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Some remarks concerning
Voevodsky’s nilpotence conjecture

By Marcello Bernardara at Toulouse, Matilde Marcolli at Pasadena and
Gonçalo Tabuada at Cambridge, MA

Abstract. In this article we extend Voevodsky’s nilpotence conjecture from smooth
projective schemes to the broader setting of smooth proper dg categories. Making use of this
noncommutative generalization, we then address Voevodsky’s original conjecture in the follow-
ing cases: quadric fibrations, intersection of quadrics, linear sections of Grassmannians, linear
sections of determinantal varieties, homological projective duals, and Moishezon manifolds.

1. Introduction and statement of results

Let k be a base field and F a field of coefficients of characteristic zero.

Voevodsky’s nilpotence conjecture. In a foundational work [36], Voevodsky intro-
duced the smash-nilpotence equivalence relation �˝nil on algebraic cycles and conjectured its
agreement with the classical numerical equivalence relation �num. Concretely, given a smooth
projective k-scheme X , he stated the following:

Conjecture V.X/. We have Z�.X/F =�˝nil D Z�.X/F =�num.

Thanks to the work of Kahn–Sebastian, Matsusaka, Voevodsky, and Voisin (see, for
instance, [16, 30, 36, 37] and also [1, Section 11.5.2.3]), the above conjecture holds in the case
of curves, surfaces, and abelian 3-folds (when k is of characteristic zero).
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Noncommutative nilpotence conjecture. A dg category A is a category enriched over
dg k-vector spaces; see Section 2.1. Following Kontsevich [18–20], A is called smooth if
it is perfect as a bimodule over itself and proper if for any two objects x; y 2 A we haveP
i dimH iA.x; y/ <1. The classical example is the unique dg enhancement perfdg.X/ of

the category of perfect complexes perf.X/ of a smooth projective k-scheme X ; see Lunts
and Orlov [25]. As explained in Section 2.3–2.4, the Grothendieck group K0.A/ of every
smooth proper dg category A comes endowed with a ˝-nilpotence equivalence relation �˝nil

and with a numerical equivalence relation �num. Motivated by the above conjecture, we state
the following:

Conjecture VNC.A/. We have K0.A/F =�˝nil D K0.A/F =�num.

Our first main result is the following reformulation of Voevodsky’s conjecture:

Theorem 1.1. Conjecture V.X/ is equivalent to Conjecture VNC.perfdg.X//.

Theorem 1.1 shows us that when restricted to the commutative world, the noncommu-
tative nilpotence conjecture reduces to Voevodsky’s original conjecture. Making use of this
noncommutative viewpoint, we now address Voevodsky’s nilpotence conjecture in several
cases.

Quadric fibrations. Let S be a smooth projective k-scheme and q W Q! S a flat
quadric fibration of relative dimension n with Q smooth. Recall from Kuznetsov [23] (see
also [5]) the construction of the sheaf C0 of even parts of the Clifford algebra associated to q.
Recall also from [23] that when the discriminant divisor of q is smooth and n is even (resp.
odd), we have a discriminant double cover eS ! S (resp. a square root stack bS ) equipped with
an Azumaya algebra B0. Our second main result allows us to decompose Conjecture V.Q/
into simpler pieces:

Theorem 1.2. The following hold:

(i) We have
V.Q/ ” VNC.perfdg.S;C0//C V.S/:

(ii) When the discriminant divisor of q is smooth and n is even, we have

V.Q/ ” V.eS/C V.S/:
As a consequence, V.Q/ holds when dim.S/ � 2, and becomes equivalent to V.eS/ when
S is an abelian 3-fold and k is of characteristic zero.

(iii) When the discriminant divisor of q is smooth and n is odd, we have

V.Q/ ” VNC.perfdg.
bS;B0//C V.S/:

As a consequence, Conjecture V.Q/ becomes equivalent to VNC.perfdg.
bS/;B0/ when

dim.S/ � 2. This latter conjecture holds when dim.S/ � 2.

Remark 1.3. The (rational) Chow motive of a quadric fibration q W Q! S was com-
puted by Vial in [35, Theorem 4.2 and Corollary 4.4]. In the particular case where dim.S/ � 2,
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it consists of a direct sum of submotives of smooth projective k-schemes of dimension at
most two. This motivic decomposition provides an alternative “geometric” proof of Conjec-
ture V.Q/. We will rely on this argument to prove the last statement of item (iii). In the
particular case where S is a curve and k is algebraically closed, we provide also a “categori-
cal” proof of this last statement; see Remark 6.5. The fact that VNC.perfdg.

bS/;B0/ holds when
dim.S/ � 2 will play a key role in the proof of Theorem 1.4 below.

