Analyticity and decay properties of the solitary
waves to the Benney-Luke equation

MIHAT MARIST

Abstract

We prove that the Benney-Luke solitary waves are analytic functions
and decay at infinity with an optimal algebraic rate as well as their deriva-
tives.

1 Introduction

In a recent paper [9] PEGO and QUINTERO studied the propagation of long water
waves with small amplitude. They showed that in the presence of a surface
tension, the propagation of such waves is governed by the following equation
originally derived by BENNEY and LUKE (see [1] ):

(1.1) Dy — AP + p(aA’® — bADy) + (P AP + (VO)]) =0 .

Here a and b are positive and satisfy a —b = o — % where ¢ is the Bond number,

while the parameters € and p are supposed to be small.
Pego and Quintero looked for traveling-wave solutions of (1.1), that is solu-
tions of the form Vi
nw o x—ct vy
(I)(xay,t) = 71}‘( ai) .
e VR VR
The scaling was introduced here to eliminate € and . A traveling-wave profile
u should satisfy the equation

(= Ve — Uy + (@ = ) Ugrz + (20 = b Jigayy + alyyyy—

(1.2) c(BUgtzy + Upllyy + 2Uytyy) =0 .

The energy associated to u is

1
(1.3) E(u) = 5/ (14 )i +up + (a+bc?)ul, + (2a+bc)ul, +au, dxdy .
R?2
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It was proved in [9] by the means of the concentration-compactness method
that if the wave speed c satisfies ¢? < min(1, ), then there exist non-trivial finite
energy solutions of (1.2) in a space V, where V is the completion of C§°(R?) for
the norm

loli= [ G+ + ket 268, + o dudy
R

The Benney-Luke equation reduces formally to the Kadomtsev-Petviashvili

et
(KP) equation after a suitable renormalization. Indeed, putting 7 = 5 X =

z—t,Y =c2yand B(z,y,t) = f(X,Y,7), neglecting O(¢) terms we find that
n = fx satisfies the KP equation

1
(1.4) (nr — (0 — g)WXXX +3mx)x +nyy =0 .

DE BoUARD and SAUT proved (see [5]) that finite energy solitary waves
exist for the KP equation when o > % (the KP-I case).

Moreover, let o > % (that is, a > b), ¢ = 1 —c? and let u. be the correspond-
ing solution of (1.2) obtained in [9]. Then if ¢ — 0, there exists a sequence
(e5) such that (u;) converges (after a suitable renormalization) to a distribu-
tion vy € D'(R?) and 9,v is a nontrivial solitary wave of the KP equation (see
[9])-

It is known (see DE BOUARD and SAUT [6]) that the solitary waves of the
KP equation are smooth and decay at infinity with an optimal algebraic rate

(% in dimension 2).

It is then natural to ask whether the Benney-Luke solitary waves have the
same properties. The aim of this paper is to give an answer to this question.

We suppose throughout that the parameters a, b, ¢ appearing in (1.2)
satisfy: a > 0 and if b > 0, then ¢? < min(1, %)

Our method follows very closely the ideas developed in [6].

This paper is organized as follows: in the next section we prove that the
Benney-Luke solitary waves are analytic functions. Section 3 contains our main
result about the decay at infinity of such waves. We give an algebraic decay
rate which is optimal for the solutions of (1.2) and their first order derivatives.
In Section 4 we state some integral identities satisfied by these solitary waves.
Some technical facts about the Fourier transform that we use in proofs are
treated in an Appendix.

2  Analyticity

The aim of this section is to prove that any solution u € V of (1.2) is an analytic
function and tends to zero at infinity as well as all its derivatives. We begin
with the following result:



Theorem 2.1 Let u € V be a solution of (1.2). Then
a) u € WFP(R2) for all k € N and all p €]2, oc];
b) ug, u, € WHP(R?) for all k € N and all p €]1, 00].

Proof: We make extensively use of the following theorem on Fourier multi-
pliers due to LIZORKIN:

Theorem 2.2 ([8]) Let ® : R® — R be a C™ function for || > 0 ,
j=1,...,n. Assume that

oF e
otk oghn

el € L*([R") ,
withk; =0or 1,k =ki+...k, =0,1,...,n. Then ® € M,(R") for 1 < g < o0,
i.e. @ is a Fourier multiplier on L?(R"™).

We have u,, u, € H'(R?) C LP(R?) for all p € [2,00] by the Sobolev
imbedding theorem. The nonlinearity can be written as dy(3u2 + 1u2) +
By (uguy). Let Q(&1,&2) = (1 —c*)&f + &5 + (a — b?)Et + (2a — be®)EE5 + aks.
Equation (1.2) gives

Q&1 &2) = —sfcﬂgui + %ui) = G16ocF (uay)

and

Q(&1,&)uy = —51520}—(21@ + %1@) — &5cF (uzuy) -

The Theorem 2.2 implies that u,, u, € LP(R?) for all p €]1,00[. Let a =
(a1, an) € N2. We have:

Q(6r, €D = i€ (1€)"F (o2 + 3u2) +i6ai€)° Fluguy)
By Theorem 2.2, D% € LP(R?) for all p €]1,00[ if |a| = 2,3. In particular,
Uy, uy € W2P(R?) C C' N L>®(R?) and for |a| = 2, D € WHP(R?) C
C° N L>°(R?) by the Sobolev imbedding theorem applied for a p > 2.

