
The Canadian Journal of Statistics

Vol. 31, No. ?, 2003, Pages ???-???

La revue canadienne de statistique

Road trafficking description and short term
travel time forecasting, with a classification
method

Jean-Michel LOUBES, Elie MAZA and Marc LAVIELLE

Key words and phrases: forecasting method; functional classification; learning theory; mixture
model. .
MSC 2000 : Primary 62H30; secondary 62P30.

Abstract: The purpose of this work is, on the one hand, to study how to forecast road trafficking on highway

networks and, on the other hand, to describe future traffic events. Here, road trafficking is measured by

the vehicle velocities. We propose two methodologies, the first one is based on an empirical classification

method, and the second one, on a probability mixture model. We use an SAEM type algorithm (a

Stochastic Approximation of the EM algorithm) to select the densities of the mixture model. Then, we

test the validity of our methodologies by forecasting short term travel times.

Title in French: Description de trafic routier et prévision de temps de parcours à

court terme, avec une méthode de classification

Résumé: Les objectifs de l’étude exposée ici sont, d’une part, la mise en place d’une méthode de prévision

de temps de parcours sur le réseau routier de l’agglomération parisienne, et d’autre part, la description

des comportements futurs du trafic. Ici, le trafic routier est mesuré par la vitesse des véhicules. Les

auteurs proposent deux méthodologies, l’une est basée sur une méthode de classification automatique,

et la seconde, sur un modèle de mélange. Afin d’estimer les paramètres du modèle de mélange, nous

utilisons l’algorithme SAEM (une Approximation Stochastique de l’algorithme EM). Enfin, nous testons

et comparons les méthodes proposées en effectuant des prévisions sur un échantillon de test.

1. INTRODUCTION

Even if long term road traffic forecasting was developed a long time ago (see http://www.bison-
fute.equipement.gouv.fr), short term forecasting appeared only recently. Indeed, new technologies
enable us to obtain precise data, not only a qualitative variable describing the state of a car stream:
moving, blocking or stopped, as it is done by Couton, Danech-Pajouh & Broniatowsky (1996), but
also a quantitative variable (with measures of speed, flow and occupancy rate), necessary for such
a study.

In this work, our main purpose is to forecast travel time on the Parisian highway network.
More precisely, we want to forecast, at time H , the time needed at time H + h, h ≥ 0, to travel
from one point to another. Contrary to previous works, see for example Van Grol, Danech-Pajouh,
Manfredi & Whitakker (1998) or Danech-Pajouh & Aron (1994), where forecasts were made only
at a specific point of the network, we aim at forecasting travel time, which implies estimating
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speeds at all the points of the observation grid, i.e. all the measurement stations of the network.
Moreover, our methodology builds archetypes of road trafficking whose interpretation is of great
interest to study the different roadtrafficking behaviours. We point out that we did not consider
time series, as done by Belomestny, Jentsch & Schreckenberg (2003), since the structure of our
data prevents a wide use of these technics, as discussed later in the paper.

Our study relies on two commonly accepted assumptions. First, short term road trafficking
mostly depends on what just happened. Second, there are a fixed number of traffic patterns, and
every new observation day can be compared to them. The data used for this study have confirmed
these statements. As a consequence, the issue of travel time forecasting can be divided into two
steps. First, we estimate the representative behaviours or patterns of road trafficking. Then, we
compare the incoming observations to these archetypes, and choose to which cluster this observa-
tion belongs to.

Functional data analysis methods are well suited to forecast outcomes made of functions and
have been widely investigated over the last few years. Such techniques enable to fit a nonlinear
model to the data, and then use this model to predict the forecoming values. For general refer-
ence, we refer for example to the following papers: Preda & Saporta (2004); Bosq (2003); Besse &
Cardot (1996); Núñez-Antón, Rodŕıguez-Póo & Vieu (1999); Ferraty & Vieu (2003) or Ferraty &
Vieu (2004). In this paper, we try to release too strong assumptions over the data and, for this,
we focus on functional classification methods.

