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Abstract. The aim of this paper is to analyze the performances of penalized estimation
methods. For this, we propose to describe the maximal sets where these methods attain a
special rate of convergence. We deal both with regularity-type penalty, leading to penal-
ized splines estimators, an penalty over the dimension, leading to so-called model selection
estimators.

1. Introduction

In nonparametric estimation, there exist several different ways of constructing estimators
of a regression function: kernel methods, thresholded estimators, projection estimators or
model selection estimators. Choosing a method rather than an other, if not a question of
belief, implies comparing the asymptotic performance of the different estimators. But the
choice of such a criterion that enables a clear comparison is not clear.

A classical setting to compare procedures is the minimax point of view. Given a class
of functional spaces, we compare two procedures by comparing the maximal rate achieved
by these procedures on each member of this class. And to check that a procedure is op-
timal from the minimax point of view (said to be minimax), we establish that it achieves
the best rate achieved by any procedure on each space. This minimax approach is widely
used and many methods cited above are proved to be minimax in different statistical frame-
works. However, this minimax approach has undoubtedly two drawbacks: the choice for
the function class is quite subjective and providing an estimator well adapted to the worst
functions of this class seems too pessimistic for practical purposes. More problematical in
practice, several minimax procedures are proposed and the practitioner has no way to decide
his experiment. To answer these problems, a new setting has been proposed: the maxiset
point of view. It consists in deciding the accuracy of the procedure by fixing a target rate
αn and to point out all the functions that can be estimated at this rate. Of course the larger
the maxiset, the better the procedure. The set of these functions is called the maxiset of
the procedure. The maxiset point of view brings answers to the previous questions. There
is no a priori functional assumption and we do not need to restrict our attention to the
study on an arbitrary functional space. The practitioner states the desired accuracy and
then knows the quality of the used procedure. Obviously, he chooses the procedure with the
largest maxiset. For instance, in the white noise setting, the maxiset theory has been inves-
tigated in [Kerkyacharian and Picard, 2002], [Cohen et al., 2001] for kernel and thresholding
estimates and in [Rivoirard, 2003] and [Rivoirard, 2004] for Bayesian and linear estimators.
[Autin, 2005] investigated maxisets in the density model. For a large review of maxiset results,
we refer the reader to [Autin and Rivoirard, 2005]. For instance, it has been established that
the maxisets of linear methods are in fact Besov spaces, whereas the maxisets of thresholding
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estimates are Lorentz spaces reflecting extremely well the practical observation that wavelet
thresholding performs well when the number of wavelet coefficients is small. It has also been
observed in [Kerkyacharian and Picard, 2002] that there is a deep connection between oracle
inequalities and maxisets.

Our aim is here to determine the maxisets associated with model selection procedure. To
estimate an unknown function s observed with observation errors, we choose to approximate
the data by a function in a chosen subspace called model. For this, we define an empiri-
cal criterion γn(.), depending on the observations, which will determine the quality of the
approximation and minimize this criterion over the model, which will determine the asymp-
totic behavior of the estimator. The heuristics of this estimation strategy is that, for a large
number of data, the empirical criterion γn(t) behaves like a pseudo-distance between the true
unknown function and the candidate t. Hence the main problem that arises in M-estimation
is the choice of a proper model on which the minimum contrast estimator is to be defined.
On the one hand, the model has to be close to the true function in order to guarantee a
small bias errors, but on the other hand, choosing the model as large as possible, increases
the variance error, leading to non consistent estimators. Hence we introduce a collection of
models Sm, m ∈Mn and consider penalized estimators as follows:

(1.1) ŝ = arg min
m∈Mn, t∈Sm

(γn(t) + pen(m, t)) .

The penalty aims at restricting the choice of models by imposing either a constraint over
the dimension of the model, or over the smoothness of the solution. In the first case,
pen(m, t) = pen(m) depends on the dimension of the model Sm. This case corresponds
to the standard model selection procedure widely described in the literature, see for instance
[Barron et al., 1999], [Birgé and Massart, 2001] or [Massart, 2005]. In the second case, mostly
used in the regression framework, the penalty induces smoothness restriction over the estima-
tor, leading to a regularized estimator. For general references, we refer to [Silverman, 1985]
or [van de Geer, 2000]. In both cases, the penalty has to be chosen such that the estimator
constructed over the whole range of model has a rate of convergence smaller than the rate
obtained for the best model. We also point out that throughout the paper we assume that
there always exists a solution to the minimization issue (1.1). If not, we consider the following
version of the estimator

ŝ = arg min
m∈Mn, t∈Sm

(γn(t) + pen(m, t) + εn) .

where εn → 0. If εn = O( 1
n
), the asymptotic behavior of the estimator remains unchanged.

