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Abstract

The objective of this paper is to study the statistical properties of solutions
of a differential equation which depends on the data set and whose underlying
random variables are endogenous. The problems of endogeneity are numerous in
economic fields and we will briefly motivate our study by an application in demand
theory. We have two problems to solve: to smooth the data set with endogenous
variables and to solve the differential equation. We show how solving a differential
equation can improve the properties of a nonparametric estimator. The estimated
solution depends on two smoothing parameters: the bandwidth parameter of the
kernel method and the regularization parameter of the Tikhonov methodology. We
present results on the consistency and the optimal choice of the parameters.
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1 Introduction

1.1 Presentation of the problem

Studying the solutions of differential equations depending on the data set is a very common problem in
statistics, on both theorical and practical point of view. Indeed, many interest parameters in economics,
physics, or finance are defined as the solutions of a differential equation. They can be estimated using
nonparametric kernel analysis, which has been developed by Vanhems [Van01] or other methods, see for
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instance [] or []. Here, in the case of endogeneity of the underlying random variables, we build an fully
tractable estimator of the solution of the differential equation and give its asymptotic behaviour.
More precisely, consider a random vector (Y, Z,W ) which follows an unknown cumulative distribution
function F . The function m is defined by the following relation:

{
Y = m (Z) + U

E (U |W ) = 0
(1)

where Z is the endogenous variable andW is the instrument, chosen such that (Z,W ) ∈ L2
(
IR2
)
× L2

(
IR2
)
.

We have set Z =
(
Z1, Z2

)
(resp.W =

(
W 1,W 2

)
).

The analysis of endogenous regressors, and more generally of simultaneity, has a great impact in struc-
tural econometrics. Since the earliest works of Amemiya in [Am74] and Hansen in [Han82], extensions to
nonparametric and semiparametric models have been considered. Estimating nonparametric models with
endogenous explanatory variables has been in particular studied by Darolles, Florens, Renault [DFR01],
Blundell and Powell in [blund00] and Florens in [Flo00]. Our objective is therefore to introduce some
nonparametric instrumental regression into a differential equation and to study the asymptotic properties
of the associated estimated solution.
As a matter of fact, the interest parameter is the function λ solution of:

{
λ′(x) = m (x, λ(x))

λ (x0) = λ0, (x0, λ0) ∈ IR2
(2)

Note that λ is defined by an implicit nonlinear relation (there is no restrictive assumption on the form
of the function m). The second equation represents the initial condition in order to have uniqueness of a
solution in a neighborhood of (x0, λ0) . For sake of simplicity and without loss of generality, throughout
all the article, we will assume that x0 = λ0 = 0.
Hence we will first estimate non parametrically the function m by m̂n. Then we will find the solution of
the estimated differential equation:

{
λ′(x) = m̂n (x, λ(x))

λ (x0) = λ0, (x0, λ0) ∈ IR2
(3)

Finally, we aim at studying the convergence of the estimated solution to the true one, under natural
conditions of existence and uniqueness.
The difficulty in of this work lies in the fact that we are facing two inverse problems. Inverse problems
have been intensively studied by several authors. For general references, we refer to the following papers
[JS90] [CT00] [CIK99] [Erm89] or [Osu96]. Contrary to the first one (1), the inverse problem (2) is
well-posed in the sense of Tikhonov. But in the case studied here, we approximate this problem by the
problem (3), which is an inverse problem where the operator is unknown, depending on the efficiency
of the estimator of the first inverse problem set in (1). The estimation of m̂n is tackled in the work of
Darolles, Florens and Renault [DFR01]. They construct a nonparametric kernel estimator of the equation
(1). They show in particular that this problem is ill-posed in the sense of Tikhonov []. That is the reason
why they construct, using Tikhonov regularization method, an estimator of m: m̂n,αn

where αn is a
smoothing regularization term necessary to transform the initial problem into a well-posed one. They
study the asymptotic properties of this estimate using kernel approximation results. We will use their
results as a starting point for the construction of the solution of (3). We will be interested in particular
to compare our asymptotic results with the previous ones.

1.2 Application in microeconomics

Let us now present an example of application in microeconomics. It is taken from an article by
Hausman and Newey in [HN]. The objective is to measure the impact on the consumer welfare of a price
change for one good. Therefore, we consider one consumer; we define y its income, q the demand in
good and p1 the price of a unique good. We assume that there exists a price variation from p0 to p1. A
way to capture the impact on the consumer is to calculate the variation of exact consumer surplus λ: it
represents the cost to pay to the consumer so that his welfare does not change for a price change. It is a
monetary measure of the variation of utility (see Varian in [Var92]).
Our first objective is to find a relation that links the functions λ and q. For that purpose, let us
consider a price path p (t) , t ∈ [t0, t1] where p (t0) = p0 and p (t1) = p1 and λ (p (t)) is the variation of
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exact consumer surplus between p (t) and p (t1). Then, we can derive the following relation between our
interest parameter λ and the demand function q:

{
λ′ (p (t)) = −q (p (t) , y − λ (p (t))) .p′ (t)

λ (p (t1)) = 0

assuming that p1 is a price reference, that is all price variations are calculated with respect to p1. By a
change of variable, we find that: {

λ′ (p) = −q(p, y − λ (p))

λ
(
p1
)

= 0

This is clearly a particular case of differential equation of order one.
We can then present some econometric model to estimate the demand function q:

ln q = lnm(p, y) + ε

Assuming that IE [ε |p, y ] = 0 is quite a common assumption to make in order to estimate the function m
by a simple regression. However, such a simplified hypothesis is often not realistic and the price is usually
an endogenous variable. Therefore, the interesting case to model is to consider that IE [ε |p, y ] 6= 0. Since
the function m is no more identified, we need to introduce some instrumental variable w to solve this
model. So, we have the following underlying econometric model to solve:

{
ln q = lnm(p, y) + ε
IE [ε |w ] = 0

Moreover, a similar problem could be studied for the variation of firm profit and the variation of demand
factor.

Therefore, this paper proceeds in the following way. In the following section, we set the mathematical
framework of the problem and define the estimators we will use. Their asymptotic behaviour is given in
Section 3. Section 4 is devoted to some auxiliary lemmas which enable to prove the asymptotic behavior
of the estimator. All the proofs are gathered in Section 5.

2 Statistical framework of the problem

Note first that all the asymptotic results will be given using the L2 norm which will be written ‖.‖.
The different other norms will be clearly specified.

We recall that the statistical model is the following: we estimate a function λ solution of a differential
equation {

λ
′

(x) = m(x, λ(x))

λ(0) = 0
(4)

where the function m is unknown but is observed in the following framework:

Yi = m(Zi) + Ui, i = 1, . . . , n (5)

We assume that

Assumption over the observations : the random variables Y, Z, W take values in a compact set of
R × Rp × Rq. The observations Yi, Zi, Wi, i = 1, . . . , n are an iid sample with density f .

Without constraint over the residual term, the function m is not properly characterized and the inverse
problem (4) is not identifiable. In the classical regression scheme, one often assumes that E(U |Z) =
0 or equivalently that m(Z) = E(Y |Z) . However, such assumption is not appropriate in structural
econometric models defined in Section 1. As a matter of fact, the relationship between Y and Z is
characterized by a third variable W , called an instrumental variable. More precisely, we assume that
there exist variables W = (W1,W2) such that

E[Y −m(Z)|W ] = 0 (6)
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Instrumental variables analysis has been introduced by Reiersol in [R41] [R45] or Sargan in [S58]. This
definition was also the starting point of the analysis of simultaneity in linear or parametric nonlinear
models [Am74]. Moreover, the problem of estimating a regression function in this particular setting was
studied by Darolles, Florens and Renault in [DFR01].

