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Quantizations of character varieties of surfaces

Context and history. Let Σg,n be the compact oriented surface of genus g with n boundary
components. I am working with certain quantizations of the character variety of Σg,n. Let G be a
semisimple complex algebraic Lie group and recall that the representation variety and the character
variety are respectively

RG(Σg,n) = HomGrp

(
π1(Σg,n), G

)
, XG(Σg,n) = RG(Σg,n)/G

where the action of G on RG(Σg,n) is by conjugation (more precisely XG(Σg,n) is a GIT quotient for
this action). There is an identificaton between XG(Σg,n) and the moduli space of flat G-connections
on Σg,n, which is known to have a Poisson structure [AB83]. As a result the algebra of functions
O
[
XG(Σg,n)

]
inherits a Poisson bracket. The quantization of this structure gave rise to many works

in quantum topology and mathematical physics. Here we consider two quantizations: the quantum
moduli algebras and the skein algebras.

� Quantum moduli algebras, a.k.a. combinatorial quantization. Here we explain the idea of this
construction in the easier case of surfaces Σg,n+1 (at least one boundary component). Constructions
and results in the case of closed surfaces are the subject of Theorems 1 and 5 below. Note first that
π1(Σg,n+1) is a free group with 2g + n generators. Hence

O
[
RG(Σg,n+1)

]
= O(G)⊗(2g+n), O

[
XG(Σg,n+1)

]
=

(
O(G)⊗(2g+n)

)G-inv
.

Taking advantage of this, Fock–Rosly [FR93] gave an explicit Poisson bracket on O
[
RG(Σg,n+1)

]
which induces the Atiyah–Bott bracket on O

[
XG(Σg,n+1)

]
. The idea of the quantization [Ale94,

AGS95, BR95] is to replace O(G) by the quantized algebra of functions Oq(G) and the action of
the group G by an action of the quantum envelopping algebra Uq(g) on Oq(G)1, where g is the Lie
algebra of G. Then one defines the C(q)-vector spaces

Lg,n(g) = Oq(G)⊗(2g+n), Linv
g,n(g) =

(
Lg,n(g)

)Uq(g)-inv
.

The multiplication in Lg,n(g) is obtained by twisting the usual product in Oq(G)⊗(2g+n) thanks to the
R-matrix of Uq(g). The definition is such that Lg,n(g) is a Uq(g)-module-algebra and hence Linv

g,n(g) is
a subalgebra, called the quantum moduli algebra. Since the definitions only use the Hopf structure

1For the definition of Oq(G) and Uq(g), see e.g. [BG02, §I.6, §I.7]. The right coadjoint action coad is defined by
∀h, x ∈ Uq(g), ∀φ ∈ Oq(G), ⟨coad(h)(φ), x⟩ = ⟨φ, ad(h)(x)⟩ where ad(h)(x) =

∑
(h) h(1)xS(h(2)).
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and the R-matrix of Uq(g), we can more generally define an algebra Lg,n(H) for any quasitriangular
Hopf k-algebra H, with k a field. It is (H∗)⊗(2g+n) as a k-vector space (where H∗ is an appropriate
dual if H is infinite-dimesional) and carries an action of H which turns it into a H-module-algebra.
The subalgebra of H-invariants elements is denoted by Linv

g,n(H). See [BFR23, §3.1, §4.1] for detailed
explanations of these definitions.

The algebras Lg,n(H) have been recovered in the context of factorization homology in [BZBJ18]
and are algebra of functions in lattice gauge field theory [MW21].

� Skein algebras. This construction works directly for any surface Σg,n. Let H be a ribbon
Hopf k-algebra [CP94, §4.2.C]. Denote by FRT the Reshetikhin–Turaev functor, which associates a
H-linear map to any H-colored2 oriented ribbon graph in [0, 1]3 [CP94, §5.3]. The skein algebra of
Σg,n associated to H, denoted by SH(Σg,n), is the k-vector space generated by the isotopy classes of
H-colored oriented ribbon links (with coupons) modulo the skein relations:

∑
i

λiFRT(Ti) = 0 =⇒
∑
i

λi = 0 in SH(Σ).Ti

. . .

. . .