The article falls into the following part. Section 2 is devoted to the definition of the Besov
spaces that will be discussed in this paper. Section 3 deals with maxisets for model selection
estimator in the white noise model. In Section 4, we consider the regression framework. We
lack smoothness property over the estimator to provide maxisets, hence in Section 5 we study
the issue of finding maxisets for the regression problem using splines.

2. The maxiset point of view

Let us now give the precise definition of maxisets. For this purpose, let us consider a very
general sequence of statistical models: {Ωn,An,Pnθ , θ ∈ Θ}, where the Pnθ ’s are probability
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distributions on Ωn, and Θ is the set of parameters. Let us consider a sequence of estimates
q̂n of a quantity q(θ) associated with this sequence of models, a loss function ρ and a rate of
convergence αn tending to 0. The maxiset of q̂n of radius R for the rate αn associated with
the loss ρ is the following set:

MS(q̂n, ρ, αn) = {θ ∈ Θ : sup
n
α−1
n En

θρ(q̂n, q(θ)) ≤ R}.

In this paper we only consider functional estimation and we only use ρ = ‖.‖2
L2

, the L2-loss
and we note:

MS(q̂n, αn)(R) = MS(q̂n, ‖.‖2
L2
, αn)(R).

In the sequel, the following equality

MS(q̂n, αn) = B,

where B is a given space will mean that

∀R, ∃R′, MS(q̂n, αn)(R) ⊂ B(R′) and ∀R′, ∃R, B(R′) ⊂MS(q̂n, αn)(R),

where R,R′ > 0 respectively denote the radii of balls of MS(q̂n, αn) and B. As we said, this
paper deals only with functional estimation in different statistical models. Let us now give
precise examples of maxiset results. We consider the white noise framework

(2.1) dYt = s0(t)dt+
1√
n
dWt, t ∈ [0, 1],

where s0 is the signal to be estimated, 1√
n

is the noise level and W is a Wiener process.

Under mild conditions, [Kerkyacharian and Picard, 2000] proved that for classical wavelet

thresholding estimates s̃n with thresholds of the form κ
√

log(n)/n, where κ is a constant, the
maxiset is:

MS(s̃n, (log(n)/n)2α/(1+2α)) = W (2/(1 + 2α)),

where a function f belongs to the so-called weak Besov space W (r) if and only if:

sup
λ>0

λr−2
∑
j≥−1

∑
k

β2
jkI{|βjk| ≤ λ} <∞

(see [Kerkyacharian and Picard, 2000]). Note that no maxiset results for thresholding es-
timates have been achievable when rates are polynomial. In the same model Rivoirard
[Rivoirard, 2004] studied maxisets of linear estimators ŝn for polynomial rates and, roughly
speaking, proved that

MS(ŝn, n
−2α/(1+2α)) = Bα2,∞.

We recall that a function f belongs to the Besov space Bαp,∞, if and only if:

sup
j≥−1

2j(α+ 1
2
− 1

p
)p
∑
k

|βjk|p <∞.

(see [DeVore and Lorentz, 1993]). Note that, when p = 2, f belongs to Bs2,∞ if and only if:

sup
J≥−1

22Js
∑
j≥J

∑
k

β2
jk < +∞.
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3. Maxisets for model selection in the white noise model and polynomial
rates

The goal of this section is to point out maxisets for penalized estimators developed by
Birgé and Massart in the classical Gaussian white noise model. In this framework and for
an appropriate choice of models, Birgé and Massart [Birgé and Massart, 2001] proved that
adaptive penalized rules achieve polynomial minimax rates on classical functional spaces, such
as Besov spaces Bαp,∞.
So, we consider Model (2.1). We recall that it means that for any function φ ∈ L2([0, 1]),∫

φ(t)dYt =

∫
s0(t)φ(t)dt+

1√
n

∫
φ(t)dWt

is observable. In this section, we consider a compactly supported wavelet basis denoted
(ψjk)j≥−1,k∈Z, with

ψ−1k(t) = φ(t− k), ψjk(t) = 2j/2ψ(2jt− k), j ≥ 0, k ∈ Z

and φ and ψ are respectively the father and mother wavelets. So the function s0 can be
decomposed as follows:

s0(t) =
∑
j≥−1

∑
k

βjkψjk(t),

where βjk =
∫
s0(t)ψjk(t)dt is the wavelet coefficient of s0 at level j and location k2−j.