The estimation method in our work is the following two-step method:

• First, we construct an estimator of m based on a kenerl estimator for inverse problem. Indeed,
write F the joint distribution of S = (Y, Z,W ) with density function f , and define the following
operators:

T = TF : L2(Z) −→ L2(W )

g −→ TF (g(Z)) = E[g(Z)|W ]

T ∗ = T ∗
F : L2(W ) −→ L2(Z)

h −→ T ∗
F (h(W )) = E[h(W )|Z]

r = rF (W ) = E(Y |W )

Such operators are the conditional expectations with respect to the variables W and Z. These
linear operators satisfy:

< T (φ(Z)), ψ(W ) >=< φ(Z), T ∗(ψ(W )) >= E(φ(Z)ψ(W )).

Hence, consider the instrumental regression setting (5), which can be written in the following
equivalent way

Tm− r = 0.

This is actually an equation of the type

A(m,F ) = 0.

It is well known that the initial problem is ill-posed. That is the reason why, following ideas from
[DFR01], we use a regularization method called Tikhonov regularization [TA77] and transform the
original problem into:

(αnI + T ∗T )mαn
= r∗ (7)

for αn a given positive sequence such that αn → 0, at a rate that will be made precise later in this
paper, and r∗ = T ∗r.
Consider F̂ a kernel estimator of F defined through its density with respect to Lebesgue measure

f̂n(y, z, w) =
1

n

n∑

i=1

Ky,h
y
n
(y − Yi)Kz,hz

n
(z − Zi)Kw,hw

n
(w −Wi) (8)

where Ky, Kz, Kw are three kernels and hy
n, h

z
n, h

w
n are three bandwidths. Now, set the associated

operators T̂ = T
F̂
, T̂ ∗ = T ∗

F̂
and r̂ = r

F̂
.

Definition 2.1. The estimator we will consider it m̂n,αn
the solution of

(αnI + T̂ ∗T̂ )m̂n,αn
= r̂∗. (9)

It is the Tikhonov regularized of an inverse problem whose operator is estimated using kernel
estimators.

Remark 2.2. It is interesting to notice that this transformation can be seen as a penalized mini-
mization problem:

mαn
= arg min

f∈L2(Z)

(
‖T (f)− r‖2 + αn‖f‖2

)

Using this particular expression, the estimator can be viewed as a penalized M-estimator, see for
instance Loubes and van de Geer in [LvdG00]. This point of view could also lead to different
estimators obtained by changing the quadratic penalty into an l1 penalty. It gives rise to non
linear estimators such as thresholded estimators.
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• The second step consists in plugging this particular estimator in the differential equation in the
following way.
The differential equation (4), with the initial condition λ(0) = 0 , can be solved using Cauchy-
Lipschitz’s theorem. This classical theorem provides existence and uniqueness of a solution λ in a
compact neighborhood of the initial condition (0, 0). This theorem holds as soon as the Lipschitz
condition is satisfied for the function m, which is clearly the case assuming that m is, for example,
continuously differentiable of order 1. So, the idea is to replace our implicit definition of the
functional λ by an explicit relation that links λ and m and this can be done since we are under
the assumptions of existence and uniqueness of a solution. Actually, the implicit function theorem
for infinite dimension spaces shows that, under some assumptions, there exists a unique solution
λ which depends on the function m. As a consequence, we introduce an operator Φ such that the
solution has the following form

λ(x) = Φ[m](x) (10)

As an estimator of the parameter of interest λ, we take:

λ̂(x) = Φ[m̂](x) (11)

In order to get a well-posed inverse problem, we need to check that the function Φ is continuous.
Moreover, it is possible to prove that Φ is continuously differentiable. All this problem is one of
the main issues tackled in [Van01]. Therefore, once we are able to derive the properties of the
function m and its estimator m̂, given by the relation 6, and using an adaptation of the results
from [Van01], we will be able to study the properties of our interest parameter λ and its estimator

λ̂.

One inverse problem or two nested problems ?

We do not observe directly the function m, since E(U |Z) 6= 0, but only the relationship with the
instrumental variable W :

E(Y |W ) = E(m(Z)|W ).

As a result, the estimation of Tm is a necessary step in the estimation process. Since the operators

m and T do not commute, there is no way to look for an estimator of the form: Φ̂[m]. That is
the reason why we consider the estimator Φ[m̂], constructed with a preliminary estimator of the
functionm. As a result, it turns impossible to write the estimation problem into a single estimation,
but it must be studied following the two steps described above. Therefore, using a methodology
in two steps to solve the two inverse problems 4 and 6 is unavoilable.

3 Main Results

In this section, we aim at giving the asymptotic behaviour of the solution of the differential equation
obtained after estimating the regression function observed in an endogenous settings. Hence we begin to
prove that the following expansion holds

(
λ̂n,αn

− λ
)

(x) = (Φ [m̂n,αn
] − Φ [m]) (x)

= dΦ[m](m̂n,αn
−m)(x) +R (12)

= H(m̂n,αn
−m)(x) +R

where dΦ represents the Frechet-derivative of Φ, and having set dΦ[m] = H . The residual term R is chosen

at an order higher than the rest of the usual Taylor development, that is: R = OP

(
‖m̂n,αn

−m‖2
∞

)
.

Just note that if we assume that the function Φ is continuously differentiable of order 2, this assumption
is automatically satisfied, and is not a constraint any more. Introducing this expansion enables us to
transform the nonlinear problem into a linear one, up to a residual term R. Hence the rate of convergence
of λ̂n,αn

(x) towards λ(x) can be deduced from the the two terms:

• the linear part dΦ[m](m̂n,αn
−m)(x) .

• the second term R, which is the counterpart in the Taylor expansion.
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3.1 Assumptions

The assumptions are of three kinds

• Assumptions ensuring the convergence of the preliminary estimator. Such assumptions are similar
to the one given in [DFR01].

• Assumptions necessary to linearize the problem using Taylor’s expansion. This enables to compute
the rate of convergence of the solution of the estimated estimator from the rate of convergence of
the estimate of the regression with endogenous effect.

• Assumptions that enforce the convergence of the unknown inverse operator and enable us to provide
the rates of convergence of the estimator λ̂n,αn

.

Assumptions A:

[A1] : m ∈ C2 (D),
[A2] : m̂n,αn

∈ C2 (D),
[A3] : ‖D2m̂n,αn

−D2m‖∞ → 0.

Remark 3.1. Assumptions [A1] and [A2] provide existence and uniqueness of λ̂n,αn
and λ, assumption

[A3] provides stability of the solution.

Assumptions A’:
[A′1] : f ∈ C2

(
R5
)
,

[A′2] : K is a function of IR into IR;
∫∞
−∞K (x) dx = 1, K is of order d > 2; K is continuously

differentiable up to order 2 and its derivatives of order up to 2 are in IL2 (IR) ,

[A′3] : As n→ +∞ : hn → 0,
nhd

n

log2 n
→ ∞, nh

d
2

+2
n

log2 n
→ ∞, hd

n 6 αn,
log n

√
nh

d
2

+2
n

= o(αn),

[A′4] : ‖mαn
−m‖2 = O

(
αβ

n

)
, ‖mαn

−m‖∞ = O
(
αβ

n

)
and ‖D2[mαn

] −D2[m]‖∞ → 0,
[A′5]: Hilbert-Schmitt assumption

‖TF − T
F̂
‖ = OP

(√
1√
nhd

n

+ h2ρ
n

)
,

where ρ = min(s, t).
This assumption is fulfilled as soon as we have

• f(y, z, w) the joint density is s times continuously differentiable

• f(y, z, w) is bounded from below

• ∫
f3(y, z, w)

f(y, ., .)f(., z, .)f(., ., w)
dydwdz < +∞.

• the three kernels K•,• are taken r times differentiable and with the same bandwidth hn.