The rest of the proof follows easily by induction. Supose that all the deriva-
tives of u of order 1,2,...,n — 1 are in C° N L> N LP(R?) and the n'" order
derivatives are in LP(R?) for all p €]1,00[. Let o € N? with |a| = n + 1 and
8 < a with |a — 8| = 2. Then

o~ o 3 1 e o
Q&1 &) Du = i& (i€)*PeF(DP(Gug + Sup)) +i6a(i€)* e F (D (uauy))
Again by Theorem 2.2 we obtain D%u € LP(R?) for all p €]1, c0[. The Sobolev
imbedding theorem gives us D* u € C° N L>°(R?) if |o/| = n. This finishes the
induction and the proof of part b).



Since u, u, € LP(R?) for p €]1,00], Theorem 14.4, p. 295 of [3] yields
u € LI(R?) for all q €]2, o[ and
1 1 1
< here — — — + = .
lulla< Cp || Vullzr ,w erep 2+q
Hence u € Wk4(R2) for all K € N and all ¢ €]2,00[. Consequently u is a C*
function, it is bounded and tends to zero at infinity.
The Theorem 2.1 is proved. O

Remark 2.3 If u € V is a nontrivial solution of (1.2), then u, and u, are
not in L'(R?).

Proof: We argue by contradiction. Suppose u, € L'(R?). Then u, is
a continuous function. But F(3u2 + ju2) and F(uyu,) are also continuous
functions and

R - SR PO (PN T
22 w6 e) = o T ) T g gy ) -
For a fixed A € R we put & = A& and let & — 0 in (2.2). We obtain

/\ c 3, 1, cA /
20,00 =———< [ G2+ 2 dedy — —2 | wguy dedy
u,(0,0) 1_CQ+>\2/R2(2%—|—2uy) vdy — 5 RZuuy xdy

Since this is true for all A € R we deduce that
3 1
/ (su2 + ~u?) dedy = / Uplly dzdy =0
R2 2 2 v R2

which implies that u is constant, contrary to the assumption. The same argu-
ment applies to u,. O

Remark 2.4 If u € V is a nontrivial solution of (1.2) and r2u,, r%uy €
L?(R?) where r = \/22 + y? (we shall see in the next section that this is always
the case), then u cannot belong to L?(R?).

Proof: Assume u € L*(R?). Then @ € L*(R?) and
N ST 3 5 1, €2
(23) u(flaéé) - Q(€17£2)C‘F(§uz + iuy) + Q(&’&)C}-(Uxuy) :

The fact that rzu,, T%uy € L?(R?) implies that gy = cF(3u2 + jul) and
g2 = cF(uzu,) are C* functions. The equation (2.3) can be written as

i u(&1,&2) :£
<1 it
> [Q(&@)(Ql(&’gi O g E ) 2(0.0)] +
2G1 ifo
{Q(&@gl<0,0) + Mgg(O,o)] .



Since g; and go are locally Lipschitz functions, the first term in the right hand
side of (2.4) is bounded for £ € Br2(0,1). This forces
igl i§2 2
————¢1(0,0) + ——=-=9¢2(0,0) € L*(Bgr2(0,1)) .
Q(&1,82) 1(0.0) Q(&1,62) 2(0.0) (Brs(0, 1)

3 1
But ¢1(0,0) = c/ (iui + §u5)dxdy > 0, so it suffices to show that
R2

a&1 + b&o 2
951 T 082 4 12(BRa(0,1
Q(&1,82) # L7(Bre (0, 1)
if a, b € R, a # 0 to obtain a contradiction.
For ¢ varying in a bounded set K there exists my > 0 such that Q(¢) <
my|€]?. We make the change of variables & = a&; + béy, & = &, A =

a b
( 0 1 ) ‘We have:

(a1 + b€2)2 (51)2 L
e e % = U jdet(A)d
/BR2 (0,1) Q(&1,62)? ¢ /ABRz ©0,1) Q(A-1(g],€))? |det(A)| '3

7\2
> C (51)4d§’:oo. ad
ABga(0,1) €]

We prove now that any solution u € V of (1.2) is an analytic function. The
proof relies on the Paley-Wiener theory. We borrowed the ideas developed by
L1 and BoNA in [7].

Let u € V be a solution of (2.1). By Theorem 2.1 we have |£|(1+ [£]?)% U €
L?(R?) for all m. We take m > 1 and apply thy Cauchy-Schwarz inequality to
get

[ waue < ([ eras |£|2>ma<§>|2d§)%-( L) <.

Hence |¢|i € LY(R?). Equation (2.3) gives us

i) = gones (Sl (61 + 6 4D

Q(&1,62)
+Qi§§12’|§|2) (1) * (i&21)
from which we infer that
. 3cl¢]? ~ .
(2.5) €]|ul < 7Q(§1752)(|§|IU\) * (€] [al).



3oll
Let M = max sup < clel* ) . Obviously M < oo. We note
=234 \ (¢,,64)2(0,0) \Q(§1,82)

P(€r, &) = MIE| - |u(&r,&2)|. Then ¥ > 0, 1 € LY(R?) and the inequality (2.5)
gives

(2.6) <P, <y and 6Py < Pxd.