(1)

The Ti are any ribbon graphs and the λi ∈ k are scalars such that the linear equation on the left
holds. The right hand-side represents a linear combination of links which are equal outside of the
cube in Σ× [0, 1] which is depicted in grey. The product of two links L1, L2 in SH(Σg,n) is obtained by
putting L1 below L2 in Σ× [0, 1]. The case H = Uq(sl2) is special because any H-module is a direct
summand of some tensor power V ⊗N

2 , where V2 is the fundamental representation on C(q)2. Hence,
due to the skein relations (1), it is enough to consider edges colored by V2 and coupons colored by
morphisms V ⊗N

2 → V ⊗M
2 . Moreover any such coupon can be expressed by crossings, cups and caps.

After these reductions, all the skein relations (1) derive from the Kauffman bracket relations:

= q1/2 + q−1/2 = −(q2 + q−2)

Thus SUq(sl2)(Σg,n) is the Kauffman bracket skein algebra Sq(Σg,n) defined by [Prz91, Tur91]. The
Poisson bracket on O

[
XSL2(C(Σg,n)

]
admits a geometric description based on curves on Σg,n [Gol86]

and Sq(Σg,n) is a quantization of this structure (this is well explained in [BFKB99]). One also expect
this for other semisimple Lie groups G.

Projective representations of mapping class groups. Let MCG(Σg,n) be the mapping class
group of Σg,n, i.e. the group of isotopy classes of homeomorphisms which preserve the orientation
and fix the boundary pointwise. There is a natural action of MCG(Σg,n) on RG(Σg,n) and XG(Σg,n),
and hence on their algebras of functions. Does this action survives quantization? The answer is yes:
assuming that H is a ribbon Hopf algebra [CP94, §4.2.C], Alekseev–Schomerus [AS96] provided a
morphism of groups

MCG(Σg,n+1) −→ AutAlg

(
Lg,n(H)

)
. (2)

But there is more: under the assumption that H is a finite-dimensional semisimple and modular,
[AS96] used the algebraic properties of Lg,n(H) to construct a projective representation of MCG(Σg,n)
(note that one boundary component disappeared). They also proved that this representation is
equivalent to the one given by the Reshetikhin–Turaev TQFT for H-mod [RT91].

During my PhD thesis I generalized this construction for closed surfaces, under the assumptions
that H is finite-dimensional and factorizable3, but not necessarily semisimple ([Fai19] for the case of

2This means that every ribbon edge in the graph is labelled by a finite-dimensional H-module and any coupon is
labelled by a H-morphism compatible with the labels of its edges. For H = Uq(g) we restrict the colors to type 1
modules [CP94, §10.1].

3A quasitriangular Hopf algebra H with R-matrix R = ai ⊗ bi is factorizable if the element R21R ∈ H⊗2 induces
an isomorphism of vectors spaces H∗ ∼→ H, where R21 = bi ⊗ ai.
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the torus and [Fai20b] for the general case). The starting point is that certain morphisms of algebras
defined in [Ale94] can be combined into an isomorphism

ρ : Lg,0(H)
∼−→ Endk

(
(H∗)⊗g

)
.

Hence Lg,0(H) is isomorphic to a matrix algebra, and any automorphism is determined by an invert-
ible element unique up to scalar. As a result we get a projective representation

Z : MCG(Σg,1) −→ AutAlg

(
Lg,0(H)

) ∼−→ Lg,0(H)×/k
ρ−→ PGL

(
(H∗)⊗g

)
. (3)

Now we want to close the boundary component, i.e. pass from Σg,1 to Σg,0. This is based on
three facts. The first fact is that the composition of the first two maps in (3) takes values in
Linv

g,0(H)×/k. The second fact is the existence of a subspace Invg ⊂ (H∗)⊗g4 which is stable by ρ(a)
for all a ∈ Linv

g,0(H), which gives a group morphism:

ZInv : MCG(Σg,1) −→ AutAlg

(
Lg,0(H)

) ∼−→ Linv
g,0(H)×/k

ρ−→ PGL(Invg).

The third fact is that MCG(Σg,0) is the quotient of MCG(Σg,1) by an explicit relation [Waj83],
[FM12, §5.2]. It remains to show that ZInv preserves this relation:

Theorem 1. ([Fai20b], [Fai19] in the case of the torus)
1. ZInv pass to the quotient and gives a projective representation of MCG(Σg,0).
2. There are explicit formulas for the representation of certain Dehn twists which generateMCG(Σg,0),
see [Fai20b, §5.5].