In our work, we compare two different ways of finding the features of road traffic. On the one
hand, we aim at modelling road traffic with a mixture model, assuming that the daily evolution
of the vehicle speed is drawn from a mixture of probability. So, it is necessary to estimate the
components of the mixture, as well as the optimal number of components (see for example, Chen
1995; Lindsay & Lesperance 1995 or Cheng & Liu 2001). The components of the mixture are thus
the archetypes we are looking for. Such method has already been used but only for a qualitative
study of road traffic, by Dochy (1995) or Couton, Danech-Pajouh & Broniatowsky (1996).
On the other hand, standard classification methods enable us to allocate data into representative
sets: see, for more general references, Gordon (1999); Celeux (1988); Breiman, Friedman, Olshen
& Stone (1984) or Jambu (1978). Indeed, classification methods aim at gathering individuals into
a restricted number of representative classes. Representative classes are such that two individuals
taken inside the same class are similar (homogeneous class), and such that two individuals taken
in two different classes are distinct (heterogeneous classes). The introduction of an appropriate
distance index for speed curves (distance, dissimilarity index, variation, ultra-metric variation,
etc.) will enable us to quantify the qualitative terms similar and distinct. So, the major part of
the work here consists in finding a suitable distance and the optimal number of clusters used to
summarize the information conveyed by the data. Then we extract the main feature from each
cluster to obtain the archetypes.

The article falls into 7 main parts. Section 1 is the introduction. In Section 2, we describe
the data used for this work as well as the preliminary treatments to detect and eliminate outliers.
Then, we present the forecasting methodology. Section 3 provides a model for the vehicle speed
change by considering a mixture setting. An SAEM type algorithm is used to estimate the differ-
ent components of the mixture. Section 4 is devoted to the study of an empirical classification to
construct significant clusters, and archetypes of each traffic behaviour are given in Section 5. In
Section 6, we compare the two different approaches by forecasting travel times with the patterns
obtained by the two methodologies. Finally, Section 7 is devoted to the conclusion.

2. DATA AND METHODOLOGY
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2.1 Description

On the main roads around Paris, counting stations can be found, approximately at every 500
meters along main road axes. Such sensors provide the following observations, see Cohen (1990):
the flow, the occupancy rate, and the speed, defined by the mean of vehicle speeds over a period
of 6 minutes. Througout all the paper, we will use the following notations:

• Let Cs, s = 1, . . . , S, be a counting station, where S stands for the number of stations on
the network (actually S ≈ 2000),

• Let Jn, n = 1, . . . , N , be an observation day, where N is the number of days considered in
the study.

The database used in the paper, was provided by the SIER (Service Interdépartemental d’Exploitation

Routière) and is composed of the daily evolution of the vehicles speed over N = 709 days. For
each station Cs and each day Jn, we observe Y s

n (t), t = 1, . . . , T = 180, corresponding to the
average speed over a period of 6 minutes, ranging from 5 AM to 11 PM, given 180 daily speed
measurements per station, see Figure 1 for an example of such a speed curve.

Our study is carried out on a representative axis of Paris highway network (named A4W) where
it is difficult to forecast travel times and which is known to be representative of Parisian road traffic
behaviour. This road section is 21.82 kilometers long and has 38 counting stations.

2.2 Data quality

Rough data of the 2 years database cannot be used directly since aberrant and missing data are too
numerous, due to the defaults of the counting stations. Hence, we provide a two step filtering and
completion algorithm. The first step detects aberrant data, and was elaborated in collaboration
with the SIER managers. The second step deals with the completion of missing data.

1. Aberrant data detection is based on the three following points:

(a) detection of excessive speed measures, higher than 160 km/h

(b) detection of too low speed measures, lower than 5 km/h during more 3.6 hours,

(c) detection of constant speed measurements, constant for more than 0.5 hour,

2. Missing data completion is carried out by calculating a space and time average with non
missing data: replace a missing data by

Y s
n (t) =

Y s−1
n (t) + Y s+1

n (t) + Y s
n (t − 1) + Y s

n (t + 1)

4
,

or by the average of the non missing values if one is also missing. Obviously, if all the
measurements are missing, there is no completion. This step is repeated until 80% of the
data is completed.

The three errors described in step 1 are well known by road traffic managers. For example, the
constant speed measurements are due to stations that have not been re-initialized after a measure
and that automatically repeat this same measure over several consecutive periods.

After performing this algorithm, the number of days used for the study is reduced since we
only use the curves Y s

n without missing data. We can notice that some counting stations have no
complete days before the protocol. In many counting stations, missing data are not MAR (i.e.
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Missing At Random data), and too numerous, preventing the use of the EM algorithm, used in
Section 3, to complete the data.
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A velocity curve from station number 19 − April 4, 2001
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after filtering and completion algorithm

Figure 1: Plot of a speed curve from the counting station 19, before the protocol (dotted line) and
after the protocol (solid line). In this example, all missing values (noted −1) have been completed.