For an integrable function f we define C1f = f and for n > 1, C,f(z) =
(f % (Cr=1f))(z). We have

Lemma 2.5 The function ¥ introduced above satisfies

k _
(27) €1 < (5 + D1 Coapn ¥
where [z] denotes the greatest integer less or equal than x.
Proof. ~ We proceed by induction on k. From (2.6) it follows that (2.7)
holds for k = 1,2,3. Notice that the first of the inequalities (2.6) implies that

Cptp < Cptp if p < r. We suppose that (2.7) is valid up to order k and prove that
it is valid for k + 2. We have:

200 < e = [ 16hvE -0 w0k
[ (e =l kot = 0 w0

k
/ > il ~cIute -0 (el wiepc

= ch |- *7)(€)

IN

where C} = is the binomial coefficient. Using the induction hypothe-

sis, the last sum is majorlzed by

k—1
ZC’k< + 1)~ 1C2 ;-4-1)77[’)*((
a 1 i 1—1 k_Z k—i—1
=2 GG+ D7 = + D gy ¥

k . .
il i1k~ —i—
< (E Ci(z+1) 1(T +1)* 1) Coig2)y ¥

k—i—1
) Cz([’“;}+1>¢)




We use a specialization of the Abel identity (see [10], p. 26)

k
ZC,i(scl +i) (g + k— i)k =

=0

k k—1
o179 (.’El =+ 56‘2)(371 + 22 + )

for x1 = 9 = 2 to obtain

k k
l k 'L l 1,
N C<2+1> e O 2k2§ CR2+ ) 2+ k=)t
1=0 1=0
(4+ k)k— koo,  (k+2 an
:7:22 — < | — 1 .
2k—2 (+2) =2 7

Hence (2.7) holds for k + 2 and the Lemma is proved. O

Theorem 2.6 Let u € V be a solution of (1.2). Then there exists o > 0
and an holomorphic function U of two complex variables z1, zo defined in the
domain

Q, ={(z1,22) € C? | [Im(z1)] < o, |[Im(z2)| <o}

such that U(z,y) = u(z,y) for all (z,y) € R?.

C
< — for 0 < [¢] <1 and

Proof. It is easily seen from (2.3) that |u(§)] < €]

[u(¢)] < @ for |¢| > 1, s0 u € L' (R?).

Keeping the notation introduced above and using Lemma 2.5 we infer that
for k > 1,

1% ()]

1 ~ 1 _
el Mg 3(0)] = -leF ()

1 (k-1 o2
(2 + 1) Coit 1)V (€)

= M

< 1\14(]62 )k 2Ck+1¢
e I
R N



(55 + D 2001Bs - ol

Put ap = i hen
k—1
ap+1 1 k+2 e
o *ZH'IZJHIA (k—i—l — 2||1/)||L1 as k — oo.
_ 2 : - k .
Let 0 = ————. The series Zaks converges absolutely for |s| < o; we
el[¢]|

k=1
denote by C(s) its sum. Fix o1 €] 0,0 [ and choose o2 € ] 01,0 [. One has

o _k|e|k >
e llae) < S %m@ﬂ <€) + > osar = [@(&)] + Clo2).
k=0 k=1

Hence
e el [a(e)] < e~ (e2moDIElg(g)| 4 e~ (72=VIEl O (o).
It follows that e”I'1% € L'(R?) for all o1 < 0. We define the function

1 ; ~
Ulersza) = 5 [ 09 ale @icde
R?2

™

By the Paley-Wiener Theorem, U is well defined and analytic in 2, and the
Plancherel’s Theorem implies that U(z,y) = u(x,y) for all (z,y) € R?. This
proves the Theorem 2.6. O

3 Decay properties

We prove in this section that all the solutions in V of (1.2) decay at infinity as
% and their derivatives decay as %2
From (2.3) we deduce that

B S N PO W
(3.1) u=ricF (Q(§17£2))*(2ux+2uy)+zc}" (Q(gl’&))*(ua}uy) .

(2.2) gives us

o & ) 35, 1, _1< 5@)
(32) e = —cF (Q(&@) Gt e = F o G gy ) )

and similarly

Uy = —cF ! 75152 §u2 1u2 —cF ! (E% ) Uy U
(3.3) uy = —eF <Q(§1,§2)>*(2 =ty ek Q(&1,62) * (usty) -

As we have mentioned in Introduction, our method was inspired by the work
of DE BOUARD and SAUT [6]. This idea had already been used by BoNaA and



L1 (see [4]). It is based on the study of the convolution equations (3.1), (3.2),
(3.3).
We begin with an integral estimate.

Theorem 3.1 Let u € V be a solution of (1.2). Then

(3.4) / (2% + 9?)|VZu|?drdy < 0o
R?2

and

(3.5) / (2% + 4?)|V3u|?dzdy < oo .
R2

Proof: Fix a function ¢ € C°°(R) such that ¢(z) = |z| for |z| > 1, ¢(0) = 0,
¢ decrease on | — 0o, 0] and increase on [0, 0o[. We put

Xn(z) = e

We multiply (1.2) by 22X, (7)u., and integrate over R%. Using several integra-
tions by parts we have

/ X (2) 8 U U ddy =
R2
R2 R2

1
2 R2 R?2

/R2 Xn(x)acQumuyy dxdy =
= O (X (2)2° Yugtiyy dady + X (2) 2 Ug iy, dady

/ 0z (X (2) 22 Uy uyy dmdy—F/ xn(x)ﬁuiydm‘dy

R?2

/ )uz dxdy +/ xn(x)xQUiydxdy ;

R?2

/ Xn(x)x2umumyy dxdy = 7/ X ()2 mydaﬂdy ;
R? R2

Xn (I)zzum Uyyyy drdy =
2

= / Xn (a:)xzumyyuyydxdy
R2

— [ 00Cn@) eyt + xo (w2 dody
1 2 2 2 .
=3 / )uyy dxdy — /R2 Xn(x)z Uz dTdy ;

D



Xn (x)xzumumuyy dzdy =

1
=75 B (X ()2 Gty + X (¥) 0 UGty ddy
R?2
= / 0 (Xn (%) 22 )ty u g uy dady +/ Xn (z) U2 YUz drdy .
R2 R?2

Finally we get

2 2y,,2 2y,,2
Xn(.’E)if [(1 —C )uxa: + umy ( bC ) Ugpgy + (2CL —be )uxa:y +a xyy} d(Edy

+3¢:/ Xn(2)2? u Uz da:dy+c/ Oz (xn(2)x 2)uwyumuy dzdy
2

+c Xn(x)x2u2 uy drdy + 2¢ Xn(x)xzumuwyuy dxdy
R2

a — bc? a 1

2 o)) [+ i+ S aay.

