (3.1), (3.2) in conservative form:

W, + F(W), = S (4.1)

where W = (n,nu)”, F(W) = (nu,nu” + (1 +¢€) ' ((p; +pe)(n) +e(—2uj + 5% /n)))"
and S = (0, (1 +¢) tejy)T.

We define a uniform grid of size Az on the spatial domain [0, 1] with K cells
My =]Tp—1/2,Tp41/2[, k = {1...K'}. Let At be the time step, we set t" = nAt for all
n € N. Let us assume that a piecewise constant approximation of the system (4.1) is
given. Thus, we denote by W} the approximation of W on M}, x [t",t"![ and we use
a finite volume method [23], [38]. We assume that at time ¢", the interface position
X™isin My,4+1. We use a Godunov type solver subject to a CFL stability condition.
Thus, on the cell My,;1, At should be of the order of (X™ — 2,_1/2) which can be
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tn—|—1 Xn—|—1
tn
To—1/2 Thot1/2 X" Trets/e

Fig. 4.1. Last cell of the mesh: MIEO

very small. For this reason, we rather define Mj , the last cell filled by the plasma,
as the union of My, and My, 41 (see figure 4.1). Moreover, we assume that WI-Z) is
the approximation of W on [z, _1 /2, X"] where we recall that 2,1/, is the interface
between the cells My,_1 and Mj,.

Now, let us describe the discretization of the system (4.1). The first step consists
in defining the interface motion. From (3.5), the interface position at time ¢"*! is
approximated by X"t = X™ 4+ At @", where the interface velocity @™ is computed by
solving a Riemann problem, i.e. by solving (4.1) with a piecewise constant initial data
Wp = Wi’o if < 0, and W2 = (0,0)7 if £ > 0. Therefore, we have to specify how
we solve this Riemann problem, and in particular, how we enforce the third condition
(3.27).

Suppose first that n? < n% := np(j™), where np is given by (3.6). Then the
solution of the Riemann problem is just the constant state W[ separated from the
vacuum Wg by a shock moving with speed u}. If n7 > n}%, the solution of the
Riemann problem involves a rarefaction wave associated with the first characteristic
field connecting n} to n. The state associated with n’ in this rarefaction wave has
velocity denoted by wy,. Then, the rarefaction wave is directly followed by a shock of
velocity v} which relates the state (n’5, u?l) to the vacuum Wg.

Next, we make a few remarks about the finite volume method to solve (4.1).
We have used, either the HLLE scheme [38] or the polynomial upwind scheme [16].
This is a standard point, except for the treatment of the last cell. For that pur-
pose, we use an integration of the system (4.1) on the trapeze T defined by the
pOil’ltS (mkofl/% tn)a (Xna tn)a (Xn+17 tn+1)> (wko—1/27tn+1)- The flux a‘long [(Xnatn)a
(Xn+t ¢n+1)] is computed from the exact solution of the Riemann problem as devel-
oped above.

The last step of the numerical method concerns the treatment of the source term
S in (4.1). Since the component of S on the mass conservation equation is 0, we can
update the plasma density first. We also compute the interface position at X™*+1 at
time ¢"*! because the knowledge of @” only requires the knowledge of the solution at
time t". From X"t!, using (3.13), we compute j7t! := j(¢"*!). Then we can update
the plasma velocity with a semi-implicit treatment of the source term. It turns out
that such a semi-implicit treatment greatly improves the stability of the scheme.

The numerical simulation of the two-fluid Euler-Poisson model is straightforward.
We use the same treatment of the interface, just replacing the Riemann solver by an
exact solver for the Euler equation when one of the states is the vacuum [38]. The
treatment of the source term in the momentum equation (which now depends on
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the electric field through the resolution of the Poisson equation) is done in a similar
implicit way: again, we exploit the fact that there is no source term in the mass
conservation equations.

4.2. Numerical results. In the first simulation corresponding to Figures 4.2,
4.3,4.4, 4.5 and 4.6, we compare the asymptotic model with the original two-fluid one.
For the problems we have in mind, namely the plasma diode problem, the physical
values of the parameters should be v = 2, A ~ 1072, ¢ ~ 5.107* and 5 ~ 1075, In this
simulation, we rather use ¢ = 5.107!, 7 = 10~* essentially because of the numerical
problems occurring during the simulation of the two-fluid model.

