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Abstract

For a large class of nonlinear Schrédinger equations with nonzero conditions at infinity
and for any speed c less than the sound velocity, we prove the existence of finite energy
traveling waves moving with speed ¢ in any space dimension N > 3. Our results are valid
as well for the Gross-Pitaevskii equation and for NLS with cubic-quintic nonlinearity.
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1 Introduction

We consider the nonlinear Schrédinger equation

(1.1) z‘%(erAquqcp\?)@:o in RV,
where ® : RY — C satisfies the "boundary condition” |®| — 7 as |z| — oo, 79 > 0 and
F is a real-valued function on R satisfying F(rg) = 0.

Equations of the form (1.1), with the considered non-zero conditions at infinity, arise in a
large variety of physical problems such as superconductivity, superfluidity in Helium II, phase
transitions and Bose-Einstein condensate ([2], [3], [4], [12], [20], [22], [23], [24], [25]). In non-
linear optics, they appear in the context of dark solitons ([27], [28]). Two important particular
cases of (1.1) have been extensively studied both by physicists and by mathematicians: the
Gross-Pitaevskii equation (where F(s) = 1 — s) and the so-called ”cubic-quintic” Schrédinger
equation (where F(s) = —aj + azs — ass?, a1, as, as are positive and F has two positive
roots).

The boundary condition |®| — r¢o > 0 at infinity makes the structure of solutions of
(1.1) much more complicated than in the usual case of zero boundary conditions (when the
associated dynamics is essentially governed by dispersion and scattering).

Using the Madelung transformation ®(z,t) = \/p(z,t)e??@? (which is well-defined when-
ever ® #£ 0), equation (1.1) is equivalent to a system of Euler’s equations for a compressible
inviscid fluid of density p and velocity 2V#. In this context it has been shown that, if F' is C!
near ¢ and F'(r2) < 0, the sound velocity at infinity associated to (1.1) is vs = roy/—2F'(r2)
(see the introduction of [33]).



ro
Equation (1.1) is Hamiltonian: denoting V (s) = / F(7)dr, it is easy to see that, at least
formally, the ”energy” ’

(1.2) E(®) :/RN ]Vcl>|2dx+/RN V(|®%) da

is a conserved quantity.

In a series of papers (see, e.g., [2], [3], [20], [24], [25]), particular attention has been paid to
a special class of solutions of (1.1), namely the traveling waves. These are solutions of the form
®(x,t) = 1p(x —cty), where y € SV~ is the direction of propagation and ¢ € R* is the speed of
the traveling wave. We say that ¢ has finite energy if Vi) € L2(RY) and V (|¢|?) € L}(RY)).
These solutions are supposed to play an important role in the dynamics of (1.1). In view of
formal computations and numerical experiments, a list of conjectures, often referred to as the
Roberts programme, has been formulated about the existence, the stability and the qualitative
properties of traveling waves. The first of these conjectures asserts that finite energy traveling
waves of speed ¢ exist if and only if |c| < vs.

Let ¢ be a finite energy traveling-wave of (1.1) moving with speed ¢. Without loss of
generality we may assume that y = (1,0,...,0). If N > 3, it follows that ¢ — zy € L?"(R")
for some constant zy € C, where 2* = ]\2,]}2 (see, e.g., Lemma 7 and Remark 4.2 pp. 774-775
in [17]). Since |¢)| — 79 as |x| — oo, necessarily |z9| = 7. If @ is a solution of (1.1) and
o € R, then ¢®® is also a solution; hence we may assume that zg = rg, thus ¢ —rg € L¥ (RN).
Denoting u = rg — 1, we see that u satisfies the equation

(1.3) ic%—Au—l—Fﬂro—u\Z)(ro—u) =0 in RV,

8:51
It is obvious that a function u satisfies (1.3) for some velocity c if and only if u(—z1, z") satisfies
(1.3) with ¢ replaced by —c. Hence it suffices to consider the case ¢ > 0. This assumption will
be made throughout the paper.

In space dimension N = 1, in many interesting applications equation (1.3) can be integrated
explicitly and one obtains traveling waves for all subsonic speeds. The nonexistence of such
solutions for supersonic speeds has also been proved under general conditions (cf. Theorem
5.1, p. 1099 in [33)).

Despite of many attempts, a rigorous proof of the existence of traveling waves in higher
dimensions has been a long lasting problem. In the particular case of the Gross-Pitaevskii
(GP) equation, this problem was considered in a series of papers. In space dimension N = 2,
the existence of traveling waves has been proved in [7] for all speeds in some interval (0,¢),
where ¢ is small. In space dimension N > 3, the existence has been proved in [6] for a sequence
of speeds ¢,, — 0 by using constrained minimization; a similar result has been established in
[11] for all sufficiently small speeds by using a mountain-pass argument. In a recent paper [5],
the existence of traveling waves for (GP) has been proved in space dimension N = 2 and N = 3
for any speed in a set A C (0,vs). If N =2, A contains points arbitrarily close to 0 and to v,
(although it is not clear that A = (0, vs)), while in dimension N = 3 we have A C (0, v¢), where
vo < vs and 0, vy are limit points of A. The traveling waves are obtained in [5] by minimizing
the energy at fixed momentum (see the next section for the definition of the momentum) and
the propagation speed is the Lagrange multiplier associated to minimizers. In the case of
cubic-quintic type nonlinearities, it has been proved in [31] that traveling waves exist for any
sufficiently small speed if N > 4. To our knowledge, even for specific nonlinearities there are
no existence results in the literature that cover the whole range (0, vs) of possible speeds.

The nonexistence of traveling waves for supersonic speeds (¢ > v;) has been proved in [21] in
the case of the Gross-Pitaevskii equation, respectively in [33] for a large class of nonlinearities.



The aim of this paper is to prove the existence of finite energy traveling waves of (1.1)
in space dimension N > 3, under general conditions on the nonlinearity F' and for any speed
c € (—vs,vs).

We will consider the following set of assumptions:

A1l. The function F is continuous on [0, 00), C! in a neighborhood of r¢, F(r3) = 0 and
F'(r3) < 0.

A2. There exist C > 0 and py < 325 such that [F(s)| < (1 + sPo) for any s > 0.
A3. There exist C, ag > 0 and r, > 7o such that F(s) < —Cs* for any s > r,.
3
If (A1) is satisfied, we denote V(s) = / F(r)dr and a = /—3F'(r2). Then the sound
velocity at infinity associated to (1.1) is vss = 2arg and using Taylor’s formula for s in a

neighborhood of r¢ we have

1
(L4 V() = SV"(r5)(s = 19)* + (s = 19)%(s = 15) = (s = 15)" + (s = 75)°e(s = 1),
where () — 0 as t — 0. Hence for |¢| close to 79, V (|¢|?) can be approximated by a?(|1|? —
2)2
r5)°

We fix an odd function ¢ € C*°(R) such that ¢(s) = s for s € [0,2r0], 0 < ¢’ <1 on
R and ¢(s) = 3rg for s > 4rg. We denote W (s) = V(s) — V(¢?(+/3)), so that W(s) = 0 for
s € [0,4r3]. If assumptions (A1) and (A2) are satisfied, it is not hard to see that there exist
C4, C9, C3 > 0 such that

(1.5) [V(s)] < Ci(s—1r3)? for any s < 9rf;
' in particular, [V (©?(7))| < C1(@*(7) — r3)? for any 7;

(1.6) [V (b) — V(a)| < Ca]b— a| max(a?®, b*°) for any a, b > 2r;

(1.7) W (%) — W (a?)| < C3|b—al (a2p0+1]l{a>2r0} + b2p0+1]l{b>2m}) for any a,b > 0.

Given u € H, ZIOC(RN ) and Q an open set in R", the modified Ginzburg-Landau energy of v in
Q) is defined by

(1.8) EY (u) = /|Vu]2dx+a /Q(ngQ(\rg—uD—rg)Q dx.

We simply write Egr(u) instead of EgL (u). The modified Ginzburg-Landau energy will play
a central role in our analysis. We consider the function space

X = {ueD*RY)|*(|Iro —u|) —r§ € L*(RY)}

(1.9) = {ue H'RN) |ue L¥(RY), Egr(u) < oo},

where DL2(RY) is the completion of C° for the norm |[v|| = ||Vv||z2. If N > 3 and (A1),
(A2) are satisfied, it is not hard to see that a function u has finite energy if and only if u € X
(see Lemma 4.1 below). Note that for N = 3, X' is not a vector space. However, in any space
dimension we have H'(R) C X. If u € X, it is easy to see that for any w € H'(RY) with
compact support we have u+w € X. For N = 3,4 it can be proved that u € DI’Q(RN) belongs
to X if and only if |rg — u|?> — 73 € L2(RY), and consequently X coincides with the space F,
introduced by P. Gérard in [17], section 4. It has been proved in [17] that the Cauchy problem
for the Gross-Pitaevskii equation is globally well-posed in X in dimension N = 3, respectively
it is globally well-posed for small initial data if N = 4.

Our main results can be summarized as follows:



Theorem 1.1 Assume that N > 3, 0 < ¢ < vs, (A1) and one of the conditions (A2) or
(A3) are satisfied. Then equation (1.3) admits a nontrivial solution uw € X. Moreover, u €

T/Vli’f(RN) for any p € [1,00) and, after a translation, u is axially symmetric with respect to

Ol’l.

At least formally, solutions of (1.3) are critical points of the functional

E.(u) = /RN \Vul? dz + cQ(u) + /RN V(|ro — ul?) dz,

where @ is the momentum with respect to the x;—direction (the functional @ will be defined
in the next section). If the assumptins (A1) and (A2) above are satisfied, it can be proved (see
Proposition 4.1 p. 1091-1092 in [33]) that any traveling wave u € X of (1.1) must satisfy a
Pohozaev-type identity P.(u) = 0, where

N
ou|2 N-3 Ju |2
P = [ |2 ] a / V(lro — uf?) da.
(1) /RN or| N1 X | e+ eQE)+ [ V- uP)s
We will prove the existence of traveling waves by showing that the problem of minimizing F.
in the set {u € X | u # 0, P.(u) = 0} admits solutions. Then we show that any minimizer
satisfies (1.3) if N > 4, respectively any minimizer satisfies (1.3) after a scaling in the last two
variables if N = 3.

In space dimension N = 2, the situation is different: if (A1) is true and (A2) holds for
some py < oo, any solution u € X of (1.3) still satisfies the identity P.(u) = 0, but it can
be proved that there are no minimizers of E. subject to the constraint P. = 0 (in fact, we
have inf{E.(u) | u € X,u # 0,P.(u) = 0} = 0). However, using a different aproach it is
still possible to show the existence of traveling waves in the case N = 2, at least for a set
of speeds that contains elements arbitrarily close to zero and to vs (and this will be done in
a forthcoming paper). Although some of the results in sections 2—4 are still valid in space
dimension N = 2 (with straightforward modifications in proofs), for simplicity we assume
throughout that N > 3.

It is easy to see that it suffices to prove Theorem 1.1 only in the case where (Al) and (A2)
are satisfied. Indeed, suppose that Theorem 1.1 holds if (A1) and (A2) are true. Assume that
(A1) and (A3) are satisfied. Let C, r., ag be as in (A3). There exist 5 € (0, ﬁ), T > Ty,
and C7 > 0 such that

2
Cs?0 — % > Oy (s —7)%° for any s > 7.
Let F be a function with the following properties: F = F on [0,472], F(s) = —Cys” for s
sufficiently large, and F(s2) + % < —C3(s—7)%7 for any s > 7, where Cy, C3 are some positive
constants. Then F satisfies (A1), (A2), (A3) and from Theorem 1.1 it follows that equation
(1.3) with F instead of F has nontrivial solutions u € X. From the proof of Proposition 2.2 (i)
p. 1079-1080 in [33] it follows that any such solution satisfies |rg —u|?> < 272, and consequently
F(|ro—ul?) = F(|ro —u|?). Thus u satisfies (1.3). Of course, if (A1) and (A3) are satisfied but
(A2) does not hold, we do not claim that the solutions of (1.3) obtained as above are still min-
imizers of E, subject to the constraint P. = 0 (in fact, only assumptions (A1) and (A3) do not
imply that E. and P, are well-defined on X and that the minimization problem makes sense).
In particular, for F'(s) = 1 —s the conditions (A1) and (A3) are satisfied and it follows that
the Gross-Pitaevskii equation admits traveling waves of finite energy in any space dimension



N > 3 and for any speed ¢ € (0,v5) (although (A2) is not true for N > 3: the (GP) equation
is critical if N = 4, and supercritical if N > 5). A similar result holds for the cubic-quintic
NLS.

We have to mention that, according to the properties of F', for ¢ = 0 equation (1.3) may
or not have finite energy solutions. For instance, it is an easy consequence of the Pohozaev
identities that all finite energy stationary solutions of the Gross-Pitaevskii equation are con-
stant. On the contrary, for nonlinearities of cubic-quintic type the existence of finite energy
stationary solutions has been proved in [13] under fairly general assumptions on F. In the
case ¢ = 0, our proofs imply that Ey has a minimizer in the set {u € X | u # 0, Py(u) = 0}
whenever this set is not empty. Then it is not hard to prove that minimizers satisfy (1.3) for
¢ = 0 (modulo a scale change if N = 3). However, for simplicity we assume throughout (unless
the contrary is explicitly mentioned) that 0 < ¢ < vs.

This paper is organized as follows. In the next section we give a convenient definition of
the momentum and we study the properties of this functional.

In section 3 we introduce a regularization procedure for functions in X which will be a key
tool for all the variational machinery developed later.

In section 4 we describe the variational framework. In particular, we prove that the set
C={ueX|u#0, P.(u) =0} is not empty and we have inf{E.(u) | u € C} > 0.

In section 5 we consider the case N > 4 and we prove that the functional E. has minimizers
in C and these minimizers are solutions of (1.3). To show the existence of minimizers we use
the concentration-compactness principle and the regularization procedure developed in section
3. Then we use the Pohozaev identities to control the Lagrange multiplier associated to the
minimization problem.

Although the results in space dimension N = 3 are similar to those in higher dimensions
(with one exception: not all minimizers of E. in C are solutions of (1.3), as one can easily see by
scaling), it turns out that the proofs are quite different. We treat the case N = 3 in section 6.

Finally, we prove that traveling waves found by minimization in sections 5 and 6 are axially
symmetric (as one would expect from physical considerations, see [24]).

Throughout the paper, £V is the Lebesgue measure on RY. For 2 = (z1,...,2x) € RY,
we denote 2’ = (29,...,2x) € R¥71. We write (21, 22) for the scalar product of two complex
numbers z1, z3. Given a function f defined on R and A, o > 0, we denote by

/
Tr1 T
1.10 = —_, —
( ) f/\vU f < A ) 0_)

the dilations of f. The behavior of functions and of functionals with respect to dilations in
RY will be Very 1mportant For 1 < p < N, we denote by p* the Sobolev exponent associated
1

to p, that i is o« E_W'

2 The momentum

A good definition of the momentum is essential in any attempt to find solutions of (1.3)
by using a variational approach. Roughly speaking, the momentum (with respect to the
x1—direction) should be a functional with derivative 2iu,,. Various definitions have been given
in the literature (see [7], [5], [6], [31]), any of them having its advantages and its inconvenients.
Unfortunately, none of them is valid for all functions in X'. We propose a new and more general
definition in this section.

It is clear that for functions u € H'(R”), the momentum should be given by

(2.1) = / (tug, ,u) dz,
RN



and this is indeed a nice functional on H'(RY). The problem is that there are functions
u€ X\ HY(RY) such that (iug,,u) ¢ L'(RYN).
If u € X is such that 9 — u admits a lifting rg — v = pe’, a formal computation gives

(2.2) / (1ug,,u) dx = —/ P20, dx = —/ (p? = 12)0,, dz.
RN RN RN

It is not hard to see that if u € X is as above, then (p? — r2)0,, € L*(RY). However, there
are many "interesting” functions u € X such that ro — u does not admit a lifting.

Our aim is to define the momentum on X in such a way that it agrees with (2.1) for
functions in H'(R™) and with (2.2) when a lifting as above exists.

Lemma 2.1 Let u € X be such that m < |rg — u(z)| < 2rg a.e. on RN, where m > 0. There
exist two real-valued functions p,0 such that p —ry € H'(RY), 6 € DV2(RN), rg — u = pe'?
a.e. on RN and

(2.3) (U, u) = —ro=— 0 (Im(u) + rf) — (p* — To)gj a.e. on RV,

8901

Moreover, we hcwe/

1
der < —F .
RN = 2am ar(v)

(0? = 8)0,

Proof.  Since 19 —u € HL_(RY), the fact that there exist p,6 € H} (RY) such that
ro —u = pe'? a.e. is standard and follows from Theorem 3 p. 38 in [9]. We have

ou |2

oul* _|op |
&xj

_ 2| 09 |
8.%']'

(2.4) e

a.e. on RY for j=1,...,N.

Since p = |rg — u| > m a.e., it follows that Vp, VO € L>(RN). If N > 3, we infer that there
exist pg, 0y € R such that p— pg and @ — 6y belong to L2 (R"). Then it is not hard to see that
po = 1o and Oy = 2k, where ky € Z. Replacing 6 by 6 — 2kom, we have p — ro, 8 € DM2(RN).
Since p < 2rg a.e., we have p? — r2 = ¢(|ro — u|?) — r3 € L2(RY) because u € X. Clearly
p—rol = 278 < 1102 12| hence p — g € L2(RY),

A straightforward computation gives

. . 0 00
(3, 0) = Gt 70) = 90, = =05~ (Ew) + 106) = (7 =) 5
By (2.4) we have 8879]_ < % 887“]_ < %‘g—% and the Cauchy-Schwarz inequality gives

1 1
do < [10* = rdllzal16sallze < 116 = rdllzellum lze < 5 —Faw ()

Lo = e,

O
Lemma 2.2 Let x € C°(C,R) be a function such that x =1 on B(0,72), 0 < x <1 and
supp(x) C B(0,%). For an arbitrary uw € X, denote uy = x(u)u and ug = (1 X( ))u. Then

u € X, ug € H' (RN) and the following estimates hold:

(2.5) |Vu;| < C|Vu| a.e. on RN,i=1,2, wehere C depends only on x,

* *

(2.6) lluzl|2rvy < CLllVull gy and [[(1=x*(w))ull 2@y < CrllVull % gy,



2 2 *
en [ (P =) de< [ (@) =) dot CllTulga,

(2.8) /RN (*(Iro — ual) — 1"8)2 dx < CZHVUH%;(RN).