3.2 Linearization of the inverse problem

First, we give the expression of the operatorH and the conditions of its existence. Indeed, under some
regularity conditions on the function m, Cauchy-Lipschitz theorem ensures existence and uniqueness of
a solution for the system 4 in a neighborhood of the initial conditions (0, 0). More precisely, set D a
compact neighborhood of (0, 0) and I a compact neighborhood of 0 of the following form:

I = {x, |x| 6 a} , a > 0

D = {(x, y) , |x| 6 a, |y| 6 b} , b > 0

Moreover, we will denote by
(
C2 (D) , ‖.‖∞

)
the Banach space of continuously differentiable functions of

order 2 defined on D, with the supremum topology. Previous assumptions on m and m̂n,αn
enable us to

define unique solutions λ̂n,αn
and λ. Therefore, under [A1]− [A3], 4 is a well-posed inverse problem and

we can write λ = Φ[m] and λ̂n,αn
= Φ[m̂n,αn

] . Moreover, we are able to provide the exact expression of
the first term of the Taylor expansion. Write D2[.] the derivative with respect to the second variable.
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Theorem 3.2. Under the following assumptions (A), ∀x ∈ I, we have:

dΦ[m̂n,αn
−m](x) = H [m̂n,αn

−m](x) =

∫ x

0

(m̂n,αn
−m) (t, λ(t)) exp

(∫ x

t

D2m(u, λ(u)) du

)
dt

Write

v(x, t) = exp

(∫ x

t

D2m(u, λ(u)) du

)

a given continuous function. Then we have:

H [m̂n,αn
−m](x) =

∫ x

0

(m̂n,αn
−m) (t, λ(t)).v (x, t) dt

Proof. The proof of this theorem can be found in [Van01]. In the appendix, for sake of completness, we
recall the guidelines of the proof.

Moreover, the operator H is a one to one integral operator and can be written as

∀g ∈ C(D), ∀x ∈ I,H [g](x) =

∫ x

0

v(x, t)g(t, λ(t)) dt. (13)

This fundamental property is stated in Lemma 4.1.

Remark 3.3. Write r − 1 the maximum regularity of the function m. Since H is an integral operator,
the maximum regularity of H [m] is r. As a result, the rate of convergence of the estimated solution of
the differential equation (4) is expected to be greater than the rate of convergence of the estimator of
the function m since there is a gain in regularity. That is the reason why we study directly the term
H(m̂n,αn

−m) and do not use rough upper bounds implying the term m̂n,αn
−m. Moreover, we also expect

a gain in dimension since we transform a function of two arguments into a function in one argument.

3.3 Asymptotic behaviour of solution of estimated differential equation

Our aim is to prove consistency and give rates of convergence for the estimator of the solution of the
differential equation (4). The following theorem holds.

Theorem 3.4. Under the assumptions A’, we can take d = 3. Then, the estimator λ̂n,αn
is consistent

and, for an optimal choice hn ≈ n− 1
6 and αn ≈ n− 1

(2+β) , its rate of convergence is given by:

E‖λ̂n,αn
− λ‖2 = O

(
sup

[
n− β

2+β , n− 2β
2+β

+ 1
3

])
(14)

The rate of convergence depends on two terms: an approximation term which corresponds to the
smoothing problem and leads to an optimal choice of a sequence αn, and an error term which corresponds
to the estimation issue and leads to an optimal choice of the kernel’s bandwidth hn. Of course, there is
a trade-off between these two contributions that must be solved. The gain in the rate of convergence is
obtained in the choice of the optimal bandwidth since, more precisely, the regularization enables us to
choose a smoother kernel which leads to a gain in the bias term. Indeed we can choose h6

n instead of h4
n

without the regularization operator.
Proof of Theorem 3.4:

Proof. The proof divides into 3 steps. First we show that the rate of convergence of λ̂n is deeply related
to the rate of convergence of m̂n. Then we prove the consistency of the instrumental regression estimator,
whose proof falls into two parts. Finally, we compute the rate of convergence of the Tikhonov’s regularized
term to find the global rate of convergence of the estimator.
We recall that the estimator we consider is given by:

λ̂n,αn
= Φ[m̂n,αn

](x)

First, prove that H [m̂n,αn
] → H [m]. So we have the following decomposition:

‖H [m̂n,αn
] −H [m]‖ 6 ‖H [m̂n,αn

] −H [mαn
]‖ + ‖H [mαn

] −H [m]‖ (15)

6 (I) + (II)

Compiled November 28, 2004 20:16 by LATEX2ε. Page 7.
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We first control the first term of the decomposition.
Using the definition of the estimators (7) and (9), we have the following equalities:

H [m̂n,αn
] −H [mαn

]

= H(αnI + T̂ ∗
F T̂F )−1(T̂ ∗

F r̂F − T̂ ∗T̂m) +H(αnI + T̂ ∗T̂ )−1T̂ ∗T̂m−Hmαn

= (A) + (B)

Since the operator H is invertible due to Lemma 4.1, we can write:

(A) = H(αnI + T̂ ∗T̂ )−1H−1[HT̂ ∗r̂∗ −HT̂ ∗T̂m] (16)

Since H is invertible, the norm of the first term is unchanged

‖H(αnI + T̂ ∗T̂ )−1H−1‖ = ‖(αnI + T̂ ∗T̂ )−1‖,

so we get

‖(A)‖ 6 ‖(αnI + T̂ ∗T̂ )−1‖‖HT̂ ∗r̂ −HT̂ ∗T̂m‖

6 O

(
1

αn

)
‖HT̂ ∗r̂ −HT̂ ∗T̂m‖

By the result of Lemma 4.3 we can conclude that we get the following bound:

‖(A)‖2 = O

(
1

αn
2

[
1

n
+ h2ρ

n

])
(17)

The second term is such that:

(B)

= H(αnI + T̂ ∗T̂ )−1T̂ ∗T̂m−Hmαn

= H(αnI + T̂ ∗T̂ )−1T̂ ∗T̂m−Hmαn
+H(αnI + T̂ ∗T̂ )−1(T ∗Tm− T ∗Tm)

= H(αnI + T̂ ∗T̂ )−1(T̂ ∗T̂ − T ∗T )(mαn
−m)

= H(αnI + T̂ ∗T̂ )−1H−1(HT̂ ∗T̂ −HT ∗T )(mαn
−m)

We can conclude that the second term is such that

‖(B)‖2
6 ‖H(αnI + T̂ ∗T̂ )−1H−1‖2‖HT̂ ∗T̂ −HT ∗T ‖2‖mαn

−m‖2 (18)

Using Lemma 4.2, we can deduce that

‖HT̂ ∗T̂ −HT ∗T ‖2 = O

(
1

nhp
n

+ h2ρ
n

)

As a result we get the following upper bound

‖(B)‖2 = O

(
1

αn
2
[

1

nh2
p

+ h2ρ
n ]‖mαn

−m‖2

)
.

The assumption over the model gives the rate of convergence of the approximation error ‖mαn
−m‖2.

Finally we get:

‖(B)‖2 = O

(
1

αn
2
[

1

nh2
p

+ h2ρ
n ]αβ

n

)
. (19)

The second term of the sum ‖Hmαn
−Hm‖ is the error made when approximating the function by the

solution of the regularized problem. It is the bias of the regularization issue. By Lemma 4.4, we have an
upper bound for this term. To conclude the proof, it remains to be seen that the remainder term in the
expansion (15) is of the right order. This statement is proved by the Lemma 4.5. As a consequence we
get:

E‖λ̂n,αn
− λ‖2 = O

(
αn

β +
1

αn
2
[

1

nhp
n

+ h2ρ
n ]αβ

n +
1

αn
2

[
1

n
+ h2ρ

n

])
(20)
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There is a trade-off in this expression which can be minimized by adjusting the values of the smoothing

parameter αn and the bandwidth hn. Note that an optimal choice is given by αn ≈ n− 1
2+β and hn ≈

n− 2ρ
2ρ+p , so we get for a given constant C:

E‖λ̂nαn
− λ‖2

6 Cn− β
2+β + n− 2β

2+β
+ 1

3 (21)

The previous upper bound proves the statement of the theorem.