Intersection of quadrics. Let X be a smooth complete intersection of r quadric hyper-
surfaces in Pm. The linear span of these r quadrics gives rise to a hypersurfaceQ � P r�1�Pm,
and the projection into the first factor is a flat quadric fibration q W Q! P r�1 of relative
dimension m � 1.

Theorem 1.4. The following holds:

(i) We have
V.X/ ” VNC.perfdg.P

r�1;C0//:

(ii) When the discriminant divisor of q is smooth and m is odd, we have

V.X/ ” V.AP r�1/:
As a consequence, V.X/ holds when r � 3.

(iii) When the discriminant divisor of q is smooth and m is even, we have

V.X/ ” VNC.perfdg.
1P r�1;B0//:

This latter conjecture holds when r � 3 and k is algebraically closed.

Remark 1.5. The (rational) Chow motive of a complete intersection X was computed
in [8, Theorem 2.1] in the particular cases where r � 2 or r D 3 and m is odd. It consists of
a direct sum of submotives of smooth projective k-schemes of dimension at most one. This
motivic decomposition provides an alternative proof of Conjecture V.X/. A similar argument
holds in the case where r D 3 and m is even.

Remark 1.6 (Relative version). Theorem 1.4 has a relative analogue with X replaced
by a generic relative complete intersection X ! S of r quadric fibrations Qi ! S of relative
dimensionm � 1; consult [5, Definition 1.2.4] for details. Items (i), (ii), and (iii), hold similarly
with P r�1 replaced by a P r�1-bundle T ! S , with V.AP r�1/ replaced by V.eT /C V.S/, and
with VNC.perfdg.

1P r�1;B0// replaced by VNC.perfdg.
bT ;B0//C V.S/, respectively. Note that

thanks to the relative item (ii), Conjecture V.X/ holds when r D 2 and S is a curve.

Linear sections of Grassmannians. Following Kuznetsov [21], consider the following
two classes of schemes:

(i) LetXL be a generic linear section of codimension r of the Grassmannian Gr.2;W / (with
W D k˚6) under the Plücker embedding, and YL the corresponding dual linear section
of the cubic Pfaffian Pf.4;W �/ in P .ƒ2W �/.

For example when r D 3, XL is a Fano 5-fold; when r D 4, XL is a Fano 4-fold; and when
r D 6, XL is a K3 surface of degree 14 and YL a Pfaffian cubic 4-fold. Moreover, XL and YL
are smooth whenever r � 6.
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(ii) LetXL be a generic linear section of codimension r of the Grassmannian Gr.2;W / (with
W D k˚7) under the Plücker embedding, and YL the corresponding dual linear section
of the cubic Pfaffian Pf.4;W �/ in P .ƒ2W �/.

For example when r D 5, XL is a Fano 5-fold; when r D 4, XL is a Fano 4-fold; when r D 8,
YL is a Fano 4-fold; and when r D 9, YL is a Fano 5-fold. Moreover, XL and YL are smooth
whenever r � 10.

Theorem 1.7. Let XL and YL be as in the above classes (i)–(ii). Under the assumption
that XL and YL are smooth, we have

V.XL/ ” V.YL/:

This conjecture holds when r � 6 (class (i)), and when r � 6 and 8 � r � 10 (class (ii)).

Remark 1.8. To the best of the authors’ knowledge, Theorem 1.7 proves Voevodsky’s
nilpotence conjecture in new cases.

Linear sections of determinantal varieties. LetU and V be k-vector spaces of dimen-
sionsm and n, respectively, with n � m, and 0 < r < m an integer. Following [7], consider the
universal determinantal varietyZrm;n � P .U˝V / given by the locus of matricesM W U � ! V

of rank at most r . Its Springer resolution is denoted by

Xr
m;n WD P .U˝ V /! Gr.r; U /;

where U stands for the tautological subbundle on Gr.r; U /. Under these notations, we have the
following class of schemes:

(i) Let XL be a generic linear section of codimension c of Xr
m;n under the map

Xr
m;n ! P .U ˝ V /;

and YL the corresponding dual linear section of Xm�r
m;n under the map

Xm�r
m;n ! P .U � ˝ V �/:

Remark 1.9. As explained in [7, Section 3], XL and YL are smooth crepant categorical
resolution of singularities of .Zrm;n/L and .Zm�rm;n /L, respectively.