2.3 Forecasting method

For a new day Jn0
, at time H ∈

[
t0+49

10 , t0+50
10

[
, corresponding to period t0, we observe the speed

measurements Y s
n0

(t), ∀t < t0, ∀s = 1, . . . , S. Hence we want to forecast Y s
n0

(t), ∀t ≥ t0, ∀s =
1, . . . , S, in order to forecast travel time on a given itinerary. Indeed, once obtained all the values
Y s
n0

(t), for all t ≥ t0 and for all counting stations Cs, s = 1, . . . , S, we can compute the travel time
from one point to another at time H + h, for any h ≥ 0.

We assume that for each counting station Cs, there is a number ms of representative behaviours
of road trafficking, noted f1, . . . , fms

. Hence, the forecasting method can be divided into two main
parts:

1. Estimate the standard profiles, f1, . . . , fms
, for each counting station Cs, s = 1, . . . , S,

2. Matching the incoming observations to these archetypes and hence estimating speed at all
counting stations to forecast travel time.

For sake of simplicity, since the study is carried out for each counting station, we will drop the
s index and so we will note m the number of behaviours and f1, . . . , fm, the associated standard
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profiles.

To estimate the standard profiles f1, . . . , fm, we use two different methods: a mixture model
in Section 3, and an empirical classification method in Section 4. Also, in order to make any com-
parisons between travel time forecasts using these two methods, we get a test sample of NT = 19
days. This test sample will be used in Section 5 to forecast simulated travel times.

3. MIXTURE MODEL

3.1 Model description

Consider Cs a counting station. For this chosen station, each day Jn, n = 1, . . . , N , we observe
the vehicle speed at discrete times t = 1, . . . , T , with T = 180. Set, for each n = 1, . . . , N ,
yn = t(yn(1), . . . , yn(T )) ∈ R

T the vector of daily observed speeds, and Yn = t(Yn(1), . . . , Yn(T ))
the corresponding random vector. We assume, as quoted in Section 2, that there are m different
archetypes, f1, . . . , fm, where for all j = 1, . . . , m, fj = t(fj(1), . . . , fj(T )) ∈ R

T . The assumption
behind this modelling is that highway traffic phenomena do not depend on the traffic of the
previous days, and that there are exogenous variables determining to which pattern the observed
data belong to. So, the measure of the vehicle velocity at one point can be written as follows

Yn =

m∑

j=1

1j(Xn)fj + ǫn, n = 1, . . . , N, where (1)

• Xn, n = 1, . . . , N , are i.i.d. non observable variables, taking values in the discrete set
{1, . . . , m},

• ǫn ∈ R
T , n = 1, . . . , N , is a Gaussian vector, independent from the observations, with

variance σ2IT , with IT the T × T identity matrix. The observations come from counting
stations which are all the same, satisfying to the quality controls. Hence the variance is
taken constant equal to σ2.

The unknown parameters are: the number of components m; the archetypes fj , j = 1, . . . , m; the
noise variance σ2; as well as the parameters of the law of Xn. The discrete law of Xn is entirely
characterized by the probabilities πj = P(Xn = j), j = 1, . . . , m.

In a first approach, we assume that m is known. Selecting the right number of models is the
topic of Section 3.2. Hence, the parameters to be estimated are:

Ψ = t(π1, . . . , πm, f1, . . . , fm, σ).

Set y = (y1, . . . , yN ) the observed values of the random sample Y = (Y1, . . . , YN ). Set also
x = (x1, . . . , xN ) the non observed values of the random sample X = (X1, . . . , XN ).

To estimate Ψ, consider the maximum likelihood estimator. The log-likelihood of the model
can be written in the following form

L(y; Ψ) =
N∑

n=1

log




m∑

j=1

πjφ(yn; fj , σ)



 ,

where φ(·; µ, σ) is the density of a Gaussian vector with mean µ ∈ R
T and variance σ2IT . The

log-likelihood estimator of Ψ is a root of the equation

∇ΨL(y; Ψ) = 0,
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where ∇ΨL(y; Ψ) is the gradient of L with respect to the unknown parameters of Ψ.

In a mixture model, analogous to the one studied by McLeish & Small (1986), the solution
of the previous equation can be computed efficiently with an EM algorithm, as it is stated in
the work of Basford & McLachlan (1985) or Lachlan (1982). The EM algorithm was created by
Dempster, Laird & Rubin (1977) to maximize the log-likelihood with missing data. It enables,
with a recursive method, to change the problem of maximizing the log-likelihood into the problem
of maximizing the completed log-likelihood of the model:

LC(y, x; Ψ) =

N∑

n=1

m∑

j=1

1j(xn) log (πjφ(yn; fj , σ)) .