Let 1o — u1 = pe'® be the lifting of ro — u1, as given by Lemma 2.1. Then we have

) 0 0

)a o 7”0871(11!1(“1)4”09)

(2.9) (i, , u) = (1= x*(w)) (i, u) — (p° -
a.e. on RV,

Proof.  Since |u;| < |u|, we have u; € L¥ (RV), i = 1,2. It is standard to prove that
u; € HE (RY) (see, e.g., Lemma C1 p. 66 in [9]) and we have

Ouq O(Re(u))

(2.10) oz, = <81X(u)8xj + 32X(u)a(lglm(:))> u + X(u)ggj

A similar formula holds for ug. Since the functions z — 09;x(2)z, ¢ = 1,2, are bounded on C,
(2.5) follows immediately from (2.10).
Using the Sobolev embedding we have

4\* 7 . .
2 2 2 2
uzl[72 < /RN‘U| ]l{\u\>%)}(x) dr < <7“0> /RN|U, ]1{|u|>%0}(95) dz < C1|Vul[ 7.

This gives the first estimate in (2.6); the second one is similar.
For [u| <™ we have ui(z) = u(x), hence

2 2
[ Gl =) do= [ (- al) = 1)’ de,
{lul<2} {Jul<72}

There exists C' > 0 such that (¢?(|ro — z|) — ro) < C'|2)* if |z| > 2. Proceeding as in the
proof of (2.6) we have for i = 1,2

[ =) de<c [ juPde < Gl Val
{Jul>"2} {Jul>"2}

This clearly implies (2.7) and (2.8).
Since o1 x (u )B(Re( Do, x(u )M € R, using (2.10) we see that (i ggl cur) = X2 (u) (itg, , u)
a.e. on R. Then (2. ) follows from Lemma 2.1. O

We consider the space Y = {0,,6 | ¢ € DV2(RM)}. Tt is clear that ¢, 2 € DV2(RY) and
a:el le = 89:1 ¢2 imply d)l = ¢2. Deﬁning

10z, 0lly = l|llpr2 = [Vl 2 @),

it is easy to see that ||-||y is anorm on Y and (Y, ||-||y) is a Banach space. The following holds.

Lemma 2.3 For any v € L*(RY)NY we have / v(z)dr = 0.
RN



Proof. Let ¢ € DY2(RY) be such that v = d,,¢. Then ¢ € &' (RY) and |¢|¢ € L2(RN).
Hence ¢ € L} (RV\{0}). On the other hand we have v = 9,,¢ € L' N L*(RY) by hypothesis,
hence ¥ = i€ € L2 N CY(RY).

We prove that v(0) = 0. We argue by contradiction and assume that v(0) # 0. By
continuity, there exists m > 0 and ¢ > 0 such that [9(§)| > m for |{| <e. For j =2,...N we

get

i€3E)] > ERE) > md forae. €€ B(,e).
ISY ISt
But this contradicts the fact that iﬁj(;AS € L?(RY). Thus necessarily (0) = 0 and this is exactly
the conclusion of Lemma 2.3. d

It is obvious that Li(v) = / v(z)dr and Lo(w) = 0 are continuous linear forms on
N
LY(RY) and on Y, respectively. Moreover, by Lemma 2.3 we have L; = Ly on L'(R™) n ).
Putting
(2.11) L(v+w) = Li(v) + La(w) = / v(x) dx for v € LY(RYN) and w € Y,
RN

we see that L is well-defined and is a continuous linear form on L'(RY) + ).
It follows from (2.9) and Lemmas 2.1 and 2.2 that for any u € X we have (iug,,u) €
LY(RN) + Y. This enables us to give the following

Definition 2.4 Given u € X, the momentum of u (with respect to the x1—direction) is
Q(u) = L(<iu$17u>)'

If u € X and x,u1,u2,p, 0 are as in Lemma 2.2, from (2.9) we get

(2.12) Q(u) = /R 0= X))y ) — (0 )8,

It is easy to check that the right-hand side of (2.12) does not depend on the choice of the
cut-off function y, provided that x is as in Lemma 2.2.

It follows directly from (2.12) that the functional @ has a nice behavior with respect to
dilations in RY: for any v € X and )\, ¢ > 0 we have

(2.13) Qurg) = o™ 1Q(u).

The next lemma will enable us to perform ”integrations by parts”.

Lemma 2.5 For any u € X and w € H'(RY) we have {(iug,,w) € LYRY), (iu,w,,) €
L'BRN)+ Y and

(2.14) L((iug,,w) + (iu, wy,)) = 0.

Proof.

Since w, u,, € L>(R"N), the Cauchy-Schwarz inequality implies (iu,,,w) € L'(R").

Let x, wui, ug be as in Lemma 2.2 and denote w; = yx(w)w, wy = (1 — x(w))w. Then
U = Ul + U2, w = wy + wy and it follows from Lemma 2.2 that u1 € X' N LOO(RN) and
Uz, W1, W € Hl(RN).



As above we have (z%, w), (iug, 2 For) € L'(RM) by the Cauchy-Schwarz inequality. The
standard integration by parts formula for functions in H'(RY) (see, e.g., [8], p. 197) gives

8u2 810
2.1 | —— jug, — ) dz = 0.
(2.15) /N<zax1,w)+<w2,axl> z=0
Since u; € DM2 N L®RYN) and w; € H' N L®(RY), it is standard to prove that (iuy,w;) €
D2 N L>®°(RN) and

8w1 0

2.1 = —
( 6) (9.1‘1> 6$1

wi) + (iuq, (1uy,w1) a.e. on RV,

<167U17

Let A, = {z € RN | |w(z)] > 2}. We have (T—O) LN(A,) < /A lw|?dz < |Jw||2,,

and consequently A, has finite measure. It is clear that wo, = 0 and wng = 0 a.e. on
RN\ A,. Since wy € L2 (RY) and Vwy € L?(RY), we infer that wy € L' N L2 (RY) and
Vws € L' N L2(RYN). Together with the fact that u; € L¥ N L®(RY) and Vu; € L?(RV),
this gives (iug,ws) € L' N L2 (RY) and

Ouy

ow
<z%,w2>eL1ﬂL%(RN), u, 52) € L'NLYRY)  forj=1,...,N.
J J

It is easy to see that %(iul,u@ = (i %,ua) + (iuq, gw2> in D'(RY). From the above we

(W
RN 81’3
indeed, let ~1 C C®(RN) be a sequence such that — ) in WHY(RN) as n — oo;
( ) n)n>1 c q n (0 )

/ On dx — / ﬁidx as n — 00). Thus we have
RN j R

Nl’j

infer that (iuj,wz) € WHL(RN). It is obvious that dr = 0 for any v € WHH(RN)

then

RN IL‘J
<Zggi,”LU2> (tuy, ?;;ﬂ € L'(RY) and

,6u1 . 8’(02 8
2.1 — —dx = dx = 0.
(2.17) /N<Zax17w2>+<W1, 8x1> =) o o (iur, wa) 0
Now (2.14) follows from (2.15), (2.16), (2.17) and Lemma 2.5 is proved. O

Corollary 2.6 Let u, v € X be such that u —v € L>(RN). Then

(2.18) Q) = Q)] = [lu —vl| 2@ (Haxl

L2(RN))

Proof. Tt is clear that w = u — v € H'(R") and using (2.14) we get
Qu) = Q(v) = L({i(u = v)zy,u) + (iVay, u — v))

L2(RN) Haxl

(2.19) = L((itg,,u —v) + (ivg,,u —v))
= <2u$1 + ivxl 9 u — 1}> dw
RN
Then (2.18) follows from (2.19) and the Cauchy-Schwarz inequality. 0

The next result will be useful to estimate the contribution to the momentum of a domain
where the modified Ginzburg-Landau energy is small.

Lemma 2.7 Let M > 0 and let Q be an open subset of RN . Assume that u € X satisfies
Egr(u) < M and let x, p, 0 be as in Lemma 2.2. Then we have

@20) [0 =3 ) . 0) (0 = )0 | do < COME + M) (B ()



Proof. Using (2.6) and the Cauchy-Schwarz inequality we get

[ 10— ) e ] e <l sl = )ula
(2.21) 0 ;
< ClHuiﬂlHLQ(Q)HquLQ2(RN)

We have |ui| < %, hence [rg — uz| < 3% and ¢(|ro — u1|) = |ro — u1| = p. Then (2.7) gives

(2.22) 6% = 73| 2y < C'(Bgr(u) + Bar(u) =) < C'(M + M 7).
From (2.4) and (2.5) we have 8879]_ < % g—;; <" gT“j a.e. on R, Therefore

dz < ||p* = 15l z2 ()62 1 r2(0)

/ )(,9 —13)0,,
(2.23) “
2%
< O"lp? =l 2y |20y < O (M + M7 )

N|=

(B8, (u))? .

Then (2.20) follows from (2.21) and (2.23). O

3 A regularization procedure

Given a function u € X and a region  C R" such that EgL(u) is small, we would like to
get a fine estimate of the contribution of 2 to the momentum of u. To do this, we will use
a kind of ”regularization” procedure for arbitrary functions in X. A similar device has been
introduced in [1] to get rid of small-scale topological defects of functions; variants of it have
been used for various purposes in [7], [6], [5].

Throughout this section, € is an open set in RY. We do not assume Q bounded, nor
connected. If 9Q # ), we assume that 9 is C2. Let ¢ be as in the introduction. Let u € X
and let h > 0. We consider the functional

1 v — ul?
U _ 0
ho(v) = Egr(v) + e /Q ® < 3970 ) dx.

Note that Gj, (v) may equal co for some v € X; however, G} o(v) is finite whenever v € X
and v —u € L2(2). We denote H}(Q) = {u € HY(RY) |u=0on RV \ Q} and

HX Q) ={veX|v—uecH}(Q}.
The next lemma gives the properties of functions that minimize G}, ¢ in the space HL(Q).

Lemma 3.1 i) The functional G¥ o has a minimizer in H}(S2).
i1) Let vy, be a minimizer of G o in HL(Q). There exist constants Cy, Ca, C3 > 0, depend-
ing only on N, a and rqg such that vy, satisfies:

(3.1) Eg(vn) < Egp(w);
2
(3.2) [Jon — ul 2y < 32roh?EZ (u) + Cy (S, (w) N AW
2 2
63) [ =) =) = (o — ) | do < ConEG w)

10



2z
N[

(3.4) Q) — Qon)| < C <h2+(E8L<u>> hfv> ES,(u).

i11) For z € C, denote H(z) = (@2(|z —rol) — 7“(2)) o(lz —7ro))¢' (|2 — ro|) =2 if z # 19 and

‘Z—’r'0|
H(rg) = 0. Then any minimizer vy, of Gi(, in H.(Q) satisfies the equation

1 lvp, — ul? :
: —Avy, + 2¢°H ' —u) = D'(Q).
(3.5) vy, + 2a“H (vy) + 327’0h2@ < 3270 (vh —u) =0 in D'(Q)

Moreover, for any w CC Q we have vy, € W?P(w) for p € [1,00); thus, in particular, v, €
Ch%(w) for a € [0,1).

i) For any h > 0, 6 > 0 and R > 0 there exists a constant K = K(a,r9,N,h,0,R) > 0
such that for any u € X with EZ; (u) < K and for any minimizer vy, of Ghq in HL(Q) we have

(3.6) ro— 0 < |ro —vp(z)| <ro+9d whenever x €  and dist(x,0) > 4R.

Proof. i) It is obviuos that u € H}(Q). Let (v,)n>1 be a minimizing sequence for Gh o In
H(Q). We may assume that Gha(vn) < Gy ou) = E2, (u) and this implies / V|2 de <
E2; (u). It is clear that ’

2
(3.7) / vy, — ul*dx < 32r0/ @ [on = ul” dz < 32roh*EZ; (u).
QN {|vn —u|<8ro} Q 32

Since v, —u € Hy(Q) € H'(RY), by the Sobolev embedding we have [[v, — ul[ 2= g
Cs|[Vvn, — Vul|2(gvy, where Cs depends only on N. Therefore

/ v — ul? dz < (8r9)* ™% / v — u)? dx
(38) {lvn—u|>8ro} {lvn— u|>8r0} -

< (8r0)* 7 Mlon — ullFor gy < O'lIVon = Vul|Fo gvy < C (EGL () 7.

It follows from (3.7) and (3.8) that |[v, — u|[z2(q) is bounded, hence v, — u is bounded in
H}(2). We infer that there exists a sequence (still denoted (v,)n>1) and there is w € H{ ()
such that v, —u — w weakly in H}(Q), v, —u — w a.e. and v, —u — w in L} (Q) for
1 <p<2* Let v=wu+w. Then Vv, — Vv weakly in L?(R") and this implies

IN

/ Vo|? da < liminf/ |V, |2 da.
Q n—oo Jo
Using the a.e. convergence and Fatou’s Lemma we infer that

/ ( (]ro —v|) — 7“0) dx < hmmf/ (gpz(\ro —vpl) — 7“8)2 dx and
Q Q

n—oo

v —ul? o / v, — ul?
dz < lim inf 192 Z U1 g
/f( 32 ) PSR | P T )

Therefore G¥ ,(v) < liminf G}! (v,) and consequently v is a minimizer of G¥ (, in H_(€2).
’ n— 00 ’ ’

ii) Since u € H}(12), we have EZ, (v;) < Ghalvn) < E2, (u); hence (3.1) holds. It is clear
that ¢ (‘U’L ul” ) > 2rg if |vp, — u| > 8rg, thus

v —U2
2l ({fon —ul 2 sp) < [ o (M0 o < 186G o) <m0,

11



Using Holder’s inequality, the above estimate and the Sobolev inequality we get

/ lop, — ul? dz
{lvn—u|=8ro}

-2

(3.9) < lon = ul2ar (10, —uissryy (£ {lon —ul = 870})) 2
: o
< lon = ull2ar gy (£ ({on — ul > 8ro}))" 2

1-5% 4 1+2
< Csl|Vun — Vel oy (B2 B ()7 < O (B, ()

It is clear that (3.7) holds with vy, instead of v, and then (3.2) follows from (3.7) and (3.9).
We claim that

2\
(3.10) ‘w(p«o —2)) = o(|ro — <|)‘ [327“ (’232TE‘ )} for any z, ¢ € C.

3279
@(lro = 21) = llro = )| < [Iro = 21 = Iro = ¢I| < |2 = ¢, hence (3.10) holds.
If |z —ro| < 4rg and | —rg| > 4rg, there exists ¢t € [0,1) such that w = (1 —t)z+¢( satisfies

|ro — w| = 4r¢ and

Indeed, if |z — 79| < 4rp and | — 79| < 4rg, then |z — (| < 8rp, w(\k(\?) — =< g

[o(Iro = 21) = e(lro = ¢1)| = |se(Iro = 21) = (lIro — wl)|

< [sorop (1525)] = oo (55)]°

We argue similarly if |z — 79| > 479 and |¢ — rg| < 4rg. Finally, in the case |z — 19| > 4r¢ and
|¢ — ro| > 4rg we have p(|ro — z|) = ¢(Jro — ¢|) = 3r¢ and (3.10) trivially holds.
It is obvious that
2 2
| (@310 = ul) = 78)° = (#*(Iro — vn) = 13)°

< 6ro|p(|ro — ul) = e(Iro — va)|

(3.11) . ) ,
©*(|ro — ul) + @*(Iro — vp|) — 2rg|.

Using (3.11), the Cauchy-Schwarz inequality and (3.10) we get

/ ’ (Iro — ul) _7’0)2_ (802(|7‘0—vh|)—7“§)2‘dx

N 2 N
ellro = u) = ellro = )" o) ([ |20 = b + (o = onl) — 23 o)

| /\

<o ([
< 32%@ ngru>d$>5<2/g (£2(Jro — u]) = 12)% + (¢2(Jro — va]) — r2)* dx>

3 3 1 3
18rf (G (o) )* (ZES () + 2B (0)F < B2 hES, (u)

| /\

and (3.3) is proved. Finally, (3.4) follows directly from (3.1), (3.2) and Corollary 2.6.

iii) The proof of (3.5) is standard. For any ¢ € C2°(Q) we have v + ¢ € HL(Q) and the
function ¢ — G}, (v + t1)) achieves its minumum at ¢ = 0. Hence %‘ﬁo ( halv+ tw)) =

for any 1 € C2°(Q2) and this is precisely (3.5).

12



For any z € C we have
(3.12) |H(2)| < 3r0|@?(|z — ro]) — r| < 24r3.
Since v;, € X, we have @?(|rg—vy|) =72 € L2(RY) and (3.12) gives H(v;) € LNL>®(RY). We
@ () (on = w)| < lon — ul and | (B4522) (0 — w)| < sup ! (5575) 5 < oo
Since v, —u € L2(RY), we get ¢/ (%) (vp, —u) € L2 N L= (RN). Using_(3.5) we infer that

Avy, € L2NL*®(9). Then (iii) follows from standard elliptic estimates (see, e.g., Theorem 9.11
p. 235 in [19]) and a straightforward bootstrap argument.

also have

iv) Using (3.12) we get

9r2
CTQOEgL(U)a

2 972
| R <o [ (A=) = r3)? do < 2B (0) <

NI

hence [|H (vp)|2(0) < C (EZ, (u))?2. By interpolation we find for any p € [2,00],

p—2

2
(3.13) 1H (on) | 2o(62) < H (0n)l] 2 oy [ (0n)l 2y < C (EGL(w)

D=

There exist mq, mo > 0 such that

2 2 9 5
30/ (3;1”0) 8‘ < mie (3570) and sp’ (3;1”0) 8‘ < mo for

any s > 0. Then we have

o (lon — ul? ‘2 / lup, — ul? 2 -0
1vn — Ul . < 1% = < E
/Qgp < 3270 )(vh u)| de <my Qgp 3270 dx < mih*Egp(u),
1 lop—ul?
v <§27T0> (vn = u)’ 12(9)
v —u2
¢ () (wn = w)

(3.14) < ‘

1
thus ‘ < h(mi1EZ; (u))?2. By interpolation we get

LP(Q)
Vhp—U 2
¢ (M5 ) (vn —w)

S Ch% (EgL(U)) ’

v, —u2
o (\ §2T0\ ) (vp, —U)‘ 22(9)

p=2
"l
L ()

for any p € [2,00]. From (3.5), (3.13) and (3.14) we obtain

2 1
(3.15) | Avp ||y < CA+hv ) (BEL(u))? for any p > 2.
For a measurable set w C RY with £V (w) < co and for any f € L'(w), we denote by

m(f,w) = ﬁ@ / f(x) dz the mean value of f on w.

w
Let xo be such that B(xp,4R) C . Using the Poincaré inequality and (3.1) we have

1
(3.16)  ||lva — m(va, B(wo, 4AR)|| 12 (B(zo.ar)) < CPRIIVUL||12(B(xoar)) < CPR (EgL(u))? .

We claim that there exist & € N, depeding only on N, and C, = Cy(a,r9, N, h, R) such that

(3.17) o, — m(vh,B(xo,llR))HWz,N(B( r_yy <G ((E%L(u))é + (EgL(u))J{’> .