1
Since x/,(z) = fﬁgo’ (%
l2x), ()] < kxn(x)? for all 2 € R and n > 1. We have

) eﬂp(%), there exists a constant £ > 0 such that

|8x(Xn($)x2)uxy“x“y|

< X (2) 2P Uy iy |+ 2{ X0 (2) TUzy upuy |
1

< Exn ()7 [vugyuguy | + 2Xn( Uy Uty |

k+2
ST[Xn($) y T U ] Uzl -

and
2|(Xn(x)x2)umcuacyuy| < Xn(z)m2(uix + uiy)‘uy| .

Let € €] 0,1 [. Since u, and u, tend to 0 as r — oo, there exists R. > 0 such
that |ug(z,y)| < € and |uy(z,y)| < € if |(z,y)| > R.. Then

k+2
c 8E(Xn(x)x2)umyumuy dxdy ‘ < c/ k+2 [Xn($)$2uiy —i—uf]] |ug| dady
R2

R?2 2

k+2
< c/ fte [Xn(CE).’EQ’LLQ + u2] |uz| dedy
B0, R ) 2

/ () z? vyt u dzdy

/ uiy dzdy

10

+ca

<O+



where C(¢) is a constant depending on e. Similar estimates hold for

/ X (@) 20U u, drdy, / X (@) 2202 yUz drdy  and
R2 R2

Xn(x)xzumumyuy dxdy. We take ¢ sufficiently small to obtain
R2

30/ Xn(2)2?u2 uy dedy + ¢ O (Xn (2) 22Uy uzuy drdy

R2 R2

+c/ X (@) 2?2 yUa drdy + 20/ Xn(:r:)xZUMUIyuy dxdy
R2 R2

1
<C+ 5/ Xn(m)xQ((l — cz)uim + uiy) dzdy .
R2

where C' is a constant.
Combining the last inequality with (3.6) we get

1
5 [ Xn(w)$2[(1—02)uim+uiy] drdy
2 Jre

§C+/ 02, (xn(x)2?) [a—bc 2 @2 + uﬂ dzdy .
RZ

g twa Tty TG

When n — oo the left hand side of (3.7) tends to

1—¢c? 1
/R2 z? [ 5 u?, + iuiy + (a — bcH)u2,, + (2a — ch)uizy + auiyy] dady
by the monotone convergence theorem, while the right hand side tends to
C+ / (a — b u2, + auzy + “32; dzdy < oo
R2
by Lebesgue’s theorem on dominated convergence. Hence

(3:8) /R L8 (U + gy + Ugaq + Uggy + 1Uzy,) dudy < oo

We multiply (1.2) by x»(y)y*us, and integrate over R? to get, after several
integrations by parts,

11



/R Xn y2 ( ) Uy + u;cy ( bC ) Ugpr T (2(1 - bC2)Uixy +a xyy] dl‘dy
—3(3/ y)y? umuT dxdy+c/ Oy (xn (y )y JUzztzty drdy
e [ X s + 2ty dady
R2
9 9\ [2a — bc?
= Dy (X (¥)Y7) T .+ 2au? bt u?| drdy
R2
a

D) 831/1/74( ()Y U2 drdy .
R2

As previously, there exists a constant C' > 0 such that the last three terms
in the left side of (3.9) are dominated by

1
Cot g [ (= @, ) dody
R

Then we have

1

3 / Xn (W)Y [(1 = )il +ul,] dady

+/ Xn(y)y [(a’ - bC ) Ugpze + (20’ - bCQ) Ugay + a’uwyy] d.’L‘dy
R2

2a — bc?
<o [ ) [+ 25
/ 6yyyy Xn(y)y?)ul dady .

Passing to the limit as n — oo in (3.10 ) and using the monotone conver-
gence theorem for the left side and Lebesgue’s dominated convergence theorem
for the right side one obtains:

(3.10)
ul, + 2auiy dzxdy

1—¢? 1
/R2 y2 |: 2 u?:m + iuiy + (a‘ - bcz)uzzx + (20’ - bC ) mzy + auiyy d(Edy
§C’—|—/ 2u2 + (2a — be*)u2, + 4au? y drdy < oo .
R2
Thus
(3.11) / Yo (U +udy + Uy UGy, uly,) dedy < oo
R2

Multiplying the equation (1.2) by Xy (z)z?u,, (respectively by xn(y)y?uy,),
integrating by parts and proceeding as above we obtain

(3.12) /R2 2 (udy, + upy, + Uy, + Uy, +us,,) dedy < oo

12



and

(3.13) /R2 yz(uiy + u?/y + uim + uiyy + uiyy) drdy < oo .

Theorem 3.1 follows from (3.8), (3.11), (3.12) and (3.13). O
Lemma 3.2 We have ru, € L>(R?) and ru, € L= (R?).

Proof: From (1.2) we deduce that

(3.14) Q(&1,62)uy = ic&1 F (Buglps + Uglyy + 2Uytsy)

and

(3.15) . Q(fl, 52)@ = ingF(3uzumx + Uz Uy + 2uyuzy)

We note h; = f_l(L) and g = 3uzUge + Uglyy + 2UyUgy. The previous
Q(&1,&2)

equations can be written as

Uy = ichy g and u, =icha xg
Then
(3.16) [rug| < Clrha| % |gl + Clha| % |rg| .