Figures 4.2 and 4.3 show the density and velocity for the ions and the electrons
respectively in the plasma region, i.e. between the cathode and the interface X (t). The
present asymptotic model leads to the right interface velocity and the right density
and velocity profiles.

Figure 4.4 displays the electron density and velocity in the beam region. The
singularity of the density profile close to the interface as well as the electron accelera-
tion from the interface to the anode is well approximated by the Child-Langmuir law.
On Figure 4.5 we compare the electrostatic potential given by the Poisson equation
and the one obtained by the Child-Langmuir law. We can see again that the beam
part is well modeled. Finally, on Figure 4.6 we compare the current computed from
the two-fluid model with the Child-Langmuir current computed with the asymptotic
model. The left figure displays the current as a function of x for three sampled values
of time. The right picture shows the anode current as a function of time. We can
see that the Child-Langmuir current gives a very good approximation of the two-
fluid current. The two-fluid model exhibits a current peak close to the interface.The
existence of this peak can be explained thanks to the solution of the transmission
problem. Indeed, the solution of the transmission problem satisfies (see section 5.2)
Ne(ue — 0) = je, ni(u; — o) = 0, where j. and o are constant with rapport to . Thus
J = niu; — neue = —je + (n; — ne)o. Therefore, j is, up to constant, proportional to
n; — ne. An analysis of the monotony of n; — n. as a function of x easily shows that
it has the same behaviour as that exhibited by the curves shown on Figure 4.6 (left).
The details are left to the reader.

_ 2-fluid: Iomns

— 2-fluid: Ions
,,,,,,, Quasineutral fluid

Density (arbitrary scale)

Velocity (arbitrary scale)

Cathode to anode distance Cathode to anode distance
F1G. 4.2. Densities and velocities of the ion fluid (2-fluid Euler-Poisson model) compared with

the asymptotic model. The values are observed between the cathode and the interface v = X(t) at
times t = 0.047,¢t = 0.077,t = 0.17, 7 being the time scale (see section 2).

In the second simulation corresponding to Figure 4.7, the physical parameters are
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I — 2-fluid: Electrons
— Quasineutral fluid

08

Density (arbitrary scale)

Cathode to anode distance

Velocity (arbitrary scale)

—— 2-fluid: Electrons
Quasineutral fluid

L L L L L L L L ),
0 005 01 015 02 025 03 035 04 045 05

Cathode to anode distance

F1G. 4.3. Densities and velocities of the electron fluid (2-fluid Euler-Poisson model) compared
with the asymptotic model. The values are observed between the cathode and the interface x = X (t)

at times t = 0.047,{ = 0.077,t = 0.17.

f—— 2-fluid: Electrons
Quasineutral fluid

Density (log. scale)

01 02 03 04 05 06 07 08

Cathode to anode distance

09

Velocity (arbitrary scale)

*r _ 2-fluid: Electrons
Quasineutral fluid

Cathode to anode distance

F1G. 4.4. Densities and velocities of the electron fluid (2-fluid Euler-Poisson model) compared
with the Child-Langmuir model: values observed between the interface © = X(t) and the anode z = 1

at times t = 0.047,t = 0.077,t = 0.17.

12r

L1 S

Electrostatic potential

2-fluid Euler-Poisson

Child-Langmuir

Cathode to anode distance

F1G. 4.5. Electrostatic potential computed from the Poisson equation of the two-fluid model and
from the asymptotic model at times t = 0.041,t = 0.077,¢t = 0.17.
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oo —— 2-fluid .
. . : — 2-fluid
————— Quasineutral fluid . .
ol S R Quasineutral fluid
qu 0.12
© -0.15 |
: - -0.14
& 0.2 —
| ” 0.16
e L &
§ -0.25 -0.18
JE -0.3r "S
[+] 8 -022
b 035 -
= 5 024
@)
o 0.1 02 03 0.4 05 06 0.7 08 0.9 1 0.05 0.1 0.15
Cathode to anode distance Time

F1G. 4.6. Left picture: current as a function of distance at time t = 0.047, t = 0.077 and
t = 0.17. Solid line: current j of the two-fluid model; dashed line: Child-Langmuir current jor of
the asymptotic model. Right picture: anode current j(1) as a function of time. Solid line: two fluid
model; dashed line: quasineutral model.

still ¥ = 2, A = 1072 and n = 10~* but we reverse the role of the electrons and the
ions. Rather than reversing the anode potential, we change the mass ratio to e = 2,
which is the reciprocal of the previous value of £. On Figure 4.7, we can observe that
the behaviour is about the same as in the previous simulation, which shows that the
model is quite insensitive to the value of ¢.

