
861(191)

c⃝2021 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 73, No. 3 (2021) pp. 861–883
doi: 10.2969/jmsj/82658265

Categorical dimension of birational transformations and

filtrations of Cremona groups

By Marcello Bernardara

(Received May 14, 2019)
(Revised Feb. 14, 2020)

Abstract. Using a filtration on the Grothendieck ring of triangulated
categories, we define the motivic categorical dimension of a birational map
between smooth projective varieties. We show that birational transformations

of bounded motivic categorical dimension form subgroups, which provide a
nontrivial filtration of the Cremona group. We discuss some geometrical aspect
and some explicit example. We can moreover define, in some cases, the genus
of a birational transformation, and compare it to the one defined by Frumkin

in the case of threefolds.

1. Introduction.

In the last decades, derived categories of coherent sheaves and their semiorthogonal

decompositions attracted a growing amount of interest, thanks, among other features, to

the conjectural interplay with birationality questions. Since the seminal work of Bondal

and Orlov [14], examples and ideas based on the motivic behavior of semiorthogonal

decompositions have lead to formulate some natural questions about the possibility to

define a birational invariant, or, at least, to obtain necessary conditions for rationality

of a given variety from semiorthogonal decompositions of its derived category. We refer

to [27] and [4] for recent reports on motivations, open questions, conjectures, technical

problems, and comparison to other theories.

In an effort to understand the above questioning, and inspired by the classical no-

tion of representability of Chow groups, the definition of categorical representability of a

smooth projective variety X was given in [7]. Roughly speaking, such an X is categori-

cally representable in dimensionm if the derived category Db(X) admits a semiorthogonal

decomposition whose components can be realized in semiorthogonal decompositions of

varieties of dimension at most m. Based on blow-up formulas and Hironaka resolution of

singularities, the upshot of this definition is to understand whether being representable

in codimension 2 is a necessary condition for rationality.

A fundamental invariant one can consider to study the birational geometry of a

given variety X is the group of birational transformations Bir(X). The definitions and

the results presented here came out of an attempt to understand the interplay between

semiorthogonal decompositions and the group Bir(X). The guiding idea is the possibility

to define, basing upon weak factorization and categorical representability, the notion of
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motivic categorical dimension of a given birational map ϕ : X 99K Y , see Definition 3.1.

This is, to the best of the author’s knowledge, a first, though very little, attempt to

obtain informations on Bir(X) using semiorthogonal decompositions, while their inter-

play with other commutative birational invariants is already been treated (see [4] for a

recent report) and sometimes even well understood (see [2] for the Hodge theory of cubic

fourfolds, or [9] for intermediate Jacobians).

Let us resume the circle of ideas leading to Definition 3.1. Given a weak factorization

of ϕ, one has to consider the centers of all the blow-ups involved, and calculate the

maximal value of categorical representability of such centers. One would like to define

the categorical dimension of ϕ to be the minimum of such values on all the possible

weak factorizations of ϕ. However, one of the main technical (potential) obstructions to

have this value well-behaved is the lack of Jordan–Hölder property for semiorthogonal

decompositions, see [26] or [12]. In particular, if we used such a definition, we would

not be able to compare the dimensions of ϕ and ϕ−1, a central result in order to have a

group filtration on Bir(X).

In order to obtain a well-behaved definition, we need to work in the Grothendieck

rings PT (k) and K0(Var(k)) of dg categories and, respectively, varieties over k. Roughly

speaking, in these rings, semiorthogonal decompositions and, respectively, blow-ups turn

into sums. Moreover, categorical representability induces a ring filtration PT∗(k) on

PT (k). Bondal, Larsen and Lunts [13] defined a motivic measure (i.e., a ring homomor-

phism) µ : K0(Var(k)) → PT (k) by sending [X] to the class of Db(X) for any smooth

projective variety X. We define then the motivic categorical dimension of X to be the

smallest d such that µ([X]) lies in PTd(k). This value is bounded above by the categorical

representability of X, but it is not known if they always coincide. Given a birational map

ϕ : X 99K Y , replacing categorical representability by motivic categorical dimension, we

define the motivic categorical dimension of ϕ as we sketched above: running through all

possible weak factorizations, we take the minimum value of the maximal motivic cate-

gorical dimension of the centers involved in the factorization. In the case where X = Y

this gives a filtration of Bir(X) by setting Bird(X) to be the subset of birational maps of

motivic categorical dimension at most d. By setting the motivic categorical dimension

of the trivial category to be −1, we have that Bird(X) is defined and not empty for

d ≥ −1 any integer. Since our definitions assume the existence of a weak factorization

for birational maps, we work over a field k of characteristic zero, where every birational

map admits such a factorization [1].

Theorem 1. Let X be smooth and projective variety, then Bird(X) is a subgroup,

which coincides with the whole group if d ≥ dim(X)− 2 and with Aut(X) if d = −1.

A slightly more general version of Theorem 1 will be stated and proved as Theo-

rem 3.5.

Let us illustrate some geometric applications of Theorem 1 in the most interest-

ing cases, that is X = Pn. We will make use of arguments based on Hodge theory via

Hochschild homology, and we work out then explicit examples for the case of varieties de-

fined over an algebraically closed subfield k ⊂ C. First of all, using Hochschild homology,

we can prove that we actually defined a proper filtration.
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Theorem 2. Let n ≥ 3, and assume k ⊂ C is algebraically closed. Then

Bird(Pn) ̸= Bird+1(Pn) for all −1 ≤ d < n− 2.

Theorem 2 will be stated and proved as Theorem 3.7.

Given a birational map, being able to provide a weak factorization should give inter-

esting informations on the birational map itself. As potential applications of Theorem 2,

one could try to show that a given class of birational maps does not generate the whole

Cremona group in dimension n, by showing that the motivic categorical dimension of

such maps must be bounded above by n − 3 or less. For example, using more refined

motivic arguments, we can see that if a birational map ϕ : X 99K X admits a weak fac-

torization with rational centers, then ϕ belongs to Birn−4(X), see Corollary 5.3. Finally,

if such a ϕ admits a weak factorization whose centers are all (abstractly isomorphic to)

toric varieties, one can use a result of Kawamata [22] to show that ϕ belongs to Bir0(X).

It follows that the subgroup of Bir(Pn) generated by the standard Cremona transforma-

tion and transformations is a subgroup of Bir0(Pn). Notice that Bir0(Pn) ⊂ Birn−4(Pn)
is strict as soon as n ≥ 5, and that there exist rational varieties of dimension at least

three with positive motivic categorical dimension.

In [18], Frumkin defined a filtration of the group Bir(X) for a uniruled complex

threefold X. This is done by defining the genus of a birational map ϕ to be the maximum

of the genera among the centers of the blow-ups in regular resolutions of ϕ−1. As shown

by Lamy [28], this is exactly the same as the maximum of the genera of irreducible

divisors contracted by ϕ. Using the theory of noncommutative motives and the fact,

proved in [9], that one can reconstruct intermediate Jacobians and their polarizations

via semiorthogonal decompositions, we can give an alternative definition of the genus of

a birational maps ϕ : X 99K X in the case where both X and all the centers of a weak

factorization of ϕ have, roughly speaking, well-behaved principally polarized intermediate

Jacobians. This can be compared to Frumkin’s definition, see Proposition 4.11, and has

interesting potential interplays with it.