20, ok—2

It is well-known (see Theorem 9.11 p. 235 in [19]) that for p € (1,00) there exists C' =
C(N,r,p) > 0 such that for any w € W?P?(B(a,2r)) we have

(3.18) Nwllw2e (o)) < C (lwllrBazr) + 1AW Lr(Ba2r)) -

13



From (3.15), (3.16) and (3.18) we infer that

1
(3.19) llvn — m(vn, B(wo, AR))lw2.2(B(zo 2r)) < Cla,70, N, h, R) (Egp(u))? .

It <4 ~ from (3.19) and the Sobolev embedding we find

D=
2\10

1
(3'20) ”vh - m(vhﬂ B(ﬂ?o, 4R))HLN(B(900,2R)) < C(“? ro, N, h, R) (EgL(u)) 2.

Then usmg (3 15 ) (for p=N), (3.20) and (3.18) we infer that (3.17) holds for k = 2.

If % &> (3.19) and the Sobolev embedding imply
1
(3'21) th - m(Uh, B($Oa 4R))HLP1 (B(z0,2R)) < C’(CL, o, N, h, R) (EgL(u)) ’,
where - = 5 — & Then (3.21), (3.15) and (3.18) give

Wl
2=

+ (B (w))

)

otherwise we repeat the process. After a finite number of steps we find k& € N such that (3.17)
holds.
We will use the following variant of the Gagliardo-Nirenberg inequality:

(3.22) ||lvp—m(vn, B(z0,4R))||yw2.p (B(zo,R)) = C(a,r9, N, h, R) <(E8L(u))

).

If

< &, using (3.22), the Sobolev embedding, (3.15) and (3.18) we get

2

1
p1

N|=
2=

||Uh - m(vhaB($074R))HW2,N(B(;L~0’%)) < C(aﬂrOvNa h7R) <(E8L(u)) + (EgL(u))

q 1—4
(323) Hw - m(wa B(CL, T))‘ |LP(B(a,r)) < C(pa q, N, T)Hw‘ |Z‘1(B(a,2r)) | ]V’w| ‘LN?B(a,Qr))

for any w € WHN(B(a,2r)), where 1 < ¢ < p < oo (see, e.g., [26] p. 78).
Using (3.23) with w = Vo, and (3.17) we find

HVUh— (V’Uh, ($072k 1))HLP (az:o7 )

ok—1

(3.24) < CvahHLz(B( ||v vh“LN(B(:L'o 2 )
1 1y 1-2

< C (B () ((EGL<u>>§ - (EGL<u>>W) ’

for any p € [2,00), where the constants depend only on a, 79, N, p, h, R.
Using the Cauchy-Schwarz inequality and (3.1) we have

R R 1
‘m(vvh,B(ﬂfo, F))‘ < EN(B(x(% 21971)) : ||VUhHL2(B(fE0:2k131

y <0 (E?:L(U))%

and we infer that for any p € [1, 0o] we have the estimate

[1m(Vvn, B@o, 525 )| Lo(ao, 1)

3.25
( ) )m Vg, B(zo, 2k— 1))‘ (ﬁN( (o, 2’“%)))

= =
S

< C(N,p,R) (EZ, ()

From (3.24) and (3.25) we obtain for any p € [2, 00),

=

1,10 2
(326) vahHLp(B(l‘o,zkal )) S C(a,To,N,p, h,R) <(E8L(’U/)) + (ESL(’U,))P N( P)> .
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We will use the Morrey inequality which asserts that, for any w € C°NW1P(B(x,r)) with
p > N we have

_N
(327)  |w(@) —w(y)| < Clp, N)le =y 7 [|Vwllpopaery) — for any .y € B(zo,r))

(see, e.g., the proof of Theorem IX.12 p. 166 in [8]). Using (3.26) and the Morrey’s inequality
(3.27) for p = 2N we get

(3.28) hm@)—vaw|SCanhNJuRWv—mé(ﬂﬁLw»5+(E§Au»*“+;U

for any x,y € B(x, %))

Let 6 > 0 and assume that there exists xg € € such that ||vn(xo) — 70| — 0] > 0 and
B(zo,4R) C Q. Since || |va(z) — ro| — 70| — | |lvn(y) — ro] — 7ol | < Jva(z) — va(y)], from (3.28)
we infer that

| lon(x) — ro| — ro| > g for any x € B(xg,7s),
where
(R 5 R AT PNE SN APINE TCNE B
(329) 75 =min <2k1’ <2C(a, "o N R)) <(EGL(U)) 2+ (Bopw) V2 ) ) :
Let
(3.30) n(s) = inf{(¢*(r) = 18)* | 7 € (—o0,70 — 8] U [rg + 5,00)}.

It is clear that 7 is nondecreasing and positive on (0,00). We have:

2
%MMZE&wwzﬁé( (o) o) e
ZTo,Ts

(3.31)
zﬁ/ (&) dz = LN (B0, 1))a?n ().
B(zo,rs)

where 75 is given by (3.29). It is obvious that there exists a constant K > 0, depending only
on a, ro, N, h, R, § such that (3.31) cannot hold for Eg; (u) < K. We infer that ||vp(z0) —
ro| — 10| < & if B(z0,4R) C Q and EY; (u) < K. This completes the proof of Lemma 3.1. O

Lemma 3.2 Let (up)n>1 C X be a sequence of functions satisfying:

a) Eqr(uy) is bounded and
b) lim ( sup Egéy’l)(un)) =0.
yeRN

n—oo

There exists a sequence hy, — 0 such that for any minimizer v, of GZ:,RN m H}LH(RN)

we have || [, — 10| — 70| Lo gy — 0 as n — oc.

Proof. Let M = sup Egr(uy,). Forn > 1 and x € RY we denote
n>1

1
mp(x) = m(uy,, B(z,1)) = m /B(%U un (y) dy.

By the Poincaré inequality, there exists Cy > 0 such that

t/ () — () dy s<11/ Vet ()] dy.
B(z,1) (z

)
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From (b) it follows that

(3.32) sup Il = mn (@) 2oy — 0 a5 T — oo,
zeRN

Let H be as in Lemma 3.1 (iii). From (3.12) and (b) we get
2 2 22
333 s ) By < 50 98 [ (= u)) = ) dy — 0
z€RN z€RN (z,1)

as n — 00. It is obvious that H is Lipschitz on C. Using (3.32) we find

(3.34) sup ||H (un) — H(mn(x))Hm(B(m)) < C1 sup |Jup, — mn(x)HLQ(B(x,l)) —0
zeRN zeRN

as n — oco. From (3.33) and (3.34) we infer that sup,cpn ||[H(mn(2))||12(B(,1) — 0 as

n — oo. Since ||H (mn(2))|12(p1)) = LY (B(0, 1)|H (mn(x))], we have proved that

(3.35) lim sup |[H(my,(z))| =0.

O zeRN

Let

Niz ¥
(3.36) hy, = max < sup ||un, — mn(af)HLz(B(l,’l))) , ( sup |H(mn(x))|>

zeRN zeRN

From (3.32) and (3.35) it follows that h, — 0 as n — oo. Thus we may assume that
0 < hy, < 1 for any n (if h,, = 0, we see that w,, is constant a.e. and there is nothing to prove).
Let v, be a minimizer of Gh RN (such minimizers exist by Lemma 3.1 (i)). It follows from
Lemma 3.1 (iii) that v, satisfies (3.5). We will prove that there exist Ry > 0 and C' > 0,
independent on n, such that

(3.37) A N (B(w,Rry)) < C for any 2 € RY and n € N*.
Clearly, it suffices to prove (3.37) for = 0. We denote my, = m,(0) and (s) = ¢(53-.). Then
(3.5) can be written as
1

(3.38) —Avy, + h—2¢'(|vn — mp|?) (v — M) = fn,
where

fo = —2a%(H(v,) — H(my)) — 2a?H(my,)
(3.39)

+% (¢,(|Un — mn|?) (00 = mn) = @ ([vn — unl*) (v — Un)) .

In view of Lemma 3.1 (iii), equality (3.38) holds in L (RY) (and not only in D'(R")).
The function z — ¢'(]z|?)z belongs to C°(C) and consequently it is Lipschitz. Using

(3.36), we see that there exists Cy > 0 such that

16" (|vn — mnP)(Un —mp) — @' (Jvn — un|2)(vn - Un)HLZ(B(O 1))
3.40 ;
(3.40) < Callun — mnl|r2(p0,1)) < Cahf +2.

=

By (3.36) we have also ||H(mn)||r2(B0,1) = (EN(B(O,l))% |H(my)| < (£N(B(0,1))2 nY.

From this estimate, (3.39), (3.40) and the fact that H is Lipschitz we get

(341) anHLQ 0 R) < C,?,H’Un mnHL2(B(07R)) + C4h;]lv for any R e (0, 1]
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Let x € C®(RY,R). Taking the scalar product (in C) of (3.38) by x(z)(vn(x) — m,) and
integrating by parts we find

1 -
| x0T et g [ 3@ o = mof?) o, = m e
RN

(3.42)

— ;/RN(AX)’W — 2 dz + /RN<fn(-TJ),’Un(x) — ma)x(z) d.

2
From (3.2) we have |[vy, — up||2gvy < Cshy', thus

2
(3.43) lon = mallL2(B0,1)) < llvn — unllr2(B0,1)) + [un — MallL2(B0,1)) < Koha'-

We prove that
2j N?
(3.44) [|on — mnHLg(B(O _1y) < Kjhy for 1 <j< [] +1,
72j—1 2

where K; does not depend on n. We proceed by induction. From (3.43) it follows that (3.44)
is true for j = 1.

Assume that (3.44) holds for some j € N*, j < [%2] Let x; € C2®(RYN) be a real-valued

function such that 0 < x; <1, supp(x;) C B(0, 2]%1) and x; = 1 on B(0, 2]) Replacing x by
X; in (3.42), then using the Cauchy-Schwarz inequality and (3.41) we find

/ |an| dr + — nz / & (|von, — mn]2)|vn - mn|2 dx
B(0,55 57)

’2j

(3.45)

IN

3IAX; [ oo vy [on — mnHLQ(B(O y T nllez s mn”L2(B(0, )

< AJ'HUn - mn”2

/
LQ(B(O,Qj%l)) + C4hn ||vn - mn||L2(B(O,2j%1)) < A]hyjlv .

2j
From (3.44) and (3.45) we infer that [[vn—mn|| 15 1y < Bjhx'. Then the Sobolev embedding
Y]

implies
25
(3.46) [|vn — mnHL?*B(o,é) < Djhy'.

The function z —— 3(|z|?) is clearly Lipschitz on C, thus we have

[ 16on =) = ln = mal?) o < Ch [ = ]
B(0,1) B(0,1)

< Céllun — mallL2(B0,1)) < Cehl 2.

It is clear that / G(|vn — un|?) dz < hiGZ" ry (Un) < h2Eqr(u,) < h2M and we obtain
B(0,1)

(3.47) / @(|vn — mp|?) de < Crh2.
B(0,1)
3279

If [vp(x) — my| > 8rg we have @(|v,(z) — my|?) = @ (M> > 2r¢, hence

(3.48) 2r0 LN ({z € B(0,1) | |un(z) — mp| > 8r}) < / @ (lvn — mp|?) dz < Crh2.
B(0,1)
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By Holder’s inequality, (3.46) and (3.48) we have

/ vy, — mp|? da
{|vn—mn|>8r0}NB(0, L

727

_2
(3.49) < llom = Ml o, 2y (£Y ({2 € BO,1) | [on () = ] > 8ro})) 7"
72

2\ 2 -2 si4s
< (Lyhﬁ§> (Eih?> T < B

2rg’’n

From (3.45) it follows that

/ ) |vn—mn2dx§/ . ¢(|vn—mn|2)|vn—mn\2dx
(3 50) {|vn—mn\<8fro}ﬁB(0,§) B(O’E)
4544

o4+ 4 4j+4
< AN < Ahy

/.
J

Then (3.49) and (3.50) imply that (3.44) holds for j 4+ 1 and the induction is complete. Thus

. is established. Denoting jy = |5-| + 1 an N = 575—=T, we have proved that
3.44) is established. Denoti N1 +1 and Ry = 55k h d th

i N
(3.51) lon = manllL2B0,Ry) < Kjnhn™ < Kjyhy
It follows that

~/ 2 N
hﬁ@ (Jvn = mn|") (vp —my)|  dz
' 1 ~/ 2y |V 2 2
< -5 sup (@ (|2] )z‘ |vn, — mp|” dz < Cs.
hi sec B(0,Ry)

Arguing as in (3.40) and using (3.36) we get

16" (Jon — mnP)(”n —my) — @' (Jun — “n|2)(vn - un)H]LVN(B(o,l))

3.53 - N-2
(3.53) < Cy Sup )90' (I21) Z‘ lun = mallF2(po1) < Crohn ™
ze

From (3.39), (3.53) and the fact that H is bounded on C it follows that || full L~ (B0, ry)) < C11,
where C1;1 does not depend on n. Using this estimate, (3.52) and (3.38), we infer that (3.37)
holds.

Since any ball of radius 1 can be covered by a finite number of balls of radius Ry, it follows
that there exists C' > 0 such that

(3.54) [[Avn || v (B(z1)) < C for any 2 € RY and n € N*.
We will use (3.18) and (3.54) to prove that there exist Ry € (0,1] and C' > 0 such that
(3.55) |on = mn(@)|lyy2n (B iy < € for any = € RY and n € N*.

As previously, it suffices to prove (3.55) for g = 0. From (3.54) and Hoélder’s inequality it
follows that for 1 < p < N we have

1-2 b
(3.56) 1Avallzo(zay < (EYBO) ™ 1801y 0, < CO).
Using (3.43), (3.54) and (3.18) we obtain

(3.57) [lon = mn(0)lly22(p(1)) < C:
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If % — ]%, < %, (3.57) and the Sobolev embedding give

[lon = mn(0)l|La(Ba, 1)) < €
and this estimate together with (3.54) and (3.18) imply that (3.55) holds for Ry = 7.
If1—2 > 1 from (3.57) and the Sobolev embedding we find an_mn(O)HLm(B(x,%)) <C,

where p% =  — %. This estimate, (3.56) and (3.18) imply ||v, — M5 (0)| |32, (B(z1)) < C. If

pil — 2 < %, from the Sobolev embedding we obtain ||v, — mn(O)HLN(B(z,i)) < C, and then

using (3.54) and (3.18) we infer that (3.55) holds for Ry = L. Otherwise we repeat the above
argument. After a finite number of steps we see that (3.55) holds.

Next we proceed as in the proof of Lemma 3.1 (iv). By (3.23) and (3.55) we have for
p € [2,00) and any o € RV,

(3 58) ||an — m(yvm B(ﬁo, %RN))HLPgB(mO,%RN))
. z 1-2
P 2 P
< UV o oy V20l oy < C1P)-

Arguing as in (3.25) we see that ||m(Vuy,, B(xo, %RN)) ] |Lp(B( fy)) is bounded independently

$0,%
on n and hence

||anHLp(B(x07%RN)) < Ca(p) for any n € N* and o € RY.

Using this estimate for p = 2V together with the Morrey inequality (3.27), we see that there
exists C, > 0 such that for any =,y € RV with |z —y| < RTN and any n € N* we have

(3.59) o (@) = va ()] < Cula —y]2.

Let 6, = || v — 70| — 70| oo (rv) and choose z;,, € RY such that | v, (z5) — 10| — 10| > 2.
From (3.59) it follows that ||v,(x) — ro| — 70| > %” for any x € B(xy, ), where

— min @ 57” ’
n = 2 '\ac,) |-

Then we have

(3.60) . N i
> o )n(f) dy = LN(B(0,1)n (%) rY,

where 7 is as in (3.30).
On the other hand, the function z — (@2(\7"0 —z|) — rg)z is Lipschitz on C. Using this
fact, the Cauchy-Schwarz inequality, (3.2) and assumption (a) we get

L @m0 = o)) = 18)" = (0o = unlo)) = 18)° |y
B(z,1)

2
<C e vn(y) — un(y)|dy < C'||vy, — Un|12(B(z,1)) < C'|Jvn — Un||L2(RN) < C"hY .

Then using assumption (b) we infer that

(3.61) swp [ (Pl n)) =) dy 0 asn o
zeRYN JB(z,1)
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From (3.60) and (3.61) we get hm 0 1) (%) rN = 0 and this clearly implies hm o = 0.
Lemma 3.2 is thus proved. O
The next result is based on Lemma 3.1 and will be very useful in the next sections to

prove the ”concentration” of minimizing sequences. For 0 < R; < Ry we denote Qg, r, =
B(0, k) \ B(0, R1).

Lemma 3.3 Let A > A3 > Ay > 1. There exist ¢g = eo(a,ro, N, A, Az, A3) > 0 and

C; = Cyi(a,ro,N, A, Ay, A3) > 0 such that for any R > 1, € € (0,e9) and u € X wverifying
QAR,R
E 3

ar(u) < e, there exist two functions ui, ug € X and a constant 0y € [0,2m) satisfying the
following properties:
i) supp(u1) C B(0, AoR) and r9 — u1 = e~ (rq — u) on B(0, R),
ii) ug = u on RV \ B(0, AR) and ro — uz = roe’® = constant on B(0, A3R),
2 3U1 2 8UQ 2
iii) ‘ ’ —|=— - =
RN 83:] 8117j al’j

iv) / ©*(|ro —u|) — r0)2 — (©*(Iro —w1|) — 7'8)2 — (¢*(Iro — u2|) — r§)2 ’ dx < Caye,

v) |Q(u) — Q(u1) — Q(u2)| < Cse,
vi) If assumptions (A1) and (A2) in the introduction hold, then

’deClaforjzl,...,N,

2% 1

/RN [V(Iro = ul?) = V(iro = wi?) = V(Iro = ual®)| d < Cae + C5v/E (Bow(w) 2

Proof. Fixk >0, Ay and Ay such that 14+4k < A] < Ay < A3 < Ay < A—4k. Let h=1
and § = . We will prove that Lemma 3.3 holds for ¢g = K(a,r9, N,h = 1,6 = 3, k), where
K(a, To,N h 0, R) is as in Lemma 3.1 (iv).

Consider 71,2 € C*°(R) satisfying the following properties:

m =1on (—oo,A1], m1 =0on [A2,00), m is nonincreasing,
n2 =0 on (—o0, Az], m2 =1 on [A4,00), 72 is nondecreasing.

Let € < gg and let u € X’ be such that EQR 4 (u) < e. Let vy be a minimizer of G¥ Qnan
in the space H} w(Qr aRr). The existence of vy is guaranteed by Lemma 3.1. We also know
that vy € I/Vl P(Qpg agr) for any p € [1,00). Moreover, since ng’AR(u) < K(a,ro,N,1,73 k),
Lemma 3.1 (1V) implies that

3
(3.62) %0< 7o — v1 ()] <§ if R+ 4k < |z| < AR — 4k.

