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M. Bernardara

CALABI-YAU COMPLETE INTERSECTIONS WITH
INFINITELY MANY LINES

Abstract. We give two new examples of families of Calabi-Yau completerisection three-
folds whose generic element contains infinitely many lind& get some results about the
normal bundles of these lines and the Hilbert scheme of tinehe threefolds. In particular,
the surface swept out by such a family is not a cone.

1. Calabi-Yau complete intersections and lines on them

Throughout the paper, CY is used instead of Calabi-Yau.

The Clemens conjecture originally states that on the gemgiintic threefold
the number of rational curves in a fixed homology class isdinMore generally, the
conjecture is expected to hold also for CY complete intgiget¢hreefolds in ordinary
projective spaces (see [8]). In particular, all lines on a t@keefold lie in the same
homology class, hence the conjecture states that the nuofitiees on the generic
such threefold is finite.

Moreover, the expected number of lines on a generic CY campigersec-
tion threefold can be computed with algebraic geometribriegues such as Schubert
calculus in the Grassmannians.

We get the same result about CY manifolds in mirror symmehsgre is a way
to predict correctly the numbey of rational curves of a given degredying on the
generic CY threefold.

Recall that a CY threefold is a complex compact Kahler tfodeleX with trivial
canonical bundle:

Ky ~ 0x.

We will call a complete intersection of tygds, ..., dy) a threefold which is a complete
intersection ok hypersurfaces if?“*2 of degreesly, . .., d¢ respectively.

The adjunction formula for a complete intersection of tyge ..., dk)

k
Kx =2 ox() d—k—4)
2

allows to conclude that the only projective CY threefoldattare complete intersec-
tions are of typd5), (the quintic threefold ii%), (3,3) and(4,2) in P°, (3,2,2) in P®
and(2,2,2,2) in P’.

Using Schubert calculus, we have the following results &lloe number of
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lines on the generic threefold:

(5 2875 lines

(3,3) 1053 lines
(4,2) 1280 lines
(3,2,2) 720 lines
(2,2,2,2) 512 lines.

These results agree with mirror symmetry predictions (5eé][for mirror symmetry
techniques, [12] for the case (3,3)).

The genericity assumption in Clemens conjecture is cruicidhct we know ex-
amples of CY threefolds with infinitely many lines. The simgtlis the Fermat quintic
threefold inP*, defined by the equation

X35 +X3+33+x3 =0.

The lines on the threefold are described in [2].

However, in [4], Clemens asked if we can find a continuous lfaofilines on
a smooth quintic threefold which is not a cone, as in the Feguiatic case. The first
such example is due to van Geemen. He found infinitely margslon the generic
threefold of a family called the Dwork pencil. Its equatien i

X3+ G + X5 + X3 + X3 — BAXoX1X2XaXs = O

hence we get a pencil of quintic hypersurfaceBinwhose zero fiber is the Fermat.

To see how to find lines on them, see [1], for a deeper invesiigasee [14].
The result is obtained by showing that on the generic thidedbthe family there
are more than the expcted 2875 lines. This can be done clypasoood” automor-
phism of the threefold and finding lines fixed by it. In thisedgood” means that its
order does not divide the expected number of lines, so it lkad fines. Under the
action of the automorphisms of the threefold, the orbit cf ofthose contains at least
5000 lines, clearly more than 2875. Moreover, this examplesga positive answer to
Clemens [4] question. Indeed, a simple calculation of therab bundle allows us to
say that the family of lines on the generic quintic of the peismot a cone.

In this paper, we are giving two new examples of families of thveefolds
whose generic element contains infinitely many lines. Ttst dine is a pencil of3, 3)
complete intersections, the second one a 2-parameteryfaiil2,2,2,2) complete
intersections. Both provide a postive answer to Clemeng{#stion, as stated in
corollaries 1 and 2.

2. A(3,3) complete intersection pencil

In this paper we consider exclusively projective spaces theecomplex fieldC.
The first example is a pencil of CY threefolds of ty{83). On this particular
pencil, we are able to construct more lines than expectes(istead of 1053).
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The equations of the generic threefd{gd (smooth for generid) of the pencil
are:

1) X, = {><8+XE+x§—3AX3X4X5 ~0

X343 + X2 — 3\xox1Xe = 0.

This pencil is invariant under a group of automorphismB6f order 81 (see [12]).

Let @ be the involution of?® given by the change of coordinatg?) (45) € Sg,
which preserveX, . We consider its invariant subspadés

() Vi ={(a:a:b:c:c:d)}
Vo ={(a:-q:0:p:—p:0)}.

Consider lines either contained in one of these subspacegensecting both; such
lines areg-invariant. In this case there is no line lying &R entirely contained iV,
but we have the following result.