We conclude by recalling that Dmitrov, Haiden, Katzarkov and Konstevich have

defined in [16] the notion of entropy for an endofunctor of a triangulated category. On

the other hand, the entropy of a birational map is a well-known, very interesting object

of study. As asked by the above authors, it would be very interesting to understand

if and how these two notions can be related to each other [16, Section 4.3]. Here,

noncommutative methods are used to produce a filtration of the group Bir(X). It is not

clear to the author, whether knowing the motivic categorical dimension of a birational

map could give any information on its topological entropy.

We work exclusively over a field k of characteristic zero to ensure the existence of

weak factorizations [1].
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2. Noncommutative tools.

In this section we aim to give a short introduction to the noncommutative tools that

are actively involved in the next: the Grothendieck ring of triangulated categories and its

filtration, and Hochschild homology. We assume the reader to be familiar with notions

such as semiorthogonal decompositions and noncommutative motives; references can be

found in [4] and [33] respectively.

2.1. Categorical representability.

Using semiorthogonal decompositions, one can define a notion of categorical repre-

sentability for triangulated categories. In the case of smooth projective varieties, this is

inspired by the classical notions of representability of cycles, see [7].

Definition 2.1. A triangulated category A is representable in dimension m if it

admits a semiorthogonal decomposition

A = ⟨A1, . . . ,Ar⟩,

and for each i = 1, . . . , r there exists a smooth projective k-variety Yi with dimYi ≤ m,

such that Ai is equivalent to an admissible subcategory of Db(Yi).

We use the following notation

rdim(A) := min{m ∈ N | A is representable in dimension m},

whenever such finite m exists.

Lemma 2.2. Let A be triangulated category.

(1) rdimA = 0 if and only if there exists a semiorthogonal decomposition

A = ⟨A1, . . . ,Ar⟩,

such that for each i, there is a k-linear equivalence Ai ≃ Db(Ki/k) for a separable

field extension Ki/k.

(2) rdimA ≤ 1 if and only if A admits a semiorthogonal decomposition whose compo-

nents belong to the following list :

• categories representable in dimension 0, or

• categories of the form Db(k, α), for α in Br(k) the Brauer class of a conic, or

• categories equivalent to Db(C) for some smooth k-curve C.

Proof. The lemma combines [4, Propositions 6.1.6 and 6.1.10]. □

Example 2.3 (Bondal–Kuznetsov’s counterexample). Consider a line l in P3. On

the blow-up of P3 along l, consider a smooth rational curve C intersecting the exceptional

divisor in two distinct points. Set X to be the iterated blow-up of P3 along l and C.

As shown by Kuznetsov [26], the category Db(X) contains an admissible subcategory B
which cannot be generated by exceptional objects, and in particular we have rdim(B) > 0
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(by Lemma 2.2). On the other hand, the description of X as an iterated blow-up of P3

along rational curves provides a full exceptional collection for X, so that rdim(X) = 0.

It follows, that rdim is not a monotone function with respect to admissible embeddings.

Definition 2.4. Let X be a smooth projective k-variety. We say that X is cate-

gorically representable in dimension m (or equivalently in codimension dim(X) −m) if

Db(X) is representable in dimension m.

We will use the following notations:

rdim(X) := rdim(Db(X)), rcodim(X) := dim(X)− rdim(Db(X)),

and notice that they are both nonnegative integer numbers.

Lemma 2.5. Let X be a smooth projective k-variety of dimension n. Then

rdim(X) ≤ n and rcodim(X) ≥ 0.

Proof. This is immediate by taking the trivial semiorthogonal decomposition

Db(X) = ⟨Db(X)⟩. □

Remark 2.6. The category B from Example 2.3 is not of the form Db(X) for any

smooth and projective variety X. Hence, the question whether rdim is monotone on the

set of smooth and projective varieties with respect to fully faithful functors Db(X) →
Db(Y ) is open.

2.2. The Grothendieck ring of pretriangulated dg categories and its

filtration.

We sketch Bondal–Larsen–Lunts construction of the Grothendieck ring of k-linear

smooth and proper pretriangulated dg categories [13]. Recall that a k-linear dg cate-

gory is a category enriched over the category of complexes of k-vector spaces and that

functors between such categories are hence enriched functors. Recall that if A is a pre-

triangulated dg category, then its homotopy category H0(A) is the category with the

same objects and whose morphisms are obtained by taking the 0-th cohomology of the

dg complex. Hence H0(A) is triangulated and k-linear. A semiorthogonal decompo-

sition A = ⟨B, C⟩ of such an A is given by a pair of pretriangulated dg subcategories

such that H0(A) = ⟨H0(B),H0(C)⟩ is a semiorthogonal decomposition of the underly-

ing homotopy triangulated category. Let Z[dgcat] be the free Z-module generated by

equivalence classes of smooth and proper pretriangulated dg categories, and introduce

the equivalence relation generated by:

A ∼ B + C if A = ⟨B, C⟩. (1)

We denote the quotient group by I : Z[dgcat] → PT (k) (see [13, Section 5.1]). For a

smooth projective variety X, notice that there is a unique dg enhancement of Db(X)

(see [30]). We will often use the notation I(X) for the class I(Db(X)) in PT (k).

Definition 2.7. We set PTeff (k) := I(Z≥0[dgcat]), and we say that an element a

of PT (k) is effective if it belongs to PTeff (k).
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Remark 2.8. Note that a in PT (k) is effective if and only if there exists a smooth

and proper dg category A such that a = I(A). Indeed, by definition we can write

a =
∑r
i=1 I(Ai), so that we can set A =

⊕r
i=1Ai.

In the additive commutative group PT (k), define the following associative product:

I(A) • I(B) = I(A⊗ B). (2)

Proposition 2.9 ([13], Corollary 5.7). The group PT (k) endowed with the product

• is a commutative associative ring with unit 1 = I(Spec(k)).

The notion of categorical representability induces a ring filtration on PT (k), as

follows.

Definition 2.10. Let d be a nonnegative integer. We set

PTd(k) := ⟨a ∈ PTeff (k) | there exists A with rdim(A) ≤ d and a is a summand of I(A)⟩

to be the additive subgroup generated by effective summands of elements of the form

I(A) with rdim(A) ≤ d.

We notice that this definition is slightly different from the one introduced in [4,

Section 8.1].

Proposition 2.11. The subsets PTi(k) give a filtration on the ring PT (k). More

precisely, suppose that a is in PTi(k) and b is in PTj(k). Then

a+ b is in PTmax(i,j)(k),

a • b is in PTi+j(k).

Proof. First of all, by definition, PTi(k) ⊂ PTi+1(k) for any integer i ≥ 0.

To prove that a + b is in PTmax(i,j)(k), it is enough to assume, without loss of

generality, that i ≤ j, and recall that PTj(k) is an additive group by definition.

To prove that a • b is in PTi+j(k), it is enough to work on generators and consider

the case where a = I(A), and b = I(B) for A (resp. B) admissible subcategory of Db(X)

(resp. Db(Y )) and X (resp. Y ) smooth and projective of dimension at most i (resp. j).

