The stated skein TQFT

Matthieu Faitg*

Based on arXiv:2505.16909, joint work with F. Costantino

Algebraic, Topological and Probabilistic approaches in CFT
Institut Pascal, Orsay
October 2025

^{*}Institut de Mathématiques de Toulouse, Univ. Toulouse

Overview

(2+1)-TQFT in general

3-cobordism category surface Σ

3-cobordism $\Sigma_- \to \Sigma_+$

object $V(\Sigma)$ morphism $V(\Sigma_{-}) \rightarrow V(\Sigma_{+})$

"algebraic" category

br. mon. functor

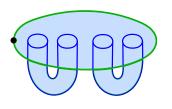
Stated skein TQFT (given a ribbon Hopf algebra H) br. mon. functor $\rightarrow \operatorname{Bim}_{H}^{\mathsf{QMM}}$ SH: 3Cobard surface Σ algebra $S_H(\Sigma)$ \longmapsto 3-cobordism $\Sigma_- \to \Sigma_+$ $(S_H(\Sigma_+), S_H(\Sigma_-))$ -bimodule

Summary:

- Surfaces, 3-cobordisms and their S_H
- Algebraic properties of the stated skein spaces
- Relation with the Kerler-Lyubashenko TQFT

The monoidal category $3\mathrm{Cob}_\mathrm{arc}$

Objects: connected oriented surfaces Σ such that $\partial \Sigma = S^1$ and there is a marked point on $\partial \Sigma$.

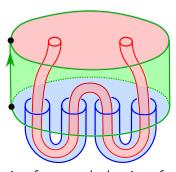


Morphisms $\Sigma^- \to \Sigma^+$: connected oriented 3-manifolds M such that

$$\partial M = \partial^- M \cup \partial^s M \cup \partial^+ M$$

with:

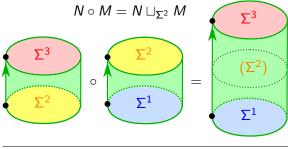
$$\begin{split} \partial^{\pm} M &\cong \Sigma^{\pm}, \quad \partial^{s} M \cong \mathcal{S}^{1} \times [-1,1], \\ \partial^{\pm} M \cap \partial^{s} M &\cong \mathcal{S}^{1} \times \{\pm 1\}, \\ \partial^{-} M \cap \partial^{+} M &= \emptyset \end{split}$$



Moreover an oriented arc \mathfrak{a} is fixed in $\partial^s M$, going from marked point of Σ^- to marked point of Σ^+ .

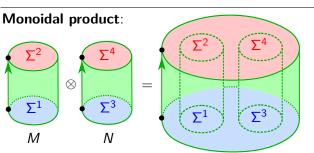
The monoidal category $3\mathrm{Cob}_{\mathrm{arc}}$

Composition: glue along the common surface.



 $\mathrm{Id}_{\Sigma} = \Sigma \times [-1,1]$

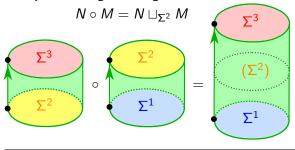
Identity morphisms



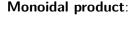
Monoidal unit

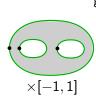
The monoidal category $3\mathrm{Cob}_{\mathrm{arc}}$

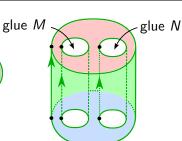
Composition: glue along the common surface.



Identity morphisms $\operatorname{Id}_{\Sigma} = \Sigma \times [-1,1]$



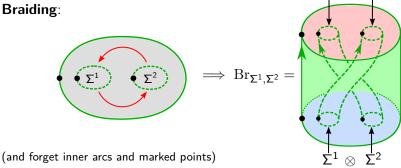




Monoidal unit the disk

The monoidal category 3Cobarc is braided

Braiding:



 $\Sigma^2 \otimes \Sigma^1$

Remarks. 1. Forgetting the arc and marked points yields the category $3Cob_{CY}$ in Marco's lectures.

2. With small variations, this category appears in many works: [Kerler-Lyubashenko 01], [Kerler 01], [Asaeda 11] (citing Habiro), [Bobtcheva-Piergallini 12], [Beliakova-Bobtcheva-De Renzi-Piergallini 23].

Stated skeins in 3-cobordisms

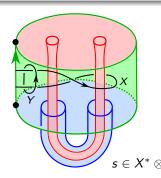
Definition

(H ribbon Hopf algebra over a field k)

A H-colored **skein** Γ in a 3-cobordism (M,\mathfrak{a}) is an isotopy class of framed and oriented embedding of copies of S^1 and [0,1] such that

- $\partial\Gamma\subset\mathfrak{a}$ and framing is vertical at these points
- ullet each connected component of Γ is labelled by a fin.-dim. H-module.
- $+ \Gamma$ is allowed to contain *coupons*, little rectangles labelled by *H*-linear maps.