LEMMA 1. On the generic threefold,Xthere are 36 lines connecting the in-
variant subspaces (2), hence each one is fixeg. by

Proof. It can be easily seen that there are no poin.itying on X, if d=0o0rq=0,
so, without loss of generality, consider:

Vy={(a:a:b:c:c:1)|ab,ceC}
Vo={(1:-1:0:p:—p:0)|peC}.
Lines joining such points have parametric equations:
3) (at+s:at—s:bt:ct+ ps:ct—ps:t)

where(s:t) ranges oveP?.

Substituting the equation (3) in the equations (1)XQf we obtain two cubic
homogeneous polynomials ét. The line belongs to the threefold if and only if these
polynomials vanish identically. It appears in the follogicases:

2c3 + 1A
a3 (2c°+1)

12c

4ac
b=z
,_ 2a
A

andc satisfies:
64c® — (1606 —32) 3+ A6 =0.

In particular, we have 6 values foifor generic\, then we have 18 values farand 36
for p. O
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THEOREM1. Onthe generic threefold in the penci| ¥here are infinitely many
lines.

Proof. We know from the preceding Lemma that we have 36 line¥XarPick one of
them and call it.

Consider the action of the grou*)® onP°, where an elemertty,...,as) € (C*)®
acts componentwise by:

(a0,a1,82,83,84,85) - (X0 1 X1 1 X2 1 X3 1 X4 1 X5) =

(B0%0 : @1X1 @ ApX2  AgX3 © A4Xs : AsXs)
on(Xop:...:Xs) € PS.
Leta; in (C*)® be the elements:

a; = (1700; (*)71;1; 1) l)
(4) Oy = (1a 1a vaaZvZ_z)
o3 =(1,1,1,1,0,07%)

where is a primitive ninth root of unity and = .
We note that the group

G =< aj,02,03 >C AutX,,

has order 81.

Two other subgroups of A}, are given by the actions & on the first three
coordinates and on the last three. We denote the producesé tivo groups b .

The orbit of the lind under the action of the group has order 81, because no
element of this group fixels

The orbit ofl under the action dfl has 18 elements, becauge (12)(45) fixes
l.

Consider now the grou@® x H and check that ifgh(l) = I, whereg € G and
h e H, theng(l) =1 andh(l) = (consider the points di(l) "V_ and then the action
of G on these points).

Hence, the order of the orbit bfinder the action of the gropx H, is 81- 18=
1458. This number is larger than expected. O

REMARK 1. Recall the way of counting lines proposed by S. Katz in [10]
is based on finding a compact moduli spageof the curves on the manifold, then
constructing a rank= dima/ vector bundle with some good properties and then com-
puting itsr-th Chern class. We note that, because of their construetitthautomor-
phisms, our lines have the same behavior. If they were sojaach would count as
one; this would make the calculation fail. Then we deduce ¢agh of these lines
belongs to a continuous family. Notice that this tells nothabout the number and
the geometric properties of these families, except thatektludes the case that these
lines have normal bundle of the forapi(—1) ® Opa(—1).
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3. Normal bundle and Hilbert scheme of lines

Recall the definition of normal bundle of a limein a manifoldX, as the cokernel in
the exact sequence:

(5) 0—>T|_—>Tx“_—>N—>O

Now we are looking for the normal bundle of a liheon a threefoldX, which is a
bundle ovet?!, hence we can split it as

(6) N 2 0p1(a) @ 0p1(b).

From the CY condition we deduce

at+b=-2.

Let X be a projective variety and C X a subvariety. It is well known (see [11]), that
for the Zariski tangent space to the Hilbert schem&inthe following isomorphism
holds:

T[Z]Hilb(x) =~ Homx (1(Z),0z) =Homz(1(2)/1 (Z)Z, 0z).
The right side is the zeroth cohomology group of the normatieiofZ in X (see [7]),
thus:

(7) TizHilb (X) 22 HO(Nzx).

In our case, we are looking for the normal bundle of linesdyima continuous family,
hence the Zariski tangent space to the Hilbert scheme inare porresponding to
these lines should be positive dimensional. This gives

Nijx, # O0p1(—1) @ Op1(—1)

because in this case we would h&?N) = 0.

3.1. How to calculate the normal bundle

In this section, we show how to calculate the normal bundgelafe on a CY complete
intersection threefold and after we will apply the calcigiatto the lines previously
constructed.

Our aim is to calculata andb in (6), trying to generalize slightly the calcula-
tions in [9] to the complete intersection case.

