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M. Bernardara

CALABI-YAU COMPLETE INTERSECTIONS WITH

INFINITELY MANY LINES

Abstract. We give two new examples of families of Calabi-Yau complete intersection three-
folds whose generic element contains infinitely many lines.We get some results about the
normal bundles of these lines and the Hilbert scheme of lineson the threefolds. In particular,
the surface swept out by such a family is not a cone.

1. Calabi-Yau complete intersections and lines on them

Throughout the paper, CY is used instead of Calabi-Yau.

The Clemens conjecture originally states that on the generic quintic threefold
the number of rational curves in a fixed homology class is finite. More generally, the
conjecture is expected to hold also for CY complete intersection threefolds in ordinary
projective spaces (see [8]). In particular, all lines on a CYthreefold lie in the same
homology class, hence the conjecture states that the numberof lines on the generic
such threefold is finite.

Moreover, the expected number of lines on a generic CY complete intersec-
tion threefold can be computed with algebraic geometric techniques such as Schubert
calculus in the Grassmannians.

We get the same result about CY manifolds in mirror symmetry:there is a way
to predict correctly the numbernd of rational curves of a given degreed lying on the
generic CY threefold.

Recall that a CY threefold is a complex compact Kähler threefold X with trivial
canonical bundle:

KX ≃ OX .

We will call a complete intersection of type(d1, . . . ,dk) a threefold which is a complete
intersection ofk hypersurfaces inPk+3 of degreesd1, . . . ,dk respectively.

The adjunction formula for a complete intersection of type(d1, . . . ,dk)

KX
∼= OX(

k

∑
i=1

di−k−4)

allows to conclude that the only projective CY threefolds that are complete intersec-
tions are of type(5), (the quintic threefold inP4), (3,3) and(4,2) in P5, (3,2,2) in P6

and(2,2,2,2) in P7.

Using Schubert calculus, we have the following results about the number of
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lines on the generic threefold:

(5) 2875 lines
(3,3) 1053 lines
(4,2) 1280 lines

(3,2,2) 720 lines
(2,2,2,2) 512 lines.

These results agree with mirror symmetry predictions (see [5, 6] for mirror symmetry
techniques, [12] for the case (3,3)).

The genericity assumption in Clemens conjecture is crucial: in fact we know ex-
amples of CY threefolds with infinitely many lines. The simplest is the Fermat quintic
threefold inP4, defined by the equation

x5
0 +x5

1+x5
2 +x5

3 +x5
4 = 0.

The lines on the threefold are described in [2].

However, in [4], Clemens asked if we can find a continuous family of lines on
a smooth quintic threefold which is not a cone, as in the Fermat quintic case. The first
such example is due to van Geemen. He found infinitely many lines on the generic
threefold of a family called the Dwork pencil. Its equation is

x5
0 +x5

1+x5
2 +x5

3+x5
4−5λx0x1x2x3x4 = 0

hence we get a pencil of quintic hypersurfaces inP4, whose zero fiber is the Fermat.

To see how to find lines on them, see [1], for a deeper investigation, see [14].
The result is obtained by showing that on the generic threefold of the family there
are more than the expcted 2875 lines. This can be done choosing a ”good” automor-
phism of the threefold and finding lines fixed by it. In this case ”good” means that its
order does not divide the expected number of lines, so it has fixed lines. Under the
action of the automorphisms of the threefold, the orbit of one of those contains at least
5000 lines, clearly more than 2875. Moreover, this example gives a positive answer to
Clemens [4] question. Indeed, a simple calculation of the normal bundle allows us to
say that the family of lines on the generic quintic of the pencil is not a cone.

In this paper, we are giving two new examples of families of CYthreefolds
whose generic element contains infinitely many lines. The first one is a pencil of(3,3)
complete intersections, the second one a 2-parameter family of (2,2,2,2) complete
intersections. Both provide a postive answer to Clemens [4]question, as stated in
corollaries 1 and 2.

2. A (3,3) complete intersection pencil

In this paper we consider exclusively projective spaces over the complex fieldC.