A **stated skein** is a pair (Γ, s) .



Stated skein space of a 3-cobordism

H is a ribbon Hopf \mathbb{k} -alg. \Longrightarrow H-mod is a ribbon category.

Reshetikhin-Turaev ribbon graph invariant (example)

Definition

For $M=(M,\mathfrak{a})$ a 3-cobordism, $\mathcal{S}_H(M)$ is the \Bbbk -vector space spanned by stated skeins modulo:

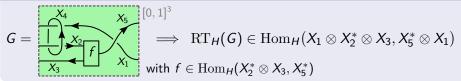
$$G$$
 \vdots $=$ \vdots with state $\operatorname{RT}_H(G)(s)$

and also
$$(\Gamma, \lambda_1 s_1 + \lambda_2 s_2) = \lambda_1(\Gamma, s_1) + \lambda_2(\Gamma, s_2)$$

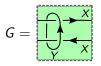
Stated skein space of a 3-cobordism

H is a ribbon Hopf k-alg. \Longrightarrow H-mod is a ribbon category.

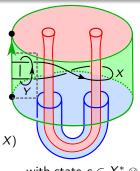
Reshetikhin–Turaev ribbon graph invariant (example)



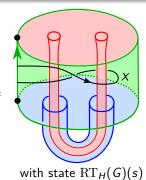
Example of a relation:



 $\operatorname{RT}_H(G) \in \operatorname{End}_H(X^* \otimes X)$



with state $s \in X^* \otimes X$



Algebra and bimodule structures

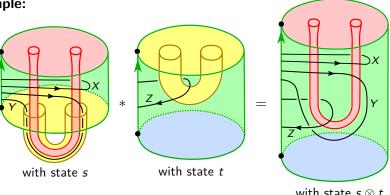
Stacking

$$M:\Sigma^1 \to \Sigma^2, \qquad N:\Sigma^2 \to \Sigma^3, \qquad N\circ M=N\sqcup_{\Sigma_2} M:\Sigma^1 \to \Sigma^3.$$

 $*: \mathcal{S}_H(N) \times \mathcal{S}_H(M) \to \mathcal{S}_H(N \circ M), \quad (\Gamma, s) * (\Lambda, t) = (\Gamma \sqcup \Lambda, s \otimes t)$

(extended by k-bilinearity). Associative operation.

Example:



with state $s \otimes t$

Algebra and bimodule structures

Stacking

$$M: \Sigma^1 \to \Sigma^2, \qquad N: \Sigma^2 \to \Sigma^3, \qquad N \circ M = N \sqcup_{\Sigma_2} M: \Sigma^1 \to \Sigma^3.$$

*: $\mathcal{S}_H(N) \times \mathcal{S}_H(M) \to \mathcal{S}_H(N \circ M)$, $(\Gamma, s) * (\Lambda, t) = (\Gamma \sqcup \Lambda, s \otimes t)$ (extended by k-bilinearity). Associative operation.

Corollary

- $S_H(\Sigma) = S_H(\Sigma \times [-1,1])$ is an associative algebra.
- $\bullet \ \, \mathcal{S}_H(M) \ \, \text{is a} \ \, \big(\mathcal{S}_H(\Sigma^2), \mathcal{S}_H(\Sigma^1)\big) \text{-bimodule}. \qquad (\mathit{M}: \Sigma^1 \to \Sigma^2 \ \text{cobordism}).$

H-equivariance

H acts on $\mathcal{S}_H(M)$ by $h \cdot (\Gamma, s) = (\Gamma, h \cdot s)$ Rmk: this action is locally finite. Property: $h \cdot (X * Y) = (h_{(1)} \cdot X) * (h_{(2)} \cdot Y)$.

$$\implies$$
 Algebras and bimodules internal to $H\operatorname{-Mod}_{\mathrm{lf}}$.

Stated skein functor

Monoidal category Bim_H

Objects: Associative algebras in H-Mod.

Morphisms: $\operatorname{Hom}_{\operatorname{Bim}_{\mathcal{H}}}(A_1,A_2)=\{\text{iso classes of }(A_2,A_1)\text{-bim in }H\text{-}\operatorname{Mod}\}$

Composition: V (A_2, A_1) -bim, W (A_3, A_2) -bim, $W \circ V = W \otimes_{A_2} V$.