Set Zn = (Znj)j=1,...,m = (1j(Xn))j=1,...,m. This variable completes the model since it points out
which class the random vector Yn belongs to. This variable follows a multinomial distribution with
unknown parameter π = t(π1, . . . , πm).

Let describe the p + 1 step of the EM algorithm. Set

Q
(
Ψ, Ψ(p)

)
= E

[
LC(Y, X ; Ψ)|Y = y; Ψ(p)

]
,

the expectancy of the log-likelihood of the complete data, conditionally to the observed data, and
with respect to the value of the parameter computed at step p, written Ψ(p). Then we obtain

Q
(
Ψ, Ψ(p)

)
=

N∑

n=1

m∑

j=1

E
[
Znj |Yn = yn; Ψ

(p)
]
log (πjφ (yn; fj, σ)) .

Hence, the step p + 1 of the EM algorithm is divided into two stages: the expectation stage (E)
and the maximization stage (M):

(E) In this stage, the random variable Znj is replaced by its expectancy, conditionally to the
observed data, and with respect to the current value of the parameter:

τ
(p)
k (yn) = E

[
Znk|Yn = yn; Ψ

(p)
]

= P
(
Znk = 1|Yn = yn; Ψ

(p)
)

=
π

(p)
k φ

(
yn; f

(p)
k , σ(p)

)

∑m
j=1 π

(p)
j φ

(
yn; f

(p)
j , σ(p)

) .

(M) In this stage, the maximization is conducted by choosing the value of the parameter Ψ that
maximizes Q(Ψ, Ψ(p)). It will be written Ψ(p+1). The estimators are the followings:

π
(p+1)
j =

1

N

N∑

n=1

τ
(p)
j (yn),

f
(p+1)
j =

∑N
n=1 τ

(p)
j (yn)yn

∑N
n=1 τ

(p)
j (yn)

,

σ(p+1) =



 1

NT

N∑

n=1

m∑

j=1

T∑

t=1

τ
(p)
j (yn)

(
yn(t) − f

(p)
j (t)

)2




1/2

.

The model we use, undergoes the assumptions over the EM algorithm, which ensures its conver-
gence.
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In order to avoid local minima, we have used a Stochastic Approximation of the EM algorithm,
the SAEM algorithm. Such algorithm has been developed, and its convergence has been proved,
by Delyon, Lavielle & Moulines (1999). The main advantage for using SAEM algorithm rather
than EM algorithm is that the former is less sensitive to the choice of the starting point in the
algorithm. For a good choice of the initialization parameters, the outcome of the two algorithms
are quite the same, while, for a bad choice, the estimates given by successive applications of EM al-
gorithm can be far the one from the others. On the contrary, SAEM provides the same results. For
more about the comparison between stochastic versions of the EM algorithm, we refer to Bronia-
towsky, Celeux & Diebolt (1983); Celeux & Diebolt (1992) or Celeux, Chauveau and Diebol (1995).

The step p + 1 of the SAEM algorithm comes from the step p + 1 of the EM algorithm in the
following way:

• The E stage is replaced by a simulation stage. In this stage, we draw K(p+1) realizations of
the multinomial variable Znj, written zknj , k = 1, . . . , K(p + 1), according to the distribution

given by the values of the parameters at step p, Ψ(p). The log-likelihood is then modified in
the following way:

Q̂p (Ψ) = Q̂p−1 (Ψ)+γp+1



 1

K(p + 1)

K(p+1)∑

k=1

N∑

n=1

m∑

j=1

zknj log
(
π

(p)
j φ

(
yn; f

(p)
j , σ(p)

))
− Q̂p−1 (Ψ)



 ,

where (γp)p≥1 is a sequence of positive reals.

• The M stage of the algorithm takes place as previously.

We have used this modified algorithm in our work, with a numerical good choice of the sequences
(γp)p≥1 and (K(p))p≥1, which leads to the results presented in Section 5.

3.2 Estimation of the number of components of the mixture

The aim of this study is to find the optimal number m of components of the mixture (1). For
this, we use a methodology close to model selection approach. For a theoretical approach of these
technic, we refer for instance to the work of Baraud (2000); Birgé & Massart (1998) or Barron,
Birgé & Massart (1999).