If the support of φ and ψ is included into [Aψ, Bψ], observe that βjk 6= 0 if and only if
k ∈ Ij := {−Bψ+1, . . . , 2j−Aψ−1} and the number of unknown wavelet coefficients at level
j is |Ij|. For further details on the theory of wavelets, we refer the reader to [Meyer, 1990],
[Mallat, 1998] and [?]. Using the wavelet basis, the Gaussian white noise model is reduced to
the following sequence model:

β̂jk = βjk +
1√
n
zjk, zjk

iid∼ N (0, 1), j ≥ −1, k ∈ Z,

and we estimate the wavelet coefficients by using observations β̂jk. The estimator is built as
follows. We assume we are given a collection of finite-dimensional linear spaces {Sm : m ∈
Mn}, where Mn is a collection of subsets of {(j, k) : j ≥ −1, k ∈ Ij}. The spaces Sm are
called models. Actually, the models will be generated by wavelet bases. More precisely, we
take:

Sm = span {ψj,k : (j, k) ∈ m} .
We do not assume that s0 belongs to ∪m∈MnSm. For each m ∈ Mn, we denote by Dm the
dimension of Sm. The proofs of our results in this section will need the following assumption:

(3.1) ∃ κ > 0, such that
∑
m∈Mn

exp(−κDm) <∞.

Finally, we note ŝm the least-squares estimator of s0 in Sm and the penalty function from Mn

into R+ will be denoted pen(.). We select m̂ ∈Mn as follows:

m̂ = arg min
m∈Mn

[
−‖ŝm‖2

2 + pen(m)
]
,
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where ‖.‖2 denotes the L2-norm with respect to the Lebesgue measure µ on [0, 1]. Now, let us
investigate different choices for the models to obtain maxisets as large as possible. The most
natural choice would consists in considering all the possible models: Mn is the collection of
all subsets of {(j, k) : k ∈ Ij, j ∈ N}. But in this case, Assumption (3.1) is not checked.
So, our choice of models will be more restrictive. Another natural choice of models, checking
Assumption (3.1), is the following:

Mn = {m : m = {(j, k) : k ∈ Ij,−1 ≤ j ≤ Jm}} ,
with Jm ∈ N. Models are then nested and for any m, Dm verifies:

(3.2) c12
Jm ≤ Dm ≤ c22

Jm ,

where c1 and c2 only depend on the wavelet basis. For this poor class, maxisets of penalized
estimators are the following:

Theorem 3.1. Let α > 0 and
pen(m) = KDm/n,

where K > (1 +
√

2κ)2. If ŝm̂ is the associated penalized estimator,

MS(ŝm̂, n
−2α/(2α+1)) = Bα2,∞.

Proof: Using (3.1) and applying Theorem 47 of Massart [Massart, 2005], we have:

Bα2,∞ ⊂MS(ŝm̂, n
−2α/(2α+1)).

To prove the other inclusion, we use that for any m,

E‖ŝm − s0‖2
2 = ‖s0 − sm‖2

2 +Dm/n,

where sm is the L2-projection of s0 onto Sm. Then,

E‖ŝm̂ − s0‖2
2 ≥ inf

m∈Mn

E‖ŝm − s0‖2
2

≥ inf
m∈Mn

[‖s0 − sm‖2
2 +Dm/n]

So, using (3.2), if s0 belongs to MS(ŝm̂, n
−2α/(2α+1)), for any n ∈ N∗, there exists m = m(n)

such that

• 2Jmn−1 ≤ Cn−2α/(2α+1),
•
∑

j≥Jm

∑
k β

2
jk ≤ Cn−2α/(2α+1),

where C is a constant. So, ∑
j≥Jm

∑
k

β2
jk ≤ C1+4α/(2α+1)2−2αJm .