Monoidal product: Tensor product of algebras and bimodules in $H\operatorname{-Mod}$.

$$H$$
 quasitriangular $\Longrightarrow H ext{-}\mathrm{Mod}$ braided category algebras $A,A'\Longrightarrow$ algebra $A\widetilde{\otimes}A'$:

$$(A \otimes A') \otimes (A \otimes A') \xrightarrow{\operatorname{id} \otimes \operatorname{br} \otimes \operatorname{id}} A \otimes A \otimes A' \otimes A' \xrightarrow{\operatorname{mult} \otimes \operatorname{mult}} A \otimes A'$$

$$(A_2, A_1)$$
-bim B , (A_2', A_1') -bim $B' \implies (A_2 \widetilde{\otimes} A_2', A_1 \widetilde{\otimes} A_1')$ -bim $B \widetilde{\otimes} B'$:

$$(A_2 \otimes A_2') \otimes (B \otimes B') \xrightarrow{\operatorname{id} \otimes \operatorname{br} \otimes \operatorname{id}} A_2 \otimes B \otimes A_2' \otimes B' \xrightarrow{\operatorname{act} \otimes \operatorname{act}} B \otimes B'$$

and similarly for right action.

Stated skein functor

Monoidal category Bim_H

Objects: Associative algebras in H-Mod.

Morphisms: $\operatorname{Hom}_{\operatorname{Bim}_H}(A_1, A_2) = \{ \text{iso classes of } (A_2, A_1) \text{-bim in } H\text{-}\operatorname{Mod} \}$ *Composition:* $V(A_2, A_1) \text{-bim}$, $W(A_3, A_2) \text{-bim}$, $W \circ V = W \otimes_{A_2} V$.

Monoidal product: Tensor product of algebras and bimodules [in H-Mod].

Theorem 1 [Costantino–Lê] for "functor", [Costantino–F.] for "monoidal"

 \mathcal{S}_H is a strict monoidal functor $3\mathrm{Cob}_{\mathrm{arc}} \to \mathrm{Bim}_H$.

It means:

- $S_H(N \sqcup_{\Sigma^2} M) = S_H(N) \otimes_{S_H(\Sigma^2)} S_H(M)$ for $M : \Sigma^1 \to \Sigma^2$, $N : \Sigma^2 \to \Sigma^3$
- $S_H(C \otimes C') = S_H(C) \widetilde{\otimes} S_H(C')$

What about the braiding in $3Cob_{arc}$?

$$\mathscr{L} = \int_{X \in H\text{-mod}} X^* \otimes X, \qquad (i_X : X^* \otimes X \to \mathscr{L})_{X \in H\text{-mod}} \text{ univ. dinat. transfo.}$$

- ullet is a Hopf algebra in $H ext{-}\mathrm{Mod}$ [Lyubashenko, Majid]
- There is a half-braiding $\sigma: \mathscr{L} \otimes -\stackrel{\sim}{\Rightarrow} \otimes \mathscr{L}$ defined by

Definition: Quantum Moment Map (in the sense of Safronov)

A algebra in $H\operatorname{-Mod}$. A QMM for A is an algebra morphism $\mathfrak{d}:\mathscr{L}\to A$ in $H\operatorname{-Mod}$ such that

$$\begin{array}{c|c} \mathscr{L} \otimes A & \xrightarrow{\mathfrak{d} \otimes \mathrm{id}_A} & \to A \otimes A \\ \downarrow \sigma_A & \circlearrowleft & \downarrow \mathsf{mult} \\ A \otimes \mathscr{L} & \xrightarrow{\mathrm{id}_A \otimes \mathfrak{d}} A \otimes A & \xrightarrow{\mathsf{mult}} A \end{array}$$

What about the braiding in $3Cob_{arc}$?

Subcategory $\operatorname{Bim}_H^{\mathsf{QMM}} \subset \operatorname{Bim}_H$

Objects: Associative algebras in H-Mod **equipped with a QMM**. *Morphisms* $(A_1, \mathfrak{d}_1) \to (A_2, \mathfrak{d}_2) = \text{iso classes of } (A_2, A_1)\text{-bim in } H$ -Mod

 $\textbf{compatible} \text{ with the QMMs } \mathfrak{d}_1, \ \mathfrak{d}_2.$

What about the braiding in $3Cob_{arc}$?

Subcategory $\operatorname{Bim}_{H}^{\mathsf{QMM}} \subset \operatorname{Bim}_{H}$

Objects: Associative algebras in H-Mod **equipped with a QMM**. *Morphisms* $(A_1, \mathfrak{d}_1) \to (A_2, \mathfrak{d}_2) = \text{iso classes of } (A_2, A_1)\text{-bim in } H$ -Mod

compatible with the QMMs \mathfrak{d}_1 , \mathfrak{d}_2 .