Remark 3.5. The rate of convergence depends on the range of the value β. Indeed we have

n− β
2+β 6 n− 2β

2+β
+ 1

3

as soon as
β 6 1.

As a result if on the one hand β, defined in Assumptions A
′

, is such that 0 6 β 6 1 then the rate of
convergence is given by

E‖λ̂n,αn
− λ‖2 = O

(
n− 2β

2+β
+ 1

3

)

On the other hand, for 2 > β > 1, we get

E‖λ̂n,αn
− λ‖2 = O

(
n− β

2+β

)
.

The rate of convergence is quicker than the rate we could have obtained by a direct rough upper bound
and the results proved by Darolles, Florens and Renault in [DFR01]. Indeed, their method gives a rate

of convergence in n− 2β
2+β

+ 1
2 for all β. The gain we obtain is due to a better upper bound for the bias

term even if no gain is obtained for the variance term not even for the approximation term. That is the
reason why the improvement in the endogenous case is less than the one we could have expected in the
classical setting, as it is stated by Vanhems in [Van01]. We point out that the case β = 2 is the border
of the set Φβ.

Remark 3.6. The choice of the bandwidth is not optimal in the sense of nonparametric estimation. As
a matter of fact, a minimization in hn leads to a natural choice of hn ≈ n− 1

8 . It also implies a choice of

αn ≈ n− 6
8(2+β) . But the corresponding rate of convergence, n− 3

4
β

2+β is slower than the speed given in the
theorem. An explanation of this phenomena is that the choice of such hn, which decreases faster than
the optimal choice hn ≈ n− 1

6 , provides an oversmoothing effect.

Remark 3.7. The assumption A
′

describes a category of set, named Φβ in Darolles, Florens and Renault
in [DFR01]. Such sets are complex since they involve both the smoothness of the function and the
dependence between the endogenous and the instrumental variable. Indeed, for m ∈ Φβ , they rely on
the behavior of the coefficients < m,mi >, ∀i > 0 and on the decreasing rate of the eigenvalues λi.
The greater β, the more regular is the function. If β is greater than one, the rate of convergence is in

n
β

2+β . It is important to notice that it does not depend on the dimension of the random variables, nor
the regularity r − 1 of the function m. This result suggests that the regularity condition imposed on
the space Φβ implicitly implies enough regularity, in the classical nonparametric sense. So the rate of
convergence of the estimation issue is given by the leading term of the approximation error in Tikhonov’s
regularization. More attention should be paid to the definition of such spaces.

4 Auxiliary lemmas

Let d be the regularity of the kernel we use and r be the regularity of the regularized function Hm.
The following lemma expresses the one to one property of the operator H .

Lemma 4.1. The operator H defined by

∀g ∈ C(D), ∀x ∈ I,H [g](x) =

∫ x

0

v(x, t)g(t, λ(t)) dt

is an invertible operator.

The convergence of the estimators is linked with the two next lemmas, which describe the convergence
of HT̂ ∗T̂ and of T̂ ∗r̂. The rate of convergence depends on the choice of an optimal bandwidth hn.

FIXME: rajouter assumptions B1 et B3 sur support compact et bounds
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Lemma 4.2. Under the assumptions A’ and for ρ = r ∧ d, we get

‖HT̂ ∗T̂ −HT ∗T ‖2 = O

(
1

nhp
n

+ h2ρ
n

)
(22)

Lemma 4.3. The following upper bound holds under assumptions A’:

‖HT̂ ∗r̂ −HT̂ ∗T̂m‖2 = O

(
1

n
+ h2ρ

n

)
(23)

The following lemma describes the approximation error of Tikhonov’s regularization problem. This
non random term depends on the choice of a smoothing sequence αn. This choice depends on the
smoothness of the function m as well as the behavior of the eigenvalues of the operator T .

Lemma 4.4. If the function m satisfies the conditions A’, and if H is such that

∞∑

i=0

‖Hmi‖2 <∞,

we get the following bound:
‖Hmαn

−Hm‖2 = O
(
αβ

n

)
(24)

The following gives the rate of convergence of the remainder term in the Taylor’s expansion and
shows that it is negligible.

Lemma 4.5. As soon as
nhd

n

log2 n
→ ∞ and

‖mαn
−m‖∞ = O

(
αβ

n

)
,

we get the following uniform convergence:

‖m̂n,αn
−m‖∞ → 0.

Moreover, we get
‖m̂n,αn

−m‖2
∞ = O

(
‖Hm̂n,αn

−Hm‖2
2

)
.

The next lemma is an auxiliary lemma, giving the rate of uniform convergence of the derivative of a
conditional expectancy. It is used to prove Lemma 4.7.

Lemma 4.6. Set X,Y, Z random variables with joint density function l, two times continuously differen-
tiable. Define L(x, y) = E(Z|X = x, Y = y) and L̂n the associated kernel estimator. We get the following
asymptotic behaviour:

‖D2[L̂n] −D2[L]‖ → 0

as soon as nh
d
2
+2

n

log2 n
→ ∞.

The following lemma proves that assumption (A) can be deduced from more drastic conditions above
the choice of the bandwidth hn.

Lemma 4.7. Under the assumptions that

‖D2[mαn
] −D2[m]‖∞ → 0

nh
d
2 +2
n

log2 n
→ ∞, hd

n 6 αn,
logn

√
nh

d
2 +2
n

= o(αn)

we get the following asymptotics
‖D2[m̂n,αn

] −D2[m]‖∞ → 0.

5 Proofs

5.1 Proof of Auxliary Lemmas

Proof of Lemma 4.1:
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Proof. We want to prove that the operatorH is invertible. Assume that there exists a function g different
from the function 0 such that H [g] = 0. Without loss of generality, we can assume that g is non negative
in a neighborhood of the origin of the form [0, x1], otherwise consider the function −g. Moreover, since
g is non equal to zero everywhere, there exists x0 < x1 such that g is positive over the compact [x0, x1].
But H [g](x1) = 0 implies that

∫ x1

x0
v(x1, t)g(t) dt = 0. Since v(x, t) > 0, by continuity of the function

t → v(x, t)g(t), we get that g(t) = 0, ∀t ∈ [x0, x1] which contradicts the definition of x0. So H is one to
one.

The two following proofs are adaptations of the proofs in [DFR01]. We give here the difference and
recall te guidelines of the proofs.

Proof of Lemma 4.2:

Proof. The norm of the operator HT̂ ∗T̂ −HT ∗T defined by

‖HT̂ ∗T̂ −HT ∗T ‖ = sup
‖g‖61

‖(HT̂ ∗T̂ −HT ∗T )g‖

is bounded by the Hilbert-Schmidt norm of the operator, ass stated in [DS88]. Hence, the norm satisfies:

A2
n = ‖HT̂ ∗T̂ −HT ∗T ‖2

HS

=

∫ ∫
f(., u, .)