Since N > 3, Qa, g A,r is simply connected and it follows directly from Theorem 3 p. 38 in [9]
that there exist two real-valued functions p, € W?P(Q4,p a,r), 1 < p < 00, such that

(3.63) ro —vi(x) = p(z:)ew(@ on Q4, R AR

For j =1,..., N we have

ovy op . 00 0 v |2 Op 12 5] 00 |2
364) — =|—7=——ip—|¢€ d |— :’—’ — .. Q .
( ) 8xj < 8.%'j Zpa.%‘j)e o 8xj (9:(}]' +p 833]‘ a.6. O 3°A1R, AR
Thus we get the following estimates:
(3.65) / Vo2 da < / Vor2de <&,
QA R, A4R QA R, A4R
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(3.66) a2/ (p* — r%)Q dx < nglR’ Ml (y)) <e,
QAR A4R

4 4
(3.67) / IVO]? dz < — Vo |? de < —e.
QAR A4R T

0 JQa R AyR 0

The Poincaré inequality and a scaling argument imply that

Eos) [ em(Quranlde < CN VAR [ [9fPds
QA R, AyR

QA R, AR

forany f € H'(Qa,r, a,r), where C(N, Ay, A4) does not depend on R. Let 6y = m(0, Qa, g, 4,R)-
We may assume that 0y € [0,27) (otherwise we replace 6 by § — 27 [L]). Using (3.67) and
(3.68) we get
(3.69)
/ |9—(90|2de C(To,N,Al,A4)R2/ ‘V1}1|2d56 < C(’Fo,N,Al,A4)R2€.
QA R, A4 R

QA R, AyR

We define %1 and us by

ro —u(z) if x € B(0,R),
ro —vi(z) if x € B(0,A1R)\ B(0,R),

=]

(370) o — Ul (aj) = (TO + nl(%)(ﬂ(%) . ’f‘o)) 6i<90+771(f)(9(m)—90))
if z € B(0,A4R) \ B(0, A{R),
roe® if x € RN\ B(0, A4R),

roe’® if x € B(0, AL R),

(To + (i) (p() — To)) (oot 0w)—00))
(3.71) ro — up(x) = if 2 € B(0, A4R) \ B(0, A\ R),
ro—vi(x) ifx € B(0,AR)\ B(0,A4R),

ro —u(z) ifx € RV \ B(0,AR),

\

then we define w1 in such a way that rg — u; = e~ o (ro — @1). Since u € X and u — vy €
HY (R, aRr), it is clear that uy € HY(RYN), up € X and (i), (ii) hold.
Since p + rg > %7‘0 on Q4, R, A,R, from (3.66) we get

2
(3.72) 1o =rollze(0, 5 ayn) = 9rZaz"

|z x

Obviously, ¥ (7o + 1 () (p(w) = 10)) = Fnl(Eh(o(@) = ro) & + () Vp and using (3.65),
(3.72) and the fact that R > 1 we get

19 (o + (5 (p) = 70) ) 11200, a0

(3.73)
< wsup 1] - 1o = roll L2 o am) T Hm(%)VﬂHm(mlR,MR) <CyEe

Similarly, using (3.67) and (3.69) we find

1V (80 + mEH 0@) = 60)) lli2(020, 4y

(3.74) .
< %Sup |77;‘ ’ He - GOHLQ(QAIR,AALR) + Hn’i(%)vaHL%QAIR,AZIR) < Ct\/g
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From (3.73), (3.74) and the definition of uy, up it follows that ||Vuil|r2(, 5 4,n) < CVE,
i = 1,2. Therefore

/RNHEM‘]QgZ;Q ng‘Z‘dm:/ H@a:JZgZ;2 guxjf‘dx

ou |2  |0Ov Ou |2 |0u ou
< / — 1‘ dx + / ! 2
Qr,ARUQA, R AR O ax] QA R AR

oz, T ach oz,
and (iii) is proved. On Q4,p4,r We have p € [%2, 3], hence ¢ (7‘0 +m(‘ |)(p(x) —ro)) =
ro -+ (i) (p(x) = o) and

’ dr < Cie

(3.75) ((p (TO+ m(‘ l)( () - TO)) N T(%)Q: (p— 7“0)2771‘2(%) <2ro+ 771‘(%)(0 - 7“0))2
< (3r0)” (p —0)2.

From (3.70)—(3.72) and (3.75) it follows that ||©?(|ro — wi|) — T%HLZ(QAIR’AALR) < Cy/e. As
above, we get

L@ o= =1)* = ((r0 = i) = 18)° = (210 = wal) = 13)°|

2 2

< + ((pz(|r0 —vl) — 7‘8) dz

(*(Iro = ul) = r5)

/QR,A1 RUQA R AR

2 2 2
+ / (2(ro —ul) — 12)* + (¢2(ro — wa]) — 12)* + (G2(ro — wal) — 12)? dax < Che.
QA R, AR

This proves (iv).
Next we prove (v). Since <i%’ @1) has compact support, a simple computation gives

ouq

(3:76) Q(un) = L5 Ot Oty

I ((ie—if0 _ _—ifo —ifos VY _ / UL oy
) ((ie 8:6177’0 e "Org 4+ e "0uy)) RN<Z83:1’UI> x
From the definition of %; and uz and the fact that u = v; on R\ Qg Ar we get (i gzl ,U1) —

(i g:i uy) — (i 8717“2> =0 a.e. on RV \ Qu, g a,r. Using this identity, Definition 2.4, (3.76),
then (2.3) and (3.70), (3.71) we obtain

B vy Ouy .Ougy
Q) ~Qu) = QUua) = [l — i) — (i ) de
:/ <i8v1_ém1_(‘3u27r0>dx_/ (pQ_TQ)ﬁdx
QAlR,A4R 8371 81’1 81'1 QA1R7A4R 8371

(3.77)

> <( enlZo-m) - r3> 2 (6 5o - 00) as

AR, A4R =1
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The functions vy — @ — ug and 0* = 6 — ZZ 1 (00 + nz(|x|)(9(1‘) - 90)) belong to C1 (g Ar)

and vy — @y — ug = ro(e® — 1) = const., 0* = —y = const. on Qr.ar \ Q4,r,4,r. Therefore

9*
(3.78) / (zﬂ(vl — U —ug),ro)dr =0 and / 0 dx = 0.
QA R, A4R I QA1 R, A4R dx

Using (3.66), (3.67) and the Cauchy-Schwarz inequality we have

(3.79) ‘ / (p* — 7“8)ﬁ daz‘ < Ce.
QA R, A4R Oy

Similarly, from (3.72), (3.74), (3.75) and the Cauchy-Schwarz inequality we get

|z]

aso) | <<ro+m<§><pro>)2r3) g (t0 4 mtlie - o0)) o] < ce.

From (3.77)—(3.80) we obtain |Q(v1) — Q(u1) — Q(u2)| < Ce and (3.4) gives |Q(u) — Q(v1)| <
C’ng’AR (u) < Ce. These estimates clearly imply (v).

It remains to prove (vi). Assume that (Al) and (A2) are satisfied and let W be as in the
introduction. Using (1.5) and (1.7), then Holder’s inequality we obtain

/ [V(Iro = uf?) = V(Iro — v1]?)| da
RN

<
QR, AR

<C (%o — ul) = 12)* + (P*(lro — i) —12)* da

QR, AR

V(@3 (ro—ul)) =V (¢2(Iro—v1 )| + | W (Iro—uf2) =W (Iro—v1[?) | do

(3.81) iC

Iro — u| — |ro — 1] ‘ (Iro = ulPPo M g —u>2r0}
QR, AR S
—HTO - 7}1’ pot ]l{|ro—v1|>2r0}) dx

<Cl5+c/ ‘u ’U1|<‘7“0 u’ ]l{|r0 u|>2r0}+’T0 Ul’ IL{|7“() v1|>2r0}>d

RAR

< Ce+ C'lu—vill 2 g an) (H ro — U|1{|r0 al>2ro} [ 2m
—1
L2 (R, AR)

(Qr, AR)

From the Sobolev embedding we have

[lu — ’Ul||L2*(RN) < Csl|V(u — UI)HL?(RN)

3.82
(3.82) < Cs(I[Vull 2@, am + 1V01 20020 0)) < 2C5VE.

It is clear that |rg — u| > 2ro implies |u| > 79 and |rg — u| < 2|ul, hence

|| |T0 - U’ﬂ{|7"0—u|>2ro}||L2*(QR, AR)

3.83
(3.83) < 2lJull 2ty < 205Vl g, < 2Cs (Egr (u)

N
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Obviously, a similar estimate holds for v;. Combining (3.81), (3.82) and (3.83) we find

(3.84) /Q »

From (3.70) and (3.71) it follows that V(|rg — v1|?)
RN \ QA1R7A4R and |’f‘0 — 1)1’, |’f‘0 — ull, |’f‘0 — UQ’ c [
(3.66), (3.75) and (3.72) we get

2% -1

V(|ro — ul?) = V(|ro — vl\Q)‘ dr < C'e + C"/e (EgL(u)) 2

V(lro — w1|*) = V(Jro — u2f?) = 0 on

,3—] on Q4,r, A,z- Then using (1.5),

S |

(3.85) / V(jro — v} dz < C (p? —12)?dx < Ck, respectively
QA R, A4R QA R, A4R
9 2
(3.86) / IV ([ro — w|?)| dz < C <(m + (2 (o — 7«0)) - 7"8) dz < Ce.
QA R, A4R QA R, AyR
Therefore
LIV = o) = Viiro =) = V(iro = waf’)| do
(3.87) ) ) )
< [V(Iro = v + [V (Iro — ua[F)[ + [V (ro — ua|") | dz < Ce.
QA R, AyR
Then (iv) follows from (3.84) and (3.87) and Lemma 3.3 is proved. O

4 Variational formulation

We assume throughout that assumptions (A1) and (A2) in the introduction are satisfied. We
introduce the following functionals:

E.(u) = /R |Vu|2 dx + cQ(u / Vilro — u|

Alu _/I{Nz’ﬁx]’ dz,

Bc(u):/RN aﬁ‘ dz + cQ(u) + /RN V(jro — ul?) da,

Pu(u) = N=3 A(u) + Be(u).

It is clear that E.(u) = A(u

~—

+ Be(u) = 527 A(u) + Pe(u). Let
C={ueX|u#0,P.(u) =0}

The aim of this section is to study the properties of the above functionals. In particular,
we will prove that C # 0 and inf{E.(u) | v € C} > 0. This will be done in a sequence of
lemmas. In the next sections we show that E. admits a minimizer in C and this minimizer is
a solution of (1.3).

We begin by proving that the above functionals are well-defined on X. Since we have
already seen in section 2 that @) is well-defined on X, all we have to do is to prove that
V(ro — u|?) € LYRY) for any u € X. This will be done in the next lemma.
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Lemma 4.1 For any u € X we have V(|rg — u|?) € LY(RY). Moreover, for any § > 0 there
exist C1(0), C2(d) > 0 such that for any u € X we have

-0 [ (o) -2 do— GOV B
RN
(4.1) S/ V(|ro — ul?) dz
RN

2 *
< (1+6)a? /RN (@2(|T0 —ul) — 7“(%) dx + 02(5)HV“||%2(RN)'

Proof. Fix 6 > 0. Using (1.4) we see that there exists 5 = ((d) € (0,7¢] such that
(4.2)  (1=10)a®(s—12)> <V(s) < (14 8a’(s —r2)? forany s € ((ro — B)%, (10 + B)?).

Let u € X. If |u(x)| < 8 we have |rg — u(z)|> € ((ro — B)?, (ro + 8)?) and it follows from (4.2)
that V (|ro — u|2)]l{|u‘</3} € LI(RN) and

(-0 [ (Plro-u) =)t [ Vin-uP)d
{Ju|<B} {Ju|<B}

(4.3)

<(1+ 5)&2/ (goQ(\rg —ul) — 7“(2))2 dz.
{lul<p}

Assumption (A2) implies that there exists C7(d) > 0 such that
[V(Iro = 2%) = (1 = §)a®(¢*(Iro — 2) — r§)?| < CL(8)[2*F* < CY(8)[=*
for any z € C satisfying |z| > . Using the Sobolev embedding we obtain

[ o= ul?) = (1= a0 ) - 7| da
{lu|>8}
(4.4)
<Ct®) [ P de <) [l de < o)Vl
{lu|>8} RN

Consequently V (|rg — u[*)Lg,>g; € L'(RY) and it follows from (4.3) and (4.4) that the first
inequality in (4.1) holds; the proof of the second inequality is similar. O

Lemma 4.2 Let § € (0,79) and let u € X be such that ro — 0 < |rg —u| <79+ a.e. on RY.

Then
1

D —
< 2a(rg — 0)
Proof. From Lemma 2.1 we know that there are two real-valued functions p, # such that
p—r19 € H'(RY), § € DV2(RN) and rg — u = pe? a.e. on RN. Moreover, from (2.3) and
Definition 2.4 we infer that

1Q(u) Egr(u).

Qw =~ [ (7=, do
RN
Using the Cauchy-Schwarz inequality we obtain
2a(ro — 0)|Q(u)| < 2a(ro — 8)||0a, || 2yl — 78]l 2wy

< (7"0—5)2/ |9x1|2dx+a2/ (0 ~13)" du
RN RN
< /N P?|VO? + a? (,02 - 7“8)2 dr < Egr(u). 0
R
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Lemma 4.3 Assume that 0 < ¢ < vg and let £ € (0,1 — —). There exists a constant K| =
K1(F,N,c,e) > 0 such that for any v € X satisfying Egr(u ) < K1 we have

/ |Vu|2dx+/ V(lro — ul?) dz — c|Q(u)| > eEar(u).
RN RN

Proof. Fix &1 such that € < e; <1— <. Then fix §; € (0,67 —¢). By Lemma 4.1, there
exists C1(61) > 0 such that for any v € X we have

%

(4.5) /R V(Jro—uf’)de = (1 b1)a” /RN (¢(Iro —ul) =78)" do — Ca(81) (e (w) =

Using (3.4) we see that there exists A > 0 such that for any w € X with Egp(w) < 1, for
any h € (0,1] and for any minimizer v, of G} gn in H} (RN) we have

(4.6) Q(w) — Q(vn)| < AWK Egr(w).

Choose h € (0,1] such that 61 -1 — CARN > ¢ (this choice is possible because e1 —d; —e > 0).
C

Then fix § > 0 such that ﬁ <1—¢&; (such § exist because ey <1— > =1- )

2aro
Let K = K(a,r9,N,h,d,1) be as in Lemma 3.1 (iv).
Consider u € X such that Fgr(u) < min(K,1). Let vy be a minimizer of G gy in

HI(RY). The existence of v, follows from Lemma 3.1 (i). By Lemma 3.1 (iv) we have
rog— 0 < |ro —uvp| <rp+ 0 a.e. on RY and then Lemma 4.2 implies

(4.7) clQ(vp)] <
We have:

/ Vul? de + / V(Jro — uf?) dr — ¢/ Q(u)|
I{N‘ I{N

WC_(S)EGL(U}L) (1—e1)Eqrn(vp) < (1 —e1)Eaqr(u).

> (1 61)Ear(u) — C1(6) (Eap(w)T —clQ(u)] by (4.5)
(4.8) > (1 61)Eqr(u) — C1(61) (Bar(w) T — c|Q(u) — Q(un)] — clQ(un)|

> (1 - 61)Ear(u) — C1(81) (Bar(u) Z — cARS Egp(u) — (1 — 1) Egr(u)
by (4.6) and (4.7)

*

- (51 — 81— AT — C1(8)) (EGL(U))%*l) Ear(u).

Note that (4.8) holds for any u € X with Egy(u) £ m 1n( ,1). Since g1 — 61 — CART > ¢, it
is obvious that g1 — & — cARN — C1(01) (Bar(u)? ' >¢ it E¢p(u) is sufficiently small and
the conclusion of Lemma 4.3 follows. O

An obvious consequence of Lemma 4.3 is that E.(u) > 0 if u € X \ {0} and Egr(u) is
sufficiently small. An easy corollary of the next lemma is that there are functions v € X such
that E.(v) < 0.

Lemma 4.4 Let N > 2. Let D = {(R,e) € R2 | R > 0, 0 < ¢ < &}, There exists
a continuous map from D to HY(RN), (R,e) — v®¢ such that v € C.(RN) for any
(R,e) € D and the following estimates hold:

R
i) / Vot |2 de < YRV 72 + CoRN 721n =,
RN g
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i) ‘/ V(\rg—vR’EP)dx‘ < C3e2RN2,

iii) ’/ 2(|ro — vRE|) — 7'(2])2 dx‘ < C4e?RN72,

w) —2mr3wn_1 RN < Q(vf*e) < —2mrdwn_1 (R — 2¢)N 7L,

where the constants Cy — Cy depend only on N and wy_1 = LYY (Bry-1(0,1)).

Proof. Let A > 0 and

TA’R:{:UGRN|0§’$/|§R7 _NR%M<$1<A(R+W}.

We define 647 : RV — R in the following way: if |2/| > R we put 4% (z) = 0 and if
|z'| < R we define

0 ifay < AR
(4.9) 0 () = ¢ gty 1 ifa € Tap,
or  if oy > AEED
It is easy to see that 2 — e (@) is continuous on RV \ {z | #1 = 0, |2/| = R} and equals 1

on RV \ Ty g.
Fix ¢ € C*°(R) such that ) =0 on (—o0,1], % =1 on [2,00) and 0 < ¢’ < 2. Let

(4.10)  P=(2) = d,(i\/g;l + (2| = R)?2) and  wape(z)=ro (1 _ wR,5($)ei9A,R(x)) ‘

It is obvious that wa r. € C.(RN) (in fact, wa Re is C* on RY \ B, where B = 0TAr U
{(21,0,...,0) | 21 € [-A, A]}). On RY \ B we have

AR T AR __mRmy o
(4.11) 0077 _ ) am-y He€Tan, 0007 | sy e €Tan
0z 0 otherwise , Ox; 0 otherwise,

(4.12) 81/’}2—76(3:) . <\/$1 (2’| = )2)\/ T
1

o : T+ (2= R

opte L Vit (@l - R)? | -R .
(4.13) (x) = g¢ ( - ) N =0 for j > 2.

0z; + (lz'| = R)2 ||
Then a simple computation gives (i 811:921&5 , WA Re) = —13 (YT a)zag;‘lR + % (wR < sin(94F))
on RV \ B. Thus we have
2 Rye\2 ap 1
Q(wA,R,E) = —TO/ ('l/] 75) wa
RN T

It is obvious that

o0 aQA,R [e'¢) 89A,R
(4.14) / o dry =0 if|2/| >R and / o dry =27 if 0 < |2/| < R.
—00 1 —0 1

Since 2 8 >an on RY and 0 < ¢ < 1, we get

AR AR AR
/ % dz S/ (¢R’E)2 i dxq S/ % dxi,
{IR—|'| |22¢} 021 RN Oz Ry 011
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and using Fubini’s theorem and (4.14) we obtain that w g satisfies (iv).