1200

— 2-fluid: ions — 2-fluid: electrons

,,,,, Quasineutral fluid w . Quasineutral fluid

Density (arbitrary scale)

Velocity (arbitrary scale)

Cathode to anode distance Cathode to anode distance

Fi1G. 4.7. Behaviour of the 2-fluid Euler-Poisson model when € = 2 in comparison with the
asymptotic model at time t = 0.057, t = 0.17, t = 0.157, t = 0.27: ion and quasineutral densities
(left picture); electron and Child-Langmuir velocities (right picture)

In the third simulation (Figures 4.8 and 4.9), we study the behaviour of the
solution of the two-fluid system when the dimensionless parameter 7 varies. We
consider v =2, & = 5.107!, A = 10~3. Figure 4.8 shows the plasma region on the left
and the beam region on the right. We see the effect of the electron acceleration on the
plasma motion. We notice that the electron acceleration to the anode is increasing as
7 decreases to 0 due to the factor 1/n in the source term of the momentum equation
of the two-fluid system. Moreover, the faster electrons are in the beam, the slower
the plasma motion is. That is why the plasma region cannot be well-described by
a standard quasineutral limit. This effect is taken into account in the asymptotic
model through the additional pressure term in (3.2). Figure 4.9 is a zoom-in near the
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cathode of the left picture of Figure 4.8. We can remark the existence of a boundary
layer at the cathode which results from the loss of a boundary condition in the limit
17 — 0. Indeed, in the two-fluid model, the electron velocity equals 1 at the cathode
when in the asymptotic model it equals 1 — j/n < 1. Note that the width of this
boundary layer is a decreasing function of 7, as it should.

250

"
— — 2-fluid: Electrons
L P i . |
: = ﬂm.d. it . g | Quasineutral fluid
o Quasineutral fluid Q o
o)
et
<
~— 1501
>
&
o
2 100+
4
g 7
8 -
-~ 50 i
5 n=10""2
<3| —
0

Ton density (arb. scale)

L L L L L L L L L ) = v . . . v
0 005 01 015 02 025 03 035 04 045 05 0 o1 02 03 04 05 08 o7 08 09

Cathode to anode distance Cathode to anode distance

F1G. 4.8. Ion density in the plasma region (left picture) and electron welocity (right picture):
comparison between the Euler-Poisson and quasineutral models (right picture) for n = 1072, n =
1073, n =10"% at time t = 0.17

— 2-fluid: Ions
7777777 Quasineutral fluid

Ton density (arb. scale)

o 0.01 0.02 0.03 0.04 0.05 0.06

Cathode to anode distance

F1G. 4.9. Zoom-in near the cathode of the ion density: comparison between the Euler-Poisson
and quasineutral models forn =10=2, n =103, n = 10~* at time t = 0.17

In the fourth simulation (Figure 4.10), we look at the asymptotic model when
1 becomes smaller. Figure 4.10 shows the plasma region on the left picture and
the beam part on the right picture. We note that contrary to the two-fluid model,
the asymptotic model allows simulations of the plasma expansion even for physically
realistic values of  (in our case, n ~ 1076).

Let us note that in the two-fluid model simulations, we use a space step Az <
2.10~* with a CFL coefficient equal to 0.8. In those of the asymptotic model, Az =
103 is sufficient. Thus, the limit model gives a good approximation of the original
two-fluid model with a lower numerical cost. However, our numerical method breaks
down outside the domain of hyperbolicity of the system (3.1)-(3.2) i.e. when the
density becomes smaller than ng defined by (3.4). However, numerically, the solution
can actually leave the domain of hyperbolicity. Indeed, on Figure 4.11, at time ¢t =
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F1G. 4.10. Density in the plasma region and velocity in the beam part both given by the asymp-
totic model for n = 10=%, n =10=5, n = 106 at time t = 0.117
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2@( ions

o
N

e
=
T

%

nH

Density (arb. scale)

0.051-

0 L L L L L L L L L )
0.25 0.26 0.27 0.28 0.29 03 0.31 0.32 0.33 0.34 0.35

Cathode to anode distance

Fi1G. 4.11. Plasma density at time t = 0.116 7 when the hyperbolic condition breaks down in the
quasineutral model with parameters: 1 =104, A= 1073 and ¢ = 0.5.