If there exists j0 such that

∀ j ≥ j0, ∀ k ∈ Ij, βjk = 0,

then s0 obviously belongs to Bαp,∞. Otherwise Jm(n) tends to +∞ when n tends to +∞. This
implies that

sup
J≥−1

22Jα
∑
j≥J

∑
k∈Ij

β2
jk <∞.
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Using the characterization of Besov spaces by using wavelet coefficients, this shows that s0

belongs to Bα2,∞, and

MS(ŝm̂, n
−2α/(2α+1)) ⊂ Bα2,∞.

The theorem is proved.
�

From this result, we can draw following conclusions. First of all, we conclude that in the
maxiset framework, these penalized estimators achieve exactly the same performance as lin-
ear ones (see [Rivoirard, 2004]). Secondly, note that this procedure was built to achieve
optimal rates on spaces Bα2,∞. And we show that it cannot estimate other functions at the

rate n−2α/(2α+1). In particular, functions of Bαp,∞rBα2,∞ cannot be estimated at this rate with
this penalized estimator.
To overcome this drawback, we can consider the procedure built by Massart [Massart, 2005]
that achieves minimax rates on Bαp,∞, when α > 1/p − 1/2. For this purpose, we define for
any Jm ∈ N and any j ≥ Jm,

A(j, Jm) = b2Jm(j − Jm + 1)θc,

where θ > 2. We take:

Mn = {m : m = {(j, k), k ∈ Ij,−1 ≤ j ≤ Jm − 1} ∪ {(j, k), k ∈ K(j, Jm), j ≥ Jm}} ,

with Jm ∈ N, and K(j, Jm) ⊂ Ij, such that

|K(j, Jm)| = A(j, Jm).

Note that one more time, for any m, Dm verifies:

c12
Jm ≤ Dm ≤ c22

Jm ,

where c1 and c2 only depend on the wavelet basis and θ. Furthermore, this collection of
models can be view as a compromise between too rich and too poor collections considered
before. So, we can hope to obtain satisfying maxiset results. Indeed, we have the following
theorem:

Theorem 3.2. Let α > 0 and

pen(m) = KDm/n,

where K > (1 +
√

2κ)2. If ŝm̂ is the associated penalized estimator,

MS(ŝm̂, n
−2α/(2α+1)) = Wα

2,∞,

where

Wα
2,∞ =

s : sup
J≥−1

22αJ
∑
j≥J

∑
k>A(j,J)

β2
j(k) <∞

 ,

and

βj(1) ≥ βj(2) ≥ · · · ≥ βj(|Ij |)

are the reordered wavelet coefficients of s at level j.
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Proof: Using Theorem 47 of Massart [Massart, 2005] and elements of the proof of Theorem
3.1, we prove that the risk of ŝm̂ is of the same order as

inf
m∈Mn

[‖s0 − sm‖2
2 +Dm/n].

So, one more time, s0 belongs to MS(ŝm̂, n
−2α/(2α+1)) if and only if for any n ∈ N∗, there

exists m = m(n) such that

• 2Jmn−1 ≤ Cn−2α/(2α+1),
•
∑

(j,k)/∈m β
2
jk ≤ Cn−2α/(2α+1),

where C is a constant. And as previously, we conclude that s0 belongs to MS(ŝm̂, n
−2α/(2α+1))

if and only if there exists a constant C such that for any J , there exists m with Jm = J and

22Jms
∑

(j,k)/∈m

β2
jk ≤ C,

which means that s0 ∈ Wα
2,∞. The theorem is proved.

�

There is no doubt that Bαp,∞ ( Wα
2,∞, when α > 1/p − 1/2. For instance, dealing with the

case p ≥ 2, let α > 0 and s ∈ L2([0, 1]) be such that

s =
∑
j≥−1

∑
k

βjkψjk with βjk =
2−αj

|k|+ 1
if |k| > jθ, βjk = 2−αj otherwise .

One gets that s ∈ Wα
2,∞rBαp,∞. On the one hand, to prove that s /∈ Bαp,∞, it suffices to observe

that, for any j ∈ N

2j(α−
1
p
+ 1

2
)p
∑
k

|βjk|p ≥ (2jθ + 1) 2j(
p
2
−1) ≥ jθ 2j(

p
2
−1).