For example whenm D n D 4 and r D 1,XL is a .6�c/-dimensional section of P3�P3

under the Segre embedding, and YL the resolution of the dual .c�2/-dimensional determinantal
quartic. In the same vein, when m D n D 4 and r D 2, XL is an .11 � c/-dimensional section
of the self-dual orbit of 4 � 4 matrices of rank 2, and YL the .c � 5/-dimensional dual section.
Moreover, the following holds:

(a) When c � 7, XL is a Fano .11 � c/-fold and dim.YL/ � 2.

(b) When c D 8, XL and YL are dual Calabi–Yau 3-folds.

(c) When c � 9, YL is a Fano (c � 5)-fold and dim.XL/ � 2.

For further example, consult [7, Section 3.3] and well as [7, Tables 1 and 2].
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Theorem 1.10. When XL and YL are as in the above class (i), we have

V.XL/ ” V.YL/:

This conjecture holds when dim.XL/ � 2 or dim.YL/ � 2.

Remark 1.11. To the best of the authors’ knowledge, Theorem 1.10 proves Voevodsky’s
nilpotence conjecture in new cases.

Homological projective duality. Making use of Kuznetsov’s theory of homological
projective duality (HPD) [22], Theorem 1.7 admits the following generalization: let X be
a smooth projective k-scheme equipped with an ample line bundle OX .1/. Note that OX .1/

gives rise to a morphism X ! P .V /, where V WD H 0.X;OX .1//
�. Let Y be the HP-dual

of X , OY .1/ the associated ample line bundle, and Y ! P .V �/ the associated morphism.
Assume that perf.X/ admits a Lefschetz decomposition perf.X/ D hA0; : : : ;An.n/i with
respect to OX .1/, i.e. a semi-orthogonal decomposition of perf.X/ such that A0 � : : : � An
and Ai .i/ WD Ai ˝O.i/. Assume also that Conjecture VNC.A

dg
0 / holds, where Adg

0 stands for
the dg enhancement of A0 induced from perfdg.X/; see Section 2.2. Finally, let L � V be
a subspace such that the linear sections XL WD X �P.V / P .L/ and YL WD Y �P.V �/ P .L?/
are of expected dimension dim.XL/ D dim.X/�dim.L/ and dim.YL/ D dim.Y /�dim.L?/,
respectively.

Theorem 1.12. Let XL and YL be as above. Under the assumption that XL and YL are
smooth, we have

V.XL/ ” V.YL/:

Remark 1.13. Theorem 1.12 reduces to Theorem 1.7 (resp. to Theorem 1.10) in the
particular case of Grassmannian–Pfaffian (resp. determinantal) homological projective duality;
consult [21] (resp. [7]) for details.

Moishezon manifolds. A Moishezon manifold X is a compact complex manifold such
that the field of meromorphic functions on each component of X has transcendence degree
equal to the dimension of the component. As proved by Moishezon [31], X is a smooth projec-
tive C-scheme if and only if it admits a Kähler metric. In the remaining cases, Artin [3] showed
that X is a proper algebraic space over C.

Let Y ! P2 be one of the non-rational conic bundles described by Artin and Mumford
in [4], and X ! Y a small resolution. In this case, X is a smooth (not necessarily projective)
Moishezon manifold.

Theorem 1.14. Conjecture VNC.perfdg.X// holds for the above resolutions.

Remark 1.15. The proofs of Theorems 1.2, 1.4, 1.7, 1.10, 1.12, and 1.14 are based on
the study of a smooth projective k-scheme (or algebraic space) X via semi-orthogonal decom-
positions of its category of perfect complexes perf.X/; see Bondal–Orlov [9], Huybrechts [14],
and Kuznetsov [24] for instance. This approach allows the reduction of Voevodsky’s Conjecture
V.X/ to several noncommutative conjectures VNC – one for each piece of the semi-orthogonal
decomposition. We believe this provides a new tool for the proof of Voevodsky’s conjecture as
well as of its generalization to algebraic spaces.
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2. Preliminaries

2.1. Dg categories. A differential graded category (in short, dg category) A is a cat-
egory enriched over dg k-vector spaces; consult Keller [17] for details. For example, every
(dg) k-algebra A gives naturally rise to a dg category A with a single object. Let dgcat be the
category of small dg categories. Recall from [17, Section 3] the construction of the derived
category D.A/ of A. This triangulated category admits arbitrary direct sums and we will write
Dc.A/ for the full subcategory of compact objects. A dg functor A! B is called a Morita
equivalence if it induces an equivalence D.A/

�
�! D.B/. Finally, let us write A˝B for the

tensor product of dg categories.