Theorem 2 [Costantino-F]

(important to work with loc. fin. *H*-modules here)

 $\operatorname{Bim}_{H,\operatorname{lf}}^{\operatorname{QMM}}$ is a **braided** monoidal subcategory of Bim_H (the braiding is defined by means of the QMMs)

Theorem 1 bis [Costantino–F]

 \mathcal{S}_H takes values in $\mathrm{Bim}_{H,\mathrm{lf}}^{\mathsf{QMM}}$ and is a **braided** strict monoidal functor.

Kerler-Lyubashenko TQFT (cf. Marco's lectures for more details)

 $\mathbb{T}=$ the torus with one boundary component. $\mathbb{D}=$ the disk. Any object (=surface) in $3\mathrm{Cob}_{\mathrm{arc}}$ is of the form $\mathbb{T}^{\otimes g}$, $g\geq 0$.

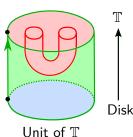
Theorem: generators and relations for $3Cob_{arc}$

 $\mathbb T$ is a Hopf algebra object in $3\mathrm{Cob}_{\mathrm{arc}}$. Any morphism (=3-cobordism) can be built from the Hopf data of $\mathbb T$ and morphisms $\lambda:\mathbb T\to\mathbb D$, $\Lambda:\mathbb D\to\mathbb T$, $w:\mathbb D\to\mathbb T\otimes\mathbb T$, $\pi:\mathbb T\to\mathbb T$ satisfying a certain list of relations.

Biblio: partly in [Kerler 01], announce in [Asaeda 11] citing Habiro, first proof in [Bobtcheva–Piergallini 12], new proof in [B–Beliakova–De Renzi–P 23].

Example:





Kerler-Lyubashenko TQFT (cf. Marco's lectures for more details)

 $\mathbb{T}=\text{the torus with one boundary component.}\qquad \mathbb{D}=\text{the disk}.$

Any object (=surface) in $3\mathrm{Cob}_{\mathrm{arc}}$ is of the form $\mathbb{T}^{\otimes g}$, $g\geq 0$.

Theorem: generators and relations for $3Cob_{arc}$

 $\mathbb T$ is a Hopf algebra object in $3\mathrm{Cob}_{\mathrm{arc}}$. Any morphism (=3-cobordism) can be built from the Hopf data of $\mathbb T$ and morphisms $\lambda:\mathbb T\to\mathbb D$, $\Lambda:\mathbb D\to\mathbb T$, $w:\mathbb D\to\mathbb T\otimes\mathbb T$, $\mathbb T$ satisfying a certain list of relations.

Said differently

Braided monoidal functor $F: 3\mathrm{Cob}_{\mathrm{arc}} \to \mathcal{C}$

 \iff Hopf alg in $\mathcal C$ with morphisms $\lambda', \Lambda', w', \tau'$ satisfying the relations.

Consequence: Kerler–Lyubashenko TQFT [Beliakova–De Renzi 21]

Let $\mathcal C$ be a ribbon factorizable finite tensor category and $\mathscr L=\int^{X\in\mathcal C}X^*\otimes X.$ There is a br. mon. functor $\mathrm{KL}_{\mathcal C}:3\mathrm{Cob}^\sigma\to\mathcal C$ sending $\mathbb T$ to $\mathscr L.$

(σ means "extra datum on cobordisms")

KL vs. S_H

Assume that the ribbon Hopf alg H is **fin-dim and factorizable**.

$$\mathscr{L} = \int^{X \in H\text{-mod}} X^* \otimes X \cong H^*_{\text{coad}}$$
 as a $H\text{-module}$.

Theorem 3 [Costantino–F.]

Said differently:

- \forall surface $\mathbb{T}^{\otimes g}$, $\mathcal{S}_H(\mathbb{T}^{\otimes g})\cong \underline{\operatorname{End}}(\mathscr{L}^{\otimes g})$ as algebras in H- mod .
- $\forall \text{ cob } M : \mathbb{T}^{\otimes g_1} \to \mathbb{T}^{\otimes g_2}$, $\mathcal{S}_H(M) \cong \underline{\operatorname{Hom}}(\mathscr{L}^{\otimes g_1}, \mathscr{L}^{\otimes g_2})$ as bim in H-mod.

Idea of the proof

$$\mathcal{S}_H(\mathbb{T}^{\otimes \mathsf{g}})\cong \underline{\mathrm{End}}(\mathscr{L}^{\otimes \mathsf{g}})$$
 is from [F.20], [Baseilhac–F.–Roche 23] ("Alekseev iso")

 \Rightarrow Any $(\mathcal{S}_H(\mathbb{T}^{\otimes g_2}), \mathcal{S}_H(\mathbb{T}^{\otimes g_1}))$ -bim is iso to $\bigoplus \underline{\mathrm{Hom}}(\mathscr{L}^{\otimes g_1}, \mathscr{L}^{\otimes g_2})$.

Then count dimension to show there is a unique summand.