[∫
v(x, z)106z6x

∫
(ên(z, u, w) − e(z, u, w)) dw dw

]2

dudx

where e(u, z, w) =
f(., u, w)f(., z, w)

f(., z, .)f(., ., w)
and ên(u, z, w) is a kernel estimator of e(u, z, w). As in [DFR01],

we obtain by linearizing:

A2
n = Rn +

4∑

j=1

Bj

where, if we set

ṽ(x, z) = x(x, z)106z6x

b1(z, w) =
f(., z, w)

f(., z, .)f(., ., w)
b2(u, z, w) =

f(., u, w)

f(., z, .)f(., ., w)

b3(u, z, w) =
f(., u, w)f(., z, w)

f2(., z, .)f(., ., w)
b4(u, z, w) =

f(., u, w)f(., z, w)

f(., z, .)f2(., ., w)

we have written:

B1 =

∫ ∫
f(., u, .)[

∫ ∫
ṽ(x, z)b1(z, w)(f̂(., u, w) − f(., u, w))dwdz]2dxdu

B2 =

∫ ∫
f(., u, .)[

∫ ∫
ṽ(x, z)b2(u, z, w)(f̂(., z, w) − f(., z, w))dwdz]2dxdu

B3 =

∫ ∫
f(., u, .)[

∫ ∫
ṽ(x, z)b3(u, z, w)(f̂(., z, .) − f(., z, .))dwdz]2dxdu

B4 =

∫ ∫
f(., u, .)[

∫ ∫
ṽ(x, z)b4(u, z, w)(f̂(., ., w) − f(., ., w))dwdz]2dxdu

Since the Bi, i = 1, . . . , 4 are positive, by Chebychev’s inequality, its rate of convergence is the rate of
E(Bi), i = 1, . . . , 4. Recall that the nonparametric estimator of a density we use is defined using a kernel
estimator. Recall that we consider kernels of order r and that the estimator of the joint density has the
following expression, given in (8):

f̂n(y, z, w) =
1

n

n∑

i=1

Ky,h
y
n
(y − Yi)Kz,hz

n
(z − Zi)Kw,hw

n
(w −Wi).

As a consequence, the behavior of each E(Bi), i = 1, . . . , 4 can deduced from the rate of convergence of

E(f̂n − f)2, extended to each particular case.
The first term gives

E

(∫ ∫
ṽ(x, z)b1(z, w)(f̂ (., u, w) − f(., u, w))dwdz

)2

= O

(
1

nhp
n

+ h2ρ
n

)
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Indeed, the integration implies that only the dimension of Z appears in the exponent of hn. So we get

B1 = O

(
1

nhp
n

+ h2ρ
n

)

The second term is such that:

E

(∫ ∫
f(., u, .)

[
ṽ(x, z)b2(u, z, w)(f̂(., z, w) − f(., z, w))dwdz

]2
dudx

)
= O

(
1

n
+ h2ρ

n

)

which implies that

B2 = O

(
1

n
+ hρ

n

)
.

The same arguments apply for the other terms. Then, we can use elementary extensions of usual argu-
ments on the asymptotic behavior of the quadratic loss in kernel estimation (see Bosq in [Bos96]). There-

fore we can show that, provided nh
p+2(r∧s)
n → 0, the remainder term Rn is such that Rn = OP

(
1

nh2
n

)
.

So the statement of Lemma 4.2 is proved.

Proof of Lemma 4.3:

Proof. It relies on the convergence of Gaussian process and use results from empirical process theory to
be found in [vdVW96].
In a first step, we prove that

1√
n

n∑

i=1

f(., z, wi)

f(., z, .)f(., ., wi)
(yi −m(zi)) → N

(
0, σ2T ∗T

)
, (25)

where σ2 = Var(U |W ). For this, note Vn(z) =
1√
n

n∑

i=1

f(., z, wi)

f(., z, .)f(., ., wi)
(yi −m(zi)) =

1√
n

n∑

i=1

βi(z). The

βi are independent variables, with zero mean, finite variance and such that E(‖βi(Z)‖2
2) <∞, as a result,

Vn converges to a Gaussian process, with variance given by an operator K such that for any functions
m,ψ ∈ L2

Z :

< Kψ,m > = E(< Vn,m >< Vn, ψ >)

=

∫ ∫
E [Vn(z)Vn(u)]m(z)ψ(u)f(., z, .)f(., u, .)dzdu

= σ2

∫ ∫
E

[
f(., z, wi)f(., u, wi)

f(., z, .)f(., ., wi)

]
m(z)ψ(u)f(., z, .)f(., u, .)dzdu

So we get

Kψ = σ2

∫ ∫
f(., z, w)f(., u, w)

f(., z, .)f(., ., w)
ψ(u)dzdz.

Finally we obtain the asymptotic distribution which proves (25).
In a second step, we linearize the quantity An = T̂ ∗r̂ − T̂ ∗T̂m in the following way:

An = R0 +R1 +
1

n

n∑

i=1

f(., z, wi)

f(., z, .)f(., ., wi)
(yi −m(zi))

For the first term, we use the first asymptotic result, while the remaining term can be written

R1 ≍ 1

n

n∑

i=1

[∫
a(s)Khn

(s− si)ds− a(si)

]

where the function s = (y, u, w) and a is such that

a(s) =
f(., z, w)

f(., z, .)f(., ., w)
(y −m(u)).
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The usual approximating properties of the kernel estimator proves that this term is in OP

(
h

2(r∧s)
n

)
which

gives the upper bound given by the lemma.
Now see, that

R0 =
1√
n

n∑

i=1

f(., z, wi)

f(., z, .)f(., ., wi)
(yi −m(zi)) −

1√
n

n∑

i=1

[∫
a(s)Khn

(s− si)ds− a(si)

]

With the regularity assumption we assume over the functionm, the last term goes to zero, which concludes
the proof.

Proof of Lemma 4.4:

Proof. mαn
is the solution of the equation 7. It can be computed, using its decomposition onto the bases

mi, i > 0 and can be written:

mαn
(z) =

∞∑

i=0

λi

αn + λ2
i

< r, ψi > φi(z).

As a result we have

‖Hmαn
−Hm‖2 = ‖

∞∑

i=0

αn

αn + λ2
i

< m,φi > Hφi‖2 (26)

Using the decomposition onto the bases φi we get:

Hφi =

∞∑

j=0

< Hφi, φj > φj .

Then we obtain using the linearity of the scalar product:

‖Hmαn
−Hm‖2 = ‖

∞∑

j=0

(

∞∑

i=0

αn

αn + λ2
i

< m,φi >< Hφi, φj >)φj‖2

= αn
2

∞∑

j=0

( ∞∑

i=0

1

αn + λ2
i

< Hφi, φj >< m,φi >

)2

As a result, such spaces are of interest in the range 0 6 β 6 2. Indeed, regularity assumptions over the
regression function m give the convergence of series

∑∞
i=0 ci < m,φi >

2, for well chosen ci. For instance
if ci ≈ i2s+1, spaces {φ, ∑∞

i=0 i
2s+1 < φ, φi >

2<∞} are balls of Sobolev spaces Hs.
If we write

< m,φi >= λ2
i ci (27)

with
∑∞

j=0 cj < ∞ and
∑∞

i=0 ‖Hφi‖2 < ∞, it is obvious that we get the case α = 1. Indeed, by
Cauchy-Schwarz’s inequality we can write:

‖Hmαn
−Hm‖2 =

∞∑

j=0

( ∞∑

i=0

αn

αn + λ2
i

< Hφi, φj >< m,φi >

)2

6

∞∑

j=0

[(
∑

i

α2
n

(αn + λ2
i )

2
< m,φi >

2

) ∞∑

i=0

< Hφi, φj >
2

]

6
∑

i

α2
n

(αn + λ2
i )

2
< m,φi >

2
∑

i,j

< Hφi, φj >
2

6 O(αn)
∞∑

i=0

‖Hφi‖2

= O(αn)
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Using the same ideas, the condition

< m,φi >= λ4
i ci,

∞∑

i=0

ci <∞

leads to the conclusion that α = 2.
The previous condition (27) links the decay of the eigenvalues λi with the decay of the Fourier coefficients
of the function φ. The same assumption is done in [DFR01]. This assumption is about both the smooth-
ness properties of the operator T and of the function m. It is not possible to break this relationship as
it is stated in [LV04]. Even if this kind of assumption is not usual in statistics, we point out that, in the
litterature of inverse problems in numerical analysis, the regularity of the function and the regularity of
the operator are linked and both give the rate of convergence. For more references, we refer to [1], [2] or
[3].
We could have expected that the regularization via the integral operator to improve the upper bound.
But, with the same arguments as in Remark 3.5 we can see that the regularization does not improve the
rate of convergence of the approximation term, due to the two-step estimation.