For the torus Σ1,0 we have MCG(Σ1,0) = SL2(Z). I described explcitly the representation of SL2(Z)
obtained when H = Ūε(sl2), the small quantum group of sl2 at an even root of unity ε [Fai19, §6.3].
The representation space in this case is the subspace SLF

(
Ūε(sl2)

)
⊂ Ūε(sl2)

∗ of symmetric linear
forms, which I studied in [Fai20a] (similar results on the structure of SLF

(
Ūε(sl2

)
were obtained

independently in [GT07]). A motivation for this choice of H is the relation with logarithmic CFTs
[FGST06].

There is a famous construction by Lyubashenko [Lyu95] of projective representations of mapping
class groups and 3-manifolds invariants, which uses a finite tensor category C as algebraic input. If
C is semisimple this construction recovers the Reshetikhin–Turaev representation and invariants. A
key ingredient in Lyubashenko’s construction is the coend

∫ X∈C
X∗ ⊗ X. Actually L0,1(H) is the

coend of C = H-mod [Fai20b, Prop. 6.3]. This is not the only relation between the two theories:

Theorem 2. ([Fai20b, Th 6.4], [Fai19, Th. 5.2] in the case of the torus) The projective representation
ZInv is equivalent to the Lyubashenko projective representation for C = H-mod (Lyubashenko–Majid
[LM94] in the case of the torus).

The Lyubashenko invariant of 3-manifolds has recently been extended into a TQFT [DGGPR22].
The projective representations of mapping class groups associated to this TQFT are equivalent to
those of Lyubashenko [DGGPR23] and hence to those obtained from Lg,n(H) when C = H-mod.

Relating quantum moduli algebras and skein algebras. This is partly joint work with S.
Baseilhac and P. Roche. In this section Σg,n is the compact surface of genus g with n punctures
(points removed) and let D ⊂ Σg,n be an open disk. We denote by Σ◦,•

g,n the surface Σ◦
g,n = Σg,n\D

with a puncture (•) on the boundary. We consider H-colored oriented ribbon tangles with coupons
T in Σ◦,•

g,n× [0, 1] such that ∂T ⊂ ∂(Σ◦,•
g,n)× [0, 1] and the boundary points of T have increasing heights

4Invg is the subspace of invariant elements for a certain “coadjoint action” of H on (H∗)⊗g. For instance if g = 1
the action is h ·φ =

∑
(h) φ

(
S−1(h′)?h′′), where ∆(h) =

∑
(h) h

′⊗h′′, and the invariant linear forms are the symmetric

ones, i.e. φ(xy) = φ(yx). To understand why this action is related to the boundary of Σg,1, see [Fai20b, §4].
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when one goes through the boundary curve of Σ◦,•
g,n starting from the puncture •. In [Fai20c, §4.1] I

defined a “holonomy map”

hol :

{
H-colored oriented ribbon tangles

in Σ◦,•
g,n × [0, 1]

}
−→

{
Tensor with coefficients

in Lg,n(H)

}
. (4)

It is an extension to surfaces of the Reshetikhin–Turaev tangle graph invariant [RT90]. We have
hol(T ) ∈ Lg,n(H)⊗VT where VT is a H-module which depends on the number of boundary points of
the ribbon graph T and of the orientations of the strands at these points. Actually this generalizes
the “Wilson loop map” defined in [BR96, BFK98]

W :

{
H-colored oriented ribbon links

in Σ◦
g,n × [0, 1]

}
−→ Linv

g,n(H) (5)

in the sense that if we restrict hol to ribbon links (i.e. ribbon tangles without boundary points) we
recover W .

There are two natural operations for ribbon tangles in thickened surfaces:

- stacking product: T1 ∗ T2 means that we put T1 below T2 in Σ◦,•
g,n × [0, 1] using isotopy.

- action of the mapping class group: the action of f ∈ MCG(Σ◦
g,n) = MCG(Σg,n+1) on a ribbon

tangle T ⊂ Σ◦,•
g,n × [0, 1] is f(T ) = (f × id[0,1])(T ).

The holonomy map is compatible with these operations:

Theorem 3. [Fai20c, Th. 4.4, Th. 4.5]
1. hol(T1 ∗ T2) is the Kronecker product5 of hol(T1) and hol(T2).