0.116 7, we compare the density given by the quasineutral model (3.1)-(3.2) with the
analytic value of ng (3.4) computed from the plasma-vacuum position. In the last cell
before the interface, at the plasma front, the hyperbolicity condition is not satisfied
by the quasineutral model and the numerical program is stopped. This problem does
not depend on the mesh size or the stability condition. Moreover, as shown on Figure
4.11, the solution of the original two-fluid system is not in the domain of hyperbolicity
of the quasineutral model. Thus, for greater times, we are not able to compute the
solution of the asymptotic model. Future works dealing with new models for the
quasineutral region are in progress in [9] in order to improve these results.

5. Proofs.

5.1. Proof of proposition 3.1. For > 0, let us denote by X/'(¢) the position
of the ion-vacuum interface at time ¢. Then X (t) = sup{z € [0,1]; n](y,t) > 0, Vy €
[0,z]}. Of course, X;'(t) — X (t) as n — 0. We suppose that in [0, X (¢) — 4], where
6 > 0 is an arbitrary small number, the unknowns of the system (2.7)-(2.11) can be
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expanded according to the following (Hilbert) expansion:
ng($,t) = na('r:t) + nna,l(x7t) o,

and similarly for 4 and ¢". Note that we exclude the occurrence of oscillations at any
period tending to zero with 7. This is a strong restriction, since it is believed that the
quasineutral limit might be an oscillatory one. However, our numerical comparisons
(see section 4) do not indicate the presence of such oscillations and we discard them
here. Inserting the Hilbert expansion into (2.7)-(2.11) we obtain, at leading order:

(i)t + (niti)e =0, (ne)s + (nette)z = 0, (5.1)
nz¢w :0; ne¢z :07 _A¢zz:ni_ne (52)
and at order 1:
(niug) + (niu2 +pi(ni))e = —Ni1 Gz — ni(é1)z (5.3)
E((neue)t + (’I’Le ) ) + (pe(ne))z = Ne,1 ¢z - ne(¢1) (54)

Using the first two egs. of (5.2), we obtain ¢,(x,t) = 0, which, with the boundary
condition (2.12) at z = 0, leads to ¢ = 0 on [0, X(t) — 6]. Then, from the third eq.
(5.2), we deduce that n; = n, =n on [0, X (t) — 4].

Thus, subtracting the two density conservation eqs in (5.1) and defining j =
niu; —Nete = n(u; — ue), we get j, = 0 and u, = u; —j/n. Adding up (5.3) and (5.4)
and inserting this relation into the resulting equation, we get (3.2). This concludes the
proof of proposition 3.1 since any of the two equation (5.1) leads to the first equation
(3.1). 0

5.2. Proof of proposition 3.3. We show that the travelling-wave problem
(3.20)-(3.24) can be reduced to a nonlinear Poisson equation. Then, this Poisson
equation is analyzed via phase-portrait techniques.

From the ion mass conservation equation in the plasma (3.20), we have n;(u; —
o) = Constant. But n; = 0 for £ > 0, so that ¢ = u; = Constant. Then, with the
boundary conditions (3.25), we deduce that ¢ = u; = u_. Next, from the electron
mass conservation equation (3.22) and the boundary conditions (3.25) and (3.26), we
obtain that ne(ue — o) = Constant and ne(ue — o) = ne(ue —u;) = —j as & = —o0
and ne(ue — o) = je as & — co. Therefore, jo = —j. We deduce that ul, = je(1/n¢)’.