For each value of m ≥ 1, we consider the set Fm = {g1, . . . , gm, gi ∈ R
T , π1, . . . , πm, σ}, and

we write F = ∪m≥1Fm the collection of all the different models. For a fixed m, we have seen in

Section 3.1 that it was possible to estimate the unknown parameters of the model, Ψ̂(m). Hence, it

is now possible to compute the estimated log-likelihood of the chosen model L
(
Ψ̂(m); y, m

)
. The

idea is given in the following remark.

Remark 1. The best choice for m, m∗, is the one, such that the function m 7→ L
(
Ψ̂(m); y, m

)

does not increase in a significant way for values greater than m∗.

So, set J(Ψ, y) = −L(Ψ; y). We use the following notations:

Ψ̂(m) = arg min
ψ∈Fm

J(Ψ, y), (2)

Jm = J
(
Ψ̂(m), y

)
.
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For all β > 0 and for all 1 ≤ m ≤ M , where M is an upper bound for the maximum number of
components, set

m̂(β) = arg min
1≤m≤M

(Jm + βm) .

The following proposition is due to Lavielle (2002).

Proposition 1. There is a sequence m1 = 1 < m2 < . . . , and a sequence β0 = +∞ > β1 > . . . ,

with

∀i ≥ 1, βi =
Jmi

− Jmi+1

mi+1 − mi
,

such that

∀β ∈]βi, βi−1[, m̂(β) = mi.

As a consequence, the estimation procedure of the optimal number of components of the mixture
is given by:

• For m = 1, . . . , M , compute Ψ̂(m) and Jm,

• Then compute the sequence (βi)i=1,...,M , as well as li the length of the intervals ]βi, βi−1[,
for all i = 1, . . . , M ,

• Keep the largest value of the mi such that li >> lj , for all j > i.

Actually, the previous procedure is a model selection approach with a stability criterion that re-
places the trade off between bias and variance, as it is quoted by Birgé & Massart (2001). This
proposition provides an automatic criterium that mimics the main idea developped in Remark 1.
Figure 2 present the result of this estimation procedure on the counting station 19.

2 4 6 8 10 12 14 16 18 20

1.5

1.55

1.6

1.65

1.7

x 10
5 Mixture model: criterion values (J

m
, m=1,…,20)

Figure 2: Estimation procedure of the optimal number of components of the mixture model for
counting station 19.

This method is based on mixture model (1). An alternative approach is given by the method
of automatic classification, in Section 4, which makes it possible to be closer to the data observed.
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4. CLASSIFICATION METHOD

4.1 Hierarchical classification

The outcome of a hierarchical classification strongly depends on the choice of between-individuals
and between-clusters distance. Classical distance, see for example, Gordon (1999) or Dazy & Le
Barzic (1996), were not appropriate for this kind of temporal data. Indeed, the study of the road
traffic implies taking into account the temporal aspect of our speed curves. For example, consider
three simplified speed curves, X, Y and Z, obtained one from another by a translation. These
three curves are characterized by a constant speed, 90 km/h, from 5 AM to 11 PM, except over a
2 hours period during which, the speed is reduced to 30 km/h, respectively at 8 AM, 11 AM and
2 PM. For the Euclidean distance d we get d(X, Y ) = d(Y, Z) = d(X, Z) = 389. But, a suitable
classification distance must make the difference between a deceleration which occurs at 8 AM, at
11 AM or at 2 PM. Thus, we build a distance, denoted ∆, taking into account this shift effect.

Definition 1. Let x ∈ R
n and y ∈ R

n. Set ∆ : R
n × R

n → R
+ as

∆(x, y) =
√
t(x − y)W (x − y),

with W a n × n matrix defined by Wij = n−|i−j|
n , ∀i = 1, . . . , n, ∀j = 1, . . . , n.

We point out that ∆ is a distance on R
n. For the preceding example, ∆ gives the following

results: ∆(X, Y ) = ∆(Y, Z) = 637 and ∆(X, Z) = 967. Thus, ∆ enables to differentiate the trans-
lation speed curves. This property, on such curves, can be proved by straightforward calculations.
So, take ∆ as the between-individuals distance, and define the between-clusters distance index as
the distance index of the maximum variation, noted D. Hence, for two clusters A and B, we get

D(A, B) = max
x∈A, y∈B

∆(x, y).

Choosing the criterion of the maximum variation enables us to obtain homogeneous classes, loosing
between classes heterogeneity.

The hierarchical classification is carried out with the Johnson agglomerative algorithm, which
gathers, at each step, the closest clusters.