2.2. Perfect complexes. Given a stack X and a sheaf of OX-algebras G , let Mod.X;G /
be the Grothendieck category of sheaves of (right) G -modules, D.X;G / WD D.Mod.X;G //
the derived category of G , and perf.X;G / the subcategory of perfect complexes. As explained
in [17, Section 4.4], the derived category Ddg.Ex/ of an abelian (or exact) category Ex is
defined as the (Drinfeld’s) dg quotient Cdg.Ex/=Acdg.Ex/ of the dg category of complexes
over Ex by its full dg subcategory of acyclic complexes. Hence, let us write Ddg.X;G / for the
dg category Ddg.Ex/ with Ex WD Mod.X;G / and perfdg.X;G / for the full dg subcategory of
perfect complexes.

Lemma 2.1. Let X be a smooth projective k-scheme, and let perf.X/ D hT1; : : : ; Tni
be a semi-orthogonal decomposition. In this case, the dg categories T dg

i (where T dg
i stands for

the dg enhancement of Ti induced from perfdg.X/) are smooth and proper.

Proof. Let Ho.dgcat/ be the localization of dgcat with respect to the class of Morita
equivalences. The tensor product of dg categories gives rise to a symmetric monoidal structure
on dgcat which descends to Ho.dgcat/. Moreover, as proved in [10, Theorem 5.8], the smooth
and proper dg categories can be characterized as those objects of Ho.dgcat/ which are dualiz-
able. Note that the canonical inclusion T

dg
i ,! perfdg.X/ and projection perfdg.X/! T

dg
i dg

functors express T dg
i as a direct factor of perfdg.X/ in Ho.dgcat/. Hence, since perfdg.X/ is

smooth and proper, we conclude that T dg
i is also smooth and proper.

2.3. ˝-nilpotence equivalence relation. Let A be a dg category. An element ŒM � of
the Grothendieck group K0.A/ WD K0.Dc.A// is called ˝-nilpotent if there exists an integer
n > 0 such that ŒM˝n� D 0 inK0.A˝n/. This gives rise to a well-defined equivalence relation
�˝nil on K0.A/ and on its F -linearization K0.A/F .

2.4. Numerical equivalence relation. Let A be a smooth proper dg category. As
explained in [27, Section 4], the pairing .M;N / 7!

P
i .�1/

idim HomDc.A/.M;N Œi �/ gives
rise to a well-defined bilinear form �.�;�/ on K0.A/. Moreover, the left and right kernels
of �.�;�/ are the same. An element ŒM � of the Grothendieck group K0.A/ is said to be
numerically trivial if �.ŒM�; ŒN �/ D 0 for all elements ŒN � 2 K0.A/. This gives rise to an
equivalence relation �num on K0.A/ and consequently on K0.A/F . When A D perfdg.X/,
with X a smooth projective k-scheme, and F D Q, this equivalence relation reduces, via the
Chern character K0.X/Q

�
�! CH�.X/Q, to the classical numerical equivalence relation on

the Chow ring CH�.X/Q.

Brought to you by | Universite Toulouse 3 Paul Sabatier
Authenticated

Download Date | 7/4/18 9:57 AM



Bernardara, Marcolli and Tabuada, Remarks concerning Voevodsky’s nilpotence conjecture 305

2.5. Motives. We assume the reader is familiar with the categories of Chow motives
Chow.k/F and numerical motives Num.k/F ; see [1, Chapitre 4]. The Tate motive will be
denoted F.1/. In the same vein, we assume some familiarity with the categories of noncommu-
tative Chow motives NChow.k/F and noncommutative numerical motives NNum.k/F ; con-
sult the surveys [28, Sections 2–3] and [32, Section 4], and the references therein. Recall from
[1, Chapitre 4] that NNum.k/F is the idempotent completion of the quotient of NChow.k/F
by its largest˝-ideal1), and that HomNChow.k/F .k;A/ ' K0.A/F .

3. Orbit categories and ˝-nilpotence

Let C be an F -linear additive rigid symmetric monoidal category.