Then A⊗B is admissible in Db(X × Y ) (see, e.g., [24]), so that rdim(A⊗B) ≤ i+ j by

an easy dimension calculation. □

Definition 2.12. Let A be a pretriangulated dg category. The motivic categorical

dimension of A is the smallest integer d such that I(A) belongs to PTd(k). We denote

this value (which is either a nonnegative number or infinity), by mcd(A). More explicitly,

we have

mcd(A) = min{d | I(A) ∈ PTd(k)}.

If X is a smooth and projective scheme, then we also set mcd(X) := mcd(Db(X)).

By convention, we set mcd(0) = −1.
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Lemma 2.13. For any pretriangulated dg category A, we have :

mcd(A) ≤ rdim(A).

For any smooth and projective variety X, we have :

mcd(X) ≤ rdim(X) ≤ dim(X).

Proof. The first inequality follows by definition of the subset PTd(k): if

rdim(A) = d, then clearly I(A) belongs to PTd(k), hence mcd(A) ≤ d. Now, if X is

smooth and projective, the first part of the second inequality is nothing but the previous

one withA = Db(X). The second part of the same inequality is proved in Lemma 2.5. □

Remark 2.14. We notice that strict inequality mcd(A) < rdim(A) can hold over

any field k, as the category B from Example 2.3 shows. In particular, if we set dgcat≤d(k)

to be the full subcategory of dgcat(k) whose objects are the dg categories A such that

rdimA ≤ d, then we have

PTeff (k) ∩ PTd(k) ̸= I(Z[dgcat≤d(k)]),

even for d = 0. A natural question is then to find conditions for which the equality

mcd(A) = rdim(A) holds. As we will see in Corollary 2.18, there exist smooth and

projective manifolds X with mcd(X) = rdim(X) = dim(X). For example this holds if

X is Calabi–Yau (see Example 2.19 as well).

Consider now the Grothendieck ring K0(Var(k)) of k-varieties whose unit 1 =

[Spec(k)] is the class of the point, and recall that a motivic measure is a ring homo-

morphism µ : K0(Var(k)) → R to some ring R. Using weak factorization, the ring

K0(Var(k)) can be seen as the Z-module generated by isomorphism classes of smooth

proper varieties, where we set [∅] = 0 and with the relation [X]−[Z] = [Y ]−[E] whenever

Y → X is the blow-up along the smooth center Z with exceptional divisor E, see [10].

The class of the affine line in K0(Var(k)) is denoted by L.
Bondal, Larsen, and Lunts [13] show that, in this case, the assignment [X] 7→

I(Db(X)) for a smooth projective variety X defines a motivic measure:

µ : K0(Var(k))→ PT (k). (3)

We will denote I(X) := µ([X]) = I(Db(X)). Recall the semiorthogonal decomposition

Db(P1) = ⟨O,O(1)⟩, where both components are equivalent to Db(Spec(k)). Since [P1] =

L+1 in K0(Var(k)), we deduce that µ(L) = 1. More generally, µ([Pm]) = m+1 for any

positive integer m.

Remark 2.15. Notice that, if X is a smooth projective k-scheme, then I(X) ̸= 0

in PT (k). This can be shown, for example, using that Hochschild homology (see below)

is nontrivial. Hence, if X and Y are smooth and projective k-varieties, and m, and n

nonnegative integers, then mI(X) + nI(Y ) = 0 if and only if m = n = 0. Indeed, the

former is the class of the scheme (Pm−1 ×X)⨿ (Pn−1 × Y ).
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2.3. Hochschild homology.

We denote by dgcat(k) the category of small pretriangulated dg categories with

morphisms given by dg functors. An additive invariant is a functor from the category

dgcat(k) to some additive category that send semiorthogonal decompositions into direct

sums. Many of such invariants are the noncommutative interpretation of well-known

cohomology theories. We present here one of them, Hochschild homology, which can be

thought of as a noncommutative interpretation of the (vertically graded) Hodge structure

on Betti cohomology. Hochschild homology will turn out to be a very useful tool in our

proofs. However, there are several more additive invariants that one can consider, see

[33, Section 2] for a detailed account.

Let us just recall that for any integer n, we have functors

HHn : dgcat(k) −→ Vect(k),

and notice that HHn and HH• are additive invariants, see, e.g., [33, Section 2.2.8]. We

will also consider the graded k-vector space

HH•(A) :=
⊕
i∈Z

HHi(A),

so that HH• also gives rise to an additive invariant. If A = Db(X), we will use the

shorthands HHi(X) := HHi(D
b(X)) and HH•(X) := HH•(D

b(X)). We will also use

the notation hhi(A) to denote dimHHi(A), and note that hhi descends to a linear

function:

hhi : PT (k) −→ Z. (4)

We hence obtain the following proposition either via noncommutative motives, as

done by Tabuada [33], or in an explicit geometric way, as done by Kuznetsov [25].

Proposition 2.16. Let X be a smooth and projective variety, and A ⊂ Db(X) an

admissible subcategory. If A = ⟨A1, . . . ,Ar⟩ is a semiorthogonal decomposition of A, we
have :

HH•(A) ≃
r⊕
i=1

HH•(Ai), HHn(A) ≃
r⊕
i=1

HHn(Ai)

for every integer n.

Proposition 2.16, together with the Hochschild–Konstant–Rosenberg isomorphisms

[21] is a very useful tool to bound the motivic categorical dimension of a smooth projec-

tive variety.

Proposition 2.17. Let A be a pretriangulated dg category. If rdim(A) = m, then

HHi(A) = 0 for |i| > m.

Proof. Let us first recall that, if X is a smooth projective variety of dimensionm,

the Hochschild–Konstant–Rosenberg isomorphism gives HHi(X) = 0 for |i| > m. Hence,
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for any B admissible in Db(X), we apply Proposition 2.16 to obtain that HHi(B) = 0

for |i| > m.

Now if A satisfies the assumptions, there is a semiorthogonal decomposition A =

⟨A1, . . . ,Ar⟩ and with Aj admissible in Db(Xj) and Xj smooth and projective of dimen-

sion dim(Xj) ≤ m, for any j = 1, . . . , r. It follows that HHi(Aj) = 0 for |i| > m

and any j = 1, . . . , r. Finally, we conclude by using Proposition 2.16 which gives

HHi(A) =
⊕r

j=1HHi(Aj) = 0 for |i| > m. □

If k ⊂ C is an algebraically closed subfield, and X a smooth projective variety over

k, Weibel [36] has shown that:

HHn(X) ≃
⊕
p−q=n

Hp,q(X), (5)

where Hp,q(X) = Hq(X,ΩpX). This gives another criterion to bound the motivic cate-

gorical dimension of a smooth projective variety.

Corollary 2.18. If X is a smooth projective variety over an algebraically closed

field k ⊂ C, set

m := max{i | there exist p, q such that p− q = i and hp,q(X) ̸= 0}.

Then

rdim(X) ≥ mcd(X) ≥ m.

In particular, if X has dimension n and hn,0(X) ̸= 0, then rdim(X) = mcd(X) = n.

Proof. The first inequality has already been proved in Lemma 2.5. To obtain

the second inequality, it is enough to apply Proposition 2.17 to the category Db(X) and

use the formula (5) to see that we cannot have mcd(X) < m. The last chain of equalities

easily follows from rdim(X) ≤ n. □

Example 2.19. Let X ⊂ Pn+1 be a smooth projective hypersurface of degree n+2

over an algebraically closed subfield k ⊂ C. Then mcd(X) = n. Indeed, we have that

Hn,0(X) is one-dimensional.