Proof of Lemma 4.5:

Proof. We want to prove the uniform convergence of m̂n,αn
to m

We have the following decomposition:

‖m̂n,αn
−m‖∞ 6 ‖m̂n,αn

−mαn
‖∞ + ‖mαn

−m‖∞
As in the general theorem, the idea is to control each term of the decomposition.

We know that:

‖m̂n,αn
−mαn

‖∞ 6 ‖A‖∞ + ‖B‖∞
where, we have used the same notations as in 3.4:

‖A‖∞ 6

∥∥∥∥
(
αnI + T̂ ∗T̂

)−1
∥∥∥∥
∞
.
∥∥∥T̂ ∗r̂ − T̂ ∗T̂m

∥∥∥
∞

6 O

(
1

αn

)
.
∥∥∥T̂ ∗r̂ − T̂ ∗T̂m

∥∥∥
∞

and

‖B‖∞ 6

∥∥∥∥
(
αnI + T̂ ∗T̂

)−1
∥∥∥∥
∞
.
∥∥∥T̂ ∗T̂ − T ∗T

∥∥∥
∞
. ‖mαn

−m‖∞

6 O

(
1

αn

)
.
∥∥∥T̂ ∗T̂ − T ∗T

∥∥∥
∞
. ‖mαn

−m‖∞

The next step is to study the two terms
∥∥∥T̂ ∗r̂ − T̂ ∗T̂m

∥∥∥
∞

and
∥∥∥T̂ ∗T̂ − T ∗T

∥∥∥
∞

. Let’s begin with the

second one. By definition, we have:

∥∥∥T̂ ∗T̂ − T ∗T
∥∥∥
∞

= sup
‖g‖61

∥∥∥
(
T̂ ∗T̂ − T ∗T

)
g
∥∥∥
∞

6

∥∥∥T̂ ∗T̂ − T ∗T
∥∥∥

HS

where ‖.‖HS is the Hilbert-Schmidt norm of this operator (see Dunford and Schwartz [DS88]). Therefore,
using Darolles, Florens and Renault, we find that:

‖B‖2
∞ = O

(
1

α2
n

[
1

nh2
n

+ h2(r∧d)
n

]
‖mαn

−m‖2
∞

)
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The first term is such that:
∥∥∥T̂ ∗r̂ − T̂ ∗T̂m

∥∥∥
∞

=

∥∥∥∥∥

∫ ∫ ∫
(y −m (u))

f̂n (., z, w)

f̂n (., ., w) f̂n (., z, .)
f̂n (y, u, w) dudydw

∥∥∥∥∥
∞

6

∥∥∥∥∥

∫ ∫ ∫
(y −m (u))

(
f̂n (., z, w)

f̂n (., ., w) f̂n (., z, .)
− f (., z, w)

f (., ., w) f (., z, .)

)
f̂n (y, u, w) dudydw

∥∥∥∥∥
∞

+

∥∥∥∥
∫ ∫ ∫

(y −m (u))
f (., z, w)

f (., ., w) f (., z, .)
f̂n (y, u, w) dudydw

∥∥∥∥
∞

6

∥∥∥∥
∫ ∫ ∫

(y −m (u))
f (., z, w)

f (., ., w) f (., z, .)
f̂n (y, u, w)dudydw

∥∥∥∥
∞

Then,we can decompose this term as follows:

∥∥∥T̂ ∗r̂ − T̂ ∗T̂m
∥∥∥
∞

6 ‖R‖∞ +

∥∥∥∥∥
1

n

n∑

i=1

f (., z, wi)

f (., z, .) f (., ., wi)
(yi −m (zi))

∥∥∥∥∥
∞

where

R =
1

n

n∑

i=1

{∫
a (s)Khn

(s− si) ds− a (si)

}

and

a (s) =
f (., z, w)

f (., z, .) f (., ., w)
(y −m (u)) , s = (y, u, w)

We know, using the asymptotic distribution given in the proof of Lemma 4.3 that

1√
n

n∑

i=1

f(., z; , wi)

f(., z, .)f(., ., wi)
(yi −m(zi))

L→ N (O, σ2T ∗T ).

Since we have for ǫ > 0

P

(
| 1
n

n∑

i=1

f (., z, wi)

f (., z, .) f (., ., wi)
(yi −m (zi)) | > ǫ

)

6 P

(
| 1√
n

n∑

i=1

f (., z, wi)

f (., z, .) f (., ., wi)
(yi −m (zi)) | >

√
nǫ

)
,

we get, using Billingsley’s inequality [Bi95] that

P

(
∑

n

∣∣∣∣∣
1

n

n∑

i=1

f(., z, wi)

f(., z, .)f(., ., wi)
(yi −m(zi))

∣∣∣∣∣ > ǫ

)
<∞

and Borel Cantelli’s lemma leads to the conclusion that

‖ 1

n

n∑

i=1

f (., z, wi)

f (., z, .) f (., ., wi)
(yi −m (zi)) ‖2

∞ → 0

at a range of convergence of log n
n

as soon as the following condition is fulfilled:

n

(logn)2
− > +∞ .

The residual term can be viewed as a bias term, so we can prove the uniform convergence of that term

provided that
nhd

n

(log n)2
− > +∞

As a result, the rate of convergence is, at a logarithmic term, the same as for the L2 rate of convergence.
As a consequence, as it is stated in the proof of Theorem 1 in [Van01], the remainder term in Taylor’s
expansion is negligible since we only lose a logarithmic term in the rate of convergence.
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Proof of Lemma 4.6:

Proof. Define the following function:

E(Z|X = x, Y = y) = L(x, y)

=

∫
z
l(x, y, z)

l(x, y)
dz

=
q(y, z)

l(x, y)

where l(x, y) =
∫
f(x, y, z)dz.

An estimator of this function is given by

L̂n(x, y) =

∫
z
l̂n(x, y, z)

l̂n(x, y)
dz

=

∫
zên(x, y, z)dz,

with

ên(x, y, z) =

∑n
i=1Kh(x−Xi)Kh(y − Yi)Kh(z − Zi)∑n

i=1Kh(x−Xi)Kh(y − Yi)
.

Our goal is to provide conditions over the bandwidth hn such that the derivative of the estimator with
respect to the second variable converges uniformly to the similar derivative of the true function.

‖D2[L̂n] −D2[L]‖∞ → 0.

For this, use the following decomposition:

D2[L̂n] −D2[L] =
lD2[q̂n] − lL̂nD2[l̂n] − l̂nD2[q] + Ll̂nD2[l]

ll̂n

= (l − l̂n)
D2[q] − LD2[l]

ll̂n
+ (L− L̂n)

D2[l̂n]

l̂n

+
L

l̂n
(D2[l] −D2[l̂n]) +

1

l̂n
(D2[q̂n] −D2[q])

As a result, the uniform convergence of D2[L̂n] to D2[L] can be deduced from the uniform convergence
of the previous four terms.
We have already proven that, under suitable conditions, ‖L̂n − L‖∞ → 0, when bounding the remainder
term in the Taylor expansion.
Moreover, we already know that l̂n converges uniformly to l.
So it remains to be seen the two following uniform convergence:

‖D2[l̂n] −D2[l]‖∞ → 0 (28)

‖D2[q̂n] −D2[q]‖∞ → 0 (29)

If we have proved the first uniform convergence, since

q(x, y) =

∫
zl(x, y, z) dz

Lebesgue theorem as well as the fact that the functions are defined over compact sets, give the second
uniform convergence. As a consequence it suffices to prove the first asymptotics (28).