Orbit categories. Given a ˝-invertible object O 2 C , recall from [33, Section 7] the
construction of the orbit category C=˝O . It has the same objects as C and morphisms

HomC=�˝O
.a; b/ WD

M
j2Z

HomC .a; b ˝O˝j /:

The composition law is induced from C . By construction, C=˝O is F -linear, additive, and
comes equipped with a canonical projection functor � W C ! C=˝O . Moreover, � is endowed
with a natural 2-isomorphism � ı .�˝O/

�
) � and is 2-universal among all such functors.

As proved in [33, Lemma 7.3], C=˝O inherits from C a symmetric monoidal structure making
� symmetric monoidal. On objects it is the same. On morphisms it is defined as the unique
bilinear pairingM
j2Z

HomC .a; b ˝O˝j / �
M
j2Z

HomC .c; d ˝O˝j /!
M
j2Z

HomC .a˝ c; .b ˝ d/˝O˝j /

which sends the pair

.a
fr
�! b ˝O˝r ; c

gs
�! d ˝O˝s/

to
.f ˝ g/.rCs/ W a˝ c

fr˝gs
����! b ˝O˝r ˝ d ˝O˝s ' .b ˝ d/˝O˝.rCs/:

˝-nilpotence. The˝nil-ideal of C is defined as

˝nil.a; b/ WD ¹f 2 HomC .a; b/ W f
˝n
D 0 for n� 0º:

By construction,˝nil is a˝-ideal. Moreover, all its ideals˝nil.a; a/ � HomC .a; a/ are nilpo-
tent; see [2, Lemma 7.4.2 (ii)]. As a consequence, the ˝-functor C ! C=˝nil is not only
F -linear and additive but moreover conservative. Furthermore, since idempotents can be lifted
along nilpotent ideals (see [6, Section III, Propposition 2.10]), C=˝nil is idempotent complete
whenever C is idempotent complete.

1) Different from the entire category NChow.k/F .
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Compatibility. Let C be a category and O 2 C a˝-invertible objects as above.

Proposition 3.1. There exists a canonical F -linear additive ˝-equivalence � making
the following diagram commute:

(3.2) C=˝nil

��

Coo // C=˝O

��

.C=˝nil/=˝O
'

�
// .C=˝O/=˝nil.

Proof. The existence of the F -linear additive˝-functor � follows from the fact that

(3.3) C �! C=˝O �! .C=˝O/=˝nil

vanishes on the ˝nil-ideal and also from the natural 2-isomorphism between (3.3) ı .�˝O/

and (3.3). Note that the functor � is the identity on objects and sends ¹Œfj �ºj2Z to Œ¹fj ºj2Z�.
Clearly, it is full. The faithfulness is left as an exercise.

4. ˝-nilpotence of motives

By construction, the categories Chow.k/F and NChow.k/F are F -linear, additive, rigid
symmetric monoidal, and idempotent complete. Let us denote by

Voev.k/F WD Chow.k/F =˝nil

and

NVoev.k/F WD NChow.k/F =˝nil

the associated quotients. They fit in the following sequences:

Chow.k/F ! Voev.k/F ! Num.k/F

and

NChow.k/F ! NVoev.k/F ! NNum.k/F :

The relation between all these motivic categories is the following:

Proposition 4.1. There exist F -linear additive fully-faithful ˝-functors R;R˝nil ; RN

making the following diagram commute:

(4.2) Chow.k/F

��

� // Chow.k/F =˝F.1/

��

R // NChow.k/F

��

Voev.k/F

��

� // Voev.k/F =˝F.1/

��

R˝nil // NVoev.k/F

��

Num.k/F
� // Num.k/F =˝F.1/

RN // NNum.k/F .
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Proof. The outer commutative square, with R;RN both F -linear additive fully-faithful
˝-functors, was built in [29, Theorem 1.13]. Consider now the “zoomed” diagram

(4.3) Chow.k/F =˝F.1/

��

Chow.k/F =˝F.1/
R //

��

NChow.k/F

��

Voev.k/F =˝F.1/

��

'

�
// .Chow.k/F =˝F.1//=˝nil

R=˝nil //

��

NVoev.k/F

��

Num.k/F =˝F.1/ Num.k/F =˝F.1/
RN // NNum.k/F .

By definition, R˝nil WD R=˝nil ı � . Since R is an F -linear additive fully-faithful ˝-functor,
we conclude that R˝nil is also an F -linear additive fully-faithful˝-functor. The commutativity
of the bottom squares of diagram (4.3) follows from the fact that Num.k/F =˝F.1/ identifies
with the quotient of Chow.k/F =˝F.1/ by its largest ˝-ideal N ; consult [29, Proposition 3.2]
for details.