The above criteria and example will provide a very useful tool in the proof of The-

orem 2. However, the converse to the statement in Proposition 2.17 is not true as soon

as rdim(A) ≥ 2. The following result shows that categorical representability captures

indeed much finer invariants than Hochschild homology.

Proposition 2.20. Let S be a smooth complex projective surface with h1,0(S) =

h2,0(S) = 0, and such that K0(S) has nontrivial torsion. Then HHi(S) = 0 for i ̸= 0,

and rdim(S) = 2.

Proof. The proof can be retraced along [4, Section 6], but let us quickly recall

it. First, HHi(S) = 0 since hp,q(S) = 0 as soon as p ̸= q, by assumption.
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On the other hand, rdim(S) ≤ 2 by Lemma 2.5. Now, for any smooth projective

complex variety X, the vanishing rdim(X) = 0 is equivalent to the existence of a full

exceptional collection (see Lemma 2.2), and this implies that K0(X) is free of finite

rank. Then rdim(S) ≥ 1. If rdim(S) = 1, then there is a curve C of positive genus

and a fully faithful functor Db(C) → Db(S), see Lemma 2.2. But this would give

0 ̸= H1,0(C) ⊂ HH1(C) ⊂ HH1(S), which contradicts the assumption h1,0(S) = 0, so

that rdim(S) = 2. □

Example 2.21. There are examples of surfaces, in any nonnegative Kodaira di-

mension, satisfying the assumptions of Proposition 2.20, as for example Enriques surfaces

and classical Godeaux surfaces. For a more exhaustive list, see [4, Example 6.1.14].

3. Categorical dimension of birational maps.

3.1. Definition and main properties.

Let X and Y be smooth projective varieties. Given a birational map ϕ : X 99K Y ,

a weak factorization (b1, c1, . . . , br, cr) of ϕ is a diagram of the form:

Y1
b1

{{vv
vv
vv
vv
v

c1

  A
AA

AA
AA

A Y2
b2

~~}}
}}
}}
}} c2

��<
<<

<<
<<

<<
Yr

br

����
��
��
��
�

cr

##H
HH

HH
HH

HH

X0 = X X1

· · ·

Xr = Y,

where bi and ci are either a blow-up of a smooth subvariety or an isomorphism, and Xi

and Yi are smooth and projective. We also denote by Bi ⊂ Xi−1 the locus blown-up

by bi and by Ci ⊂ Xi the locus blown-up by ci. Recall that we assumed k to have

characteristic zero, so that any birational map has a weak factorization [1].

Definition 3.1. Let ϕ : X 99K Y be a birational map. The motivic categorical

dimension of a weak factorization (b1, c1, . . . , br, cr) of ϕ is the integer

mcd(b1, c1, . . . , br, cr) := max{mcd(Ci) | i = 1, . . . , r}.

The motivic categorical dimension of ϕ is the integer

mcd(ϕ) := min{mcd(b1, c1, . . . , br, cr) | (b1, c1, . . . , br, cr) is a weak factorization of ϕ}.

Remark 3.2. Note that, by our convention mcd(0) = −1, we have that mcd(ϕ) =

−1 if and only if ϕ−1 is a finite sequence of smooth blow-ups and isomorphisms.

Example 3.3. Let σ : X → Y be the blow-up of a smooth subscheme Z of Y

such that mcd(Z) = d. Then mcd(σ) ≤ d and mcd(σ−1) = −1. The second formula is

obvious. To prove the second, consider the diagram:

X

σ

  @
@@

@@
@@

@
id

~~~~
~~
~~
~~

X
σ // Y,
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which is a weak factorization of σ.

Using Bittner’s presentation of the Grothendieck group K0(Var(k)) and Bondal–

Larsen–Lunts motivic measure, we can prove our main result.

Definition 3.4. Let X be a smooth projective k-variety, and Bir(X) the group

of birational transformations of X. We define, for any d ≥ −1, the following subset:

Bird(X) := {ϕ | mcd(ϕ) ≤ d} ⊂ Bir(X).

Theorem 3.5. The set Bird(X) is a subgroup of Bir(X), which coincides with the

whole group if d ≥ dim(X)− 2, and with Aut(X) if d = −1.
More generally, if ϕ : X 99K Y is a birational map and I(X) = I(Y ) in PT (k), then

mcd(ϕ−1) = mcd(ϕ).

Proof. First of all, if ϕ, ψ are both in Bird(X), then their compositions ϕ ◦ ψ
and ψ ◦ ϕ also are in Bird(X). Indeed, a weak factorization of the composition is easily

written from the weak factorizations of ϕ and ψ.

We prove now that if ϕ is in Bird(X), then also ϕ−1 is. We can more generally

show the second statement. So let X and Y be such that I(X) = I(Y ) and ϕ : X 99K
Y have motivic categorical dimension d. By definition, there is a weak factorization

(b1, c1, . . . , br, cr) of ϕ with centers Ci such that I(Ci) is in PTd(k) for all i. On the

other hand, ϕ−1 clearly admits a weak factorization (cr, br, . . . , c1, b1). Let us denote by

βi (resp. γi) the codimensions of Bi (resp. Ci) in their ambient variety. Using Bittner’s

presentation of K0(Var(k)), we obtain that

[X] + L
r∑
i=1

[Bi][Pβi−2] = [Y ] + L
r∑
i=1

[Ci][Pγi−2], (6)

in the Grothendieck group K0(Var(k)) (see, e.g., [29]). Now we apply the motivic mea-

sure µ to the formula (6). Using the fact that µ(L) = 1 and µ(Pm) = m+ 1, we obtain

the following formula in the ring PT (k):

I(X) +
r∑
i=1

(βi − 1)I(Bi) = I(Y ) +
r∑
i=1

(γi − 1)I(Ci). (7)

We can cancel out I(X) and I(Y ) in (7) by our assumption. This gives

r∑
i=1

(βi − 1)I(Bi) =
r∑
i=1

(γi − 1)I(Ci). (8)

The right hand side of (8) belongs to PTd(k) by assumption, so does the left hand side.

Notice that all the coefficients in both sides of (8) are strictly positive. It follows by

definition of PTd(k), all of the I(Bi) also belong to PTd(k), so that ϕ−1 also has motivic

categorical dimension at most d, and the equality follows by symmetry.

Finally, any ϕ in Bir(X) has motivic categorical dimension bounded above by

dim(X) − 2 since dim(Ci) ≤ dim(X) − 2 for any i = 1, . . . , r (see Lemma 2.5). On
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the other hand, if ϕ belongs to Bir−1(X), so does ϕ−1. It follows from Remark 3.2 that

this is the case if and only if ϕ is an automorphism. □

Remark 3.6. Notice that the proof of Theorem 3.5 works, more generally, when-

ever one has a semigroupM ⊂ PT (k) of effective elements such that, for every a inM , all

the effective summands of a belong to M . In such a case, one can define BirM (X) to be

the set of birational maps admitting a weak factorization (b1, c1, . . . , br, cr) such that all

the I(Ci) belong to M . Then one has that BirM (X) is a subgroup of Bir(X). However,

we stick here to the definition of motivic categorical dimension, since semiorthogonal

decompositions give all the information on any additive invariant, and, hence, on most

of the interesting information about X that one can retrieve from I(X).

3.2. Cremona transformations of given motivic categorical dimension.

Here we consider k ⊂ C to be an algebraically closed field. The results treated in the

above sections allow us to explain how to construct birational maps with given motivic

categorical dimension. This enables us to prove Theorem 2.

Theorem 3.7. We have Bird(Pn) ̸= Bird+1(Pn) for all −1 ≤ d < n− 2.

Proof. First of all, we prove that Birn−3(Pn) ̸= Birn−2(Pn). To this end, it is

enough to construct a birational map of Pn of motivic categorical dimension exactly n−2.
Let us consider homogeneous coordinates [x0 : · · · : xn], and a homogeneous polynomial

f of degree n in the variables (x1, . . . , xn) defining a Calabi–Yau smooth hypersurface

X in the projective hyperplane H := {x0 = 0}. As remarked in Example 2.19, we have

mcd(X) = dim(X) = n− 2, since hn−2,0(X) ̸= 0. Fix any homogeneous polynomial g of

degree n− 2 in the variables (x1, . . . , xn) such that gcd(f, g) = 1, and define a birational

involution ϕn−2 of Pn on the open subset x0 ̸= 0 by the affine formula (x1, . . . , xn) 7→
(x1(g/f), . . . , xn(g/f)). The fact that this gives a (birational) involution of Pn can be

checked on the affine space x0 ̸= 0: iterating the formula twice, and using the fact that

deg(g)− deg(f) = −2, we have that (ϕn−2)
2 writes:

(x1, . . . , xn) 7→

(
x1
g

f
· g
f
·
(
g

f

)−2

, . . . , xn
g

f
· g
f
·
(
g

f

)−2
)

= (x1, . . . , xn),

that is, (ϕn−2)
2 equals the identity on the open affine subset x0 ̸= 0 of Pn.

In order to show that X = {f = x0 = 0} lies in the base-locus of ϕn−2, we just have

to write ϕn−2 in homogeneous coordinates:

ϕn−2[x0 : · · · : xn] = [x0x1g : · · · : x0xng : f ].

Let now (b1, . . . , cr) be a weak factorization of ϕn−2. In particular (see [1, Theo-

rem 0.1.1]) there is a 1 ≤ j ≤ r such that both σ := bj ◦ cj−1 ◦ · · · ◦ b1 : Yj → Pn and

τ := cj ◦cj+1 ◦· · ·◦cr : Yj → Pn are projective morphisms. Since X is irreducible and has

dimension n − 2, by Zariski’s main theorem (see, e.g., [20, Chapter V, Theorem 5.2]),

there exists a divisor E such that σ(E) = X, so that E is birational to X × P1. It

follows that E is the center Bj of the blow-up bj for some 1 ≤ j ≤ r, and such Bj is
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stably-birational to X. Since the numbers hp,0 are stable birational invariants we have

hn−2,0(Bj) ̸= 0, and then that mcd(Bj) = n − 2 by Corollary 2.18 and the fact that

dim(Bj) ≤ n − 2. It follows that mcd(ϕ−1
n−2) = n − 2, and the same holds for ϕn−2 by

Theorem 3.5.

Now we proceed to construct a birational map ψ of Pn of motivic categorical di-

mension exactly d+ 1 for a given 0 ≤ d ≤ n− 3. Consider the standard birational map

σ : Pn 99K Pd+3 × Pn−d−3, and let ψ := σ−1 ◦ (ϕd+1, id) ◦ σ, where ϕd+1 is constructed

as the above ϕn−2.

First of all, since σ is obtained by resolving a linear projection, it clearly admits a

weak factorization whose centers are all (proper transforms of) linear subspaces, which

have then motivic categorical dimension 0. On the other hand, we have seen that any

weak factorization of ϕd+1 has motivic categorical dimension d + 1. It follows that we

can construct a weak factorization of ψ of motivic categorical dimension d + 1, so that

mcd(ψ) ≤ d+ 1.

Let X be the zero locus of f in the corresponding linear subspace. In particular, X

is a (d+ 1)-dimensional Calabi–Yau hypersurface in a hyperplane Pd+2 ⊂ Pd+3, and we

have hd+1,0(X) ̸= 0. By the same argument above, since σ−1(X×Pd−n−3) is in the base

locus of ψ, for any weak factorization there has to be a j such that bj has exceptional

divisor E birational to X ×Pn−d−2. In particular, there is some l such that X ×Pn−d−2

is birational to Bj × Pl, so that X and Bj are stably birational to each other. Since

the numbers hp,0 are stable birational invariants, we have hd+1,0(Bj) ̸= 0, and then that

mcd(Bj) ≥ d+ 1 by Corollary 2.18. As a consequence, we have that mcd(ψ−1) ≥ d+ 1,

so that the equality holds also for ψ as required. □

The proof of Theorem 3.7 makes an extensive use of Hochschild homology. One

could define the Hochschild dimension of a pretriangulated category A to be the maxi-

mal integer i such that HHi(A) ̸= 0, and the Hochschild dimension of a birational map