So

sup
j≥−1

2j(α−
1
p
+ 1

2
)p
∑
k

|βjk|p = ∞,

which implies that s /∈ Bαp,∞. On the other hand, since
∑
j≥j0

∑
k>A(j,j0)

β2
j(k) ≤

∑
j≥j0

∑
|k|≥A(j,j0)

2

β2
jk, to

prove that the function s ∈ Wα
2,∞, it is sufficient to show that for any j0 large enough,∑
j≥j0

∑
|k|≥A(j,j0)

2

β2
jk ≤ C 2−2αj0 ,

where C is a constant which does not depend on j0. So let j0 be such that ln(3j0)
j0

< ln(2)
θ

.

Then, 3jθ0 < 2j0 which implies that for any j ≥ j0, 2j0(1− j0−1
j

)θ > 3jθ, b2j0(1− j0−1
j

)θc > 2jθ

and that
A(j, j0)

2
> jθ.
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So ∑
j≥j0

∑
|k|≥A(j,j0)

2

β2
jk ≤

∑
j≥j0

∑
|k|>jθ

2−2αj

((|k|+ 1)2

≤
∑
j≥j0

2−2αj
∑
k

1

(|k|+ 1)2

= C 2−2αj0 .

Finally one gets that s ∈ Wα
2,∞.

Note that the strict inclusion between the spaces Bαp,∞ and Wα
2,∞ shows that this procedure

strictly improves the previous one from the maxiset point of view.
�

4. Maxisets for model selection in regression model

The goal of this section is to find maxisets in the regression model. Unfortunately, we will
show that the maxiset point of view is not well adapted to this problem since the smoothness
conditions for the maxiset are imposed by the discretization issue. Here, we consider the
following model:

(4.1) Yi = s0(ti) +
σ√
n
wi, i = 1, . . . , n, wi

iid∼ N (0, 1),

where (ti)i=1,...,n ∈ [0, 1]n are discrete fixed observation times. Along this paper, we assume
that σ is kwown and σ = 1. Under conditions on the ti’s, Brown and Low (1996) showed
the asymptotic equivalence of this model and Model (2.1). For each function s, define the
corresponding empirical norm as ‖s‖2

n = 1
n

∑n
i=1 s

2(ti) to be compared with the integrated
norm ‖s‖2

2. On one hand, the first norm is well adapted to the estimation issue since, in the
sequence space, the only available values of the functions are to be taken at the observation
points. In the literature, asymptotic results are often given with respect to the empirical
norm, see for example [Kohler, 1999], [van de Geer, 2000] or [Loubes and van de Geer, 2002].
On the other hand, in the maxiset point of view, the sets are to be characterized as smoothness
functional spaces, regardless of the discretization grid. Hence we aim at finding a control of
approximation ! properties of the unknown function, with respect to the integrated norm.
In model selection, the functions are characterized by their projection onto a basis, so in
the regression framework, we introduce a bias between the real coefficients and their discrete
corresponding values. The gap between a real observation model and a discretized model has
been stressed by a large number of authors, see for instance [Donoho and Johnstone, 1995],
[Donoho and Johnstone, 1994], [Antoniadis et al., 1997] or [Antoniadis and Pham, 1998].
As in Section 3, consider Sm,m ∈Mn a collection of finite linear dimensional sets of L2([0, 1])∩
L∞([0, 1]) satisfying the condition that there exists some positive number Rn such that

sup
s∈Sm

‖s‖n
‖s‖2

≤ Rn.

Set Dm the dimension of Sm. A well-known method to estimate the regression function s0 is
to use a least-squares estimator over the sieves Sm, m ∈ Mn, once Mn has been chosen. It
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means

ŝm = arg min
s∈Sm

n∑
i=1

(Yi − s(ti))
2,

If ‖.‖n is the (empirical) norm associated with L2(µn), it is easy to check that

(4.2) E‖ŝm − s0‖2
n = σ2Dm

n
+ inf

s∈Sm

‖s− s0‖2
n.

In (4.2), there exists an optimal choice of m among the indexes in Mn which achieves the
best trade-off between the biased term infs∈Sm ‖s − s0‖2

n and the approximation term Dm

n
.

But, the drawback of this previous approach lies in the fact that this best parameter heavily
relies on the knowledge of the regularity α of the space of the true function s0. Thus, the
aim of model selection is to provide a methodology able to construct an adaptive estimator.
Using the method, originally described by Birgé and Massart in [Birgé and Massart, 1997]
or [Birgé and Massart, 1998] and developed by Barraud in [Baraud, 2000] for the regression
model, we define the model selection estimator as follows.