First, letX be a hypersurface iB" andL C X a line on it. Change the coordi-

nates ofP" such that the liné. has parametrizatio(s:t: 0:---: 0); in this case, the
ideall. of Lis I = (x2,---,Xn). Let us callFy the polynomial defining andd its
degreel C X andL is the intersection of the hyperplanes=--- = x, =0, so we can
write:

Fa = XoF2+ -+ + XaFn.



6 M. Bernardara

Modulo elements of?, we get
Fa = X2 f2(X0,X1) + -+ Xnfn (X0, X1)
where eactf; is homogeneous of degree- 1; it can be seen &5
Using these exact sequences

a 0— N— 0p(1)"! — 0ps(d) — 0
b) 0— Tx — Tpnx — 0x(d) — 0

and (5), it is possible ([9]) to get the normal bundle as thaé&kof the map

Opl(l)nil — OPl(d)

(82,,%) — 3L, fis.

Now let X be a complete intersection of two hypersurfaces of dedraede, given

respectively by = 0 andG = 0. LetL C X be parametrized as before, so we get the

homogeneous polynomiafsandg; of degrees! — 1 ande— 1 respectively in(xp, X1).
From a direct calculation, we get

(8)

N = ker(0p (1)1 M 041 (d) @ 041 (€)

where the map is given by thex2(n— 1) matrix M with rows given by thef; andg;.
If we let A= C[xo,X1], we can rewrite this map as a map—* — A2, Hence we are
looking at the module

B =ker(A" (1) L A(d) @ Ae))

and we know thaB has a basis of vectors of homogeneous polynonijaéthe same
degree (within the vectot). In the case of a line in a threefold we have 1,2, hence:

N = 0p1(1—t1) ® Op1(1—tp).
In conclusion we get the following result.
THEOREM2. Let T a vector of homogeneous polynomials of minimal degree t

in (Xg,X1) such that
M-T=0

where M is the matrix with rows given by theahd the g. Then the normal bundle
Nix splits in the following way:

Nix = Op1(1) ® Opa(—3) ift=0

Nix = Op1 @ Op1(—2) ift =1

Nyx = Op1(—1) @ 0p1(—1) otherwise.

Proof. This follows easily from the above considerations, remeinigghat we should
have, for the CY conditior; —1+t;—1=—2. O

The argument is essentially the same for a generic CY compi¢trsection
threefold in projective space.
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3.2. The normal bundle of constructed lines

We calculate the normal bundle of the lines constructedeérptievious section on the
generic threefold; .

LEMMA 2. LetA be generic and L X, be the line parametrized by
(at+s:at—s:bt:ct+ ps:ct—ps:t)
as in Lemma 1. Then its normal bundle onpsylits as:
Nijx, = Op1 @ Op1(—2).

Proof. Recall that
Nix, Z Op1(—1) & Op1(—1).
Define new coordinates:

Xo =Yo+ays

X1 =-YotYyi+ays
X2 =Y2+Dbys

X3 = PYo+Yy3+Cys
X4 = —PYo+Ys+Cys
X5 =Ys.

| has now parametrizatiais: 0:0:0:0:t).
We can obtain the matridl, with coefficients homogeneous quadratic polynomials in

Yo andys:
( (Yo — ays)? b%ys  AP(yoys) —CAYE  —AP(Yoys) — cAy%) .
—bA(Yoys+Y2) A(Ys—a®2)  (pyo+cCys)? (pyo — cys)?

Now we verify that there are no nonzero vectBrs C* such thaM - B = 0. This leads
to:

NI\X)\ 2 Opl(l) SY) Opl(—?)).
|

COROLLARY 1. Let | be a line on X in the family constructed in section 2.
Then its normal bundle splits as:
N”x)\ 2 Op1 @ Op1(—2).
This means that the surface swept out by these lines @nnot a cone.

Proof. Let| be as in Lemma 2. Each line constructed in Theorem 1 can baebtay
| using an automorphism of. O

Moreover we can conclude the dimension of the Hilbert schismpesitive, in
particular
dime}[)\ = hO(N”xA) =1

for the linesl we constructed in section 2.
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4. A(2,2,2,2) two-parameter Family

We now give a new example, a two-parameter family2®, 2,2) threefolds inP’.
Consider the family (smooth for generix, (1)) obtained by the complete intersection
of the four quadrics

Xg+ X5+ X5+ X5+ X5+ %2 — 2Uuxex7 =0
©) X, i XG4+ X4 + X5+ X3 + X2+ X2 — 2\xaxs = 0
)G+ + X3+ X2+ X3+ X8 — 2Axox3 = 0

X3+ X3 + X3 + X2 + X3 + X2 — 2AXoX1 = 0.