2. For any f ∈ MCG(Σg,n+1), hol
(
f(T )

)
= (f̃ ⊗ idVT

)
(
hol(T )

)
, where f̃ ∈ AutAlg

(
Lg,n(H)

)
is the

image of f by the map (2).

The motivation to introduce the holonomy map was the problem of relating Lg,n(H) with the
stated skein algebra Sst

H(Σ
◦,•
g,n). This is a generalization of the skein algebra SH(Σ◦

g,n) whose main
features are

- one uses ribbon tangles in Σ◦,•
g,n × [0, 1] instead of just using ribbon links,

- there are boundary skein relations which again come from the Reshetikhin–Turaev invariant of
ribbon tangles for H-mod,

- each boundary point of a ribbon tangle is labelled by a state, i.e. a vector in the H-module (or
its dual, depending on orientation) which colors the strand ending at this point,

- the product is again by stacking, i.e. putting a ribbon tangle below another one.

Actually the definition works for more general surfaces than Σ◦,•
g,n. Stated skein algebras were intro-

duced by Lê [Le16] and further studied by Costantino–Lê [CL19] for H = Uq(sl2); in this case they
are a generalization of the Kauffman bracket skein algebras. For H = Uq(sln) they were defined and
studied in [LS21]. For a general ribbon Hopf algebra H they will be defined in the forthcoming paper
[CKL], see [BFR23, §6.1] for the case of Σ◦,•

g,n.

Let T ⊂ Σ◦,•
g,n × [0, 1] be a ribbon tangle. By contracting the states of the boundary points of T

with the tensor hol(T ), we get an element holst(T ) ∈ Lg,n(H) ([BFR23, §6.2] and [Fai20c, §5] for the
case H = Uq(sl2)). This defines a “stated holonomy map”

holst :

{
H-colored oriented stated

ribbon tangles in Σ◦,•
g,n × [0, 1]

}
−→ Lg,n(H).

We have holst(T1 ∗T2) = holst(T1) hol
st(T2) (this follows easily from Theorem 3). Moreover since both

the skein relations in Sst
H(Σ

◦,•
g,n) and the holonomy map are based on the Reshetikhin–Turaev functor,

holst descends to Sst
H(Σ

◦,•
g,n). Hence we get a morphism of algebras holst : Sst

H(Σ
◦,•
g,n)→ Lg,n(H).

5The Kronecker product of hol(T1) =
∑

i xi ⊗ vi ∈ Lg,n(H) ⊗ VT1
and hol(T2) =

∑
j yj ⊗ wj ∈ Lg,n(H) ⊗ VT2

is∑
i,j xiyj ⊗ vi ⊗ wj ∈ Lg,n(H)⊗ VT1

⊗ VT2
.
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Theorem 4. ([BFR23, Th. 6.5, Th. 6.9] and [Fai20c, Th. 5.3] for the case H = Uq(sl2))
1. holst : Sst

H(Σ
◦,•
g,n)

∼−→ Lg,n(H) is an isomorphism of algebras.
2. If H-mod is a semisimple category, the Wilson loop map (5) yields an isomorphism of algebras
W : SH(Σ◦

g,n)
∼−→ Linv

g,n(H)

For H = Uq(sl2) it was already known that W is an isomorphism [BFK98]. To sum up:

Lg,n(H)

LH
g,n(H)

(subalgebra)

∼
Stated holonomy holst

∼ (if H-mod semisimple)

Wilson loop map W

⟲

Stated skein algebra Sst
H(Σ

◦,•
g,n)

Skein algebra SH(Σ◦
g,n)

I

The morphism I is obtained by seeing a ribbon link as a ribbon tangle without boundary points.
Note that it follows from this commutative diagram that I is injective if H is semisimple; this is
a non-trivial fact since there are more skein relations in Sst

H(Σ
◦,•
g,n) than in SH(Σ◦

g,n), because of the
boundary skein relations.