The remaining equations (3.21), (3.23), (3.24) then reduce to

(pi(n:))' = —ni¢’ , Y€ <0 5 ny =0,V >0. (5.5)
£52 (1/ne) + pe(ne)' =ned’, on R (5.6)
-A¢" =n; —ne. (5.7)
Let us deﬁne ha(n) for @ = e,i such that O,hy = (1/1n)0npqy, i-e. ha(n) =
cay(y—=1)71 . hq ) is an increasing function of n. From (5.5) and (3.25), w
get h;(n;(§)) — (n ) = —¢(&) for all £ < 0, or, since h; is invertible:
ni(§) =nif[p(§)], £<0 ;5 n(§) =0, £>0, (5.8)
with
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Note that n; is a decreasing function of ¢.
Next, introducing the function k. (n) defined by
2
ke(n) = <2¢ 4+ 1 >0
o) = 25 (), w20,

we have nO,k. = —¢ (j2/n?) + O,pe, and using again (3.25), eq. (5.5) can be written
ke(ne(§)) — ke(n—) = ¢(§) for £ €R. (5.10)

In contrast with h;, k. is a non monotonous function: it is decreasing on [0, 7] and
increasing on [Nuyin, +00) where N,y is given by

gj2
Ce Y

m

Nmin(j) = ( ) > np(j). (5.11)
Let us denote by k. (resp. ke_) the restriction of k. t0 [nin,+00) (resp. to
[0, nmin]). Then k. y is an increasing function and k., _ is a decreasing one. Note that
the electron gas is subsonic on the interval [np, +00) while it is supersonic on the
interval (0, nmin] (indeed, the condition k! > 0 is equivalent to pl,(ne) > €52 /n? = eu?,
which is exactly saying that the sound speed is larger than the fluid velocity).

Therefore, the inversion of (5.10) involves two solutions, using either branches k, L
or k. . For a smooth solution, the passage from one branch to the other one implies
that n takes the critical value n,,;, at a given point. For an unsmooth solution, the
entropy condition only allows jumps from the supersonic branch k. _ to the subsonic
one ke . When £ is close enough to —oo, by continuity, the branch will be determined
by the position of n_ with respect to n,,;,. Furthermore, n_ being the limit value
of a solution to the quasineutral model at the interface, it belongs to its domain of
hyperbolicity and consequently satisfies n_ > ng.

So, we must discuss according to the position of n_ relative to the value niy.

(i) Case m_ > npin: Then, in the neighborhood of £ = —oo, we can invert (5.10)
using k;}r and get:
ne(€) = ne[d(©)], neld] =k} (¢ +ke(n-)) . (5.12)
Note that n. is an increasing function of ¢. Then, in the neighborhood of £ = —o0,
the Poisson equation is written:
Pee = A (ne[g] — nilg)) - (5.13)

with the condition that ¢ and ¢¢ tend to zero as £ — —oo. For (5.13) written as a
first order system for the two-dimensional variable (¢, E):

¢ =E, BEg=X\"(ne[¢] —nif4)), (5.14)

the point (0,0) is a stationary point. Moreover, the right-hand side of (5.14) is a
strictly increasing function of ¢. Therefore, the point (0,0) is a hyperbolic point.
There are two branches of solutions leaving (0,0) (see Figure 5.1): the first one
for which both ¢ and E are increasing as £ increases, the second one for which both ¢
and E are decreasing. None of these branches correspond to the requested solution.
Indeed, let us consider the first branch. Then E and ¢ increase w.r.t. £, and
so does n, while n; decreases. Therefore, n.[¢] — n;[¢] continuously increases. No
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E

F1G. 5.1. Phase-portrait of the solution of system (5.14) near the stationary point (0,0) in the
cases N— > Nypin and n— < np.

jump to the other k! branch is allowed since n, is in the subsonic zone and jumps
are only allowed from the supersonic to the subsonic zone by the entropy condition.
Furthermore, when & crosses 0, n; vanishes identically, but this does not change the
sign of ne[¢] — n;[¢] which further increases. n, cannot be bounded because ¢ is
strictly convex and thus, strictly increasing. Then n, is also strictly increasing and
tends to oo when & — oo.

Now, let us consider the second branch. Then, as long as n; is positive (i.e.
£ <0), E and ¢ decrease w.r.t. £, and so does n, while n; increases. Suppose that at
some point § < 0, n.[¢] reaches the value ny;,. Then, ¢ cannot decrease any longer
since otherwise, (5.10) could not be satisfied. However, nin, —ni(&) < 0. Therefore,
this point is not a stationary point and the solution cannot be extended any further.
Consequently, the point £ = 0 must be crossed before n, reaches the value 7,,;,. But,
at this point, n;(§ — 0) > n_ > 0. Therefore, the so-obtained solution, if it exists,
does not satisfy the constraint that n; should be continuous across £ = 0.