The estimator l̂n is defined as follows:

l̂n(x, y, z) =
1

nhd
n

n∑

i=1

K(
x−Xi

hn

)K(
y − Yi

hn

)K(
z − Zi

hn

).

So we get

D2[l̂n(x, y, z)] =
1

nhd+1
n

n∑

i=1

K(
x−Xi

hn

)K
′

(
y − Yi

hn

)K(
z − Zi

hn

).
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Using partial integration, it is well known that

lE(D2[l̂n]) =
1

hd+1
n

∫ ∫ ∫
l(u, v, w)K(

x− u

hn

)K
′

(
y − v

hn

)K(
z − w

hn

)dudvdw

=
1

hd
n

∫ ∫ ∫
D2[l(u, v, w)]K(

x− u

hn

)K(
y − v

hn

)K(
z − w

hn

)dudvdw, (30)

which proves that D2[l̂n] → D2[l].
Hence we can write the following decomposition:

D2[l̂n] −D2[l] = D2[l̂n] − E(D2[l̂n]) + E(D2[l̂n]) − l

= (I) + (II).

The second term is the usual bias term. As expected, using the assumption that l ∈ C2, which implies
that D2[l] ∈ C1 and using (30), we get:

(II) =

∫ ∫ ∫
1

h3
n

(D2[l(u, v, w)] −D2[l(x, y, z)])K(
x− u

hn

)K(
y − v

hn

)K(
z − w

hn

)dudvdw

=

∫ ∫ ∫
K(u)K(v)K(w)[D2[l(x− hnu, y − hnv, z − hnw)] −D2[l(x, y, z)]]dudvdw

= o(hd
n)

and that bound is uniform over x, y, z.
The first term can be written as follows:

(I) =
1

nhd+1
n

n∑

i=1

[
K(

x−Xi

hn

)K
′

(
y − Yi

hn

)K(
z − Zi

hn

) − E(K(
x−Xi

hn

)K
′

(
y − Yi

hn

)K(
z − Zi

hn

))

]

Using empirical process theory, we get the following upper bound:

P(|(I)| > ǫ)

= P(| 1

nhd+1
n

n∑

i=1

[
K(

x−Xi

hn

)K
′

(
y − Yi

hn

)K(
z − Zi

hn

) − E(K(
x−Xi

hn

)K
′

(
y − Yi

hn

)K(
z − Zi

hn

))

]
| > ǫ)

6 4 exp

(
− ǫ

2h2
n

√
nh

− d
2

n hd
n

8‖K‖3
∞

)

6 4 exp

(
− ǫ

2√nh
d
2 +2
n

8‖K‖3
∞

)
.

As a result, as soon as the following condition is fulfilled

nh
d
2 +2
n

log2 n
→ ∞ (31)

an extensive use of Borel Cantelli’s lemma gives the uniform convergence of term (I).
As a conclusion, the two terms converge uniformly, which proves the result.

Proof of Lemma 4.7:

Proof. We want to prove the uniform convergence of D2[m̂n,αn
] to D2[m].

For this recall that mαn
and m̂n,αn

are defined by the following relations:

αnmαn
+

∫
mαn

(u)a(u, z)du =

∫
yb(y, z)dy

αnm̂n,αn
+

∫
m̂n,αn

(u)ân(u, z)du =

∫
yb̂n(y, z)dy
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As a consequence, considering the derivative with respect to the second variable (written D2), we get

αnD2[mαn
] +

∫
mαn

(u)D2[a(u, z)]du =

∫
yD2[b(y, z)]dy

αnD2[m̂n,αn
] +

∫
m̂n,αn

(u)D2[ân(u, z)]du =

∫
yD2[b̂n(y, z)]dy (32)

So we can write

D2[m̂n,αn
] −D2[m] = (D2[m̂n,αn

] −D2[mαn
]) + (D2[mαn

] −D2[m])

=
1

αn

(αnD2[m̂n,αn
] − αnD2[mαn

]) + (D2[mαn
] −D2[m])

=
1

αn

(I) + (II).

For the first term (I) consider the following decomposition using (32):

(I) =

∫
y
(
D2[b̂n(y, z)] −D2[b(y, z)]

)

︸ ︷︷ ︸
A

dy

+

∫
m(u)D2[a(u, z)]du−

∫
m̂n,αn

D2[ân(u, z)]du

= A+

∫
(m(u) − m̂n,αn

(u))D2[a(u, z)]du+

∫
m̂n,αn

(u)
(
D2[b(u, z)]−D2[b̂n(u, z)]

)
du.

Recall that we have used the following notations

a(u, z) =

∫
f(., u, w)f(., z, w)

f(., ., w)f(., z, .)
dw

b(u, z) =

∫
f(y, ., w)f(., z, w)

f(., ., w)f(., z, .)
dw.

As a result, we can give an interpretation of the quantities
∫
yb(y, z)dy and

∫
m(u)a(u, z)du using con-

ditional expectation. There exist two functions g and h such that

∫
m(u)D2[a(u, z)]du =

∫
g(w)D2[

f(., z, w)

f(., z)
]dw

= D2[E(g(W )|Z)]

∫
yD2[b(y, z)]dy = D2[E(h(W )|Z)].

Uniform convergence is then a consequence of Lemma 4.6. As a result, since it is stated that

‖(I)‖∞ 6 o(hd
n) + O

(
logn

√
nh

d
2 +2
n

)

6 o(αn)

due to the restrictions imposed on the bandwidth in Lemma 4.7, we have proved that

1

αn

‖(I)‖∞ = o(1).

Moreover the same assumptions give the convergence of the bias term (II), which concludes the proof.

5.2 Outline of proof of linearization of the differential equation

Proof of Theorem 3.2:
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Proof. Under the assumptions over the statistical model, we know that there exits a unique solution to
(4). We can call it λ(x) = Φ [m] (x) , where Φ is a differentiable functional of m. The idea is to use a first
order Taylor development and to study both terms. Thus, we have:

(
λ̂n − λ

)
(x) = (Φ [m̂n,αn

] − Φ [m]) (x)

= dΦ [m] (m̂n,αn
−m)(x) +R

where R is stronger than the rest of Taylor development, that is: R = OP

(
‖m̂n,αn

−m‖2
∞

)
.

Our objective is to study the Fréchet-derivative of Φ. Let us now define the function

A :

{
C1(D) × C1

b,0(I) → C(I)

(u, v) 7→ A(u, v)

where C1(D) = {u ∈ C(D) and continuously differentiable} and

C1
b,0(I) = {v ∈ Cb,0(I), continuously differentiable and ‖v′‖∞ < b/a}

where D = {(x, y) ; |x| 6 a, |y| 6 b} .(
C1(D), ‖.‖∞

)
and (C(I), ‖.‖∞) are Banach spaces. Moreover we define the following norm:

‖.‖
′

∞ = max (‖v‖∞ , ‖v′‖∞)

on C1
b,0(I). We can easily see that

(
C1

b,0(I), ‖.‖
′

∞

)
is a Banach space. As a matter of fact, to prove it,

we have to use the uniform convergence of functions and its application to differentiability. The use of
such a norm allows us to have the continuity and linearity of the following application:

D :

{ (
C1

b,0(I), ‖.‖
′

∞

)
→ (C(I), ‖.‖∞)

y 7−→ y′

So, we have: ∀x ∈ I, A(u, v)(x) = v′(x) − u(x, v(x)) . Let us now define an open subset W of
C1(D) × C1

b,0(I) and (m,λ) ∈W . We know that A is continuous on W (it is a sum of continuous
applications) and that A(m,λ) = 0. Let us check the hypothesis of the implicit function theorem. A is
in fact continuously differentiable (thanks to the same argument) so we can take its derivative with the
second variable ∂2A(m,λ). Moreover, we have:

∀h ∈ C1
b,0(I), ∀x ∈ I, ∂2A(m,λ)(h)(x) = h′(x) − ∂2m(x, λ(x)).h(x)