The first example is a pencil of CY threefolds of type(3,3). On this particular
pencil, we are able to construct more lines than expected (1458 instead of 1053).
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The equations of the generic threefoldXλ (smooth for genericλ) of the pencil
are:

(1) Xλ :=

{
x3

0 +x3
1 +x3

2−3λx3x4x5 = 0

x3
3 +x3

4 +x3
5−3λx0x1x2 = 0.

This pencil is invariant under a group of automorphisms ofP5 of order 81 (see [12]).

Let φ be the involution ofP5 given by the change of coordinates(12)(45) ∈ S6,
which preservesXλ. We consider its invariant subspacesV±:

(2)
V+ = {(a : a : b : c : c : d)}
V− = {(q :−q : 0 : p :−p : 0)}.

Consider lines either contained in one of these subspaces orintersecting both; such
lines areφ-invariant. In this case there is no line lying onXλ entirely contained inV±,
but we have the following result.

LEMMA 1. On the generic threefold Xλ there are 36 lines connecting the in-
variant subspaces (2), hence each one is fixed byφ.

Proof. It can be easily seen that there are no points inV± lying onXλ if d = 0 orq = 0,
so, without loss of generality, consider:

V+ = {(a : a : b : c : c : 1)|a,b,c∈ C}

V− = {(1 :−1 : 0 : p :−p : 0)|p∈ C}.
Lines joining such points have parametric equations:

(3) (at+s : at−s : bt : ct+ ps: ct− ps: t)

where(s : t) ranges overP1.

Substituting the equation (3) in the equations (1) ofXλ, we obtain two cubic
homogeneous polynomials ins, t. The line belongs to the threefold if and only if these
polynomials vanish identically. It appears in the following cases:

a3 =
(2c3 +1)λ

12c

b =
4ac
λ2

p2 =−2a
λ

andc satisfies:
64c6− (16λ6−32)c3+ λ6 = 0.

In particular, we have 6 values forc for genericλ, then we have 18 values fora and 36
for p.
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THEOREM1. On the generic threefold in the pencil Xλ there are infinitely many
lines.

Proof. We know from the preceding Lemma that we have 36 lines onXλ. Pick one of
them and call itl .

Consider the action of the group(C∗)6 onP5, where an element(a0, . . . ,a5) ∈ (C∗)6

acts componentwise by:

(a0,a1,a2,a3,a4,a5) · (x0 : x1 : x2 : x3 : x4 : x5) =

(a0x0 : a1x1 : a2x2 : a3x3 : a4x4 : a5x5)

on (x0 : . . . : x5) ∈ P5.

Let αi in (C∗)6 be the elements:

(4)
α1 = (1,ω,ω−1,1,1,1)
α2 = (1,1,ω,ζ,ζ,ζ−2)
α3 = (1,1,1,1,ω,ω−1)

whereζ is a primitive ninth root of unity andω = ζ3.

We note that the group

G :=< α1,α2,α3 >⊂ AutXλ,

has order 81.

Two other subgroups of AutXλ are given by the actions ofS3 on the first three
coordinates and on the last three. We denote the product of these two groups byH.

The orbit of the linel under the action of the groupG has order 81, because no
element of this group fixesl .

The orbit ofl under the action ofH has 18 elements, becauseφ = (12)(45) fixes
l .

Consider now the groupG×H and check that ifgh(l) = l , whereg ∈ G and
h∈ H, theng(l) = l andh(l) = l (consider the points ofh(l)∩V− and then the action
of G on these points).

Hence, the order of the orbit ofl under the action of the groupG×H, is 81·18=
1458. This number is larger than expected.

REMARK 1. Recall the way of counting lines proposed by S. Katz in [10]. It
is based on finding a compact moduli spaceM of the curves on the manifold, then
constructing a rankr = dimM vector bundle with some good properties and then com-
puting itsr-th Chern class. We note that, because of their constructionwith automor-
phisms, our lines have the same behavior. If they were isolated, each would count as
one; this would make the calculation fail. Then we deduce that each of these lines
belongs to a continuous family. Notice that this tells nothing about the number and
the geometric properties of these families, except that this excludes the case that these
lines have normal bundle of the formO

P1(−1)⊕O
P1(−1).
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3. Normal bundle and Hilbert scheme of lines

Recall the definition of normal bundle of a lineL in a manifoldX, as the cokernel in
the exact sequence:

(5) 0−→ TL −→ TX|L −→ N−→ 0.