A question remains to be answered. The skein algebras can be defined for any surface Σg,n and
in particular for Σ◦

g,n ≈ Σg,n+1. On the other hand the algebras Lg,n(H) are only associated to the
surfaces Σ◦

g,n with one boundary component. Can we “truncate” Lg,n(H) in order to get an algebra
associated to Σg,n? The answer is yes and uses quantum reduction. Let us recall this construction,
due to Lu [Lu93] and Varagnolo–Vasserot [VV10]. Let A be a H-module-algebra and assume that
there is a quantum moment map µ : H → A, i.e. a morphism of algebras6 such that

∀h ∈ H, ∀ a ∈ A, µ(h)a =
∑
(h)

(h′′ · a)µ(h′)

where ∆(h) =
∑

(h) h
′⊗ h′′. Consider the left ideal Iε = Aµ(ker ε), where ε : H → k is the counit. Iε

is stable by the action of H, hence the action of H descends to A/Iε. It follows that we can consider

the subspace of invariant elements
(
A/Iε

)H-inv
which we denote by Aqr. A remarkable fact is that

the product of A descends to Aqr, despite Iε is just a left ideal. The associative algebra Aqr is called
the quantum reduction of A.

Now recall that Lg,n(H) is a H-module-algebra. There is a quantum moment map µ : H →
Lg,n(H) ([Jor14, Prop. 7.21], also see [BFR23, Th. 7.14]) which is intimately related to the boundary
circle ∂(Σ◦

g,n), see formula in [BFR23, Def. 7.11]. Hence we can expect that the associated quantum
reduction Lqr

g,n(H) will be related to the closed surface Σg,n. For the next result we note that SH(Σg,n)
is a quotient of SH(Σ◦

g,n).

Theorem 5. [BFR23, Lem. 7.6, Prop. 7.20, Th. 7.22] This theorem requires suitable assumptions on
H, which are in particular satisfied for H = Uq(g).

1. Let π : Linv
g,n(H) → Lqr

g,n(H) =
(
Lg,n(H)/Iε

)H-inv
be the restriction of the canonical projection

Lg,n(H) ↠ Lg,n(H)/Iε. Then π is a surjective morphism of algebras.
2. The Wilson loop map W (5) pass to the quotients as follows:

SH(Σ◦
g,n)

����

W // Linv
g,n(H)

π
����

SH(Σg,n) ∃!W qr
// Lqr

g,n(H)

3. W qr : SH(Σg,n)→ Lqr
g,n(H) is an isomorphism of algebras.

6In practice it might be necessary to restrict to a subspace H ′ ⊂ H which is a subalgebra and a right coideal.
When H = Uq(g) we use the subspace of locally finite elements for the adjoint action.
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Structure results for quantum moduli algebras. Joint work with S. Baseilhac and P. Roche.
Write Lg,n(g) for Lg,n

(
Uq(g)

)
. Recall that it is Oq(G)⊗(2g+n) as a C(q)-vector space, and is endowed

by a “twisted multiplication” based on the R-matrix R ∈ Uq(g)
⊗2, see [BFR23, Prop. 4.4] for explicit

formulas.

Theorem 6. [BFR23, Th. 4.11, Th. 4.17, Th. 5.8]
1. The algebra Lg,n(g) is finitely generated, Noetherian and without zero divisors.
2. The algebra Linv

g,n(g) is Noetherian and finitely generated (and of course without zero divisors).

The case g = 0 of this theorem was obtained in [BR22, BR21]. The case g > 0 requires many
non-trivial generalizations and new computations. Let us give a few words on the ideas of the proof.

To prove that Lg,n is Noetherian, we use filtrations. A filtration for L0,1(g) has been introduced
in [VY20, §3.14.4]. We first modify it in order to define a filtration of L1,0(g). Then combining these
two filtrations in a non-trivial way we define a filtration on Lg,n(g) and prove that the associated
graded algebra is Noetherian, which implies that Lg,n(g) itself is Noetherian.

The proof of the second item in Theorem 6 is based on a generalization of the Hilbert–Nagata
theorem [DC70]. Let K be a group acting on a graded algebra A in such a way that the action is
compatible with the multiplication and the grading. The Hilbert–Nagata theorem gives sufficient
conditions for the subalgebra of K-invariant elements of A to be Noetherian and finitely generated.
We generalize this theorem to the case where A is a graded module-algebra over a Hopf algebra H
[BFR23, Th. 4.13]. We then apply this general result to the case where H = Uq(g) and A is a “graded
truncation” of Lg,n(g).