4.2 Choice of the optimal number of clusters

Once the hierarchical classification is carried out, we aim at keeping only a small number m∗

of significant classes, for each counting station Cs. This implies cutting the classification tree
at a given height, which depends on the accuracy of the description of the data we want to
keep. Here, this level will be data driven and chosen in order to minimize the forecasting error
over an observation sample. Hence, our classification method can be viewed as a learning theory
methodology. Each station database is divided into two samples:

• A model sample, used to estimate standard profiles, with NM complete days (80% of the
data),

• A learning sample, used to estimate the optimal number of standard profiles, with NL com-
plete days (20% of the data).
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Hence, we forecast travel time on the learning sample with m = 1, . . . , M , with M a fixed big
enough integer, and then, choose the number of clusters minimizing the forecasting error criterion.
The optimal number of clusters, m∗, of the counting station number s, Cs, minimizes the absolute
forecasting error over two hours. Hence, we write

m∗ = arg min
m=1,...,M

NL∑

n=1

161∑

t=11

p+19∑

p=t

∣∣Yn(p) − fm,j(n,t)(p)
∣∣ ,

with
fm,j(n,t) = arg min

fm,m̃, m̃=1,...,m
∆′

(
(Yn)t−1

1 , (fm,m̃)t−1
1

)
,

where fm,1, . . . , fm,m, are the standard profiles obtained for m clusters. Hence, fm,j(n,t) is the
closest profile to Yn in the sense defined by the distance ∆′ defined in Section 5, at period t, when
we choose m standard profiles.

Figure 3 shows the absolute errors calculated station 19, for m = 1, . . . , 20. The forecasting
error first decreases while m increases, while there is an over fitting phenomenon when the number
of profiles increases after a certain value. So it is possible to estimate an optimal number of classes.
We also point out that most of the counting stations have the same behaviour.

2 4 6 8 10 12 14 16 18 20

2.2

2.4

2.6

2.8

3

3.2

x 10
6 Forecasting errors

number of clusters

Figure 3: Absolute forecasting error for the station 19, with m standard profiles, m = 1, . . . , 20.
The optimal value is reached for m∗ = 11.

5. ARCHETYPES FOR ROADTRAFFICKING BEHAVIOUR

First of all, we point out that for both models, The number of chosen archetypes or clusters
depends on the counting station we consider. In this study, the optimal numbers of representatives
lies between 5 and 15 for 80% of the counting stations.
For the mixture model ,using the criterion presented in Section 3.2, for counting station 19, the

values of J
(
Ψ̂(m), y

)
do not decrease in a significant way for values greater than m∗ = 11. The

behaviour of the loglikelihood is presented in Figure 2. Figure 4, on the bottom, represents the
11 archetypes of the station 19. Then, for all Cs, s = 1, . . . , S, we select the optimal number of
representatives using this stopping criterion.
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Figure 4: Standard profiles of the counting station 19. On the top, with classification model. On
the bottom, with mixture model.

For the classification model, the learning process explained in Section 4 provides representative
clusters. But, after splitting the data into m∗ representative classes, for each station Cs, we now
have to extract the standard profiles, f̂1, . . . , f̂m∗ , for each cluster, hence obtaining a representative
curve of the speed behaviour in each class. For this, we use a robust estimator: the median of the
speed curves of each class. Figure 4, on the top, presents the m∗ = 11 standard profiles obtained
for the station 19.

The two methods for this particular station give the same number of archetypes. In general,
the optimal number of representative functions selected by the mixture model is slightly smaller
than the number given by the classification method. Thus, some known behaviours appear for
both models, like traffic jams at peak hours and traffic keeping moving otherwise. Nevertheless,
we can see an important difference between the different models. The hierarchical classification
let appear some curves that seem to be outliers or rare events. Hence, for station 19, in Figure 4,
there are curves with larger and deeper traffic jams on the top figure than on the bottom one.
Indeed the EM-type algorithm over-smooths the curves and do not take into account rare events,
which play an important role in roadtrafficking description.

6. TRAVEL TIME FORECASTING

In the two previous parts, we have constructed, for each observation station Cs, s = 1, . . . , S, and

using two different methods, the standard profiles f
(i)
j ∈ F i, i ∈ {1, 2}, j = 1, . . . , mi. These two

sets, F1 and F2, represent the archetypes of the daily vehicle speed resulting, respectively, from
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the mixture model (i = 1) and from the empirical classification (i = 2). Our aim is now to use
these profiles to forecast, for a given itinerary, a customer travel time, at H+h, with h (in minutes)
in the set {18, 30, 48, 60, 78, 90, 108}.