Now we are looking for the normal bundle of a lineL on a threefoldX, which is a
bundle overP1, hence we can split it as

(6) N∼= OP1(a)⊕O
P1(b).

From the CY condition we deduce

a+b=−2.

Let X be a projective variety andZ⊂ X a subvariety. It is well known (see [11]), that
for the Zariski tangent space to the Hilbert scheme in[Z] the following isomorphism
holds:

T[Z]Hilb(X)∼= HomX(I(Z),OZ) = HomZ(I(Z)/I(Z)2,OZ).

The right side is the zeroth cohomology group of the normal bundle ofZ in X (see [7]),
thus:

(7) T[Z]Hilb(X)∼= H0(NZ|X).

In our case, we are looking for the normal bundle of lines lying in a continuous family,
hence the Zariski tangent space to the Hilbert scheme in the point corresponding to
these lines should be positive dimensional. This gives

Nl |Xλ
6∼= OP1(−1)⊕O

P1(−1)

because in this case we would haveh0(N) = 0.

3.1. How to calculate the normal bundle

In this section, we show how to calculate the normal bundle ofa line on a CY complete
intersection threefold and after we will apply the calculation to the lines previously
constructed.

Our aim is to calculatea andb in (6), trying to generalize slightly the calcula-
tions in [9] to the complete intersection case.

First, letX be a hypersurface inPn andL ⊂ X a line on it. Change the coordi-
nates ofPn such that the lineL has parametrization(s : t : 0 : · · · : 0); in this case, the
ideal IL of L is IL = (x2, · · · ,xn). Let us callFd the polynomial definingX andd its
degree.L⊂ X andL is the intersection of the hyperplanesx2 = · · ·= xn = 0, so we can
write:

Fd = x2F2 + · · ·+xnFn.
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Modulo elements ofI2
L, we get

Fd = x2 f2(x0,x1)+ · · ·+xn fn(x0,x1)

where eachfi is homogeneous of degreed−1; it can be seen asFi|L.

Using these exact sequences

a) 0−→ N−→ O
P1(1)n−1−→ O

P1(d)−→ 0
b) 0−→ TX −→ TPn|X −→ OX(d)−→ 0

and (5), it is possible ([9]) to get the normal bundle as the kernel of the map

(8)
O

P1(1)n−1 −→ O
P1(d)

(s2, · · · ,sn) 7−→ ∑n
i=2 fisi .

Now let X be a complete intersection of two hypersurfaces of degreed ande, given
respectively byF = 0 andG = 0. LetL ⊂ X be parametrized as before, so we get the
homogeneous polynomialsfi andgi of degreesd−1 ande−1 respectively in(x0,x1).

From a direct calculation, we get

NL|X ≃ ker(O
P1(1)n−1 M−→ O

P1(d)⊕O
P1(e))

where the map is given by the 2× (n−1) matrix M with rows given by thefi andgi .
If we let A = C[x0,x1], we can rewrite this map as a mapAn−1→ A2. Hence we are
looking at the module

B = ker(An−1(1)
M−→ A(d)⊕A(e))

and we know thatB has a basis of vectors of homogeneous polynomialsTi of the same
degree (within the vector)ti . In the case of a line in a threefold we havei = 1,2, hence:

N = O
P1(1− t1)⊕OP1(1− t2).

In conclusion we get the following result.

THEOREM 2. Let T a vector of homogeneous polynomials of minimal degree t
in (x0,x1) such that

M ·T = 0

where M is the matrix with rows given by the fi and the gi . Then the normal bundle
NL|X splits in the following way:

NL|X = O
P1(1)⊕O

P1(−3) if t = 0
NL|X = O

P1⊕OP1(−2) if t = 1
NL|X = O

P1(−1)⊕O
P1(−1) otherwise.

Proof. This follows easily from the above considerations, remembering that we should
have, for the CY condition,t1−1+ t2−1 =−2.