(4.3) s̃n = arg min
m∈Mn, s∈Sm

(
‖Y − s‖2

n + pen(m)
)

with pen(m) is of the form pen(m) = (1 + c)DmLm

n
σ2, for some weights Lm and c is a positive

number.

Such estimators in the regression scheme have been studied by Baraud in [Baraud, 2000],
providing rates of convergence. The rate of convergence of the estimator is proved to be less
than the best rate for all the models. More precisely the following theorem gives a rate of
convergence under regularity conditions

Theorem 4.1. Assume that s0 ∈ Bαl,∞, for l ≥ 2 and that Sm is the space of trigonometric
polynomials of degree less or equal 2m and Mn = [0, . . . ,mn]. Assume also that s0 belongs to
L2([0, 1]) ∩ L∞([0, 1]). Hence for α > 1/l, the estimator s̃n defined by (4.3) satisfies

E‖s̃n − s0‖2
2 ≤ Cn−

2α
2α+1 .

In order to get maxisets, we saw in Section 2 that we both need the rate of convergence of
the estimation procedure as well as a way to characterize a smoothness set by the approxi-
mation provided by the estimator. This implies that we must characterize the set for which

it is possible to build an estimator s̃n such that ‖s̃n − s0‖2
2 ≤ n−

2α
2α+1 . The norm related to

smoothness approximation property is the integrated norm since the set cannot depend on the
discretization scheme. But, in model selection theory, approximation property and estimation
property are related through the empirical norm by relation (4.2). Hence we obtain

E‖s̃n − s0‖2
n ≥ inf

m∈Mn

(
σ2Dm

n
+ inf

s∈Sm

‖s− s0‖2
n

)
.

So the search for maxisets implies comparing the empirical norm to the integrated norm
for functions s − s0, s ∈ Sm. Relationships between empirical norms and integrated norms
have been investigated in the estimation literature by several authors. It is achieved under
regularity conditions for the set to whom the functions s−s0 belongs. In the finite dimensional
case, the following lemma states the equivalence of both norms.
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Lemma 4.2. Let Vn be the approximation space spanned by (φjnk(.) = 2jn/2φ(2jn . − k))k∈Z,
where jn ∈ N∗, jn ≤ n and φ is a r-regular compactly supported father wavelet. Then, for any

s ∈ Vn ∩ L∞ ∩B
α

2α+1

2,∞ ,∣∣∣∣∣ 1n
n∑
i=1

s2(i/n)−
∫ 1

0

s2(x)dx

∣∣∣∣∣ = O(n−
2α

2α+1 ).

In our case s − s0 are the remainder term in the approximation, hence it is not finite di-
mensional. So if we consider smoothness restrictions, we see that, in [Kress and Sloan, 1993],
it implies that s − s0 belongs to a Sobolev ball, while, in [van de Geer, 2000], the regularity
condition is expressed by entropy conditions over a ball of the set {s − s0, s ∈ Sm}. So it
is necessary to restrict drastically the choice of the approximation spaces Sm, m ∈ Mn, by
imposing smoothness conditions over the derivative of the functions in Sm. As a consequence,
maxisets can be established for the following estimation procedure: minimizing a contrast
function penalized by a smoothness constraint of a derivative of the estimator, namely spline
estimators.

5. Maxisets for spline regularized estimators in regression model

In this section we still consider the model (4.1) with σ = 1 and ti = i
n
, 1 ≤ i ≤ n . For q

and k strictly positive integers, let Sqk be the set of spline functions defined on [0, 1] of order
q with k equispaced interior knots. So, consider the following penalized estimator. For a
smoothing sequence λn ≥ 0 and a positive integer m such that 1 < m < q − 1, define

(5.1) ŝn = arg min
s∈Sq

k

(
‖Y − s‖2

n + λ2
n

∫ 1

0

(s(m)(t))2dt

)
.

The space Sqk is well adapted to the estimation problem in the regression framework since spline
functions are designed to take into account the smoothness of a function with respect to the
observation scheme. As a matter of fact, there exists a basis of Sqk composed of normalized
B-splines, Bq

j , j = 1, . . . , q+k. We refer to [de Boor, 1978] or [DeVore and Lorentz, 1993] for

general references. Write Bq = (Bq
1, . . . , B

q
q+k)

′
. A spline basis satisfies the following property.