We claim that rg € W1P(R?) for all p € [1,2]. Indeed, Theorems 3.1 and 2.1
imply that rg € LP(R?) for all p € [1,2]. Moreover, since rV3u € L*(R?) we
have (denoting by D one of the operators 0, or 0,):

D(rDuD?u) = (Dr)DuD?*u + rD*uD*u + rDuD3u € LP(R?)

for 1 < p <2. Thus D(rg) € LP(R?) and so rg € WHP(R?).
It is clear now that |rg| € W1P(R?2).
By Lemma A1 in Appendix we have rh; € L>°(R?). Then h; € L? (R?) and

using the generalized Young’s theorem we deduce
|hi| % [rg] € LY(R?) if 2 < q< o0

and

D(|hi| * |rg|) = |hs| * (Dlrg|) € LYR?) if 2<g<oo.
So |hi| x|rg] € WH4(R?) for 2 < ¢ < co. The Sobolev imbedding theorem gives
us |h;| x|rg| € L°°(R?). But |rh;|*|g| is also in L>(R?) because 7h; € L>=(R?)
and g € L*(R?). Using (3.16) we obtain the desired conclusion. O

13



‘We note
o1 & > 1 ( §162 ) R ( & >
=7 <Q(fl,§2) » =7 Q(&,&)) by =F Q(&,&))

Lemma 3.3 Ia € H¥R?*) for0 < s <land k; € LY(R?) if 1 < ¢ <2,
i=1,2,3.

Proof: The proof is essentially the same as the proof of Lemma 3.4 in [6].
For the sake of completeness, we give it here.
It is easy to verify that k; € L?(R?) and

~ €1] + [&2| 2
Vk;| < C=——>> ¢ LR
| |<CQ(€17§2) € LiRY

if 1 < g < 2. Hence l;, belongs to the homogeneous Sobolev space Wl’q(Rz),
1 < ¢ < 2. By Theorem 6.5.1 in [2], WH9(R?) C H*(R?) for s = 2(1 — 1).
So k; € H*(R?) for any s € [0,1), i = 1,2,3. Since k; € L*(R2) we have
i€ H*(R?) , s€[0,1),i=1,2,3.

Let ¢ € (1,2] be given. Let - = %— 1, & € (2,00]. We choose s € [0,1) such
that sa > 2. Then we have:

1
(1+72)2

|La < 0

Fei e <l (L4 72)2k: g2 - |

|Lo

— % 1= - |

(1+72)%
Thus k; € LY(R?) for all ¢ € (1,2], i = 1,2,3 and the lemma is proved. O
We may state now our main result.

Theorem 3.4 Let u € V be a solution of (1.2). Then
a) r’D%u € L (R?) for all « € N2, |a| > 1;
b) ru € L= (R?).

In view of the remarks 2.3 and 2.4, the estimates given by Theorem 3.4 for
u, Uy and u, are optimal.
Proof: We note

— 3 2 Lo —
Y1 = iuw + §Uy ) Y2 = uwuy .
The equations (3.2) and (3.3) can be written as

Uy = —cky x o1 — cko * o |
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Uy = —Chka x 1 — ckg * @2 .

Let us prove first that r'*%u, and r'*%u, are in L>°(R?) if § € [0,1). It
clearly suffices to show that 7170 (k; x ;) € L>°(R?). We have:

(3.17) [P0 (ks % ;)| < Clrt k| % || 4 Clhs| * [r1 0] .

By Lemma A2 in Appendix (and the remark A3) we have 7'k, € L>(R?).
But ¢, € L'(R?) and so

[P 0ki] % |py] € L2 (R?) .
By Lemma 3.2 and Theorem 2.1,

1
P00 < (1 + 7)1 - |m| € L'(R?)

2
for all p > ——. Since k; € LI(R?) for 1 < ¢ < 2, we obtain (choosing

1-46 .
_b-
176ar1d(1— , )

p>

kil % [r' ;] € L®(R?) .

Thus the right side of (3.17) is bounded and so r'*+%u, , r!*ou, € L=(R?) for
all § € [0,1).
We have:
[r2k; x ;| < Cr2ki| = || + Clki| % |r?p;] -
Clearly, |r?k;| x |p;] € L°(R?) because 7?k; € L*°(R?) by Lemma A2 and
IS Lt (R2)

Since |r'*Vu| € L*®°(R?) one obtains r72p; € LP(R2) for all p €]1,00].
But k; € LY(R?) for 1 < ¢ < 2 and so |k;| x [r?p;| € L>®°(R?). Thus r?uy,
r?u, € L®(R?).

The rest of part a) follows easily by induction. Keeping the notations of
Lemma 3.2 we have r2g € LP(R?) for all p €]1,00]. If @ € N? and |a| = 2, then
Q(&,é“g)ﬁ = —c-£%g, so D% can be written as

DY = —c-k;xg

for an i € {1,2,3}. Hence |r2D%u| < C(|r?k;| = |g| + |ki| * [r?g]) € L>=(R?) .
Suppose now that r2D%u € L*°(R?) if 1 < |a| < n. Let v € N2 with |y| = n+1.
Let 8 € N2, 3 <~ and |y — 3] = 2. Then Q(&1,&)DVu = —c-€7-PDBg. Hence

DYu = —c-k;x (D"g)
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for an i € {1,2,3}. By hypothesis r2D?g € LP(R?) for all p €]1,00] and we
deduce as above that r2D7g € L>=(R?).

b) We write (3.1) in the form
(318) u = iChl * Q1 + iChQ * P2 .