Let Jn0
be the observation day, and t0 such that H ∈

[
t0+49

10 , t0+50
10

[
. In order to forecast, we

estimate, for all the stations of the itinerary, the speeds fs(t), ∀s ∈ S, ∀t ≥ t0, where S is the set of
all stations of the chosen itinerary. Once speed evolutions are known, the estimation of the travel
time is easy. As a consequence, the main issue is, for each station, the estimation of the traffic
velocity. For this, we compare the incoming data of the day Jn0

before time H , i.e. Y s
n0

(t), ∀s ∈
S, ∀t < t0, with all the curves of F1 or F2, by choosing the nearest curve. For this, define for all
i ∈ {1, 2}, for all g ∈ F i, gt0−1

1 = t(g(1), . . . , g(t0 − 1)) and Y t0−1
1 = t(Y s

n0
(1), . . . , Y s

n0
(t0 − 1)), and

∆′, a modified restriction of ∆ to the subset R
t0−1 × R

t0−1, defined as follows.
Let Y t0−1

1 be the observed data at Jn0
the observation day and on the station Cs, before time H ,

i.e. for t < t0 (for sake of simplicity we have omitted station and day indexes). Define the distance
between Y t0−1

1 and the different archetypes of the station Cs, restricted to the values of t < t0,

and written (fj)
t0−1
1 , with fj ∈ F , ∀j = 1, . . . , m, by

∆′
(
Y t0−1

1 , (fj)
t0−1
1

)
=

∆
(
PY t0−1

1 , P (fj)
t0−1
1

)

√
πj

,

where πj , j = 1, . . . , m, is the size of the cluster number j, and P is a t0−1× t0−1 matrix, defined

by Pij =

{
1

t0−i
if i = j and i ≥ t0 − 10,

0 in any other case.

Hence, after having chosen one of the two models, F = F1 or F2, the estimator will be for all
t ≥ t0, f̂(t), with

f̂ = arg min
g∈F

∆
′ (

gt0−1
1 , Y t0−1

1

)
.

Then, we have used the test sample to forecast travel time on the A4W road section, using the
standard profiles obtained with the two methodologies described in Section 3 and Section 4.

We compare the results with the estimations given by the stationary model, defined as the
simplest model, which estimates the speed by the last observed speed, i.e. Y s

n0
(t0 − 1). This model

plays a key role since, on the one hand it is the only reference we have, and on the other hand,
the forecasting results with such a model gives us an indicator of the traffic behaviour on the
considered road section. Indeed, good forecasts point out that the traffic is moving freely. On
the contrary, bad forecasts with the stationary model show that the itinerary is often congested,
leading to numerous changes in the velocity that prevent the use of a stationnary model.

Table 1 and Table 2 present some characteristics (minima and maxima) of travel time errors
obtained with 2000 simulated itineraries on the test sample, for the three models: the stationary
model, the classification model and the mixture model. The error (in minutes) is defined by

error =
real travel time − estimated travel time

real travel time
.

Figure 5 shows the evolution of travel time forecasting errors (mean and standard deviation)
from a 0 to 2 hours forecasting horizon: h ∈ {18, 30, 48, 60, 78, 90, 108}, h in minutes.
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Figure 5: Evolution of travel time forecasting errors (mean and standard deviation) from a 0 to 2
hours forecasting horizon.

Figure 6 is an example of the evolution of the forecast errors throughout a test sample day
(April 4, 2001) for h = 60 (1 hour horizon). More precisely, for each of these days, in our fixed
itinerary, we consider a traveller with that itinerary beginning at each of the periods, and then we
calculate actual and model predicted travel times.

These results enable us to compare the three procedures: the rough stationary model which
is compared to the predictors model: the classification model with an optimal number of clusters
chosen with a learning sample and the model of the loglikelihood estimator. Hence, we can draw
the following conclusions.

First of all, both predictors improve the estimate provided by the stationary model, with smaller
prediction variances (Figure 5) and small error ranges (Table 1 and Table 2). This inprovement
depends on the road which is studied. The more different behaviours of road trafficking can be
found on that road, the better is the gain. This is easy to explain since the stationary model
provides a mean pattern which is far from the real feature when there are many. Yet, this number
of representative patterns is a measure of the complexity of the road, standing for its variability,
with respect to changes day after day.

We also point out that both models underestimate the real travel time (Figure 5), so for prac-
tical applications, this bias can be taken into account.