Using cylindrical coordinates (z1,7,¢) in RY, where r = |2/| and ¢ = ’| € SN2 we get

2y dz = |SN- 2|/ / (%2( i_R)2>)rN_2drdx1.

Next we use polar coordinates in the (z1, ) plane, that is we write 1 = 7cosa, r = R+7sin«
(thus 7 = /2% + (R —1)2). Since V(rg¢%(s)) = 0 for s > 2, we get
(4.16)

/ / ( 21/}2( ( R)? )) N=2 gy ) — /26/27r V(202 (D)) DR+ 7sina)N-2da T dr

2 27
=2 [ [TV ) (B essina) 2 dasds,
0 Jo

(4.15) / V(|ro —

2m
It is obvious that ‘ / (R+essin a)N_Zda‘ < 21(R+2¢)N72 for any s € [0,2], and then using
0
(4.15) and (4.16) we infer that wa g satisfies (ii). The proof of (iii) is similar.
It is clear that on R™ \ B we have

(4.17) [Vwape| = rg| Ve 4 rglye P VoL,

From (4.12) and (4.13) we see that |Vy&(2)]? = &

e

z2+(|z'|-R)?2 2 .
Y’ <1€> ‘ . Proceeding as

above and using cylindrical coordinates (x1,7,() in RY, then passing to polar coordinates
x1 =Tcosa, r = R+ 7sin a, we obtain

T— R)2 2 2
(4.18) / (Vxl ('] = R) ) [ i < 27T|5N2|52(R+25)N2/ sl ()| ds.
RN € 0
It is easily seen from (4.11) that [V (z)|? = AQ(RZF?ZD (1 + (R_xé,‘)z) if x € Tapr, |2'| #

0, and VA4 (z) = 0 a.e. on RN \ T4 g. Moreover, if (z1,2') € Ta g and |2/| > R —
we have ¥ (x1,2') = 0. Therefore

/ IwR’EI2|V9A’RI2dx§/ VAR gy
RN TA,RO{‘ZBI‘<R—\/£7RQ}
/{Iﬂf’|<R—

419) = /
{lo/|<R-—

R 34 \/ﬂr
_ 9.2 N-2 +
=27 (A >S ]/ R—rdr

Re
VAT IE

A(R—|2'])

/A(RR )] ‘veA,Rdel da’
S

2m%R +2772A 1 ,
y A(R — |2']) 3 RR— 2|

\/A2 R2

N—-2

k JA2 2
:27r2<R 3A>|SN 2| RN -2 Zl<1—€> pn [ VAR
AT R —k\ VTR e
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Now it suffices to take v®¢ = wp p.. From (4.17), (4.18) and (4.19) it follows that v%*
satisfies (i). It is not hard to see that the mapping (R,¢e) —— v is continuous from D to
H'(RY) and Lemma 4.4 is proved. O

Lemma 4.5 For any k > 0, the functional Q is bounded on the set
{ue X | Eqgr(u) <k}.

Proof. Let ¢ € (0,v5) and let € € (0,1—7). From Lemmas 4.1 and 4.3 it follows that there
exist two positive constants C3(§) and K such that for any u € X satisfying Eqr(u) < K
we have

(14 5)Ear(w) + Co(5) (Bar(w) T — c|Q(u)|

> / |Vu|2 dx + / V(lro — u|2) dr — c|Q(u)| > eEgr(u).
RN RN

This inequality implies that there exists Ko < K such that for any u € X satisfying Fqr(u) <
K5 we have

(4.20) c|Q(u)| < Egr(u).

Hence Lemma 4.5 is proved if k < Ko.
Now let u € X be such that Egr(u) > Ka. Using the notation (1.10), it is clear that for
o >0 we have Q(uss) = oV 1Q(u) (see (2.14) and

Ecr(uge) = O'N_2/ |Vu|2 dr + UNaQ/ (@2(|r0 —u|) — 7“(2))2 dx.
RN RN

1
Let o9 = (%) N2 Then oy € (0,1) and we have Egr(tgy00) < O'év_2EGL(’U,) =

Ks. Using (4.20) we infer that ¢/Q(tog00)| < Ecr(Uoge,), and this implies cop —1|Q(u)| <
02 Eqr(u), or equivalently

1

1 1 -+ N-1
(4.21) Q)| < —Ear(u) = —K, " (Egr(u) V2.
Co( C
Since (4.21) holds for any u € X with Egp(u) > Ks, Lemma 4.5 is proved. d

From Lemma 4.1 and Lemma 4.5 it follows that for any k£ > 0, the functional E, is bounded
on the set {u € X | Eqr(u) = k}. For k > 0 we define

Ec min(k) =inf{E.(u) |u € X, Eqr(u) = k}.

Clearly, the function E. pn is bounded on any bounded interval in R. The next result will be
important for our variational argument.

Lemma 4.6 Assume that N > 3 and 0 < ¢ < vs. The function Ec min has the following
properties:

i) There exists kg > 0 such that E¢ min(k) > 0 for any k € (0, ko).

it) We have klirgo E¢ min(k) = —o0.

iii) For any k > 0 we have E¢ min(k) < k.
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Proof. (i) is an easy consequence of Lemma 4.3.

(ii) It is obvious that H*(RY) C X and the functionals Eg, E. and @ are continuous
on HY(RY). For ¢ = 1 and R > 2, consider the functions v! constructed in Lemma 4.4.
Clearly, R — vf! is a continuous curve in H'(RY). Lemma 4.4 implies E.(v!) — —oo
as R — oo. From Lemma 4.5 we infer that Egy(v!) — 0o as R — oo and then it is not
hard to see that (ii) holds.

(iii) Fix k& > 0. Let v! be as above and let u = v*! for some R sufficiently large, so that
Ecr(u) >k, Q(u) <0 and E.(u) <O0.

In particular, we have
2
E.(u) — Egr(u) = cQ(u) + / . V(|ro — ul®) — a® (¢*(Iro — ul?) — r§)” dz < 0.
R
It is obvious that Egr(uss) — 0 as ¢ — 0, hence there exists o9 € (0,1) such that

Ecr(tugy,00) = k. We have

E (tgy,00) — Ear(Uey,oq)
= aévflcQ(u) + oY /RN V(|ro — uf?) — a? (g02(|7‘0 —ul?) — r%)z dz
= (07 ! = 00" )eQ(u) + of (Ee(u) — Egr(u)) < 0.
Thus Ec(tey,ey) < Ear(teye,). Since Eqr(teye,) = k, we have necessarily E; min (k)
E(tgy,00) < k.
From Lemma 4.6 (i) and (ii) it follows that

L1 IA

(4.22) 0 < Se :=sup{Ecmin(k) | k> 0} < 0.
Lemma 4.7 The set C ={u € X |u#0, P.(u) =0} is not empty and we have
Te :=inf{E.(u) |ueC}>S.>0.

Proof. Let u € X \ {0} be such that E.(w) < 0 (we have seen in the proof of Lemma

0 2
4.6 that such functions exist). It is obvious that A(w) > 0 and ‘%‘ dx > 0; therefore
RN 1
B.(w) = E.(w) — A(w) < 0 and P.(w) = Ec(w) — 27 A(w) < 0. Clearly,

1 ow |2 N -3
(4.23) P.(wy1) = / ‘—’ dx + g A(w) + cQ(w) + 0/ V(|ro — w|?) da.
0 JRN 8.7}1 N -1 R3
Since P.(wi1) = P.(w) < 0 and lin%]Pc(wml) = 00, there exists o9 € (0,1) such that

P.(wgy,1) = 0, that is wy,1 € C. Thus C # 0.

To prove the second part of Lemma 4.7, consider first the case N > 4. Let u € C. It
is clear that A(u) > 0, Bo(u) = —8=3A(u) < 0 and for any o > 0 we have E.(u1,) =
A(ui o) + Be(ui o) = oV 3 A(u) + oV 1B.(u) , hence

d _ _

L (Bulune) = (N = 3)0A(w) + (N = 10" 2 Bo(u)
is positive on (0, 1) and negative on (1, 00). Consequently the function o — E.(u1 ) achieves
its maximum at o = 1.
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On the other hand, we have

ou |2
Eor(ui o) = oV 3A(u) + oV ! </ —| +a® (<p2(\r0 —ul) — 7‘3)2 dx) .
RN aiﬁl
It is easy to see that the mapping o — Eqg(u1 ) is strictly increasing and one-to-one from
(0,00) to (0,00). Hence for any k > 0, there is a unique o(k,u) > 0 such that Egr,(u1 o(ku)) =
k. Then we have

Ec,min(k) < Ec(ul,o’(k,u)) < Ec(ul,l) = Ec(u)
Since this is true for any k£ > 0 and any u € C, the conclusion follows.
Next we consider the case N = 3. Let u € C. We have P.(u) = B.(u) = 0 and E.(u) =
A(u) > 0. For o > 0 we get
Ec(u15) = A(u) + 0% Be(u) = A(u) and

ou 12
Ecor(u1s) = A(u) + o2 </ ‘ai + a? (902(|7"0 —ul) — 'rg)Q d:n) .
R3 T

Clearly, 0 — Eqr(u1 ) is increasing on (0, 00) and is one-to-one from (0, 00) to (A(u), 00).
Let € > 0. Let k. > 0 be such that E pn(k:) > Sc —e. If A(u) > ke, from Lemma 4.6 (iii)
we have

E.(u) = A(u) > ke > Ecmin(ks) > Se — €.
If A(u) < ke, there exists o(k:,u) > 0 such that Egr(u; ok, u)) = ke- Then we get

EC(U) = A(u) = Ec(ul,a(kg,u)) > Ec,min(ke) > S, —e.

So far we have proved that for any u € C and any £ > 0 we have E.(u) > S.—e. The conclusion
follows letting ¢ — 0, then taking the infimum for v € C. O

In Lemma 4.7, we do not know whether T, = S..

Lemma 4.8 Let T, be as in Lemma 4.7. The following assertions hold.
i) For any u € X with Pe(u) < 0 we have A(u) > YT,
i) Let (un)n>1 C X be a sequence such that (Egr(un)),>; s bounded and lim P(u,) =

n—oo

< 0. Then liminfA(u,) > Y717
n—oo

Ou 12

Proof. 1) Since P.(u) < 0, it is clear that u # 0 and / ’%‘ dx > 0. As in the proof
RV 1

of Lemma 4.7, we have P.(u11) = P.(u) < 0 and (4.23) implies that lir% P.(uy1) = 00, hence

there exists og € (0,1) such that P.(uy,1) = 0. From Lemma 4.7 we get E.(uy,1) > T, and
this implies E.(ugy,1) — Pe(tgy,1) > Te, that is ﬁA(uUO’l) > T.. From the last inequality we
find

N-11 N -1

—T. > ——T..
O'O (& > 2 (&

(4.24) A(u) >

2

% dxr > 0.

ii) For n sufficiently large (so that P.(u,) < 0) we have u, # 0 and /
RN X1
As in the proof of part (i), using (4.23) we see that for each n sufficiently big there exists

opn € (0,1) such that

(4.25) P.((un)o,,1) =0
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and we infer that A(u,) > %éTc. We claim that

(4.26) limsup o, < 1.
n—oo
Notice that if (4.26) holds, we have linrr_lbig.}fA(un) > N2_1 T Supiqoo -1 > %Tc and Lemma

4.8 is proved.
To prove (4.26) we argue by contradition and assume that there is a subsequence (o, )i>1
such that o, — 1 as k — oo. Since (Egr(un)),,~; is bounded, using Lemmas 4.1 and 4.5

2
we infer that </ Oun dx) : (/ V(|ro — un|?) dm) , (A(up))n>1, and (Q(up))n>1
RN 61,'1 n>1 RN n>1 - -

are bounded. Consequently there is a subsequence (ny,)¢>1 and there are aq, az, 5,7 € R

such that
/ ouy, g
RN 8331

A(“nke) — Q3 Q(Unké) — 3 asf{— oo.

2

dr — o, / V(|ro — un, \2) dr — ~y
RN ¢

Writing (4.25) and (4.23) (with (un,, )O—"kz’l instead of (uy)s, 1 and we,1, respectively) then
passing to the limit as £ — oo and using the fact that o, — 1 we find o + %ag—i—cﬂ—i—'y =
0. On the other hand we have glinolo Pc(unke) = p < 0 and this gives 0414—%042 +cf+y=pu<0.
This contradiction proves that (4.26) holds and the proof of Lemma 4.8 is complete. O

5 The case N >4

Throughout this section we assume that N > 4, 0 < ¢ < vy and the assumptions (Al) and
(A2) are satisfied. Most of the results below do not hold for ¢ > vs. Some of them may not
hold for ¢ = 0 and some particular nonlinearities F'.

Lemma 5.1 Let (up)n>1 C X be a sequence such that (Ec(uy))n>1 is bounded and Pe(u,) —
0 as n — oo.
Then (Eqr(un))n>1 is bounded.

Proof. We have 127 A(uyn) = Ec(un) — Pe(uy), hence (A(up))n>1 is bounded. It remains

0
to prove that / 8—1%‘ + a? (@2(|T0 — Up|) — 7‘8)2 dz is bounded. We argue by contradiction
RN X1

and we assume that there is a subsequence, still denoted (uy)n>1, such that

ouy,
1 —_—
(5 ) /RN oz 1

Fix ko > 0 such that E.nin(ko) > 0. Arguing as in the proof of Lemma 4.7, it is easy to see
that there exists a sequence (oy,),>1 such that

+a’ (‘PQ(’TO—UnD—?”g)2 dx — o0 as n — o0.

Ouy,
(52)  Eou((un)ie,) = o0 *Aluy) + o) ! / 222+ a2 (2(Ir0 — wn]) = 18)* dz = ko.
RN axl
From (5.1) and (5.2) we have ,, — 0 as n — oo. Since B.(u,) = —3=2 A(uy) + Pe(un), it
is clear that (B.(un))n>1 is bounded and we obtain
Eo((un)10,) = oh 3 A(un) + oY ' Be(un) — 0 as n — 0.
But this contradicts the fact that E.in(ko) > 0 and Lemma 5.1 is proved. O
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Lemma 5.2 Let (up)p>1 C X be a sequence satisfying the following properties:
a) There exist Cq, Co > 0 such that C1 < Egr(u,) and A(u,) < Cy for any n > 1.
b) P.(up) — 0 as n — oo.
Then liminf E.(u,) > T, where T, is as in Lemma 4.7.

n—oo

Note that in Lemma 5.2 the assumption Fgr(u,) > C; > 0 is necessary. To see this,
consider a sequence (u,)n>1 C H'(RY) such that u, # 0 and u,, — 0 as n — oco. It is clear
that P.(u,) — 0 and E.(u,) — 0 as n — oo.

Proof. First we prove that
(5.3) C3 := liminf A(uy) > 0.

n—oo

To see this, fix kg > 0 such that E..n(ko) > 0. Exactly as in the proof of Lemma 4.7,
it is easy to see that for each m there exists a unique o, > 0 such that (5.2) holds. Since
ko = Egr((un)ie,) = min(eY =3, 0N"NEq((uy)) > min(ol =3, 6¥-1)Cy, it follows that

(0n)n>1 is bounded. On the other hand, we have E.((un)1,0,) = N3 A(up) + N1 B, (uy) >
Ec,min(k'()) > 0, that is

N -3

(5.4) oN T3 Auy) + o ! <Pc(un) N1

A(un)> > Ec’mm(k’o) > 0.
If there is a subsequence (uy, )r>1 such that A(u,,) — 0, putting u,, in (5.4) and letting
k — oo we would get 0 > Eq min(ko) > 0, a contradiction. Thus (5.3) is proved.

We have B.(u,) = Pe(un) — N=3 A(u,) and using (b) and (5.3) we obtain

N—1
N -3
(5.5) lim sup Be(uy,) < — C3 < 0.

Clearly, for any o > 0 we have

LN -3
N -1

N -3

Pc((un)l,o') = UN N1

Aluy) + oV Bo(uy) = oV 73 ( Aup) + UQBC(un)> :

1
N-3 3
For n sufficiently big (so that B.(u,) < 0), let 5, = <%> . Then P.((un)1,5,) = 0,
or equivalently (un)1,5, € C. From Lemma 4.7 we obtain E.((un)1,5,) = &,];[_3%A(un) +
N"1B.(u,) > T., that is

N -3

(5.6)  Eolun) + (673 — 1) A(up) + (651 - 1) <pc(un) S

A(un)> > T,

1
Clearly, &,, can be written as &, = ( Pelun) | 1) * and using (b) and (5.5) it follows that

—Bc(un)
lim &, = 1. Then passing to the limit as n — oo in (5.6) and using the fact that (A(uy))n>1
n—oo el
and (P.(un))n>1 are bounded, we obtain liminf E.(u,) > Te. O
- n—oo

We can now state the main result of this section.
Theorem 5.3 Let (up)n>1 C X\ {0} be a sequence such that
P.(u,) — 0 and E.(u,) — T as n —s o0.
There exist a subsequence (uy, )k>1, a sequence (zg)r>1 C RY and u € C such that
Vi, (- + ) — Vu  and  @*(|ro — tn, (- + z1)|) — 78 — ©*(Jro —u|) —r3 in LYRMN).

Moreover, we have E.(u) = T¢, that is u minimizes E. in C.
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Proof.  From Lemma 5.1 we know that Egr(uy) is bounded. We have 127 A(u,) =
E.(up) — P.(un) — T, as n — oo. Therefore
N -1 N-—-1
(5.7) lim A(u,) = TTC and liminf Fgr(uy) > lim A(u,) = ——Te.

n—o00 n—00 n—o0 2

Passing to a subsequence if necessary, we may assume that there exists ag > %Tc such that
(5.8) Ecgr(un) — ap as n — 00.