5. Proof of Theorem 1.1

Note first that we have the following natural isomorphisms:

HomVoev.k/F =˝F.1/
.Spec.k/; X/ ' Z�.X/F =�˝nil;

HomNum.k/F =˝F.1/
.Spec.k/; X/ ' Z�.X/F =�num:

As a consequence, Conjecture V.X/ becomes equivalent to the injectivity of

(5.1) HomVoev.k/F =˝F.1/
.Spec.k/; X/ � HomNum.k/F =˝F.1/

.Spec.k/; X/:

Given a smooth and proper dg category A, we have also natural isomorphisms

HomNVoev.k/F .k;A/ ' K0.A/F =�˝nil; HomNNum.k/F .k;A/ ' K0.A/F =�num:

Hence, Conjecture VNC.A/ becomes equivalent to the injectivity of

(5.2) HomNVoev.k/F .k;A/ � HomNNum.k/F .k;A/:

Now, recall from [33, Theorem 1.1] that the image of X under the composed functor R ı �
identifies naturally with the noncommutative Chow motive perfdg.X/. Similarly, the image
of Spec.k/ under R ı � identifies with perfdg.Spec.k// which is Morita equivalent to k. As
a consequence, since the functors R˝nil and RN are fully-faithful, the bottom right-hand side
square of diagram (4.2) gives rise to the following commutative diagram:

HomVoev.k/F =˝F.1/
.Spec.k/; X/

(5.1)
����

' // HomNVoev.k/F .k; perfdg.X//

(5.2)
����

HomNum.k/F =˝F.1/
.Spec.k/; X/

'
// HomNNum.k/F .k; perfdg.X//.

Using the above reformulations of Conjectures V and VNC, we conclude finally that Conjec-
ture V.X/ is equivalent to Conjecture VNC.perfdg.X//.
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6. Proof of Theorem 1.2

Item (i). As proved by Kuznetsov in [23, Theorem 4.2], one has the semi-orthogonal
decomposition

perf.Q/ D hperf.S;C0/; perf.S/1; : : : ; perf.S/ni

with perf.S/i WD q�perf.S/˝OQ=S .i/. Note that we have perf.S/i ' perf.S/ for every i .
Using [8, Proposition 3.1], one then obtains a direct sum decomposition in NChow.k/F

(6.1) perfdg.Q/ ' perf dg.S;C0/˚ perfdg.S/˚ � � � ˚ perfdg.S/„ ƒ‚ …
n copies

;

where perf dg.S;C0/ stands for the dg enhancement of perf.S;C0/ induced from perfdg.Q/.
Note that by Lemma 2.1, the dg category perf dg.S;C0/ is smooth and proper. Since the inclu-
sion of categories perf.S;C0/ ,! perf.Q/ is of Fourier–Mukai type ([23, Proposition 4.9]), its
kernel K 2 perf.S �Q;Cop

0 � OX / gives rise to a Fourier–Mukai Morita equivalence

ˆK
dg W perfdg.S;C0/! perf dg.S;C0/:

Hence, we can replace in the above decomposition (6.1) the dg category perf dg.S;C0/ by the
canonical one perfdg.S;C0/ (see Section 2.2). Finally, using the above description (5.2) of the
noncommutative nilpotence conjecture, one concludes that

(6.2) VNC.perfdg.Q// ” VNC.perfdg.S;C0//C VNC.perfdg.S//:

The proof follows now automatically from Theorem 1.1.

Item (ii). As proved by Kuznetsov in [23, Proposition 3.13], perf.S;C0/ is Fourier–
Mukai equivalent to perf.eS;B0/. Hence, the above equivalence (6.2) reduces to

(6.3) VNC.perfdg.Q// ” VNC.perfdg.
eS;B0//C VNC.perfdg.S//:

Since B0 is a sheaf of Azumaya algebras and F is of characteristic zero, the canonical dg
functor perfdg.

eS/! perfdg.
eS;B0/ becomes an isomorphism in NChow.k/F ; see [34, Theo-

rem 2.1]. Consequently, Conjecture VNC.perfdg.
eS;B0// reduces to Conjecture VNC.perfdg.

eS//.
The proof follows now from Theorem 1.1.