We have to prove that ∂2A(m,λ) is a bijection. Let us show first the surjectivity:

∀v ∈ C(I), ∃?h ∈ C1
b,0(I); ∀x ∈ I, h′(x) − ∂2m(x, λ(x)).h(x) = v(x)

This is a linear differential equation, so we can solve it and find that:

∀x ∈ I, h(x) =

∫ x

0

(
v(s).e[

R
x
0

∂2m(t,λ(t))dt−
R

s
0

∂2m(t,λ(t))dt]
)
ds

Therefore, D2A(m,λ) is surjective. Let us now demonstrate the injectivity, that is

Ker (D2A(m,λ)) = {0}

We are going to solve D2A(m,λ)h = 0, h ∈ C1
b,0(I) . We find again a linear differential equation we can

solve and find:

∀x ∈ I, h(x) = ce
R

x
0

D2m(t,λ(t))dt and h(0) = 0

Therefore, we get c = 0. Thus, we have demonstrated that D2A(m,λ) is bijective. Let us now
demonstrate the bi-continuity of ∂2A(m,λ). In the usual implicit function theorem, this assumption is
not required, but here we consider infinite dimension spaces that is why we need a more general theorem
with further assumptions to satisfy. The continuity of D2A(m,λ) has already been proved since A is
continuously differentiable.
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The continuity of the reversible function is given by an application of Baire Theorem: if an application
is linear continuous and bijective on two Banach spaces, the reversible application is continuous.

Therefore, we can apply the implicit function theorem: ∃U an open subset around m and V an open
subset around λ such as:

∀u ∈ U,A(u, y) = 0 has a unique solution in V

Let us note: y = Φ [u] this unique solution for u ∈ U .
Now we are going to differentiate the relation: A(u,Φ [u]) = 0, ∀u ∈ U and apply it in (m,λ = Φ [m]).

Let us first differentiate A: ∀h ∈ C1(D) × C1
b,0(I) ,

dA(m,λ)(h)(x) = d1A(m,λ)dm(h)(x) + d2A(m,λ)dλ(h)(x)

= −dm(h)(x, λ(x)) + (dλ(h))
′
(x) − ∂2m(x, λ(x))dλ(h)(x)

The differential of A leads to a linear differential equation in dλ(h) that we can solve. Now we apply
it with dm(h) = m̂n,αn

−m and dλ(h) = dΦ [m] (m̂n,αn
−m) in order to find:

dΦ [m] (m̂n,αn
−m)′(x) = ∂2m (x,Φ [m] (x)) .d(m̂n,αn

−m)(x) + (m̂n,αn
−m) (x,Φ [m] (x))

Solving it leads us to:

dΦ [m] (m̂n,αn
−m)(x) =

∫ x

0

(
(m̂n,αn

−m) (t,Φ [m] (t)).e

hR
x
0

∂m
∂e2

(u,Φ[m](u))du−
R

t
0

∂m
∂e2

(u,Φ[m](u))du
i)

dt

=

∫ x

0

(
(m̂n,αn

−m) (t, λ(t)).e

hR
x
0

∂m
∂e2

(u,λ(u))du−
R

t
0

∂m
∂e2

(u,λ(u))du
i)

dt

=

∫ x

0

((m̂n,αn
−m) (t, λ(t)).v(x, t)) dt

So the statement is proved.

References

[Am74] T. Amemiya. Multivariate regression and simultaneous equation models when the dependent
variables are truncated normal. Econometrica, 42:999–1012, 1974.

[Bi95] P. Billingsley. Probability and Measure. John Wiley and Sons Inc., 1995.

[blund00] R. Blundell and J. Powell. Endogeneity in nonparametric and semiparametric regression mod-
els. Invited lecture at the 8th World Congress of the Econometric Society, 2000.

[Bos96] D. Bosq. Nonparametric statistics for stochastic processes. Springer-Verlag, New York, 1998.
Estimation and prediction.

[CT00] L. Cavalier and A. Tsybakov. Sharp adaptation for inverse problems with random noise.
preprint, 2000.

[CIK99] P. Chow, Ibragimov I. and Khasminskii R. Statistical approach to some ill-posed problems for
partial differential equations. Prob. Theory and Related Fields, 113, 421–441, 1999.

[Erm89] M. Ermakov. Minimax estimation of the solution of an ill-posed convolution type problem.
Problems of Information Transmission, 25, 191–200, 1989.

[DFR01] S. Darolles, J-P. Florens, and E. Renault. Nonparametric instrumental regression. preprint,
2001.

[1] Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse problems, vol-
ume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht,
1996.

[Flo00] J-P. Florens. Inverse problems and structural econometrics: the example of instrumental
variables. Invited lecture at the 8th World Congress of the Econometric Society, 2000.

[Han82] L.P. Hansen. Large sample properties of generelaized method of moment estimators. Econo-
metrica, 50:1029–1054, 1982.

Compiled November 28, 2004 20:16 by LATEX2ε. Page 20.



D
R

A
FT

N
ov

em
be

r 2
8,

 2
00

4-
- 2

0:
16

[HN] J. Hausman and W. K. Newey. Nonparametric estimation of exact consumers surplus and
deadweight loss. Econometrica, 63:1445–1476.

[JS90] I. Johnstone and B. Silverman. Speed of estimation in positron emission tomography and
related inverse problems. Ann. Stat., 18:251–280, 1990.

[Lan68] H. Lancaster. The structure of bivariate distribution. Ann. Math. Statist., 29:719–736, 1968.

[LvdG00] J-M. Loubes and S. van de Geer. Adaptive estimation with soft thresholding penalties. Sta-
tistica Neerlandica, 56, 1-26, 2002.

[LV04] J-M. Loubes and A. Vanhems. Saturation space for inverse problems in econometry. Proceed-
ings of the american econometric society, 2004.

[Osu96] F. O’Sullivan. A statistical perspective on ill-posed problems. Statist. Science, 1, 502–527,
1996.

[2] Qinian Jin and Umberto Amato. A discrete scheme of Landweber iteration for solving nonlinear
ill-posed problems. J. Math. Anal. Appl., 253(1):187–203, 2001.

[R41] O. Reiersol. Confluence Analysis of Lag Moments and others Methods of Confluence. Econo-
metrica, 9, 1-41, 1941.

[R45] O. Reiersol. Confluence Analysis by Means of Instrumental Sets of Variables. Arkiv for
Mathematik, 32, 1945.

[S58] J.D. Sargan. The Estimation of Economic Relationship using Instrumental Variables. Econo-
metrica. 1958.

[DS88] N. Dunford and J. Schwartz. Linear operators. Part III. John Wiley & Sons Inc., New York,
1988. Spectral operators, With the assistance of William G. Bade and Robert G. Bartle,
Reprint of the 1971 original, A Wiley-Interscience Publication.

[3] Ulrich Tautenhahn. On a general regularization scheme for nonlinear ill-posed problems. II.
Regularization in Hilbert scales. Inverse Problems, 14(6):1607–1616, 1998.

[TA77] A. Tikhonov and V. Arsenin. Solutions of ill-posed problems. V. H. Winston & Sons, Wash-
ington, D.C.: John Wiley & Sons, New York, 1977. Translated from the Russian, Preface by
translation editor Fritz John, Scripta Series in Mathematics.

[Van01] A. Vanhems. Nonparametric estimation of differential equation. preprint, 2001.

[Var92] H.R. Varian. Microeconomic Analysis . W.W. Norton

[vdVW96] A. van der Vaart and J. Wellner. Weak convergence and empirical processes. Springer-Verlag,
New York, 1996. With applications to statistics.

Jean-Michel Loubes.

Address: UMR 8628 CNRS/Paris-Sud, Bâtiment 425, Département de Mathématiques d’Orsay, Uni-
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