We will use the concentration-compactness principle ([30]). We denote by gy (¢) the con-
centration function of Egr (uy), that is

(5.9) qn(t) = sup / |Vun|2 +a? (902(|r0 — Up|) — r%)z dx.
yeRN JB(y,t)

As in [30], it follows that there exists a subsequence of ((un, ¢n))n>1, still denoted ((un, ¢n))n>1,
there exists a nondecreasing function ¢ : [0,00) — R and there is a € [0, ap] such that

(5.10) qn(t) — q(t) a.e on [0,00) as n — oo and q(t) — a as t — oo.
We claim that

(5.11) there is a nondecreasing sequnce t,, — oo such that lim g¢,(t,) = a.

n—oo
To prove the claim, fix an increasing sequence xy — oo such that ¢, (xx) — q(xx) asn — oo
for any k. Then there exists nj, € N such that |gn(2x) — q(zx)| < § for any n > ny; clearly, we
may assume that ny < ngy1 for all k. If ny, < n < ngyq, put t,, = 2. Then for ny < n < N
we have

|4n(tn) — o = lgn(zr) = af <lgn(zr) = q(zp)] + lg(zr) —of < % +lg(zp) —af —0

as k — oo and (5.11) is proved.
Next we claim that

tn

(5.12) Gultn) — (2) 0 asn— oo

To see this, fix ¢ > 0. Take y > 0 such that ¢(y) > o — § and ¢,(y) — q(y) as n — oo.
There is some 7 > 1 such that ¢,(y) > a — 5 for n > n. Then we can find n, > 7 such
that ¢, > 2y for n > n,, and consequently we have ¢,(%2) > ¢,(y) > o — 5. Therefore

lim sup (gn(tn) — gn(%)) = lim g, (¢,)—liminf ¢, (%) < . Since € was arbitrary, (5.12) follows.
N—00 n—00 n—00

Our aim is to show that a = ag in (5.10). It follows from the next lemma that o > 0.

Lemma 5.4 Let (up)n>1 C X be a sequence satisfying
a) My < Egr(uyp) < My for some positive constants My, Ma.
b) lim P.(uy,)=0.
n—oo
There exists k > 0 such that sup / \Vu,|? + a? (@2(|r0 — Up|) — r%)2 dx > k for all
B(y,1)

yeRN
sufficiently large n.
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Proof. We argue by contradiction and we suppose that the conclusion is false. Then there
exists a subsequence (still denoted (uy,),>1) such that

(5.13) lim sup / IVun|® + a? (¢*(Iro — unl) — 7"8)2 dr = 0.
B(y,1)

n=00 e RN

We will prove that

(5.14) lim ‘V(|r0—un|2) — a® (¢2(|ro — un) —r8)2‘dg::0.
n—oo JRN
Fix € > 0. Assumptions (Al) and (A2) imply that there exists d(g) > 0 such that
2 2
(5.15) V(o = 2[%) = a® (#*(Ir0 — 21) = 18)" | < ea® (#*(Iro — 2]) —75)
for any z € C satisfying | [ro — 2| — ro| < d(¢) (see (4.2)). Therefore
2
/ [V(Iro —unl?) — a® (¢%(1ro — ual) ~ 3) | d
{l Iro—un|=ro|<d(e)}
(5.16)
§6a2/ (¥2(Iro — unl) —13)" dx < eMs.
{lro—un|-ro|<d(e)}
Assumption (A2) implies that there exists C'(¢) > 0 such that
2
G171 |Vl —2P) —a® (¢(ro— 2l) — 18)*| < O Iro — 2| — o0+
for any z € C verifying | |ro — z| —ro| > d(e).

Let wy, = ||ro — un| — 70|. It is clear that |w,| < |uy,|. Using the inequality |V|v|| < |V|
a.e. for v € HL (RY), we infer that w,, € DY?(RY) and

(5.18) / |Vw,|? dz < M, for any n.
RN
Using (5.17), Holder’s inequality, the Sobolev embedding and (5.18) we find

/ [V(Iro =) = a2 (£(Iro — ual) — 12)* | d
{lro—un|-ro>d(c)}

< (o) / (o [2P9+2 d
{wn>d(e)}

2pg+2

(5.19)

1— 2pg+2

< C(e) (/ Jwnl* dx) (LY{wn > 0(e)}) ™
fun>5()}

1— 2pg+2

< C(e)C || Vwnl | By (EV ({wn > 8(2)})

1 2pg+2

< C(e)OF 2 MEt (LN (wy, > 3(2))))

We claim that for any € > 0 we have

(5.20) lim £ ({w, > d(¢)}) = 0.

n—oo
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To prove the claim, we argue by contradiction and assume that there exist g > 0, a subsequence
(wn, )k > 1 and v > 0 such that £V ({wy,, > §(e0)}) > v > 0for any k > 1. Since [[Vwn!| 2@
is bounded, using Lieb’s lemma (see Lemma 6 p. 447 in [29] or Lemma 2.2 p. 101 in [10]),

we infer that there exists 3 > 0 and y, € R such that £V ({wnk > &ZM} N By, 1)) > B

: L 2
Let n be as in (3.30). Then wy, (x) > 5(30) implies (% (|ro — un, ()]) —13)" > 7 (@) > 0.

Therefore

2)2 6(<0)
/B(yk-,l) (¢*(Iro = uny (@)]) = 75)" dz > n (2) B>0

for any k£ > 1, and this clearly contradicts (5.13). Thus we have proved that (5.20) holds.
From (5.16), (5.19) and (5.20) it follows that

V0= ual?) = @ (2r0 = ) = 13)° e < 220
RN

for all sufficiently large n. Thus (5.14) is proved.
From Lemma 5.2 we know that liminf E.(u,) > T.. Combined with (b), this implies

n—0o0
liminf 25 A(u,) > T,. Let og = 2%\/_—31) and let 4, = (un)1,0,- It is obvious that
n—oo
N -1
(5.21) liminf A(@,) = op ®liminf A(u,) > od 73T..
n—00 n—00 2

Using assumption (a), (5.13) and (5.14) it is easy to see that

(5.22) there exist Ml, M, > 0 such that M; < Egr(ay,) < M, for any n,
(5.23) lim sup / |Vt |? + a® (4,02(]7“0 — Upl|) — 7“3)2 dr =0 and
TP yeRN JB(y,1)

5.24 lim Vv ro—an2 —a® g02 ro — Up —7“22 dr = 0.
0

n—oo JRN

It is clear that P.(u,) = %angA(&n) + 037N B,(@1,) and then assumption (b) implies

(5.25) lim (ﬁ‘i’ag/x(an) +Bc(an)> = lim (A(@n) + Ec(@,)) = 0.

n—oo n—oo

Using (5.22), (5.23) and Lemma 3.2 we infer that there exists a sequence h, — 0 and
for each n there exists a minimizer v, of G} oy in Hy (RN) such that 6, := || v, — 70| —
70l|oomyy — 0 as m — oo. Then using Lemma 4.2 and the fact that |c[ < vs = 2arg we
obtain

(5.26) Ecr(vn) +cQ(vy) >0 for all sufficiently large n.

From (5.22) and (3.4) we obtain

1

4 _2\12
(5.27) 1Q (1) — Qvy)] < <h,21 + h,]{’MQN> My; — 0 as n — o0.
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Since Egr(vn) < Egr(ty), it is clear that

Puli) = Fenlin) +eQin) + | Vil =) =a? (¢ — iul) = 3)" do

> EGL(Un) + CQ(Un) + C(Q(an) - Q(Un))

= [ |Vliro = @) = @ (¢(Iro — @al) = 1)
RN

2‘(11’

Using the last inequality and (5.24), (5.26), (5.27) we infer that liminf E.(4@,) > 0. Combined

n—oo

with (5.25), this gives lim sup A(,) < 0, which clearly contradicts (5.21). This completes the

n—oo
proof of Lemma 5.4. O
Next we prove that we cannot have « € (0, ap). To do this we argue again by contradiction
and we assume that 0 < a < «ag. Let t, be as in (5.11) and let R, = %" For each n > 1, fix
yn € RN such that Egéy"’R")(un) > gn(Ry) — 1. Using (5.12), we have

e :—/ [V + a2 (#2170 — un|) — 18)” da
(5.28) B(yn2Rn)\B(yn,Rn)

< ¢n(2Rn) — (gn(Rn) — 2) — 0 as n — oc.

After a translation, we may assume that y, = 0. Using Lemma 3.3 with A = 2, R = R,,
€ = &y, we infer that for all n sufficiently large there exist two functions w1, uy, 2 having the
properties (i)-(vi) in Lemma 3.3.

From Lemma 3.3 (iii) and (iv) we get |Egr(un) — Eqr(un1) — Eqr(unz2)| < Cep, while
Lemma 3.3 (i) and (ii) implies Egr,(un1) > Egg)’R")(un) > ¢n(Rn)—1, respectively Egr(un2) >

ERV\BO2R) v 5 p King i d inf
oL (un) > Eqr(un)—qn(2R,). Taking into account (5.11), (5.12) and (5.28), we infer

that
(5.29) Ecr(un1) — « and Ecr(up2) — ap— as n — 00.

By (5.28) and Lemma 3.3 (iii)—(vi) we obtain

(5.30) |A(un) — A(un,1) — A(up2)| — 0,
(5.31) |Ec(un) — Ec(tun,1) — Ec(unz2)| — 0, and
(5.32) |P.(un) — Pe(un,1) — Pe(un2)| — 0 as n — 00.

From (5.32) and the fact that P.(u,) — 0 we infer that P.(uy1)+ Pe(up2) — 0 asn —
00. Moreover, Lemmas 4.1 and 4.5 imply that the sequences (P.(un;))n>1 and (Ee(tun;:))n>1
are bounded, ¢ = 1,2. Passing again to a subsequence (still denoted (uy,),>1), we may assume
that nh_)rgo P.(up1) = p1 and nh_)r{)lo P.(up2) = p2 where p1, po € R and p; + p2 = 0. There are

only two possibilities: either p; = pa = 0, or one element of {p1, p2} is negative.
If p1 = p2 =0, then (5.29) and Lemma 5.2 imply that liminf E.(u, ;) > T¢, i = 1, 2. Using
n—oo

(5.31), we obtain lim inf E.(u,) > 27 and this clearly contradicts the assumption E.(u,) —
n—oo

T, in Theorem 5.3.
If p; < 0, it follows from (5.29) and Lemma 4.8 (ii) that liminfA(u,;) > Y717,. Using
n—od

(5.30) and the fact that A > 0, we obtain liminfA(u,) > %TC, which is in contradiction
n—oo
with (5.7).
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We conclude that we cannot have o € (0, avp).
So far we have proved that 1tlim q(t) = ap. Proceeding as in [30], it follows that for each
—00

n > 1 there exists x,, € RN such that for any € > 0 there is R. > 0 and n. € N satisfying
(5.33) Egg"’RE)(un) > —€ for any n > n..

Let @, = un(- + ), so that 4, satisfies (5.33) with B(0, R.) instead of B(x,, R:). Let
X € C°(C,R) be as in Lemma 2.2 and denote @y, 1 = X(Un)Un, Un,1 = (1 — x(@p))ay,. Since
Ecr(tn) = Egr(uy) is bounded, we infer from Lemma 2.2 that (@y1)n>1 is bounded in
DLM2(RN), (tin2)n>1 is bounded in HY(RYN) and (EgL(iin,i))n>1 is bounded, i = 1, 2.

Using Lemma 2.1 we may write 7o — tUy,,1 = pnew”, where %ro < pp < %ro and 0, €
DI2(RYN). From (2.4) and (2.7) we find that (p, — r¢)n>1 is bounded in H'(RY) and (6,)n>1
is bounded in DV2(RN).

We infer that there exists a subsequence (ny)r>1 and there are functions u; € DH2(RY),
up € HY(RY), 0 € DV2(RN), p € ro + H'(RY) such that

Upy 1 — UL and Op, — 0 weakly in DV2(RY),
Upy,2 — U2 and Pry —T0 = p—T0 weakly in H1(RY),
ank,l — Uy, ank,Q — uz, enk — 07 Pny —To ——pP—T0

strongly in LP(K), 1 < p < 2* for any compact set K C R" and almost everywhere on R".
Since Uy, 1 =10 — pnkew"k — 1o — peie a.e., we have rg — u; = pew a.e. on RV,

Denoting u = uj + ug, we see that ,, — u weakly in DV2(RY), @, — u a.e. on RY
and strongly in LP(K), 1 < p < 2* for any compact set K C RV,

Since Eqr(@in) is bounded, it is clear that (¢?(|ro — tn,|) — r%)k21 is bounded in L?(R")
and converges a.e. on RY to ¢?(|rg — u|) — rZ. From Lemma 4.8 p. 11 in [26] it follows that

(5.34) (g02(|7"0 — A, |) — r%) — 902(\7“0 —ul) — 7“(2) weakly in LQ(RN).

The weak convergence iy, — u in DY2(RY) implies

) _
(5.35) / Ou dr < lim inf/ Ottny.
R R

2
dr < oo forj=1,...,N.
N 8a:j k—o00 N 8.1“]' ]

Using the a.e. convergence and Fatou’s lemma we obtain

(5.36) / (*(Iro — ul) — 7“(2))2 dzx < liminf/ (*(Iro — in, |) — 7“(2))2 dx
RN RN

k—o0

From (5.35) and(5.36) it follows that u € X and Egr(u) < li]in inf Eqr,(tn, )
—00
We will prove that

(5.37) lim V(|ro — tin, |*) do = / V(|ro — ul?) da
k—o0 RN RN

and

(5.38) Tim Qin,) = Q(u).

Fix ¢ > 0. Let R, be as in (5.33). Since Egr(Uyn,) — ao as k — oo, it follows from
(5.33) that there exists k- > 1 such that

RN\B(O,RE)(

(5.39) E;; Up, ) < 2 for any k > k..
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As in (5.35)—(5.36), the weak convergence Vi, — Vu in L2(R" \ B(0, R.)) implies

/ |Vu|? dz < hmlnf/ Vi, | dz,
RN\B(0,R:) k—oo JRN\B(0,R.)

while the fact that u,, — u a.e. on RY and Fatou’s lemma imply

k—oo

/ ( 2(|ro — ul) — ""0) dr < hmlnf/ (@2(\7“0 — Uy, |) — ?”8)2 dz.
RN\B(0,R:) RN\B(0,R:)
Therefore

(5.40) ERI\BOR) ) < liminf B¢ TABOR) (g ) < 2.

Let v € X be a function satisfying E M\B(0, RE)( )
V(s) =V(¢*(\/3)) + W(s). Using (1.5) we ﬁnd

2
S, Vo —eb)ldz <1 | (¢ (1ro = o)~ 78)° do

RN\B(0,R;)

< 2e. As in the introduction, we write

(5.41)

Cy pRM\B(0,R:) 20
< GEy, (v) < e,

It is clear that W(\rg —v(2)|?) = 0if [rg — v(x)| < 279. On the other hand, |rg — v(x)| > 2rg
implies ( 2(|ro — v(z r%)Q > 9rg, consequently

2e

IralLN ({z € RN\ B(0,R.) | |ro — v(z)| > 2ro}) < / (¢ 2(|ro —v]) — 1"0) dr < —.
RN\B(0,Rc)

a

Using (1.7), Holder’s inequality, the above estimate and the Sobolev embedding we find

/ (W (|ro —v|*)|dx < C [0|2P0+2 g
RN\B(O,RE) (RN\B(OyRE))m{|T’0—’L)|>27’0}

2pg+2
E3

B4 o[ wra) (e e R\ BOR) o)) > 2r)

Po-‘r

< CIHV H2P0+2 1— 21)3#'

L2(RN)E < C'(Bgp(v)™ el

It is obvious that u and @, (with k > k.) satisfy (5.41) and (5.42). If M > 0 is such that
Ecr(up) < M for any n, from (5.41) and (5.42) we infer that

S 1V r0 = el = Vo — )

5/ [V (|ro — i, [2)| + [V (Iro — u|?)| doe < Ce + CMPoH ™
RN\ B(0,R:)

(5.43)

po+2

Since z —— V(g — 2?) is CL, [V(|ro — 2?)] < C(1 + |2/*°*2) and @, — u in
L?0%2(B(0, R.)) and almost everywhere, it follows that V(|rg — @n,|?) — V(Jro — u|?) in
LY(B(0, R.)) (see, e.g., Theorem A2 p. 133 in [36]). Hence

(5.44) / V(|ro — @in, |*) — V(|ro — ul?)|dz < e if £k is sufficiently large.
(0,Rc)
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Since € > 0 is arbitrary, (5.37) follows from (5.43) and (5.44).
2% *
From (2.6) we obtain [|(1 = x*(un))unl| 2y < Cl|Vn| 5wy < C (Ecr(un)) 7. Using
the Cauchy-Schwarz inequality and (5.39) we get

o1
1— 2/~ . ng -~
S [ X )

Olin,
<1 = X (un))uall 2y | g | L2 @\ B(0,R.)) < CMT \/g for any k > k..

(5.45)

From (2.7) we infer that

1

. 1 !
||IO721 - 7"8||L2(RN) <C (EGL(un) + ||vun||%2(RN)> ? <C (M + MT) 2

(X(Un)un) 6un

< o1

Using (2.4) and (2.5) we obtain ‘89 < To <C

5 a.e. on RY and then (5.39) im-
Tl

plies || 39 2|2 @®M\B(0,R.)) < CVE for any k > k. . Using again the Cauchy-Schwarz inequality
we find

00
v < (1o, — il || 5

04,
/RN B(O,R ‘ (i, = 75) lek

(5.46) \BoRg
SC(M—FMT)Q Ve forany k> k..

L2(RN\B(0,R:))

It is obvious that the estimates (5.45) and (5.46) also hold with u instead of y, .
Using the fact that @,, — u and pp, —r9 — p —ro in L?(B(0, R.)) and a.e. and the
dominated convergence theorem we infer that

(1= X* ()i, — (L= x*(w)u  and p;, =715 — p* =13 in L*(B(0, Re)).

This information and the fact that aunk — 9u and %0:1’“ - (.?Tfl weakly in L?(B(0, R.)) imply

oz
ean [ S R de— [ Gt - de and
B(0,R:) Oy’ B(0,R:) Oz,
00 00
5.48 / p2 —rk nkda:—>/ 2 p2) =—dx.
(5:48) B(O,RE)( <~ 70) dx1 B(0,R.) (v* =70) Oy

Using (5.45)—(5.48) and the representation formula (2.12) we infer that there is some k1 (g) > k.
such that for any k > k1 (e) we have

Qi) ~ Q)| < C (M3 + MT ) VE,

where C does not depend on k > k;(e) and €. Since ¢ > 0 is arbitrary, (5.38) is proved.

It is obvious that
~eQin) = [ Vim0, do
RN

_N-3 Oy, |2
T N-— 1A(unk) + /RN ’ 0xy

dz — P.(ty,) > ——
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Passing to the limit as k — oo in this inequality and using (5.37), (5.38) and the fact that
Alup) — %ch P.(u,) — 0 as n — oo we find

(5.49) —cQ(u) — /RN V(ro —ul?) de > N- S50,
In particular, (5.49) implies that u # 0.
From (5.35) we get
(5.50) Afu) < Timinf Aiy,) = %TC.
Using (5.35), (5.37) and (5.38) we find
(5.51) P.(u) < hlﬂgf P.(ty, ) = 0.

If P.(u) < 0, from Lemma 4.8 (i) we get A(u) > X=1T,, contradicting (5.50). Thus necessarily
P.(u) = 0, that is u € C. Since A(v) > YFT, for any v € C, we infer from (5.50) that
A(u) = ¥FT,, therefore E.(u) = T, and u is a minimizer of E, in C.