For all 1 < m < q − 1, there exists a matrix ∆(m) such that

∀ s = B
′

qθ, s
(m) = B′

q−mθ
(m) = B

′

q−m∆(m)θ.

So, using the properties of B-splines, the estimator can be written in the following way:

ŝn =

q+k∑
j=1

θ̂jB
q
j = B

′

qθ̂,

where θ̂ is the solution of the following minimization problem

(5.2) θ̂ = arg min
θ∈Rq+k

(
1

n

n∑
i=1

[Yi − (Bq
′
θ)(ti)]

2 + λ2
n‖

q+k−m∑
j=1

θ
(m)
j Bq−m

j ‖2
2

)
.

The following lemma gives the expression of the estimator.
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Lemma 5.1. Let An be the matrix with elements Bq
j (ti), i = 1, . . . , n, j = 1, . . . , q + k, and

Cq−m the Gram matrix with elements

(Cq−m)i,j =

∫ 1

0

Bq−m
i (t)Bq−m

j (t)dt, 1 ≤ i, j ≤ n.

The explicit solution of (5.2) is given by

(5.3) θ̂ =

(
1

n
A

′

nAn + λ2
n∆

(m)
′

Cq−m∆(m)

)−1
1

n
A

′

nY.

Proof of Lemma 5.1: The estimator ŝn,λn = B
′
qθ̂ is defined as the solution of the con-

strained minimization issue (5.1). Since

‖
q+k−m∑
j=1

θ
(m)
j Bq−m

j ‖2
2 =

q+k−m∑
i,j=1

θ
(m)
i

∫ 1

0

Bq−m
i (t)Bq−m

j (t)dt θ
(m)
j

= θ
′
∆(m)

′

Cq−m∆(m)θ,

then, we can write that

θ̂n = arg min
θ∈Rq+k

(
1

n
(Y −B

′

qθ)
′
(Y −B

′

qθ) + λ2
nθ

′
∆(m)

′

Cq−m∆(m)θ

)
.

Since Gn = 1
n
A

′
nAn+λ2

n∆
(m)

′
Cq−m∆(m) is a symmetric matrix defining a scalar product, there

exists a matrix Un such that
Gn = U

′

nUn.

We get

1

n
(Y −B

′

qθ)
′
(Y −B

′

qθ) + λ2
nθ

′
∆(m)

′

Cq−m∆(m)θ

=
1

n
Y

′
Y − 1

n
(Y

′
B

′

qθ + θ
′
BqY ) + θ

′
U

′

nUnθ

=
1

n
Y

′
Y − 1

n
(Y

′
B

′

qU
−1
n [Unθ] + [Unθ]

′
(U−1

n )
′
BqY ) + [Unθ]

′
[Unθ]

=C + ‖Unθ −
1

n
[U

′

n]
−1BqY ‖2,

where C does not depend on θ. As a result, we have turned the minimization program (5.1)
into a least squares minimization. So, the estimator has the following expression

θ̂ = (U
′

nUn)
−1U

′

n

(
1

n
[U

′

n]
−1BqY

)
= G−1

n

1

n
BqY.

�

Remark : Since the design sequence is {ti = i
n
, 1 ≤ i ≤ n}, it ensures that Gn is invertible

and hence the uniqueness of ŝn provided that n is sufficiently large.
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The asymptotic behavior of penalized splines estimates has been studied by several authors:
we refer here to [Agarwal and Studden, 1980], [Cardot, 2002b], [Cardot, 2002a],[van de Geer, 1990]
or [Wahba, 1990] for more general references. The following theorem gives the asymptotic rate
of convergence of a spline estimator.

Theorem 5.2. Let α be a strictly positive integer such that α < m < q − 1. Choosing

k = n
1

2α+1 and the optimal choice of regularizing sequence λn = n−
α+2m
4α+2 , the risk of any

function s0 ∈ Wα∗
q,k satisfies

sup
n∈N∗

n
2α

2α+1 E‖ŝn − s0‖2
2 <∞,

where

W α∗
q,k =

{
s; inf

t∈Sq
k

‖s− t‖2
2 = O(k−2α)

}
.