We conclude that in the case n_ > m,n, there exists no solution of the transition
problem satisfying the requirements of proposition (3.3). We now turn to the other
case.

(ii) Case ng < n_ < Nt In this case, we invert (5.10) in the neighborhood of
& = —oo using k;i and get:

ne(f) = ne[¢(§)] ) ne[¢] = k;l— (¢ + ke(n—)) . (5'15)

Now, n. is a decreasing function of ¢. Therefore, n.[¢] — n;[¢] is the difference of two
decreasing functions and its monotony requires further investigations. We compute:

(d/dg)(ne[g] — nil@))|s=0 = (Bnke,—(n-))"" + (Bnhi(n-))~",
and deduce that
(d/d¢)(ne[¢] — ni[d])lg—0 > 0 <= n_<np. (5.16)

Therefore, (0,0) is a hyperbolic point of system (5.14) if n_ < np and an elliptic
point if np < n_ < npin- If (0,0) is an elliptic point, there is no solution to (5.14)
with (0,0) as initial condition other than the constant solution (¢, E) = (0,0) itself.
So, we consider the case n_ < np.
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In this case, starting from the hyperbolic point (0,0), there are two branches
of solutions (see again figure 5.1); the first branch has increasing ¢ and E and the
second one has decreasing ¢ and E in the neighborhood of £ = —o0. Let us consider
the solution with increasing ¢. We want to show that this branch has the required
properties.

For this branch, both n.[¢] and n;[¢] are decreasing functions of £ and we have
ne[@] — ni[¢] > 0 for ¢ in the neighborhood of £ = —oo, because of (5.16). We want
to show that n.[¢] — n;[¢] > 0 for all £ € R. For that purpose, it suffices to show
that (d/d¢)(ne[¢] — ni[¢]) > 0 along the trajectory ¢. With the hypothesis v > 2,
Onhi(n) = ¢;yn?~2 is a nondecreasing function of n. Therefore, we have

(d/d¢)(ne[¢] —nild]) = (Opke,—(ne[d])) ™" + (Bnhi(ni[¢])) ™
> (Onke,—(ne[¢])) ™" + (Onhi(neld])) " >0,

because ne[¢] < n_ < np and using (5.16) with n.[¢]. It follows that E and ¢
continuously increase w.r.t. £ and simultaneously, n. and n; decrease. At some point
(say & = 0, without loss of generality) n; crosses the value 0. Beyond & = 0, the
solution continues with n; = 0 and n, > 0. Then, ¢ and E continue to increase and
ne[¢] decreases to the limit value 0 at £ = +oo.

If we consider an unsmooth solution with a jump of n. to the subsonic branch k.
at some point, then ¢ and E shall continuously increase, but now, n. is constrained
to follow the subsonic branch and tends to oo as & — oo, which does not correspond
to the requested solutions.

The second branch of solutions, starting with decreasing ¢ and E in the neighbor-
hood of £ = —oo may also correspond to an admissible solution, . ..or not. We are not
able to decide about this point right now. If yes, this solution has a non monotonous
behaviour, since the potential must eventually increase to positive values for n; to
match the value 0 at some point. These non monotonous solutions may correspond
to non physical solutions of the transition problem, with weaker stability properties.
Their investigation is deferred to future work.

In any case, we have shown that the necessary and sufficient condition for the
existence of at least one solution to the transition problem with the right conditions
at infinity is n_ < np. This concludes the proof of the proposition. [.

6. Conclusion. In this paper, we have presented an asymptotic model for an
expanding plasma in the vacuum in the presence of a large applied electric field. This
model is obtained through an asymptotic analysis of the two-fluid Euler-Poisson model
under convenient scaling hypotheses. The resulting model consists of a quasineutral
fluid model for the plasma region and a Child-Langmuir type model for the emitted
electron beam. The two models are connected through conditions derived from the
analysis of a travelling-wave model for the transition region. The travelling-wave prob-
lem has been rigorously investigated and the overall model is validated by numerical
experiments. Two-dimensional extensions of this approach are under investigation.
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