It follows from the above that

N-—-1
(5.52) A(u) = TTC = klim A(ty,).
Since P.(u) =0, klim P.(ty,) =0 and (5.37), (5.38) and (5.52) hold, it is obvious that
2 0 (2
(5.53) / @‘ dz = lim il 2.
RN 83;'1 k—oo JRN 8x1

Now (5.52) and (5.53) imply klim HVﬂnkH%Q(RN) = HVUH%Q(RN). Since Vi, — Vu weakly in

L*(RN), we infer that Vi,, — Vu strongly in L2(RY), that is @,, — u in DV2(RN).
Proceeding as in the proof of (5.37) we show that

(5.54) lim (£%(1r0 — iing|) — 12)° da = /RN (&*(Iro — ul) — r3)? da.

k—oo JRN

Together with the weak convergence @?(|rg — @n, |) — 13 — ©2(|ro — u|) — 73 in L2(RY) (see
(5.34)), this implies @?(|rg — 1, |) — 78 — ¢*(Jro — u|) — 72 strongly in L?(R"). The proof
of Theorem 5.3 is complete. (|

In order to prove that the minimizers provided by Theorem 5.3 solve equation (1.3), we
need the following regularity result.

Lemma 5.5 Let N > 3. Assume that the conditions (A1) and (A2) in the Introduction
hold and that uw € X satisfies (1.3) in D'(RN). Then u € W2PRN) for any p € [1,00),

loc

Vu € WHP(RN) for p € [2,00), u € CH*(RY) for a € [0,1) and u(z) — 0 as |z| — oo.

Proof.  First we prove that for any R > 0 and p € [2,00) there exists C(R,p) > 0
(depending on u, but not on 2 € RY) such that

(5.55) lullw2r(B,r)) < C(R,p) for any z € RN,

We write u = uy + uz2, where u; and ugp are as in Lemma 2.2. Then |ui| < %2, Vuy € L?(RN)
and up € H'(RY), hence for any R > 0 there exists C(R) > 0 such that

(5.56) |l g1 (Ba,r)) < C(R) for any = € RY.
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icxq

Let ¢(x) =e~ 2 (rog —u(x)). It is easy to see that ¢ satisfies

62
(5.57) A¢+ <F(\¢I2) + 4) $=0  inD'(RY).

Moreover, (5.56) holds for ¢ instead of u. From (5.56), (5.57), (3.18) and a standard bootstrap
argument we infer that ¢ satisfies (5.55). (Note that assumption (A2) is needed for this
bootstrap argument.) It is then clear that (5.55) also holds for w.

From (5.55), the Sobolev embeddings and Morrey’s inequality (3.27) we find that u and
Vu are continuous and bounded on RY and u € C»*(RY) for o € [0,1). In particular, u is
Lipschitz; since u € L¥" (RY), we have necessarily u(x) — 0 as |z| — oo.

The boundedness of u implies that there is some C' > 0 such that |F(|ro — u[?)(ro — u)| <
C"gp (lro—u])— ‘ on RY. Therefore F(|ro—u|?)(ro—u) € L2NL>®(RY). Since Vu € L?(R"),
from (1.3) we ﬁnd Au € L*(RN). Tt is well known that Au € LP(R”Y) with 1 < p < oo implies
dac &E € LP(RN) for any i, j (see, e.g., Theorem 3 p. 96 in [34]). Thus we get Vu € W12(RN).

Then the Sobolev embedding implies Vu € LP(RY) for p € [2,2*]. Repeating the previous
argument, after an easy induction we find Vu € W1P(RY) for any p € [2, ). O

Proposition 5.6 Assume that the conditions (A]) and (A2) in the introduction are satisfied.
Let u € C be a minimizer of E. in C. Thenu € W, ’f(RN) for any p € [1,00), Vu € WHP(RY)
forp € [2,00) and u is a solution of (1.3).

Proof. 1t is standard to prove that for any R > 0, J,( / V(jro—u—v[*) dz is a C*

functional on H}(B(0, R)) and J.,(v).w = 2/ F(lro —u —v[*){ro — u — v,w) dz (see, e.g.,
N

R
Lemma 17.1 p. 64 in [26] or the appendix A in [36]). It follows easily that for any R > 0, the
functionals P.(v) = P.(u +v) and E.(v) = E.(u +v) are C' on H}(B(0, R)). We divide the
proof of Proposition 5.6 into several steps.
Step 1. There exists a function w € C}(RN) such that P/(0).w # 0.

To prove this, we argue by contradiction and we assume that the above statement is false.
Then u satisfies

CPPu N -3 (0%
8:13% N —1 P 81:%

(5.58) ) +icug, + F(jro — ul*)(ro —u) = 0 in D'(RY).

Let 0 = 1/%. It is not hard to see that u; , satisfies (1.3) in D'(R”). Hence the conclusion

of Lemma 5.5 holds for u; , (and thus for w). This regularity is enough to prove that u satisfies
the Pohozaev identity

8u17g aula
ooy [ [oelans 23 [ o[

To prove (5.59), we multiply (1.3) by Zk 9 X (5 )du1 2 where ¥ € C°(RY) is a cut-off function
such that x = 1 on B(0,1) and supp(x) C B(O 2), we integrate by parts, then we let n — oc;
see the proof of Proposition 4.1 and equation (4.13) in [33] for details.
2
Since o = y/X=1, (5.59) is equivalent to (%) A(u) + Bs(u) = 0. On the other hand we

have P.(u) = §=3 A(u) + B.(u) = 0 and we infer that A(u) = 0. But this contradicts the fact
that A(u) = T > 0 and the proof of step 1 is complete.

dr + cQ(u1s) + / V(|ro — u1,0|?) dz = 0.

RN
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Step 2. Existence of a Lagrange multiplier.

Let w be as above and let v € H! (RN ) be a function with compact support such that
P/(0).v = 0. For s, t € R, put ®(t,s) = Pe(u+tv+ sw) = P.(tv + sw), so that ®(0,0) = 0,
8? (0,0) = P/(0).v = 0 and 8‘b(O 0) = P/(0).w # 0. The implicit function theorem implies
that there exist 6 > 0 and a Cl function 7 : (=9,0) — R such that n(0) = 0, n'(0) = 0
and P.(u + tv + n(t)w) = P.(u) = 0 for t € (—4,6). Since u is a minimizer of A in C, the
function t — A(u + tv + n(t)w) achieves a minimum at ¢ = 0. Differentiating at ¢ = 0 we get
A'(u).v = 0.

Hence A'(u).v = 0 for any v € H'(RM) with compact support satisfying P.(0).v = 0.

u

Taking o = Ig/'((oig (where w is as in step 1), we see that
(5.60) A'(u)v = aPl(u)w for any v € H'(R"™) with compact support.

Step 3. We have a < 0.

To see this, we argue by contradition. Suppose that a > 0. Let w be as in step 1.
We may assume that P.(u).w > 0. From (5.60) we obtain A’(u).w > 0. Since A'(u).w =

Jim At =AW 5 q Pl(u)w = limw, we see that for ¢ < 0, ¢ sufficiently close to
t—0 t ¢ t—0 ¢

0 we have u + tw # 0, Po(u+ tw) < P.(u) = 0 and A(u + tw) < A(u) = X71T,.. But this
contradicts Lemma 4.8 (i). Therefore oo < 0.
Assume that o = 0. Then (5.60) implies

N
(5.61) / (=— Ou v ——)dz =0 for any v € H'(R") with compact support.
RN £ Bx] Ox;

Let x € C°(RY) be such that x = 1 on B(0,1) and supp(x) C B(0,2). Put v, (z) = x(Z)u(z),
so that Vo, (z) = 1Vx(Z)u + X(£)Vu. It is easy to see that ¥(5)Vu — Vu in L*(RY) and
iVX(n)u — 0 weakly in L2(RN). Replacing v by v, in (5.61) and passing to the limit as
n — oo we get A(u) = 0, which contradicts the fact that A(u) = %Tc. Hence we cannot
have a = 0. Thus necessarily o < 0.

Step 4. Conclusion.
Since av < 0, it follows from (5.60) that u satisfies

(5.62) 0%u <N 3 1> Y 9%y

C0a? o) &= ox

N—-1 « 2 +icug, + F(|ro — ul*)(ro —u) = 0 in D'(RM).

1

Let o¢ = (% - é) *. It is easy to sce that uy o, satisfies (1.3) in D'(RN). Therefore the

conclusion of Lemma 5.5 holds for u; », (and consequently for u). Then Proposition 4.1 in [33]
1mphes that uy ., satisfies the Pohozaev identity N= 3A(u1700) + Bc(u1,0,) = 0, or equivalently

]N\, 303 A(u) + oY 7' B.(u) = 0, which implies

N-3 <N—3 _ 1> A(u) + Be(u) = 0.

N—-1\N-1 «
On the other hand we have P.(u) = ¥=3 A(u)+ B.(u) = 0. Since A(u) > 0, we get =3 -1 = 1.
Then coming back to (5.62) we see that u satisfies (1.3). O
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6 The case N =3

This section is devoted to the proof of Theorem 1.1 in space dimension N = 3. We only
indicate the differences with respect to the case N > 4. Clearly, if N = 3 we have P, = B,.
For v € X we denote

D(v):/R3

For any v € X and ¢ > 0 we have

ov

ox1

2
dz + a2/ (¢*(Iro — v]) — r%)Q da.
R3

(6.1) A(vi o) = A(v), B.(v1,4) = 0% B.(v) and D(vi,) = 0?D(v).

If N = 3 we cannot have a result similar to Lemma 5.1. To see this consider v € C, so
that B.(u) = 0. Using (6.1) we see that u;, € C for any ¢ > 0 and we have E.(u1,) =
A(u) + 0?Be(u) = A(u), while Egr,(u1,,) = A(u) + 0?D(u) — 00 as ¢ — o0.

However, for any u € C there exists ¢ > 0 such that D(u; ) = 1 (and obviously u; , € C,
Ec.(u1,s) = E¢(u)). Since C # 0 and T, = inf{E.(u) | v € C}, we see that there exists a
sequence (up)p>1 C C such that

(6.2) D(uy) =1 and E.(uy) = A(uy) — T asn — oo.

In particular, (6.2) implies Egr(u,) — T, + 1 as n — 0.
The following result is the equivalent of Lemma 5.2 in the case N = 3.

Lemma 6.1 Let N =3 and let (un)n>1 C X be a sequence satisfying
a) There exists C > 0 such that D(u,) > C for any n, and
b) Be(up) — 0 as n — oo.
Then lﬂgf E.(uy) = liminf A(u,,) > S., where S, is given by (4.22).

n—oo

Proof. 1t suffices to prove that for any k£ > 0 we have

(6.3) liminf A(u,) > Eemin (k).

n—oo

Fix k > 0. Let n > 1. If A(up,) > k, by Lemma 4.6 (iii) we have A(uy,) > k > E¢pmin(k). If
A(up) < k, since Egr((un)1,0) = A(un) + 02D(uy,) we see that there exists o, > 0 such that
Ecr((un)1,e,) = k. Obviously, we have 02D (u,) < k, hence o2 < % by (a). It is clear that
E((un)1.0,) = A(un) + 02Be(un) > Eemin(k), therefore A(up) > Eemin(k) — 02| Be(un)| >
Eemin(k) — &|Be(uy)|. Passing to the limit as n — oo we obtain (6.3). Since k > 0 is
arbitrary, Lemma 6.1 is proved. U

Let
A. = {AeR| there exists a sequence (uy),>1 C X such that

D(uy) > 1, B.(up) — 0 and A(u,) — X as n — oo}

Using a scaling argument, we see that

A. = {Ae R/ there exist a sequence (up)n>1 C X and C > 0 such that
D(u,) > C, B.(u,) — 0 and A(u,) — X as n — oo}.

Let A\, = inf A.. From (6.2) it follows that T, € A.. It is standard to prove that A. is closed in
R, hence )\, € A.. From Lemma 6.1 we obtain

(6.4) Se <A < T.

The main result of this section is as follows.
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Theorem 6.2 Let N =3 and let (up)n>1 C X be a sequence such that

(6.5) D(up) — 1, Be(up) —0 and A(up) — Ae asn — oo.

There exist a subsequence (up, )k>1, a sequence (Tg)r>1 C R? and u € C such that
Vi, (- + ) — Vu  and |ro — un, (- +z3) > —rg — |ro —u* —r3 in L*(R?).

Moreover, we have E.(u) = A(u) = T, = A\ and u minimizes E. in C.

Proof. By (6.5) we have Egr(uyn) = A(up)+D(u,) — Ac+1asn — oo. Let g,(t) be the
concentration function of Eqr(uy,), as in (5.9). Proceeding as in the proof of Theorem 5.3, we
infer that there exist a subsequence of (uy, gn)n>1, still denoted (uy, ¢n)n>1, & nondecreasing
function ¢ : [0,00) — [0,00) and « € [0, A¢ + 1] such that (5.10) holds. We see also that there
exists a sequence t, — oo satisfying (5.11) and (5.12).

Clearly, our aim is to prove that o = A, + 1. The next result implies that o > 0.

Lemma 6.3 Assume that N = 3, 0 < ¢ < vs and let (up)n>1 C X be a sequence such that
D(un) — 1, Be(uy) — 0 as n — oo and sup Egp(u,) = M < oo.
n>1

There exists k > 0 such that sup / 'V, |? + a? ((,02(|r0 — Upl|) — 7“(2])2 dx > k for all
yeR? J B(y,1)
sufficiently large n.

Proof. We argue by contradiction and assume that the conclusion of Lemma 6.3 is false.
Then there exists a subsequence, still denoted (uy,),>1, such that

(6.6) sup Egéy’l)(un) —0 as n — oo.
yeR3

Exactly as in Lemma 5.4 we prove that (5.14) holds, that is

(6.7) lim ‘V(\m —up|?) — a® (*(|ro — un|) — r%)Q ’ dx = 0.

n—oo [R3

Using (6.7) and the assumptions of Lemma 6.3 we find

2
(6.8)  cQ(un) = Be(un) — D(un) — /3 V([ro = un|?) = a® (¢*(Iro — un|) = r5)” dz — —1
R
as n — o00. If ¢ = 0, (6.8) gives a contradiction and Lemma 6.3 is proved. From now on we
assume that 0 < ¢ < v,.
Fix ¢; € (¢,vs), then fix 0 > 0 such that

M
(6.9) o> —C

¢ —c

A simple change of variables shows that M := sup Eqr,((un)1,) < oo and (6.7) holds with
n>1

(un)1,0 instead of wy,. It is easy to see that ((un)1,0)n>1 also satisfies (6.6). Using Lemma 3.2
we infer that there exists a sequence h,, — 0 and for each n there exists a minimizer v, of

G in HY,,), (R®) such that

(6.10) || [on — 7ol = rol[Lom3) — 0 as n — 00.
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From (3.4) we obtain

(6.11) 1Q((un)1,0) — Q(vn)] < (h%+h§M§>2M—>O as n — 00.

Using (6.10), the fact that 0 < ¢; < 2arg and Lemma 4.2 we infer that for all sufficiently large
n we have

(6'12) EGL(UTL) + CIQ(UH) > 0.
Since Eqr(vn) < Eqr((un)i,e), for large n we have

0 < Ear(vn) + c1Q(vy)

< EGL((Un)l,o') + ClQ((un)l,o’) + Cl|Q((un)1,0) - Q(vn)|

= A(un) + Be((un)1,6) + (1 = 0)Q((un)1,0) + c1|Q((un)1,0) — Q(vn)|
(619 + [0 (0 = o) = 78) = Vilro = (o) de

= A(un) + 0%Be(up) + 0%(c1 — ¢)Q(uy) + an

< M + 0%Be(up) + 0%(c1 — ¢)Q(up) + an,
where

an = c1|Q((un)1,0) — Q(vn)| + /R3 a’ (@2(|T0 — (un)1,0]) — T(%)Q = V(|ro — (Un)l,a|2) dr.

From (6.7) and (6.11) we infer that lim a, = 0. Then passing to the limit as n — oo

n—oo
in (6.13), using (6.8) and the fact that lim B.(u,) = 0 we find 0 < M — 02%=¢. The last
n—oo
inequality clearly contradicts the choice of o in (6.9). This contradiction shows that (6.6)
cannot hold and Lemma 6.3 is proved. O

Next we show that we cannot have a € (0, A\. + 1). We argue again by contradiction and
we assume that o € (0, A\c + 1). Proceeding exactly as in the proof of Theorem 5.3 and using
Lemma 3.3, we infer that for each n sufficiently large there exist two functions wy, 1, u, 2 having
the following properties:

(6.14) Ecr(up1) — a, Ear(uni) — Ae+1—q,
(6.15) |A(un) — A(un,1) — A(up,2)| — 0,

(6.16) |Be(un) — Be(un1) — Be(un2)| — 0,

(6.17) |D(upn) — D(un,1) — D(un2)] — 0 as n — 00.

Since (Eqr(un;i))n>1 are bounded, from Lemmas 4.1 and 4.5 we see that B.(un;))n>1 are
bounded. Moreover, by (6.16) we have lim (Bc(un1)+ Be(upn2)) = lim Bc(u,) = 0. Simi-
n—00 1100

larly, (D(un,i))n>1 are bounded and lim (D(up,1) + D(up2)) = lim D(u,) = 1. Passing again
- n—oo n—oo

to a subsequence (still denoted (uy), > 1), we may assume that

(6.18) lim Be(un,1) = b1, lim Bc(un2) = ba, where b; € R, b1 + b2 =0,

n—oo n—oo
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(6.19) lim D(up,) = di, lim D(up2) = do, where d; > 0, di +do = 1.
n—oo

n—oo

From (6.18) it follows that either by = by = 0, or one of by or b is negative.

Case 1. If by = by = 0, we distinguish two subcases:

Subcase 1a. We have d; > 0 and do > 0. Let 0; = TQdT’ i =1,2. Then D((uni)1,0,) =
02D(un;) — 4 and Be((uni)1e;) = 02Be(un;) — 0 as n — oo. From (6.1) and the
definition of A, it follows that liminf A(uy, ;) = liminf A((upi)1,6,) > Ae, @ = 1,2. Then (6.15)
implies e e

liminf A(u,) > liminf A(up,1) + hnniio%f A(un2) > 2,

n—oo n—oo

an this is a contradiction because by (6.5) we have lim A(uy) = A..
n—oo

Subcase 1b. One of d;’s is zero, say di = 0. Then necessarily do = 1, that is lim D(up2) =
1. Since Egr,(un2) = A(un2)+D(up2) — 14+ A.—a as n — oo, we infer that anr;o Aup2) =
Ae—a. Hence D(uy2) — 1, Be(up2) — 0 and A(up2) — Ac—aasn — oo?:xf%oich implies
Ae — a € A.. Since a > 0, this contradicts the definition of ..