As in the previous case, on the generic threefold more th@B12 expected lines are
shown.
The technique is the same: in this case we take be the order 3 automorphism of
Xy given by the permutation of coordinatgk35)(246) in P7. OnP” we consider its
invariant subspaces:
Vy={(a:b:a:b:a:b:c:d)}

Vo={(p:q:wp:wg:w?p:w?q:0:0)}

where(a:b:c:d) € P3, (p:q) € P andw € C is primitive third root of the unity.

LEMMA 3. For generic(A, 1), there are 8 lines on x, intersecting both Y
and \,.

Proof. First we verify that the points with = 0 and the ones witlp = 0 don’t lie on
the threefold, hence we can consider:

(10) Vy={(a:1:a:1:a:1:c:d)|a,c,deC}

(11) Vo={(1:9:0:0q: w’:w’q:0:0)|ge C}.
Lines joining these points have parametric equation
(12) (s+at:gs+t:ws+at: wgs+t: w’s+at: w’gs+t:ct:dt)

where(s: t) € P1.Substituting these values into the equations of the gettenéefold,
the line lies onX, ,, if and only if

__Mta
 Ag+1
2
do 3a°+3
2uc

whereq is a root of
P+2Aq+1=0
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andcis a root of
APct + (28 — 2ha+2)c? + (3a° +3)2 = 0.

We get the proof, remarking that if we have 2 valuesdathen it is clear that we have
8 values forc for the generic couplé\, 1) and that this does not depend aand on
d. [l

THEOREM 3. On the generic threefold of the penci} Xthere are infinitely
many lines.

Proof. A subgroup of AuX, , is given by the action o%; on the first three pairs of
coordinates. The orbit of one of the constructed lines uttderautomorphism group
consists of 2 lines, becaugdelongs to this group.

Another subgroup of automorphisms is generated by the gations of coordinates
(12), (34), (56) and(78): the constructed lines are not fixed by any of these automor-
phisms, hence the orbit of each line under the action of tiigoup has 16 elements.
Let G be the product of these two groups (in particuak: Sg).

Let H be the subgroup ofC*)8, acting onP’ by the coordinatewise product, with
generators

a=( -1, -1, 1, 1, 1, 1, 1
a=( 1, 1, -1, -1, 1, 1, 1, 1)
az=( 1, 1, 1, 1, -1, -1 1

The orbit of each line under its action consists of 8 lines.

Consider now the grou@ x H: we have to check that gh(l) =1, whereg € G and

h e H, theng(l) =1 andh(l) = | (consider the points in the sktl) "V, and then the
action of G on these points). We get finally that the orbit of each linearrite action
of this group consists of 256 elements.

The key remark now is that the orbits of the lines are disj@int this is made making a
table comparing the values obtained for the pointéjmandV,. starting from different
values ofc.

We finally get onX, ,, at least 2048 lines, that is more than expected. O

REMARK 2. The same argument used in Remark 1 is valid in this casd| so a
the constructed lines belong to a continuous family.

4.1. The normal bundle
LEMMA 4. The line IC X, , parametrized by
(s+at:gs+t:ws+at: wgs+t: w’s+at: w’gs+t:ct:dt)
as in Lemma 3, has normal bundle

Nl‘x)\,u & Op1 @ Op1(—2).
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Proof. As before:
N”Xx,u 2 0p1(—1) ® op1(—1).
Now with the change of coordinates:

Xo =Yot+ayr

X1 =0qyo+Yyi+yr
X2 = Wyo+Yy2+ayr
X3 = wWQyo+Yy3+Yy7
Xa = WYo+Yya+ay
Xs = wqyo+Ys+Y7
X =Ys+CYyr

X7 =dy;

the linel gets parametrizatiofs: 0:0:0:0:0:0t). We calculate the matrid, with
coefficients linear homogeneous polynomialggrandyy:

o +y7 o +ayy wayp +y7 wPyo +ayy a0 -+y7 udyy

ayo+y7 Wy +ay; w0 +y7 MePap+yr)  A@Pyotay) oy |

ayo +y7 Awayp +y7) Aowp +ayy) ‘*’ZVD Fayz ayo +y7 cy7
“Ayo+ayy)  wyp+ay way +y7 wPyo-+ay ayo +y7 oy

We now verify that for generi¢\, ) there are no nonzero vectdgsin C® such that
M-B=0andtheNx =% Op1(1)® Op1(—3). O

COROLLARY 2. Let | be a line on X, in the family previously constructed.
Then its normal bundle splits as:

N”X)\.p & Op1 @ Op1(—2).

This means that the surface swept out by these lines, grisxiot a cone.

Moreover, the dimension of the Hilbert scheme is positimgarticular:
dime}[)\ = hO(N”x()\.p)) =1
for the linesl we constructed.
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