by replacing the motivic categorical dimension with the Hochschild dimension in Defini-

tion 3.1. The above proof would prove that this notion also gives a proper filtration of the

Cremona group. However, the noncommutative motive is the universal additive invariant

(see [33, Section 2]), so that motivic categorical dimension seems to be a more natural

notion from a motivic point of view, and it is also related to rationality problems (see

[4] or Section 5.1). Finally, as we noticed in Proposition 2.20, the notion of Hochschild

dimension would be weaker than the notion of motivic categorical dimension.

Remark 3.8. Suppose that ϕ : Pn 99K Pn is a birational map whose base locus

contains a closed subset (birational to) Pl×S with S an Enriques surface. Then mcd(ϕ) ≥
2: this can be seen following the same argument in the proof of Theorem 3.7, and the

fact that, for surfaces, stable birationality coincides with birationality. On the other

hand, assume moreover that there exists a weak factorization (b1, c1, . . . , br, cr) such that

HHl(Ci) = 0 for l ̸= 0. This is, a priori, possible, since HHl(S) = 0. The birational

map ϕ has then Hochschild dimension 0 and motivic categorical dimension at least 2.

It is not known to the author whether such a map ϕ exists, it would be interesting to

construct it, and to study the filtration on Bird(Pn) given by the Hochschild dimension.
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4. The genus of a birational map.

4.1. Jacobians of noncommutative Chow motives.

Let k ⊂ C be algebraically closed. Recall from André [3, Section 4] the construction

of the category Chow(k)Q of Chow motives with rational coefficients and of the monoidal

functor

M(−)Q : SmProj(k)op −→ Chow(k)Q,

where SmProj(k) is the category of smooth projective k-schemes. As proved in [3, Propo-

sition 4.2.5.1], de Rham cohomology factors through Chow motives, so that every mor-

phism of Chow motives induces a morphism in de Rham cohomology. For X an irre-

ducible k-scheme of dimension d, we can consider the Q-vector spaces NH2i+1
dR (X), 0 ≤

i ≤ d− 1, defined by the formula

∑
C

∑
γ∈Hom(M(C)Q,M(X)Q(i))

Im

(
H1
dR(C)

H1
dR(γ)
−→ H2i+1

dR (X)

)
, (9)

where C is a smooth and projective curve and γ a morphism from M(C)Q to M(X)Q(i).

Roughly speaking, the NH2i+1
dR (X) are the odd pieces of de Rham cohomology that are

generated by curves. Restricting the classical intersection bilinear pairings on de Rham

cohomology (see [3, Section 3.3]) to these pieces gives pairings

⟨−,−⟩ : NH2d−2i−1
dR (X)×NH2i+1

dR (X) −→ k 0 ≤ i ≤ d− 1. (10)

Recall that Marcolli and Tabuada [32] have defined the Jacobian J(N) of a non-

commutative motive N as an Abelian variety well-defined up to isogeny. We refrain to

give the detailed definition here, the interested reader can consult [32] or [33, Chapter 7].

In particular, given a smooth and projective variety X and an admissible subcategory

A of Db(X), one can define the Jacobian J(A) as the Jacobian of the noncommutative

motive of A as an Abelian variety well-defined up to isogeny.

On the other hand, recall the construction of the intermediate Jacobians

J i(X) :=
F i+1H2i+1(X,C)
H2i+1(X,Z)

,

for 0 ≤ i ≤ d−1, where F • is the Hodge filtration on Betti cohomology. The intermediate

Jacobians are complex tori, not (necessarily) algebraic. Nevertheless, they contain an

algebraic torus J ia(X) ⊆ J i(X) defined as the subtorus generated by the image of the

Abel–Jacobi map

AJ i : Ai+1(X)Z ↠ J i(X) 0 ≤ i ≤ d− 1, (11)

where Ai+1(X)Z denotes the group of algebraically trivial cycles of codimension i+1; see

Voisin [35, Section 12] for further details. The algebraic intermediate Jacobian J ia(X) is

an Abelian variety, well-defined up to isogeny.

As proved in [32, Theorem 1.7], whenever the above pairings (10) are non-degenerate
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for all i, one has an isomorphism

J(Db(X)) ≃
d−1∏
i=0

J ia(X) in Ab(k)Q, (12)

where Ab(k)Q is the category of Abelian varieties up to isogeny.

As explained in loc. cit., (10) is always non-degenerate for i = 0 and i = d − 1.

Moreover, if Grothendieck’s standard conjecture of Lefschetz type is true for X, then

(10) is non-degenerate for all i; see Vial [34, Lemma 2.1].

Since semiorthogonal decompositions induce decompositions of noncommutative mo-

tives in direct summands (see [33]), it follows that ifA = ⟨A1, . . . ,Ar⟩ is a semiorthogonal

decomposition, then J(A) = J(A1)⊕· · ·⊕J(Ar). On the other hand, since the category

generated by an exceptional object is equivalent to the category of a point, it has trivial

noncommutative Jacobian. It follows that, if A is generated by exceptional objects, then

J(A) = 0.

4.2. Weak factorizations and Jacobians.

Let k ⊂ C be algebraically closed. Recall that in our notations, for a weak factor-

ization (b1, c1, . . . , br, cr) we have that, for i = 1, . . . , r, the map bi blows-up (possibly

empty) smooth centers Bi which have codimension βi; and ci blows-up (possibly empty)

smooth centers Ci which have codimension γi.

Proposition 4.1. Suppose ϕ : X 99K Y has a weak factorization (b1, c1, . . . , br, cr)

as above, and set n := dim(X). Then we have

dim(J(X)) +
r∑
i=1

(βi − 1)dim(J(Bi)) = dim(J(Y )) +
r∑
i=1

(γi − 1)dim(J(Ci)). (13)

Proof. Let us first consider the diagram:

Yi
b

}}zz
zz
zz
zz

c

  A
AA

AA
AA

A

Xi−1 Xi.

Applying blow-up formula we obtain two semiorthogonal decompositions of Db(Yi) induc-

ing two decompositions of its noncommutative motive, and hence of its noncommutative

Jacobian

J(Yi) = J(Xi−1)⊕ J(Bi)
⊕
βi−1 = J(Xi)⊕ J(Ci)

⊕
γi−1,

as Abelian varieties up to isogeny, as explained in Section 4.1. Calculating dimensions,

this yields:

dim(J(Xi))− dim(J(Xi−1)) = (βi − 1)dim(J(Bi))− (γi − 1)dim(J(Ci)),

and the proof follows by summing up the above equation for i = 1, . . . , r. □
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Corollary 4.2. Let ϕ : X 99K Y be a birational map as in Proposition 4.1. If we

assume furthermore that dim(J(X)) = dim(J(Y )), then we have

r∑
i=1

(βi − 1)dim(J(Bi)) =
r∑
i=1

(γi − 1)dim(J(Ci)).

And, assuming moreover that the pairings (10) are nondegenerate for Bi and Ci for

all i, we obtain :

r∑
i=1

(βi − 1)dim

(
n−βi−1∏
l=0

J la(Bi)

)
=

r∑
i=1

(γi − 1)dim

(
n−γi−1∏
l=0

J la(Ci)

)
.

Proof. The first statement is a straightforward corollary of Proposition 4.1. For

the second, just note that we can apply (12) to all of the Bi and Ci, and formula follows

from dim(Bi) = n− βi and dim(Ci) = n− γi. □

Corollary 4.3. Let ϕ : X 99K Y be as in Proposition 4.1, and assume that

dim(J(X)) = dim(J(Y )) and that Bi and Ci have dimension at most one. This is the

case in particular if n = 3. Then the above formula (13) yields :

r∑
i=1

g(Bi) =
r∑
i=1

g(Ci),

where we set, by convention, g(Z) = 0 if dim(Z) = 0 or Z is empty.

Proof. Notice that, under our assumptions, Bi and Ci have only one nontrivial

Jacobian if and only if they are curves of positive genus, in which case the dimensions

of the Jacobians are g(Bi) and g(Ci) respectively. Moreover, in (13), either g(Bi) = 0

(resp. g(Ci) = 0) or βi = n − 1 (resp. γi = n − 1), so that the factor (n − 2) can be

simplified. □

4.3. A generalization for the genus of birational transformations of

rationally connected threefolds.

The notion of an incidence principal polarization on intermediate Jacobians was

introduced by Beauville, see [6, Section 3.4]. In the case where the pairings (10) are non-

degenerate for X, and X admits a unique nontrivial intermediate Jacobian J(X) which

is principally polarized by an incidence polarization, we say that X is verepresentable.