The fact that Lg,n does not have non-trivial zero divisors is a consequence of an important
morphism

Φg,n : Lg,n(H)→ HH(H∗)⊗g ⊗H⊗n

which we call the Alekseev morphism. The algebra HH(H∗) is a generalization of the Heisenberg
double H(H∗) = H∗#H [BFR23, §5.1]; in general for g > 1 it is necessary to use HH(H∗) instead
of H(H∗) to make sense of the formulas in [Ale94]. For H = Uq(g) we prove that Φg,n is injective

[BFR23, Th. 5.8] and that the algebraHH
(
Oq(G)

)⊗g⊗Uq(g)
⊗n does not have non-trivial zero divisors

[BFR23, Prop. 5.7]. It then follows that Lg,n(g) does not have non-trivial zero divisors.

We deduce from Theorems 4 and 6 that:

Corollary 7. 1. The stated skein algebra Sst
Uq(g)

(Σ◦,•
g,n) is finitely generated, Noetherian and without

zero divisors.
2. The skein algebra SUq(g)(Σ

◦,•
g,n) is finitely generated, Noetherian and without zero divisors.

Let us insist that this result is true for any semisimple complex Lie algebra g. The analysis of the
structure of SUq(g)(Σ

◦,•
g,n) beyond sl2 is very difficult because there exists no explicit skein description

of this space (except for sln, in terms of webs). It is the algebraic nature of Lg,n(g) which allowed us
to obtain the above structure results for skein algebras, thanks to tools from quantum group theory.

Deformation of monoidal structures and cohomology

Context and history. A deformation theory of monoidal structures has been introduced and stud-
ied by Davydov, Crane and Yetter [Dav97, CY98, Yet98]; it describes deformations of the monoidal
structure of a k-linear monoidal functor or the associator of a k-linear monoidal category (where k
is a field), without changing the underlying functor and categories. This theory is the first step to
the classification problem of monoidal structures [Dav97] but is also related to quantum algebra and
low-dimensional topology. Within this deformation theory, it was shown in [DE19] that the category
of all modules over the enveloping algebra U(g) of a simple Lie algebra g admits a one-parameter
family of non-trivial deformations. One therefore expects to recover the category of modules over
the quantum group Uq(g). Also, this theory allows to deform the braiding of a tensor category and
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this can be used to produce link invariants; see [Yet98] where a relation with Vassiliev invariants was
established.

We recall a bit more precisely this deformation theory, which is often called Davydov–Yetter
(DY) theory as e.g. in [EGNO15, §7.22]. Let C,D be k-linear monoidal categories, assumed strict for
simplicity, and let F : C → D be a tensor functor, i.e. a k-linear monoidal functor. By definition, F
comes with a natural isomorphism θX,Y : F (X ⊗ Y )

∼→ F (X)⊗ F (Y ) such that the diagram

F (X ⊗ Y ⊗ Z)
θX⊗Y,Z //

θX,Y ⊗Z

��

F (X ⊗ Y )⊗ F (Z)

θX,Y ⊗idF (Z)

��
F (X)⊗ F (Y ⊗ Z)

idF (X)⊗θY,Z

// F (X)⊗ F (Y )⊗ F (Z)

(6)

is commutative. To simplify notation assume that F is strict, i.e. θ = id. In DY theory we consider
infinitesimal deformations θh = id + hf with h2 = 0, where f is a natural transformation fX,Y :
F (X ⊗ Y ) → F (X) ⊗ F (Y ), such that the diagram (6) remains commutative with θh instead of θ.
Then the condition (6) on θh implies

idF (X1) ⊗ fX2,X3 − fX1⊗X2,X3 + fX1,X2⊗X3 − fX1,X2 ⊗ idF (X3) = 0. (7)

This motivates the following definition (we continue to assume that F is strict for simplicity):

- The space of DY cochains in degree n is Cn
DY(F ) =

{
natural transformations F⊗n ⇒ F⊗n

}
,

where the functor F⊗n : Cn → D is (X1, . . . , Xn) 7→ F (X1)⊗ . . .⊗ F (Xn).

- The DY differential δn : Cn
DY(F )→ Cn+1

DY (F ) is defined by

δn(f)X1,...,Xn+1 = idF (X1) ⊗ fX2,...,Xn+1 +
n∑

i=1

fX1,...,Xi⊗Xi+1,...,Xn+1

+(−1)n+1fX1,...,Xn ⊗ idF (Xn+1).