As previously we prove that rp; € W1P(R?), p €]1, oc] and so |r¢;| € WHP(R?)
for p €]1, o<].
By Lemma A1 in Appendix, h; € L2 (R?). The generalized Young’s theorem
implies
|hi| % |res| € LY(R?) if ¢ €]2, o0

and
D(|h| * |rpil) = |hi| x (Dlres|) € LYR?), q €]2, 00

hence |h;|x|re;| € WH4(R?) for ¢ €]2,00[. By the Sobolev imbedding theorem,
|hi| % [re;] € L (R?2). Clearly |rh;||¢:| € L°°(R?) because rh; € L>(R?) and
©; € LY(R?). Thus we have

rul < CY (Irhal * @il + [hal * [ri]) € L= (R?) .
i=1,2

This finishes the proof of Theorem 3.4. O

4  Some identities

We derive here some identities of Pohozaev type satisfied by the Benney-Luke
solitary waves. If u € V is a solution of (1.2), multiplying (1.2) by zu, (respec-
tively by yu,) and integrating over R? we obtain, after a few integrations by
parts,

vy

@) /R2(1 — A2 — ui +3(a — be*)u2, — au?, + (2a — bc2)uiy dzdy
+2¢:/ u‘i dxdy =0
R2

and

/ (1=l —ul + (a—bc)ul, — 3auy, — (2a — be?)us, dudy
(4.2) R

+c/ (ud — uxuz) dxdy =0.
R2
Multiplying (1.2) by w and integrating one obtains immediately

/ (1 —c)u? + uz + (a — be*)u?, + auzy + (2a — bc2)u§y dxdy+

(4.3) R?

- ui +u§um dxdy =0 .
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Combining (4.1), (4.2) and (4.3) we deduce

/ (1—c*u2 + uZ dady = 2/ (a —bc*)uZ, + aufly + (2a — bc?)uyy dzdy .
R? R?

5 Appendix

We prove here some technical facts about the Fourier transform of a special kind

of functions of two variables.
Lemma Al. Let a,b,c,d,e > 0 and let Q(&1,&2) be the polynomial of two
variables

Q(&1,6) = a&f +b&s + €165 + d&T + e&5 .
If
(4) ¢ —4dab >0

then we have

a) rF! (Q(éléz)> € L=(R?);
b) rF! (Q(g?@)) € L*°(R?) .

where r = /22 + 42 and F~! denotes the inverse Fourier transform.

Proof: We regard separately Q(&1,£2) as a polynomial of second degree in
£2 (respectively in ¢2) and calculate its discriminant in each case.

Q(&1,&2) = ag + (c&3 + d)&F +b&3 + €€l

A (&) = (2 — 4ab)és + 2(cd — 2ae)és + d?

Q(&1,&) = b&; + (c€F + €)&3 + ali + d&}
Ag(€1) = (¢ — 4ab)&} + 2(ce — 2bd)E? + €2 .
Remark that we always have

ce —2bd > 0 or cd — 2ae > 0 .

2

Indeed, suppose that ce —2bd < 0. Then d > ;—Z implies cd — 2ae > % —2ae =
e

%(02 — 4ab) > 0 by (7). So we may assume without loss of generality that
ce —2bd > 0 and b = 1. In this case Q(&1,&2) can be written as a product

Q(&1,&2) = (& + A*(&))(& + B*(&1))
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where A(£) and B(€) are positive and

A%(€) = (e + e — /(@ da)Ei T 2(ce — 20)E 1 &

1
B(€) = 5le€” + e+ /(¢ — 4a)¢" + 2(ce — 2d)¢ + ¢?]
It is easy to check that the functions A and B have the following properties

(1) Ac C(R)NC=(R\{0}), B € C*(R), A(=¢) = A(E), B(=¢) = B(S)
(2) There exist constants C1,Ce > 0 such that

C1[¢] < A(€) < Cof¢] and
Cr(1+[¢]) < B(§) < C2(1+[€])

V¢ € R.
(3) There are Cy,C > 0 verifying
ClgA’(§)§027 V€>O
Ci{ < B'(§) < Cog, VE€[-1,1]
C; < B/(f) <Cy, Y€€ [I,OO[
(4) There exists C' > 0 such that
" C
[A"EN < 1 VE€ R\ {0} and
C
[B"(§)] <

A R.
Ay <

. R &i ,
Putting h; = F (Q(flva)) we have:

_ [ gagative & 1
hl(‘r7y) /1:{26 Bz(gl) (

—A2(&)
But F! <§2+1a2) (z) =

1
g1 AG &+ B?(&)) ez

——e 9l if Re(a) > 0 and so we obtain
a

_ [ it § L bW _ L @
5 e v g ") <

L o —Bew _ 1 —aemw
e [smg "~ sag"] «
R V(2 —4a)é* + 2(ce — 2d)E2 + €2 '
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By (2),

gt 3 { L —BoW _ 16—A(£)y} ’
V(2 —4a)€% + 2(ce — 2d)€2 + €2 | 2B(§) 24(8)
< CeCilvliel
hence if y £ 0 ,
~aulyliel ge — ©
(6) lhi(z,y)| < C | e WIRdE = — .
R |yl
. . . 1 .
To obtain an estimate of |hi(x,y)| in terms of Tl we use the following

elementary

Lemma H. Let I C R be an interval (bounded or not) and let f: I — R
be an integrable and monotone function. There exists an absolute constant
C > 0 (we may take C' = 4y/27) such that

‘/ ¢ (€) d£‘< sup £(6).