When comparing the performance of our estimators, we can see that the loglikelihood estimator
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is slightly outperformed by the classification type estimator. Indeed, the mean of the errors with
the classification model is closer to 0, and the variance is smaller (Figure 5). Moreover, error range
is smaller for the classification model (Table 1 and Table 2). The reasons for this difference are
the following:

• First, the distance chosen to evaluate the performance of the estimator, is the same that is
used to classify the data in the methodology described in Section 4, since this distance best
matches the prediction goals. But the optimal choice of models is achieved, via a learning
process, by minimizing the prediction distance over a learning sample. Hence, this choice
induces a bias in favor of the classification method.

• Outliers and rare events play also an important role in this study. On the one hand, the
mixture model is very sensitive to outliers. Indeed, the loglikelihood estimator uses all the
data with the same weights to build an average representative, while a classification method
tends to isolate such outliers in special classes. Hence, the blurring effect of outliers is stronger
for the mixture model since they add a deviation term to the estimates. On the other hand,
rare events are more easily catched by the classification method. Indeed, we have point out in
Section 5, that standards profiles given by the classification method contain more rare event
profiles. Hence, like we can see, for example, in Figure 6, which is one of the worst case,
the congested phenomena are slightly better detected: the travel times with traffic jams of
the mornings are better estimated. Unlike theoretical study in model selection, we found the
optimal number of models by minimizing the prediction error but without a penalty term. As
a matter of fact, we did not want to discard the rare events that can be alone in a cluster, but
represent a real behaviour in road trafficking. Hence, it enables the predictor based on the
classification model to keep in mind some unlikely events, and to give an adequate response
when the observations do not follow a typical pattern.

• Nevertheless, there are two advantages for using the loglikelihood model. First, it is a very
efficient method on a computational point of view, which is much faster than the computa-
tions necessary to perform the learning process of the model selection method. Moreover, for
small values of the number of models, loglikelihood estimators provide a better description
of the data. But, increasing the number of models for the loglikelihood does not improve the
estimation error. Indeed the additional selected patterns are redundant, since, as we have
already said, the loglikelihood estimator does not put the stress on rare events, while the
classification type predictor isolates such features in single classes.

Table 1: Minimum error evolution for different values of forecasting horizon.

For. Hor. Classification Mixture Stationnary

18 min. -0.62 -1.13 -2.21
30 min. -0.67 -0.79 -2.53
48 min. -0.79 -1.02 -3.37
60 min. -0.88 -1.10 -3.82
78 min. -0.96 -1.13 -5.26
90 min. -0.95 -1.14 -6.17
108 min. -1.18 -1.13 -7.30
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Table 2: Maximum error evolution for different values of forecasting horizon.

For. Hor. Classification Mixture Stationnary

18 min. 0.67 0.71 0.67
30 min. 0.67 0.72 0.68
48 min. 0.66 0.71 0.73
60 min. 0.66 0.72 0.77
78 min. 0.66 0.71 0.83
90 min. 0.67 0.71 0.90
108 min. 0.68 0.71 0.95
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Travel time forecasts (April 4, 2001) for one hour forecasting horizon

time (in hours)

real travel time
classification model
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Figure 6: Forecasting travel times on a test sample day (April 4, 2001).

7. CONCLUSION

Our results are encouraging and are far better than the results given by the usual global forecast-
ing methods (Sytadin, http://www.sytadin.tm.fr, or Bison Futé for instance), which only rely on
the rough model. Both models are interesting: the mixture model by its simplicity and the good
performance, and the classification model which is the more accurate but, at the same time, the
more complicated on a computational point of view.

However, it is possible to improve the performances of the method, for example in the choice of
the archetypes that stand for a whole cluster. Indeed, in a class, the functions are similar but they
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may be translation shift between them. As a consequence, taking the median of all the functions
for the representant of the class often leads to an over smoothing effect. Methods able of keeping
the structure of the functions group, as it is done by Kneip & Gasser (1992); Kneip (1994) or
Ramsay & Dazell (1991), are developed by Gamboa, Loubes & Maza (2003) in the setting of high
dimensional data.

Moreover, other modelling attempts can be conducted. It seems rather natural to take into
account the dependency of all the stations which are considered in this work as independent. A
method using the spatial links between the observation cells is taken into account by the authors
in a forthcoming work.

Finally aggregating the estimators should also improve the performance of the procedure. In-
deed, in this work, we have considered separately the prediction given by each methodology. An
alternative should be to use a linear combination of such predictors to improve our results. Such
a work is still in progress.
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torégressif d’ordre 1. The Canadian Journal of Statistics, 14(4), 467–487.
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Orsay, 94125

France

18