(8)

- We denote by Hn
DY(F ) = ker(δn)/im(δn−1) the associated cohomology groups.

The infinitesimal deformations of the monoidal structure of F are classified up to equivalence by
H2

DY(F ), and it was shown in [Yet98] that the obstructions are contained in H3
DY(F ). In particular

if H3
DY(F ) = 0 an infinitesimal deformation can be extended to all orders in h.

We note that the identity functor F = IdC deserves a special attention because H3
DY(IdC) classifies

the infinitesimal deformations of the associator of C. Such a deformation is an expression ah = id+hg7

over k[h]/⟨h2⟩ which satisfies the pentagon equation, where g is a natural transformation gX,Y,Z :
X ⊗ Y ⊗ Z → X ⊗ Y ⊗ Z. The obstructions are contained in H4

DY(IdC), at least for the extension
to the order 2 in h [BD20, Prop. 3.21]. We will denote Hn

DY(C) instead of Hn
DY(IdC).

Let Z(F ) be the centralizer of F . It is the category whose objects are pairs (V, λ) where V ∈ D
and λ is a natural isomorphism V ⊗F (−) ∼⇒ F (−)⊗V such that λX⊗Y = (idF (X)⊗λY )◦(λX⊗idF (Y ))
for all X, Y ∈ C; morphisms in Z(F ) are morphisms in D which commute with the half-braidings.
In all the sequel we assume that C, D are finite tensor categories and that F : C → D is exact. Then
there is an adjunction

Z(F )

U
��
⊣

D

F

HH
(9)

where U is the forgetful functor (V, λ) 7→ V . In [GHS23] a version with coefficients of DY theory
was introduced. The coefficients are objects V = (V, λ),W = (W, ρ) ∈ Z(F ), the cochain spaces are

7Note that the degree 0 term is the identity because for simplicity we take C strict.
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Cn
DY(F ;V,W) =

{
natural transformations F⊗n ⊗ V ⇒ W ⊗ F⊗n

}
and the half-braidings λ, ρ are

used to modify the boundary terms in (8). We denote by H•
DY(F ;V,W) the resulting cohomology.

In particular Cn
DY(F ;1,1) = Cn

DY(F ) (trivial coefficients). Coefficients are an important technical
tool, which might be useful even if one is interested in computing the DY cohomology only for trivial
coefficients, see e.g. the comment after Theorem 11 below.

The main result of [GHS23] is that H•
DY(F ;V,W) is isomorphic to the cohomology of the comonad

G = FU on Z(F ) with coefficients V and HomZ(F )(−,W)8. Even better, there is an explicit iso-
morphism of complexes between Cn

DY(F ;V,W) and the image through HomZ(F )(−,W) of the bar
resolution of V for the comonad G. This gives a way to compute the dimension of the DY cohomol-
ogy spaces, by finding a well-chosen G-projective resolution of V (of course the bar resolution is in
general not a good choice).

DY cohomology and relative Ext groups. Joint work with A. Gainutdinov and C. Schweigert.
Recall that we assume that C, D are finite tensor categories and that the k-linear monoidal functor
F : C → D is exact (and k is a field). The aim is to make progress towards the computation of DY
cohomology. This can be divided into two problems:

- Compute the dimension of the Davydov–Yetter cohomology groups.

- Determine explicit cocycles. This question is especially relevant for 2-cocycles (or 3-cocycles
for the identity functor) since they give rise to infinitesimal deformations.

Recall a few notions of relative homological algebra. Let

A

U
��
⊣

B

F

FF (10)

be an adjunction between abelian categories such that U is additive, exact and faithful. A relatively
projective object is a direct summand of F(X) for some X ∈ B. A relatively projective resolution
of V ∈ A is an exact sequence 0 ← V ← P0 ← P1 ← . . . such that each Pi is relatively projective
and the sequence splits when we apply U to it. For such a resolution, the cohomology groups of
the complex 0 → HomA(P0,W ) → HomA(P1,W ) → . . . are denoted by Ext•A,B(V,W ) and called
relative Ext groups. For more details see [ML75, Chap. IX] (or [BFR23, §2.1, §2.2] for a review). If
the categories A,B are k-linear then ExtA,B(V,W ) are k-vector spaces.