§

Lot ) = @ — e s 2l 20 s
is differentiable on R\ {0}. If we prove that fi  has at most N zeros where N
does not depend on y, then we can decompose R into (at most) N + 2 intervals
where f; 4 is monotone. Applying Lemma H on each of these intervals we finally
obtain

e~ A Note that fiy

it o o
) [ < & sl s
Let us count now the zeros of f] . For  # 0 one obtains
) _ e—A©lyl
T8 = Vi@ dae 2w 2@
(2 — Ag) €4 & 2 A
) G SR 2 U R

(2 — 4a)é* + 2(ce — 2d)E2% + €2 A(€)

Thus fi ,(§) = 0 clearly implies that & is a solution of an equation

P(§)A%(€) + R(§A'(E)A() + S(&, [y A'()A*(§) = 0,
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where P(§), R(&) are polynomials in € and and S(§, |y|) is a polynomial in two
variables £, |y|. Multiplying this by 1/(c? — 4a)£* + 2(ce — 2d)€2 + €2 we obtain

Pi(€) + Ri(€)/(c? — 4a)€t + 2(ce — 2d)€2 + 2

+ (16, ) + Sa(& o) /(@ = A0)8T + 2(ce — 202 +€2) A(€) =0,

where P;(§), R1(£) and S1(¢, |y|), S2(&, |y|) are polynomials. Passing the last
term on the right and taking the squares we deduce that & must satisfy

Py(&) + Ra(§)/(? — 4a)€t + 2(ce — 2d)€2 + €2

= S3(&,1yl) + Sa(& [y /(2 — 4a)&* + 2(ce — 2d)€ + €2 .

(here P5(€), R2(€), S3(¢, |y|) and S4(¢, |y|) are polynomials).
If we isolate /(c2 —4a)é* + 2(ce — 2d)&2 + €2 and take again the squares,
we find that

(¢ lyh) =0,

where ®(&, |y|) is a polynomial in two variables. Let N be the degree of ® in the
first variable. It is clear now that for a fixed y, the last equation has at most N
solutions; hence for each y, f{ , has at most N zeros in R\ {0}.

Exactly the same argument applies to

) 3 e~ Bl
f2,y(§) B(f)\/(CQ _ 4a)£4 + 2(ce — 2d)§2 + e2 Y

and gives us the estimate

(8) ’ /R €' fa (€) df’ < SI :
From (6), (7) and (8) we infer that

(2, y)| < =
|z + [yl

that is, rhy € L*°(R?).
b) One easily checks that if Re(a) > 0 and Re(b) > 0, then

i L (omalel _ p-tlal _ §
7 (oo =) © = )
or equivalently
- - 1 —a|T —0|x
Fl <(§2 +a2)£(§2 erz)) (x) = %sgn(x)m(e |lz| _ o0l |> )
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Consequently, we have
ho(z,y) =

= / etré1+iyss &2
R? (& + A%(&))(& + B*(&))

d&1dés

; _ —A©l| _ o~ B©lyl
= / 5sgn(y)e™™
R 2 V(2 —4a)€h + 2(ce — 2d)E€2 + €2

It y # 0,

lha(z,y)| < C/ e~ A© _ o=B@ll ge
R

(9) < C/ e—cl\y||5|
N R
C

lyl-
If x # 0, we apply Lemma H to the functions
e—A©)lyl

V(2 — 4a)€r + 2(ce — 2d)E2 + €2

gLy(ﬁ) =

and
e~ B@©ll

V(2 —4a)€h + 2(ce — 2d)E2 + €2

and reason as in part a) to obtain

92,y €)=

<

C
Inequalities (9) and (10) clearly give ha(z,y) < T’ which is the desired conclu-
T

sion. O

Lemma A2. With the assumptions and the notations of Lemma Al, we
have:

a) r2F 1 (@) € L*°(R?);

P21 §1&2 > ©(R2) .
b) r*F (Q(fl,fz) € L*R?);

c) r2F ! <Q(§122£2)> € L>(R?).
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Proof: a) As in the proof of Lemma Al, we write

ki(z,y) = F (Q(ﬁ@)) -

— / ixé1+iyée £ ( 1 _ .
R2 V(@ —4a)eF 1 2(ce — 2d)E2 + €2 \& + A2(&) & + B%(&)

) d§1d&o

o1 B _ 1 A<§>|y)
-/ e (¢ 24
R

V(@ = 10)E% + 2(ce — 2d)E2 + €2 6t
ki(x,y) =Tp —Ta,
where
_ [ ciae-B@©lyl £
. /R ' 2B(€)y/(c2 — 4a)&* + 2(ce — 2d)€2 + €2

_ [ iz a©)l &
t /R 2A(8) \/(c2 —4a)é* 4 2(ce — 2d)€2 + €2 '

Integrating by parts we get
(11)

Ty = eint—BElyl . ¢
(iz — B'(€)|y))2B(€)/(c* — 4a)é? + 2(ce — 2d)€% + €2 | _

/(X> iz€—B(&)ly| . £ d¢
o (iz — B'(&)|y[) B(€)v/(c? — 4a)é* + 2(ce — 2d)€2 + €2

8

civE~B©lyl . £ B"(&)lyl
0 (iz — B'(€)|y])22B(£)/(c® — 4a)* + 2(ce — 2d)&2 + €2

-/
+/ Gie=BEyl . £B'(¢) "
/.

dg

8

(iw — B'(§)[y))2B2(§)v/(c — 4a)€* + 2(ce — 2d)€2 + €2

8

115 B(&)|yl, 253[(02 — 40;)52 +ce— 2d}
(iz — B'(§)[y))2B(€)(V/(c? — 4a)® + 2(ce — 2d)8* + €?)?

d¢ .