Remark : The rate of convergence provided in this theorem follows from an optimal choice of
both the number of knots k and the smoothing sequence λn. So this estimation procedure is
a linear non adaptive procedure, which enables us to achieve the minimax rate of convergence
for functions belonging to the spaceW α,∗

2∞ . Such spaces are deeply linked with spline smoothing
estimators in the sense that the maxiset of a spline estimation procedure, associated with the

rate of convergence n−
2α

2α+1 , as we shall prove it in the next theorem. Before that, let us notice
that we have the following properties :

∀ α ∈ N∗, Bα2,2 = Wα∗
α,k,

∀ α < q =⇒ Bα2,2 ( W α∗
q,k.

The first equality is obtained by using (ii) of Theorem 2.4 of Chapter 12 in [DeVore and Lorentz, 1993].
The second equality is obtained by just observing that for any α < q, Bα2,2 ( Bq2,2 and that
Bq2,2 ⊆ Wα∗

q,k.

Proof of Theorem 5.2 : Since m > α, our estimation problem deals with functions belong-
ing to the functional space Cα([0, 1]) and using same arguments of proof as in Theorem 3.1
in [Cardot, 2002a], Theorem is easily proved.

�

Theorem 5.3. Let α be a strictly positive integer such that α < m < q − 1. Considering the
spline penalized estimators (5.1) associated with the optimal number of knots for the spline

basis k = n
1

2α+1 and the optimal choice of regularizing sequence λn = n−
α+2m
4α+2 , one gets:

MS(ŝn, n
−2α/(2α+1)) = W α∗

q,k.

Proof: Theorem 5.2 proves the inclusion Wα∗
q,k ⊂ MS(ŝn, n

−2α/(2α+1)). To prove the other

inclusion, let us consider a function s0 ∈ MS(ŝn, n
−2α/(2α+1)). The optimal spline estimator

constructed with splines in Sqk is such that

E‖ŝn − s0‖2
2 = O

(
n−

2α
2α+1

)
.

First, note that the estimator itself belongs to the set of splines, so we can write that

E‖ŝn − s0‖2
2 ≥ inf

θ∈Rq+k
‖s0 −B

′

qθ‖2
2,
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leading to

(5.4) inf
t∈Sq

k

‖s0 − t‖2
2 = O(n−

2α
2α+1 ) = O(k−2α).

Finally, the bound (5.4) yields s0 ∈ Wα∗
q,k. In other words, one getsMS(ŝn, n

−2α/(2α+1)) ⊂ Wα∗
q,k.

It ends the proof.
�

6. Conclusion

In this work, we consider the efficiency of penalized model selection estimators in a maxiset
point of view. In the white noise model, we obtain for the non nested model selection pro-
cedure the maxiset Wα

2,∞. This set is very similar to the weak Besov spaces obtained when
studying wavelet thresholded estimators. Such results can be found in [Cohen et al., 2001],
[Rivoirard, 2004] or [Autin, 2005] for instance. Hence, when considering the model where the
coefficients of the functions are observed, both non linear procedures provide the same kind of
results. They enable to build fully tractable estimators which converge at the same minimax
rate of convergence (up to logarithmic terms) with maxisets of the same kind.

When dealing with observations drawn from the regression model, we face the discretization
issue. Indeed the empirical norm must be compared to the integrated norm, which is often
solved, in the literature, by assuming sufficient smoothness conditions over the functional set.
Unfortunately, finding the maxiset of an estimation procedure implies finding the minimal
regularity conditions such that the estimator converges at a given rate of convergence. In
the regression scheme, it first implies to control the regularity of the estimator, preventing
from choosing too irregular models. Hence the maxiset point of view is not adapted to model
selection procedure in model (4.1). We point out that maxisets are not given for other type
of estimation procedure in the regression model but only when assuming that the sampled
model is equivalent to the white noise model and that the wavelet coefficients of the data
are directly observed. This approximation is highlighted in [Donoho and Johnstone, 1999] or
[Donoho and Johnstone, 1994]. Finding maxiset for the real regression model is only achieved
by considering M-estimation with regularity penalties and hence so-called spline estimator.
Then we note that the regularity condition to ensure the comparison between the empirical
and the integrated norm is stronger than the one needed to ensure the convergence of the
estimator, preventing as large maxisets as in the white noise model. Perhaps a key to more
efficient estimation procedure, in the maxiset point of view, would be to construct bases
adapted to the discretization scheme, warped bases taking more into account the regularity
of the functions with respect to the observation points.
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