The starting point of our work is the relation between DY cohomology and relative Ext groups:

Theorem 8. [FGS22, Prop. 2.17, Cor. 4.7]
1. Given an adjunction as in (10), the relative Ext groups Ext•A,B(V,W ) are isomorphic to the
cohomology groups of the comonad G = FU on A with coefficients V and HomA(−,W ).
2. In particular for the adjunction (9) we get H•

DY(F ;V,W) ∼= Ext•Z(F ),D(V,W) thanks to the result
of [GHS23].

Here is a first consequence:

Proposition 9. [FGS22, Prop. 4.8] If the ground field k has characteristic 0 and is algebraically
closed then H1

DY(F ) = 0.

This is because H1
DY(F ) ∼= ExtZ(F ),D(1,1) ⊂ ExtZ(F )(1,1) = 0. The last equality is because the

unit object does not trivial self-extensions in a finite tensor category under our assumptions on k
[EGNO15, Th. 4.4.1]. The inclusion is only true in degree 1.

We can derive results on DY cohomology from the general theorems on relative Ext groups
[ML75, Chap. IX]. Using the long exact sequence for relative Ext groups we derived a formula for
the dimension of the DY cohomology spaces:

8For comonad cohomology see [BB96].
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Proposition 10. [FGS22, §3.1, Cor. 4.10] Let P
π−→ 1 −→ 0 be the first step of a relatively projective

resolution of 1 ∈ Z(F ) and let K = ker(π). Then for n ≥ 2

dimHn
DY(F ) = dimHomZ(F )

(
K, (K∨)⊗(n−1)

)
− dimHomZ(F )

(
P, (K∨)⊗(n−1))

+ dimHomZ(F )

(
1, (K∨)⊗(n−1))

.

In particular if P is the relatively projective cover9 of 1 and k is algebraically closed and has charac-
teristic 0, then dimH2

DY(F ) = dimHomZ(F )

(
K,K∨)− dimHomZ(F )

(
P,K∨).

Finding a relatively projective resolution can be hard, especially if we want it to be simple enough
to allow the computation of the relative Ext groups. The formula above replaces the computation
of a relatively projective resolution and of the associated cohomology by the computation of a rela-
tively projective cover and the computation of certain Hom spaces, which is a purely representation-
theoretic problem. It is very efficient for n = 2, as we have demonstrated on examples (see e.g.
[FGS22, §6.4]).

There is an operation ◦ : ExtnA,B(V,W ) × ExtmA,B(U, V ) → Extm+n
A,B (U,W ) called the Yoneda

product. By Theorem 8 we get a Yoneda product on DY cohomology and we computed its formula:

Theorem 11. [FGS22, Th. 4.12] Let f ∈ Hn
DY(F ;V,W) and g ∈ Hm

DY(F ;U,V). Then the components
of the natural transformation f ◦ g ∈ Hn+m

DY (F ;U,W) are

(f ◦ g)X1,...,Xm,Y1,...,Yn = (−1)nm
(
idF (X1)⊗...⊗F (Xm) ⊗ fY1,...,Yn

)(
gX1,...,Xm ⊗ idF (Y1)⊗...⊗F (Yn)

)
.

We note that this formula already makes sense at the level of cochains. It follows from a result in
relative homological algebra that each DY cocyle can be written as the Yoneda product of 1-cocyles
with different coefficients. This is useful in practice, see e.g. [FGS22, §5.4].

Finally the long exact sequence theorem for relative Ext groups gives a long exact sequence
theorem for DY cohomology [FGS22, §4.5].

The usefullness of the above results is demonstrated in [FGS22, §6] to compute the DY cohomology
of H-mod for certain finite-dimensional Hopf algebras H: ΛCk ⋊C[Z2] (bosonization of the exterior
algebra), Taft algebra and small quantum groups associated to sl2. Moreover we give a method to
compute explicitly DY cocycles for H-mod [FGS22, §5.4]; the Yoneda product (Theorem 11) is a
key ingredient of this method. We apply it to compute explicit DY cocycles for the above examples.
For A = ΛCk ⋊C[Z2] and A=Taft, we obtained the full description of H•

DY(A-mod) and its algebra
structure under the Yoneda product.
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