Item (iii). As proved by Kuznetsov in [23, Proposition 3.15], perf.S;C0/ is Fourier–
Mukai equivalent to perf.bS;B0/. Hence, the above equivalence (6.2) reduces to

(6.4) VNC.perfdg.Q// ” VNC.perfdg.
bS;B0//C VNC.perfdg.S//:

The proof of the first claim follows now from Theorem 1.1.
Let us now prove the second claim, which via (6.4) is equivalent to the proof of Conjec-

ture VNC.perfdg.Q//. Thanks to Vial [35, Theorem 4.2 and Corollary 4.4], the rational Chow
motive MQ.Q/ of Q decomposes as MQ.Q/ DMQ.S/

˚.n�dim.S// ˚N , where N stands
for a submotive of a smooth projective k-scheme of dimension � dim.S/. Therefore, when
dim.S/ � 2, Conjecture V.Q/ D VNC.perfdg.Q// holds.

Remark 6.5. Assume that S is a smooth projective curve and that k is algebraically
closed. In this remark we provide a “categorical” proof of the second claim of item (iii) of
Theorem 1.2. Thanks to the work of Graber–Harris–Starr [13], the fibration q W Q! S admits
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a section. Making use of it, we can perform reduction by hyperbolic splitting in order to obtain
a conic bundle q0 W Q0 ! S ; consult [5, Section 1.3] for details. The sheaf C 00 of even parts
of the associated Clifford algebra is such that the categories perf.S;C0/ and perf.S;C 00/ are
Fourier–Mukai equivalent; see [5, Remark 1.8.9]. As a consequence, using (6.2) and the fact
that dim.S/ D 1, we obtain the following equivalence:

(6.6) VNC.perfdg.Q// ” VNC.perfdg.Q
0//:

Since S is a curve, Q0 is a surface. Therefore, conjecture (6.6) holds.

7. Proof of Theorem 1.4

Item (i). As proved by Kuznetsov in [23, Theorem 5.5], we have a Fourier–Mukai
equivalence perf.X/ ' perf.P r�1;C0/ whenm � 2r C 1 D 0, the semi-orthogonal decompo-
sition perf.X/ D hperf.P r�1;C0/;OX .1/; : : : ;OX .m � 2r C 1/i when m � 2r C 1 > 0, and
a dual semi-orthogonal decomposition of perf.P r�1;C0/ (containing a copy of perf.X/ and
exceptional objects) whenm � 2r C 1 < 0. The proof of the casem � 2r C 1 D 0 is clear. Let
us now prove the casem � 2r C 1 > 0; the proof of the casem � 2r C 1 < 0 is similar. Using
[8, Proposition 3.11], one obtains the following direct sum decomposition in NChow.k/F :

perfdg.X/ ' perf dg.P r�1;C0/˚ perfdg.k/˚ � � � ˚ perfdg.k/„ ƒ‚ …
.m�2rC1/ copies

:

Thanks to Lemma 2.1, the dg category perf dg.P r�1;C0/ is smooth and proper.2) Since the
inclusion perf.P r�1;C0/ ,! perf.X/ is of Fourier–Mukai type (see [23, Proposition 4.9]), an
argument similar to the one of the proof of Theorem 1.2 (i) shows us that

VNC.perfdg.X// ” VNC.perfdg.P
r�1;C0//C VNC.perfdg.k//:

The proof follows now automatically from Theorem 1.1.

Items (ii)–(iii). The proofs are similar to those of items (ii)–(iii) of Theorem 1.2.

8. Proof of Theorems 1.7 and 1.10

Assume thatXL and YL are as in classes of (i)–(ii) of Theorem 1.7 (resp. as in class (i) of
Theorem 1.10). As proved by Kuznetsov in [21, Sections 10–11] (resp. in [7, Theorem 3.4]),
one of the following three situations occurs:

(a) there is a semi-orthogonal decomposition perf.XL/ D hperf.YL/;E1; : : : ;Eni, where Ei
are exceptional bundles on XL,

(b) there is a semi-orthogonal decomposition perf.YL/ D hperf.XL/;E 01; : : : ;E
0
ni, where E 0i

are exceptional bundles on YL,

(c) there is a Fourier–Mukai equivalence between perf.XL/ and perf.YL/.
2) In the case m � 2r C 1 < 0, these properties follow from the existence of a fully faithful Fourier–Mukai

functor perf.P r�1;C0/! perf.Q/, with Q � P r�1 � Pm a smooth hypersurface.
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Therefore, the equivalence of V.XL/ and V.YL/ is clear in situation (c). Since the inclusions
of categories perf.YL/ ,! perf.XL/ (situation (a)) and perf.XL/ ,! perf.YL/ (situation (b))
are of Fourier–Mukai type, a proof similar to the one of Theorem 1.2 (i) shows us that the
equivalence of V.XL/ and V.YL/ also holds in situations (a)–(b). Note that this concludes
the proof of Theorem 1.10 since Conjecture V.XL/ (resp. V.YL/) holds when dim.XL/ � 2
(resp. dim.YL/ � 2).