Case 2. One of b;’s is negative, say by < 0. From Lemma 4.8 (ii) we get lim inf A(u, 1) >
T. > A and then using (6.15) we find linnii;gf A(up) > A¢, in contradiction Wi‘ﬁﬁ?é%).

Consequently in all cases we get a contradiction and this proves that we cannot have

a€ (0, . +1).
Up to now we have proved that tlim q(t) = A¢ + 1, that is ”concentration” occurs.
—0Q0

Proceeding as in the case N > 4, we see that there exist a subsequence (uy, )i>1, a sequence
of points (7x)g>1 C R? and u € X such that, denoting iy, (z) = up, (z + 7), we have:

(6.20) Vi, — Vu and @*(|rg — tin, |) — 18 — ©*(|ro — u|) — rg weakly in L*(R3?),

(6.21) lp, — uw in LY

(R?) for 1 < p < 6 and a.e. on R?,

(6.22) /R V(1o — i, |2) dz —> /R Vi(ro — ul?) dx,
(6.23) | o= =) do— [ (0 —u) = 13)" da,
(6.24) Qlin,) — Q) ask— o

Passing to the limit as kK — oo in the identity
~ 2 2( 2 ~ 212 ~ ~ ~
/R3 V(Jro = tin, |*) — a” (¢*(Iro — tin|) — 75)” do + cQ(in,,) = Be(itn, ) — D(in,,),
using (6.22)—(6.24) and the fact that B.(ty, ) — 0, D(@y,) — 1 we get
/ V(ro — ul?) — a® (@2(\7'0 —ul) — 7“(2))2 dx 4 cQ(u) = —1.
R3

Thus u # 0.
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From the weak convergence Vi, — Vu in L?(R3) we get

2 & 12
(6.25) / Oul? gy < liminf/ O | 4 for j=1,....N.
R3 895]- k—oo JR3 axj
In particular, we have
(6.26) Au) < klingo A(ty,) = Ae.
From (6.22), (6.24) and (6.25) we obtain
(6.27) B.(u) < klin;o B.(ty,) = 0.

Since u # 0, (6.27) and Lemma 4.8 (i) imply A(u) > T.. Then using (6.26) and the fact that
Ae < T, we infer that necessarily

(6.28) A(w) =Th = Ao = lim A(ii,).

k—o0

D,

The fact that B.(t,,) — 0, (6.22) and (6.24) imply that </
R

) _
If / @‘ do < tim [ |2

R3 0x1 k—oo JR3 0x1
Lemma 4.8 (i) implies A(u) > T¢, a contradiction. Taking (6.25) into account, we see that

necessarily

(6.29) /R 3

Thus we have proved that u € C and |[Vul|p2(gs) = klim ||V, || 22(r3)- Combined with the

2
d$> converges.
E>1

3 X1

2
dx, we get B.(u) < klim Be(ty,) = 0 in (6.27) and then
—00

2

Ou dx and B.(u) = 0.

dxy

D,

81’1

2 .
‘ dr = lim
k—oo R3

weak convergence Vi, — Vu in L?(R3), this implies the strong convergence Vi, — Vu
in L?(R?). Then using the Sobolev embedding we find ,, — u in L5(R?).
From the second part of (6.20) and (6.23) it follows that

(6.30) P*(Iro — ) =16 — @*(Iro —ul) =r§  in L*(R®).

Let G(z) = |ro — 2|2 — ©(|ro — 2z|). It is obvious that G € C°°(C,R) and |G(2)| < C|ro —
2P L frg—spm 20} < C’|z|2]l{|z|>m§ < C"[ 2L 2500}~ Since G, — w in LS(R?), it is easy to see
that G(@,, ) — G(u) in L*(R?) (see Theorem A4 p. 134 in [36]). Together with (6.30), this
gives |ro — fin, |> — 18 — |ro —u|? —r¢ in L2(R3) and the proof of Theorem 6.2 is complete. [J

To prove that any minimizer provided by Theorem 6.2 satisfies an Euler-Lagrange equation,
we will need the next lemma. It is clear that for any v € X and any R > 0, the functional
BY(w) := Be(v +w) is C' on H}(B(0, R)). We denote by (BY)(0).w = Pn%w its

derivative at the origin.

Lemma 6.4 Assume that N > 3 and the conditions (A1) and (A2) are satisfied. Letv € X
be such that (B2)'(0).w = 0 for any w € C}(RY). Then v =0 almost everywhere on RY.

Proof. We denote by v* be the precise representative of v, that is v*(x) = hII(l) m(v, B(z,7))
r—

if this limit exists, and 0 otherwise. Since v € Llloc(RN ), it is well-known that v = v* almost

everywhere on RY (see, e.g., Corollary 1 p. 44 in [14]). Throughout the proof of Lemma 6.4
we replace v by v*. We proceed in three steps.
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Step 1. There exists a set S C RY~! such that £LY~1(S) = 0 and for any 2’ € RN~1\ §
the function v, := v(-,2’) belongs to C?(R) and solves the differential equation

(6.31) —(vy)"(s) + ic(vy) (s) + F(|ro — v (s)]?) (ro — v (s)) = 0 for any s € R.
Moreover, we have |v,/(s)| — 0 as s — £oo and v,/ satisfies the following properties:

(6.32) wy € L¥ (R), ©*(|ro —vw|) — 72 € L*(R)  and  (vy) = @(.,x’) € L*(R),

ox1

(6.33) F(ro — v ?)(ro — ver) € LA(R) + L7071 (R).

It is easy to see that F(jrg — v|?)(rg —v) € L2(RN) + Lﬁ(RN). Since v € H. (R?),
using Theorem 2 p. 164 in [14] and Fubini’s Theorem, respectively, we see that there exists a
set S ¢ RV~ such that £V~1(S) = 0 and for any 2/ € RV~1\ S the function v, is absolutely
continuous, v,y € H} (R) and (6.32)—(6.33) hold.

Given ¢ € CHR), we denote Ay(z1,2') = (%(azl,x’),¢’(a@1)> + c(i%(ml,x’),qﬁ(m» +

(F(lro — v|*)(ro — v)(x1,2"), ¢(x1)). From (6.32) and (6.33) it follows that Ay(-,2’) € LI(R)
for ' € RVN~1\ S. For such 2’ we define \g(z') = / Ay(z1,2")dxq, then we extend the

R
function Ay in an arbitrary way to RN Let ¢ € CLRN1). Tt is obvious that the
function (z1,2') — Ag(x1,2")9(z’) belongs to L'(RY) and using Fubini’s Theorem we get

/ Ay(z1,2")p(2") dx = / Ao(2")1(2") dz’. On the other hand, using the assumption of
RN RN-1

Lemma 6.4 we obtain 2 Ay(z1, 2" (2 ) do = (Bg)/ (0).(¢(x1)(2")) = 0. Hence we have
RN

/RN1 Ao(2)(z')da’ = 0 for any ¢ € CLRY"!) and this implies that there exists a set

Ss C RN=1\ S such that £LN=1(Sy) =0 and A\g = 0 on RN"1\ (SUSy).

Denote gy = ﬁ*ﬂ € (1,00). There exists a coutable set {¢, € C}(R) | n € N} which
is dense in H'(R) N L%(R). For each n consider the set Sy, C RV~! as above. Let S =
Su U Sp,- It is clear that £LV71(S) = 0.

neN

Let ’ € RVN"1\ S. Fix ¢ € C}(R). There is a sequence (¢n, )r>1 such that ¢,, —
¢ in H'(R) and in L%(R). Then Agy, (¢') = 0 for each k and (6.32)—(6.33) imply that
Agn, (77) — Ap(2'). Consequently Ay(z') = 0 for any ¢ € CH(R) and this implies that v,
satisfies the equation (6.31) in D'(R). Using (6.31) we infer that (v,/)” (the weak second
derivative of v,/) belongs to Li (R) and then it follows that (v,/)" is continuous on R (see,
e.g., Lemma VIIL.2 p. 123 in [8]). In particular, we have v, € C'(R). Coming back to
(6.31) we see that (v,)"” is continuous, hence v,y € C2(R) and (6.31) holds at each point of
R. Finally, we have |v,(s2) — vy (s1)] < |s2 — sl\%H (var) ||2; this estimate and the fact that
vy € L2 (R) imply that v, (s) — 0 as s — Fo0.

Step 2. There exist two positive constants k1, ko (depending only on F' and c¢) such that
for any 2’ € RN \ S we have either v,y = 0 on R or there exists an interval I, C R with
LY(I) > ky and | |rg — vgr| — 70| > ko on L.

To see this, fix 2’ € RV~!\ S and denote g = |rg — vy/|? — r3. Then g € C*(R,R) and g
tends to zero at +o0o. Proceeding exactly as in [33], p. 1100-1101 we integrate (6.31) and we
see that g satisfies

(6.34) (9')?(s) + g*(s) —4(g(s) + )V (g(s) +73) =0  inR.
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Using (1.4) we have ¢®t2 —4(t+13)V (t + 1) = t3(c* —v2 +¢£1(t)), where g1(t) — 0 as t — 0.
In particular, there exists kg > 0 such that

(6.35) At — At + AVt +13) <0 for t € [—2kg,0) U (0, 2ko).

If g = 0 on R then |rg—v,| = 1o and consequently there exists a lifting 79 — v,/ (s) = roe?(®)

with § € C?(R,R). Using equation (6.31) and proceeding as in [33] p. 1101 we see that either
0 — Vg (8) = 10€™0 or 1y — vy () = 19e’** % where 6y € R is a constant. Since vy € L¥ (R),
we must have v, = 0.

If g # 0, the function g achieves a negative minimum or a positive maximum at some sy € R.
Then ¢'(sp) = 0 and using (6.34) and (6.35) we infer that |g(so)] > 2ko. Let so = inf{s <
so | lg(s)] > 2ko}, s1 = sup{s < s2 | g(s) < ko}, so that s1 < s2, |g(s1)| = ko, |g(s2)| = 2ko and
ko < |g(s)| < 2kq for s € [s1, s2]. Denote M = sup{4(t +r2)V (t +r3) — 2t | t € [—2ko, 2ko]}.
From (6.34) we obtain |¢/(s)| < VM if g(s) € [~2ko, 2ko] and we infer that

ko =las2)] ~ la(s2)| < | [ o) ts| < V(52 = )

hence sy — 51 > f—%[ Obviously, there exists ko > 0 such that | |rg — 2|2 — r3| > ko implies

||ro — z| — 10| > ko. Taking k; = j—oﬁ and I, = [s1, s2], the proof of step 2 is complete.

Step 3. Conclusion.

Let K = {2/ € RVN"1\ S| vy # 0}. It is standard to prove that K is £V ~!—measurable.
The conclusion of Lemma 6.4 follows if we prove that £V ~1(K) = 0. We argue by contradiction
and we assume that £V ~1(K) > 0.

If 2/ € K, it follows from step 2 that there exists an interval I, of length at least
ki such that (p*(|ro — ve|) —r%)z > n(ke) on I, where n is as in (3.30). This implies

/ (¢*(Iro — v(21,2)]) — r%)z dxy > kin(kz) and using Fubini’s theorem we get
R

/RN (©2(ro — v(@)]) —12)? dz = /

K
> kin(ko) LN 7L(K).

Since v € X, we infer that LV ~1(K) is finite.

It is obvious that there exist ) € K and z, € RV~1\ (K U S) arbitrarily close to each
other. Then [v,r| > ky on an interval I,s of length ki, while v,; = 0. If we knew that v
is uniformly continuous, this would lead to a contradiction. However, the equation (6.31)
satisfied by v involves only derivatives with respect to x1 and does not imply any regularity
properties of v with respect to the transverse variables (note that if v is a solution of (6.31),
then v(z1 + d(2'),2’) is also a solution, even if § is discontinuous). For instance, for the Gross-
Pitaevskii nonlinearity F'(s) =1 — s it is possible to construct bounded, C*° functions v such
that v € L¥ (RY), (6.31) is satisfied for a.e. 2/, and the set K constructed as above is a
nontrivial ball in RN=1 (of course, these functions do not tend uniformly to zero at infinity,
are not uniformly continuous and their gradient is not in L2(R")).

We use that fact that one transverse derivative of v (for instance, a%> is in L2(RY) to get
a contradiction.

For 2/ = (z9,23,...,2n5) € RN™!, we denote 2” = (3,...,2n). Since v € H} (RY), from
Theorem 2 p. 164 in [14] it follows that there exists J C RY~! such that £V ~1(J) = 0 and
u(z1,-,2") € HL (RY) for any (z1,2"”) € RVN71\ J. Given 2” € RV~2 we denote

K, ={zg € R| (z2,2") € K},
Sy ={xe € R | (22,2") € S},
Jpr = {.%'1 eR ’ (xl,x”) S J}
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Fubini’s Theorem implies that the sets K, Sy, Jy are L'—measurable, £'(K,») < oo and
LY(Syn) = LY (Jpn) =0 for LV 2—ae. 2" € RV 72 Let

G = {2 e RVN"2| K, Sy, Jyn are L' measurable,

(6.36) LY(Syn) = LY(Jpr) = 0 and 0 < LK) < 00}

Clearly, G is £N~2—measurable and / LYK ) da" = LY7YHK) > 0, thus £V72(G) > 0. We
claim that
ov

(6.37) /R o

Indeed, let 2" € G. Fix € > 0. Using (6.36) we infer that there exist s1, s € R such
that (s1,2”) € RVN"1\ (K US), (s2,2") € K and |sy — 51| < e. Then v(t,s1,2”) = 0 for
any t € R. From step 2 it follows that there exists an interval I with £!(I) > kj such that
[v(t, s2,2")| > ||ro — v(t, s2,2")| — ro| > ko for t € I. Assume s; < s9. If t € I\ Jp» we have
v(t,-,2") € H. (R), hence

2
—(z1, 9, )’ dr1 dzy = 00 for any 2" € G.

52

ko < |u(t,se,2") —v(t,s1,2")| = 88 (t,7,2")dr
S9 5

< (st ([ e nan df) .

2

C %21 dv k2
Clearly, this implies d’]‘ > —=. Consequently

s 8x2(t7 )
ov
dzyd
/R2 ax2($1,9€2, )‘ r1dxg > //51

Since the last inequality holds for any ¢ > 0, (6.37) is proved. Using (6.37), the fact that

ov |2

LN=2(G) > 0 and Fubini’s Theorem we get / ‘ v
RN
v € X. Thus necessarily £V ~1(K) = 0 and the proof of Lemma 6.4 is complete. O
Proposition 6.5 Assume that N = 3 and the conditions (A1) and (A2) are satisfied. Let
u € C be a minimizer of E. in C. Then u € W2F(R3) for any p € [1,00), Vu € WP(R3) for

loc

p € [2,00) and there exists o > 0 such that w1, s a solution of (1.3).

*dr dt > klk?

—(t,7,2")

dx = oo, contradicting the fact that

Proof.  The proof is very similar to the proof of Proposition 5.6. It is clear that A(u) =
E.(u) = T, and u is a minimizer of A in C. For any R > 0, the functionals BY and A(v) :=
A(u+v) are C! on H}(B(0, R)). We proceed in four steps.

Step 1. There exists w € C}(R3) such that (B%)'(0).w # 0. This follows from Lemma 6.4.
Step 2. There exists a Lagrange multiplier & € R such that

(6.38) A'(0).v = a(BY) (0).v for any v € H'(R3), v with compact support.
Step 3. We have a < 0.

The proof of steps 2 and 3 is the same as the proof of steps 2 and 3 in Proposition 5.6.

Step 4. Conclusion.
Let 8 = —1. Then (6.38) implies that u satisfies

0%u 3 0%u n 0%u
Ox? O0x3 Oz}
For 02 = 1 we see that u1,, satisfies (1.3). It is clear that u;, € C and u;, minimizes A

(respectively E.) in C. Finally, the regularity of u;, (thus the regularity of u) follows from
Lemma 5.5. O

) +icug, + F(lro — ul*)(ro — u) = 0 in D'(R?).

o1



7 Further properties of traveling waves

By Propositions 5.6 and 6.5 we already know that the solutions of (1.3) found there are
in Wli’f(RN) for any p € [1,00) and in C?>(RY). In general, a straightforward boot-strap
argument shows that the finite energy traveling waves of (1.1) have the best regularity allowed
by the nonlinearity F. For instance, if FF € C([0,00)) for some k € N*, it can be proved
that all finite energy solutions of (1.3) are in W/lijz’p(RN) for any p € [1,00) (see, for instance,
Proposition 2.2 (ii) in [33]). If F' is analytic, it can be proved that finite energy traveling waves

are also analytic. In the case of the Gross-Pitaevskii equation, this has been done in [5].

A lower bound K (¢, N) on the energy of traveling waves of speed ¢ < vg for the Gross-
Pitaevskii equation has been found in [35]. The constant K (c, N) is known explicitly and we
have K (¢, N) — 0 as ¢ — vs. In the case of general nonlinearities, we know that any finite
energy traveling wave u of speed c satisfies the Pohozaev identity P.(u) = 0, that is u € C.
Then it follows from Lemma 4.7 that A(u) > ¥=1T, > 0.

Our next result concerns the symmetry of those solutions of (1.3) that minimize E, in C.

Proposition 7.1 Assume that N > 3 and the conditions (A1), (A2) in the introduction hold.
Let u € C be a minimizer of E. in C. Then, after a translation in the variables (xa,...,zN),
u 18 axially symmetric with respect to Oxy.

Proof. Let T, be as in Lemma 4.7. We know that any minimizer u of F, in C satisfies
A(u) = Y27, > 0. Using Lemma 4.8 (i), it is easy to prove that a function u € X is a
minimizer of E. in C if and only if

o . . N -1
(7.1) u minimizes the functional — P, in the set {v € X' | A(v) = TTC}.

The minimization problem (7.1) is of the type studied in [32]. All we have to do is to verify
that the assumptions made in [32] are satisfied, then to apply the general theory developed
there.

Let II be an affine hyperplane in RY parallel to Oz;. We denote by sy the symmetry of
R with respect to II and by IIT, II~ the two half-spaces determined by II. Given a function
v € X, we denote

| v(x) if z € It UT, | v(x) if v e II7 UII,
v+ () = { v(si(z)) ifxell, and v~ (2) { v(sp(x)) ifz eIlt.

It is easy to see that v+, vg- € X. Moreover, for any v € X we have
Ave) + A(vp-) = 2A(w)  and  Pe(vps) + Pe(vpg-) = 2P.(v).

This implies that assumption (A1.) in [32] is satisfied.

By Propositions 5.6 and 6.5 and Lemma 5.5 we know that any minimizer of (7.1) is C*
on R, hence assumption (A2.) in [32] holds. Then the axial symmetry of solutions of (7.1)
follows directly from Theorem 2’ in [32]. O
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