The first term equals 0.
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Suppose y # 0. If £ € [-1,1] \ {0} by (3) we have

13 1
iw = B(Olyl| 2 =il
- — | |
If¢eeR\[-1,1], (3) gives us
1 1 < 1
iz =Byl ~ Byl ~ Culyl

It is now easy to see that the absolute value of each of the four integrals

above is less than -
Q/ e BOlge < €
[yl J oo ~lyP

C
12 T .
12 SR

Hence

Consider, for example, the first integral in (11). It can be written as

/ ¢ fo ) (€) dE

— 00

where

Fau(&) = e BOW B'(§)¢|y| + iz
o (22 + B'(€)2[y|2) B(€) /(2 — 4a)e* + 2(ce — 2d)&2 + €2

We argue as in the proof of Lemma Al, part a). The number of zeros of

d —(Re fyy(€)) and i(Im fz,y(€)) is finite and does not depend on (z,y).

dg g
Lemma H applies and we deduce that for x # 0,
Rl C C
iz
e -, d¢ | < = sup | fz, < —.

Using the same argument we obtain that the other three integrals in T are
C
bounded (in absolute value) by — . Hence
x
C
(1) Tol < 55
Inequalities (12) and (13) give
C
T < = .
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In the same manner (integrating by parts on (0, 00) and observing that A is
symmetric, i.e A(=§) = A(€) ) we obtain

C
ITal < 5,
and so |k (z,y)] < T%
b) We have
(88 )
kQ(m)y) - f <Q(§17§2)> _
= iz€1+iya &6,

i it E(e= @l — e=B@lyl)
= 5sgn(y) | e
2 R V(2 —4a)&* + 2(ce — 2d)€2 + 2
i

= §sgn(y)(SA —SB).

Integrating by parts,
(15)

_ 7 gae-new . 4 ¢
o /—oo ‘ " (iz — B'(&)|y))v/(c? — 4a)&T + 2(ce — 2d)€2 + €2
_ _/ piTE— By 1 i
oo (iz — B'(§)|y|) /(> — 4a)&* + 2(ce — 2d)E% + €2
_/ i B©lyl . £B"(€)y] i
oo (iz — B'(9)]y)2 /(2 — 4a)&* + 2(ce — 2d)&2 + €2
iz€—B(&)|y| . 252[(02 — 40,)52 + ce — 2d]
o e (o~ B (/@ e+ 2 0@ P

We argue as previously and use again Lemma H for the real and the imagi-
nary part of the functions appearing in the oscillatory integrals in Sg. If z # 0
we find that the first and the third of these integrals are bounded (in absolute

C C
value) by —» while the second is bounded by |||y3|
x x

The term S4 is easier to handle because |A'(§)| > C1 > 0 if & # 0. We
obtain that |S4| < %
x
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Finally,
(16)

By (14) we have

Cly|

ko (2, )| < T

[k2(z,y)| < C/ I€](e= 4@l _ =Bl g
R
(17) < C’/ E|eCuléllul ge
R
Cl
= ny.
From (16) and (17) we deduce that
O Cll &
< l
k2 (z,y)| < mm(:C + F 5)
.11
< C’mln(ﬁ ?)
1
. C

This proves b).

r2

¢) We have
) = 5 (grtes ) (e =
o Q&,&))
- / piTéives | ! , ( —A&) | B&)
R? B2(&) - A2(&) \&+A4%(&) &+ B* &)
/ —A(E)Iyl B(&)e —B(&)lyl
\/ 02 4a)€* 4 2(ce — 2d)&? + €2

If y # 0 then clearly

|k3($,y)| S

IN

Olyl 4 B(&)e™ B(&)ly d¢

of A
o 1

C// |§|e*01\£\-|y| d§+C/ e~ Clyl de
oo .

C//
Y
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Integrating by parts we get

/ piTs—B(E)ly] B(¢) gt =
R V(2 —4a)€* + 2(ce — 2d)E2 + €2
_/ ieE—B©lyl . B'(€)
oo (iz — B'(€)|y|)/(c — 4a)é" + 2(ce — 2d)E2 + €2

_/ e~ Byl . B(§)B"(€)]yl
oo (iz — B'()[y])2 /(2 — 4a)&* + 2(ce — 2d)&2 + €2

+/Oo i Byl . 2B(§)[(c* — 4a)&® + (ce — 2d)¢] .
—o0 (iz — B'(§)|y))(v/(? — 4a)&* + 2(ce — 2d)€% + €2)3

We use the same argument involving Lemma H as before and conclude that

c C
the last sum of integrals is bounded by — + |||:lé|
x x

Let us estimate the term of k3(z,y) containing A(£). Integrating by parts
on (—00,0) and on (0,00) we have

/ ciné—A©lyl . A©) de =
R V(2 — 4a)é* + 2(ce — 2d)E2 + €2

~ 2A(0)A'(0+)
P AP

_/ LiTE—AE)l] | A'(¢)
o0 (iz — A(©)]y) /(2 — 4a)&* + 2(ce — 2d)&% + €2

_/OO iTE—A©)yl A©)A"(©)lyl
o0 (iz — A'(O)y)?V/(c? — 4a)* + 2(ce — 2d)€2 + €2

n /DO e A©)y] . 2A(8)[(c* — 4a)€® + (ce — 2d)¢] _
—o0 (iz — A'(€)ly)(V/ (2 — da)é? + 2(ce — 2d)€* + €2)3
Using the same method we obtain that the last sum of integrals is bounded

C
by pol Finally,

c | Clyl
(19) |k3(z,y)| < o] + IR

Inequalities (18) and (19) give us |k3(z,y)| < %
r
The Lemma A2 is proved. O
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C

Remark A3. It is much easier to show that |k;(x,y)| < —. The proof

r

is similar to that of Lemma A1l and does not use integrations by parts. Hence

C
|ki(z,y)| < e for all @ € [1,2],4=1,2,3.
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