The argument is essentially the same for a generic CY complete intersection
threefold in projective space.
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3.2. The normal bundle of constructed lines

We calculate the normal bundle of the lines constructed in the previous section on the
generic threefoldXλ.

LEMMA 2. Let λ be generic and l⊂ Xλ be the line parametrized by

(at+s : at−s : bt : ct+ ps: ct− ps: t)

as in Lemma 1. Then its normal bundle on Xλ splits as:

Nl |Xλ
∼= OP1⊕OP1(−2).

Proof. Recall that
Nl |Xλ

6∼= OP1(−1)⊕O
P1(−1).

Define new coordinates: 



x0 = y0 +ay5

x1 =−y0 +y1 +ay5

x2 = y2 +by5

x3 = py0 +y3 +cy5

x4 =−py0 +y4+cy5

x5 = y5.

l has now parametrization(s : 0 : 0 : 0 : 0 :t).
We can obtain the matrixM, with coefficients homogeneous quadratic polynomials in
y0 andy5:

(
(y0−ay5)

2 b2y2
5 λp(y0y5)−cλy2

5 −λp(y0y5)−cλy2
5

−bλ(y0y5 +y2
5) λ(y2

0−a2y2
5) (py0 +cy5)

2 (py0−cy5)
2

)
.

Now we verify that there are no nonzero vectorsB∈C4 such thatM ·B= 0. This leads
to:

Nl |Xλ 6∼= OP1(1)⊕O
P1(−3).

COROLLARY 1. Let l be a line on Xλ in the family constructed in section 2.
Then its normal bundle splits as:

Nl |Xλ
∼= OP1⊕OP1(−2).

This means that the surface swept out by these lines on Xλ is not a cone.

Proof. Let l be as in Lemma 2. Each line constructed in Theorem 1 can be obtained by
l using an automorphism ofXλ.

Moreover we can conclude the dimension of the Hilbert schemeis positive, in
particular

dimT[l ]Hλ = h0(Nl |Xλ) = 1

for the linesl we constructed in section 2.
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4. A (2,2,2,2) two-parameter Family

We now give a new example, a two-parameter family of(2,2,2,2) threefolds inP7.
Consider the family (smooth for generic (λ,µ)) obtained by the complete intersection
of the four quadrics

(9) Xλ,µ :=





x2
0 +x2

1+x2
2 +x2

3+x2
4 +x2

5 −2µx6x7 = 0

x2
0 +x2

1+x2
2 +x2

3 +x2
6 +x2

7−2λx4x5 = 0

x2
0 +x2

1 +x2
4 +x2

5+x2
6 +x2

7−2λx2x3 = 0

x2
2 +x2

3+x2
4 +x2

5+x2
6 +x2

7−2λx0x1 = 0.

As in the previous case, on the generic threefold more than the 512 expected lines are
shown.
The technique is the same: in this case we takeφ to be the order 3 automorphism of
Xλ,µ given by the permutation of coordinates(135)(246) in P7. OnP7 we consider its
invariant subspaces:

V+ = {(a : b : a : b : a : b : c : d)}
Vω = {(p : q : ωp : ωq : ω2p : ω2q : 0 : 0)}

where(a : b : c : d) ∈ P3, (p : q) ∈ P1 andω ∈C is primitive third root of the unity.

LEMMA 3. For generic(λ,µ), there are 8 lines on Xλ,µ intersecting both V+
and Vω.

Proof. First we verify that the points withb = 0 and the ones withp = 0 don’t lie on
the threefold, hence we can consider:

(10) V+ = {(a : 1 : a : 1 : a : 1 : c : d)|a,c,d ∈C}

(11) Vω = {(1 : q : ω : ωq : ω2 : ω2q : 0 : 0)|q∈ C}.

Lines joining these points have parametric equation

(12) (s+at : qs+ t : ωs+at : ωqs+ t : ω2s+at : ω2qs+ t : ct : dt)

where(s : t) ∈ P1.Substituting these values into the equations of the generic threefold,
the line lies onXλ,µ if and only if

a =− λ +q
λq+1

d =
3a2+3

2µc

whereq is a root of
q2 +2λq+1= 0
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andc is a root of

4µ2c4 +(2a2−2λa+2)c2+(3a2+3)2 = 0.