In particular, X must be of odd dimension 2n + 1 and J(X) = Jn(X). All smooth

projective curves, many Fano threefolds, all projective spaces, quadric hypersurfaces and

intersections of two quadrics, or of three even-dimensional quadrics are verepresentable.

We refrain to give any more detail here, we refer to [9] for that, and we just recall that, in

these cases, the Jacobian J(X) contains the information about the principal polarization

of J(X), as shown by the following theorem [9, Theorem 1.7].

Theorem 4.4. Let X and Y be verepresentable varieties, such that the pairings

(10) are nondegenerate for both X and Y , and suppose that
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Db(X) = ⟨A,B⟩, Db(Y ) = ⟨A′, C⟩.

Assuming that J(B) = 0, and that A ≃ A′ as pretriangulated dg categories, there is an

injective morphism of principally polarized Abelian varieties τ : J(X) → J(Y ), that is

J(Y ) = J(X) ⊕ A for some Abelian variety A. Moreover, if J(C) = 0 as well, τ is an

isomorphism.

Definition 4.5. Let X and Y be verepresentable 2n+ 1-folds. A birational map

ϕ : X 99K Y is well-polarized if there is a weak factorization of type (b1, c1, . . . , br, cr)

such that both the centers Bi and Ci and all the varieties Xi and Yi appearing in the

weak factorization are verepresentable.

If ϕ is well-polarized by a weak factorization (b1, c1, . . . , br, cr), we call the Abelian

type of ϕ the collection J(Ci) of all nontrivial algebraic Jacobians of the centers Ci. If

SA is a set of indecomposable principally polarized Abelian varieties such that all of the

J(Ci) are isomorphic as principally polarized Abelian varieties to sums of elements of

SA, we say that the Abelian type of the weak factorization is split by SA. If, moreover,

SA only contains Jacobian of curves, we say that the Abelian type is Jacobian.

Remark 4.6. Notice that the weak factorization (b1, c1, . . . , br, cr) of ϕ is well-

polarized, then the centers Bi and Ci either have trivial Jacobian or have codimension

2. Indeed, blowing-up Bi adds βi − 1 copies of the Hodge structure of Bi to the Hodge

structure of Xi−1. So that if βi > 2, we need the Jacobian of Bi to be trivial if we want

Yi to be verepresentable. A similar argument works for Ci.

Remark 4.7. In the case n = 3, and X and Y verepresentable varieties, every

weak factorization of a birational map ϕ : X 99K Y is well-polarized of Jacobian Abelian

type. Indeed, the centers are either points or smooth projective curves.

The next proposition uses Theorem 4.4 to produce subgroups of Bir(X). Notice

that similar arguments were used by Clemens and Griffiths [15] to show that any ra-

tional complex threefold has its intermediate Jacobian split by Jacobians of curves as a

principally polarized Abelian variety. A categorical rephrasing of this criterion can be

found in [8] (see also [7] and [4]).

Proposition 4.8. Let X be a verepresentable (2n+1)-fold. Given a set of indecom-

posable principally polarized Abelian varieties SA, the set of birational transformations ϕ

well-polarized by weak factorizations of Abelian type split by SA is a subgroup of Bir(X).

Proof. By assumption there is a weak factorization (b1, c1, . . . , br, cr) of ϕ such

that all the varieties involved are verepresentable and the intermediate Jacobians of the

Ci are direct sums of elements of SA. Consider the first diagram:

X Y1
b1oo c1 // X1.

By assumption, we have

J(X)⊕ J(B1) = J(X1)⊕ J(C1) (14)
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as principally polarized Abelian varieties. If r = 1, that is, if X1 = Y , we have J(X1) =

J(X) by assumption and we can conclude. Otherwise, consider the next diagram

X1 Y2
b2oo c2 // X2,

from which we obtain

J(X1)⊕ J(B2) = J(X2)⊕ J(C2). (15)

Combining (14) and (15) we obtain:

J(X)⊕ J(B1)⊕ J(B2) = J(X1)⊕ J(C1)⊕ J(B2) = J(X2)⊕ J(C1)⊕ J(C2)

as principally polarized Abelian varieties. Recursively, running over the whole weak

factorization, we obtain

J(X)⊕
r⊕
i=1

J(Bi) = J(Y )⊕
r⊕
i=1

J(Ci)

and hence, since J(X) = J(Y ) and the category of principally polarized Abelian varieties

is semisimple, the Jacobians J(Bi) are also split by elements of SA.

Finally, let ϕ and ψ be well-polarized by weak factorizations of Abelian type split

by SA. Then also ϕ◦ψ is well polarized since it admits a weak factorization which is just

given by juxtaposition of the weak factorizations of ϕ and ψ, and it is clear that such a

factorization has Abelian type split by SA. □

Question 4.9. Construct nontrivial examples of well-polarized birational maps

which are not isomorphisms, admitting a weak factorization whose Abelian type is not

split by the set {0} for varieties of dimension ≥ 5, for example for P5. Note that the

quadro-quadric Cremona transformations of Pn described in [17] for n = 5, 8, 14 are not

good candidates since they admit a factorization involving only varieties with hhi = 0

for i ̸= 0 (and most likely also the one for n = 26). An example must involve varieties

with nontrivial Jacobian, such as the cubic threefold, for example. The difficult step here

would be to show that any weak factorization must involve varieties with such Jacobian.

Definition 4.10. If ϕ is well-polarized by a weak factorization (b1, c1, . . . , br, cr),

the maximum max{dim(J(Ci))} over all the centers Ci is called the genus of the given

weak factorization. The genus g(ϕ) of the birational map ϕ is the smallest genus of any

possible well-polarized weak factorization.

Let X and Y be verepresentable threefolds, and ϕ : X 99K Y a birational map.

Recall that by regular resolution of ϕ−1, we mean an iterated blow-up σ : Y ′ → Y along

smooth centers such that there is a birational morphism ρ : Y ′ → X and the composition

ρ◦σ−1 is ϕ−1. Frumkin [18] defined a notion of genus of ϕ, which we denote by gF (ϕ), to

be the maximum of the genera among the centers of the blow-ups in regular resolutions

of ϕ−1. As proved by Frumkin [18, Corollary 1.2.4], this does not depend on the choice

of the regular resolution. On the other hand, Lamy defines the genus of a birational map
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to be the maximal genus of a curve C such that there exist a divisor D in X contracted

by ϕ, birational to C × P1, and shows that his definition coincides with Frumkin’s one

[28].

Proposition 4.11. Let X and Y be verepresentable threefolds and ϕ : X 99K Y a

birational map. Then ϕ is well-polarized and any weak factorization of ϕ has Jacobian

Abelian type. Moreover, gF (ϕ) ≤ g(ϕ).

Proof. First of all, it is easy to see that any weak factorization of ϕ is a compo-

sition of blow-ups along curves or points. It follows that ϕ is well polarized and the weak

factorization is of Jacobian Abelian type.

Suppose that we are given ϕ with genus gF (ϕ) > 0. Then any regular resolution

of ϕ blows up a curve C with g(C) = gF (ϕ). We can now proceed as in the proof of

Theorem 3.7 to show that if (b1, c1, . . . , br, cr) is a weak factorization of ϕ, then there

must be an i, 1 ≤ i ≤ r such that g(Ci) = g(C). We have then that gF (C) ≤ g(ϕ). □

Question 4.12. Let ϕ be as in Proposition 4.11. Do we have g(ϕ) = gF (ϕ)?

One would expect a positive answer to Question 4.12, so that the genus defined via

the weak factorization would be indeed a generalization of Frumkin’s genus to higher

dimensional cases. However, a negative answer would be a very interesting and deep

result. Let us sketch a little argument reducing the question to maps with trivial Frumkin

genus.

Let ϕ be as in Proposition 4.11, and consider a regular resolution X