Let us now focus on class (i) of Theorem 1.7. The smooth projective k-schemes XL
and YL are of dimensions 8 � r and r � 2, respectively. Hence, V.YL/ holds when r � 4 and
V.XL/ when r D 6. When r D 5, XL (and YL) is a Fano 3-fold. As explained by Gorchinskiy
and Guletskii in [12, Section 5], the Chow motive of X admits a decomposition into Lefschetz
motives and submotives of curves. This implies that V.XL/ also holds.

Let us now focus on class (ii) of Theorem 1.7. The smooth projective k-schemes XL
and YL are of dimensions 10 � r and r � 4, respectively. Hence, V.YL/ holds when r � 6 and
V.XL/ when r � 8. This achieves the proof.

9. Proof of Theorem 1.12

Following Kuznetsov [22, Section 4], let us denote by ai the orthogonal complement
of AiC1 in Ai ; these are called the “primitive subcategories” in [22, Section 4]. Since Conjec-
ture VNC.A

dg
0 / holds, we hence conclude by induction that Conjectures VNC.A

dg
i / and VNC.a

dg
i /

also hold for every i . Thanks to HPD (see [22, Theorem 6.3]), perf.Y / admits a Lefschetz
decomposition perf.Y / D hBm.�m/; : : : ;B0i with respect to OY .1/ such that the primitive
subcategories bi coincide (via a Fourier–Mukai functor) with the primitive subcategories ai .
Consequently, VNC.b

dg
i / holds for every i . An inductive argument, starting with bm D Bm,

allows us then to conclude that Conjecture VNC.B
dg
i / also holds for any i . Now, thanks once also

to HPD (see [22, Thm. 5.3]), there exists also a triangulated category CL and semi-orthogonal
decompositions

perf.XL/ D hCL;Adim.L/.1/; : : : ;An.n � dim.L//i;

perf.YL/ D hBm.dim.L?/ �m/; : : : ;Bdim.L?/.�1/;CLi:

Moreover, the composed functor perf.XL/! CL ! perf.YL/ is of Fourier–Mukai type. As
a conclusion, sinceXL and YL are smooth, we can apply Theorem 1.1 and obtain the following
chain of equivalences:

V.XL/ ” VNC.perfdg.XL// ” VNC.C
dg
L / ” VNC.perfdg.YL// ” V.YL/:

This achieves the proof.

10. Proof of Theorem 1.14

Thanks to the work of Cossec [11], the conic bundle Y ! P2 has a natural structure of
quartic double solid Y ! P3 ramified along a quartic symmetroid D. Via the natural involu-
tion on the resolution of singularities of D, one hence obtains an Enriques surface S ; consult
[11, Section 3] for details. As proved by Zube in [38, Section 5], one has moreover a semi-
orthogonal decomposition perf.S/ D hTS ;E1; : : : ;E10i, where Ei are exceptional objects. Let
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us denote by T
dg
S the dg enhancement of TS induced from perfdg.S/. Thanks to Lemma 2.1,

T
dg
S is smooth and proper. Hence, since S is a surface, an argument similar to the one of the

proof of Theorem 1.2 (i) shows us that Conjecture VNC.T
dg
S / holds.

Now, recall from Ingalls and Kuznetsov [15, Section 5.5] the construction of the Fourier–
Mukai functor ˆ W perf.S/! perf.X/ whose restriction to TS is fully-faithful. As proved in
[15, Proposition 3.8 and Theorem 4.3], one has a semi-orthogonal decomposition

perf.X/ D hˆ.TS /;E 01;E
0
2i;

where E 0i are exceptional objects. As a consequence, we obtain the equivalence

(10.1) VNC.perfdg.X// ” VNC.ˆ.TS /
dg/;

where ˆ.TS /dg stands for the dg enhancement of ˆ.TS / induced from perfdg.X/. Since the
kernel K of the above Fourier–Mukai functor ˆ gives rise to a Morita equivalence

ˆK
dg W T

dg
S ! ˆ.TS /

dg;

we conclude that conjecture (10.1) also holds. This achieves the proof.
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