We get the proof, remarking that if we have 2 values fora, then it is clear that we have
8 values forc for the generic couple(λ,µ) and that this does not depend ona and on
q.

THEOREM 3. On the generic threefold of the pencil Xλ,µ there are infinitely
many lines.

Proof. A subgroup of AutXλ,µ is given by the action ofS3 on the first three pairs of
coordinates. The orbit of one of the constructed lines underthis automorphism group
consists of 2 lines, becauseφ belongs to this group.
Another subgroup of automorphisms is generated by the permutations of coordinates
(12), (34), (56) and(78): the constructed lines are not fixed by any of these automor-
phisms, hence the orbit of each line under the action of this subgroup has 16 elements.
Let G be the product of these two groups (in particular,G≤ S8).
Let H be the subgroup of(C∗)8, acting onP7 by the coordinatewise product, with
generators

α1 = ( −1, −1, 1, 1, 1, 1, 1, 1)
α2 = ( 1, 1, −1, −1, 1, 1, 1, 1)
α3 = ( 1, 1, 1, 1, −1, −1, 1, 1).

The orbit of each line under its action consists of 8 lines.
Consider now the groupG×H: we have to check that ifgh(l) = l , whereg∈ G and
h∈ H, theng(l) = l andh(l) = l (consider the points in the seth(l)∩Vω and then the
action ofG on these points). We get finally that the orbit of each line under the action
of this group consists of 256 elements.
The key remark now is that the orbits of the lines are disjoint, and this is made making a
table comparing the values obtained for the points inVω andV+ starting from different
values ofc.
We finally get onXλ,µ at least 2048 lines, that is more than expected.

REMARK 2. The same argument used in Remark 1 is valid in this case, so all
the constructed lines belong to a continuous family.

4.1. The normal bundle

LEMMA 4. The line l⊂ Xλ,µ parametrized by

(s+at : qs+ t : ωs+at : ωqs+ t : ω2s+at : ω2qs+ t : ct : dt)

as in Lemma 3, has normal bundle

Nl |Xλ,µ
∼= OP1⊕OP1(−2).
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Proof. As before:
Nl |Xλ,µ

6∼= OP1(−1)⊕O
P1(−1).

Now with the change of coordinates:




x0 = y0 +ay7

x1 = qy0 +y1+y7

x2 = ωy0 +y2+ay7

x3 = ωqy0 +y3+y7

x4 = ω2y0 +y4 +ay7

x5 = ω2qy0 +y5+y7

x6 = y6 +cy7

x7 = dy7

the linel gets parametrization(s : 0 : 0 : 0 : 0 : 0 : 0 :t). We calculate the matrixM, with
coefficients linear homogeneous polynomials iny0 andy7:




qy0 +y7 ωy0 +ay7 ωqy0 +y7 ω2y0 +ay7 ω2qy0 +y7 −µdy7
qy0 +y7 ωy0 +ay7 ωqy0 +y7 −λ(ω2qy0 +y7) −λ(ω2y0 +ay7) cy7
qy0 +y7 −λ(ωqy0 +y7) −λ(ωy0 +ay7) ω2y0 +ay7 ω2qy0 +y7 cy7

−λ(y0 +ay7) ωy0 +ay7 ωqy0 +y7 ω2y0 +ay7 ω2qy0 +y7 cy7


 .

We now verify that for generic(λ,µ) there are no nonzero vectorsB in C6 such that
M ·B = 0 and thenNl |Xλ,µ

6∼= OP1(1)⊕O
P1(−3).

COROLLARY 2. Let l be a line on Xλ,µ in the family previously constructed.
Then its normal bundle splits as:

Nl |Xλ,µ
∼= OP1⊕OP1(−2).

This means that the surface swept out by these lines on Xλ,µ is not a cone.

Moreover, the dimension of the Hilbert scheme is positive, in particular:

dimT[l ]Hλ = h0(Nl |X(λ,µ)) = 1

for the linesl we constructed.
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