ρ← Y ′ σ→ Y of

ϕ−1, and a regular resolution Y
ρ′← X ′ σ

′

→ X of ϕ, and the commutative diagram:

X ′

σ′

��

ψ //___ Y ′

σ

��
X

ϕ //___ Y.

In particular, thanks to [18, Proposition 2.2] (see also [28, Proposition 7]), the map ψ

has genus zero, hence there is a regular resolution Y ′ f← X ′′ τ
′

→ X ′ of ψ where τ ′ blows-up

points and rational curves. If one was able to construct a weak factorization of f whose

centers are points or rational curves only, then the juxtaposition of σ′, τ ′, such weak

factorization, and σ would be a weak factorization of ϕ with genus exactly gF (ϕ). Hence,

Question 4.12 reduces to the following question: suppose ϕ : X → Y is a birational

morphism between verepresentable threefolds with gF (ϕ) = 0. Is it possible to construct

a weak factorization of ϕ of genus zero?

Notice that, using Lamy’s definition of gF (ϕ), one can show that the irreducible

components of the exceptional locus of such a ϕ are either rational curves of rational

surfaces. If one was able to construct a map ϕ such that ϕ has no weak factorization

of genus zero, we would have a negative answer to Question 4.12. This would be a

quite interesting example, since it would show that the group of genus zero maps is

strictly smaller than the group of the maps whose exceptional locus has rational connected

components. On the other hand, as we will see in the next section, all the elements of
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the subgroup of Bir(P3) generated by the standard Cremona transformation have genus

zero.

5. Toric versus rational centers.

5.1. The noncommutative motivic rational defect and Birn−4(X).

Let Y be a rational n-dimensional variety. As remarked in [19], from the existence

of weak factorizations for birational maps, one has

[Y ] = [Pn] + LMY (16)

in K0(Var(k)), where MY is a Z-linear combination of classes of varieties of dimension

bounded above by n−2. Galkin and Shinder define then ([Y ]−[Pn])/L ∈ K0(Var(k))[L−1]

as the rational defect of Y [19]. Applying to (16) the motivic measure µ defined in (3), and

recalling that mcd(Pn) = 0, we obtain the following statement (see [4, Proposition 8.1.2]).

Proposition 5.1. If Y is rational smooth, projective, then mcd(Y ) ≤ max{0, n−
2}.

We call the class of I(Y ) in the Z-module PT (k)/PTn−2(k) the noncommutative

motivic rational defect of the variety Y .

Definition 5.2. We say that a birational map ϕ : X 99K Y has rational centers if

there exists a weak factorization (b1, c1, . . . , br, cr) with Ci rational for any i = 1, . . . , r.

For a given smooth and projective variety X, we define RX to be the subgroup of Bir(X)

generated by birational maps with rational centers.

Corollary 5.3. Let ϕ : X 99K Y be a birational map with rational centers, and

n = dim(X). Then mcd(ϕ) ≤ max{0, n − 4}. In particular, RX ⊂ Birn−4(X) if n ≥ 4,

and RX = Bir0(X) if n ≤ 3.

Proof. By Proposition 5.1 a rational variety C of dimension m has mcd(C) ≤
m−2. If follows then, that, in the above assumptions, mcd(Ci) ≤ dim(Ci)−2 ≤ n−4 for

any i, and the first statement is proved. Also, this proves that RX is indeed contained

in Birn−4(X) if n ≥ 4.

The stronger statement in the case n = 3 is just a rephrasing of the fact that having

rational centers is equivalent to having motivic dimension zero. Indeed, in this case, the

centers of a weak factorization are either points or smooth curves, and we know that a

curve C has mcd(C) = 0 if and only if C is rational.

The statement is trivial for n ≤ 2. □

In the case of fourfolds, centers have dimension at most two. A conjecture attributed

to Orlov (see, e.g., [4, Conjecture 6.2.1]) claims that a smooth projective complex surface

is rational if and only if it has a full exceptional collection. We can formulate therefore

the following conjecture.

Conjecture 5.4. Suppose that dim(X) ≤ 4, and let ϕ : X 99K X be a birational

transformation. Then mcd(ϕ) = 0 if and only if ϕ has rational centers.
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We notice that Hochschild homology is certainly not fine enough to study the above

conjecture, as Proposition 2.20 shows.

On the other hand, it is easy to see that there are rational threefolds X such that

mcd(X) = 1, if for example, X satisfies h1,2(X) ̸= 0. Suppose then that ϕ is a birational

map of Pn contracting some rational variety Z with mcd(Z) > 0. One would be tempted

to deduce that mcd(ϕ) > 0, but the arguments used in the proof of Theorem 3.7 are

deeply based on birational geometry. We formulate then the following question.

Question 5.5. Let n ≥ 5. Does there exist ϕ in RPn such that mcd(ϕ) > 0?

5.2. Toric centers, and the standard Cremona transformation.

Let X be a smooth projective variety. We say that a birational transformation

ϕ : X 99K X has toric centers if it admits a weak factorization (b1, c1, . . . , br, cr) where

all the Ci are toric. By this, we mean that Ci is abstractly isomorphic, as a smooth

projective variety, to a toric variety. We set TX to be the subgroup of Bir(X) generated

by birational maps with toric centers. For example, a birational map ϕ : X 99K X

admitting a weak factorization such that all the Ci are projective spaces has toric centers.

Notice however that ϕ having toric centers does not imply that X itself is toric, nor that

any of the blow-ups is a toric map. By Kawamata [22], the derived category of any toric

variety is generated by exceptional objects. We therefore have the following easy remark.

Proposition 5.6. If ϕ : X 99K Y has toric centers, then mcd(ϕ) = 0. In particu-

lar, TX ⊂ Bir0(X).

Notice that we do not know whether ϕ having toric centers implies that ϕ−1 has

toric centers. It is not difficult indeed to have non-toric varieties whose derived categories

are generated by exceptional objects, as for example any del Pezzo surface of degree at

most 5, or, more generally, any non-toric blow-up along points of a variety whose derived

category is generated by exceptional objects.

A very well known example of a birational map with toric centers is given by the

standard Cremona transformation σn : Pn 99K Pn which admits a factorization:

X

b

~~||
||
||
||

c

  B
BB

BB
BB

B

Pn σn //_______ Pn

as follows: there are n+1 points in general position on Pn naturally associated to σn. The

map c is the composition of the blow-ups of these points, followed by the blow-ups of the

strict transforms of all the lines through two of them, then by the blow-ups of the strict

transforms of planes through three of them and so on, the last step being the blows-up

of the strict transforms of the (n − 2)-dimensional linear subspaces spanned by all the

possible choices of n− 1 points. Notice that X is also known as the Losev–Manin space,

a compactification of the moduli space of (n+3)-pointed curves of genus zero. It follows

that all the standard Cremona transformations have toric centers, and are indeed toric.

We remark that here we could have used that projective spaces have motivic categorical

dimension 0, without appealing to toric varieties.
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We have the following corollary of Proposition 5.6. We set Gn := ⟨PGLn+1(k), σn⟩
as a subgroup of Bir(Pn).

Corollary 5.7. For any n ≥ 2, we have

Gn ⊂ TPn ⊂ Bir0(Pn).

We finally notice, as a possible application of Corollary 5.7, that a positive answer to

Question 5.5 would imply that the group generated by maps contracting rational varieties

is strictly bigger than Gn, a result which was proved by Blanc and Hedén [11] if n ≥ 3

is odd.
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