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Abstract

Multifractal functions are widely used to model irregular signals such as turbulence,

data stream or road traffic. Here, we consider multifractal functions defined as

lacunar wavelet series observed in a white noise model. These random functions

are statistically characterized by two parameters. The first parameter governs the

intensity of the wavelet coefficients while the second one governs its sparsity. We

construct estimators of these two parameters and discuss statistical properties of

this important model: the rate of the Fisher information and a testing procedure

to check the multifractal feature of an observed noisy signal.
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1 Introduction

In the last decade much emphasis has been placed on multifractal models.
Roughly speaking, a multifractal function is a function whose local Hölder
regularity index is not constant. That means that the function may be very
regular in some areas while it is very irregular in others. Such functions,
with rapid changes of regularity, have been first introduced to model phys-
ical phenomena such as turbulence by Bacry et al. (1991), or road traffic
or data traffic on networks by Riedi et al. (1999). Arneodo et al. (1999),
Aubry and Jaffard (2002) or Roueff (2001) and Roueff (2003) have recently
shown that some lacunary random series built on wavelets have multifractal
properties.
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In this paper we address parametric estimation problems in a mixture
model arising in random tal functions. To begin with, let us briefly describe
the model we will work with. Given a fixed wavelet ψ, for j1 ∈ N, let
n = 2j1 be the number of observations. Further, consider the triangular
array dn = (djk)1≤j≤j1,0≤k≤2j−1 of independent random variables. For any
j, k the distribution of djk is the Gaussian mixture:

djk ∼ 2(η0−1)jN (2−α0j ,
σ2

n
) + (1 − 2(η0−1)j)N (0,

σ2

n
), (1.1)

where (α0, η0)
T ∈ (0, 1)2 is the unknown parameter vector, σ > 0 is known

and, as usual, N (m, ξ2) denotes the Gaussian distribution with meanm and
standard deviation ξ. This statistical model comes from random lacunar
wavelet series used to model multifractal functions. It can be obtained in
the classical white noise model, drawing independently wavelet coefficients
with a rescaled Bernoulli distribution. As a matter of fact, if at all levels
j ∈ [1, j1] the random wavelet coefficient wjk, k = 0, . . . , 2j − 1 has the
rescaled Bernoulli distribution:

2(η0−1)jδ2−α0j + (1 − 2(η0−1)j)δ0, (1.2)

then the corresponding random function fn =
∑log2 n

j=1

∑2j−1
k=0 wjkψjk con-

verges to a random function having multifractal properties. The multi-
fractal properties of general sparse random series have been studied in
Aubry and Jaffard (2002), Roueff (2001), Jaffard (2000), Arneodo et al.
(1998). In Section 2, we recall the multifractal properties of sparse ran-
dom series. Moreover, we explain how our observation model dn may be
interpreted in this context. In the Bayesian white noise model, when the
prior on wavelet coefficients is given by (1.2), the observed wavelet coeffi-
cients (djk)1≤j≤j1−1,0≤k≤2j−1 are independent and distributed as in (1.1).
In a previous work Gamboa and Loubes (2005), we studied nonparamet-
ric estimation in this Bayesian setting. Roughly speaking, we have shown
that the Bayesian nonparametric posterior estimate is built on a ranked
thresholding procedure. We also have studied the rates of convergence
which appeared to be quite different than those usually found in the non
paradigm. We focus here on empirical estimation of the hyperparameters
(α0, η0)

T ∈ (0, 1)2. As statistical inference based on likelihood is hard to
achieve, we propose and study empirical estimators of (α0, η0)

T . Two kinds
of empirical estimators are studied. In Section 3.1, we build empirical mo-
ment estimators and show that these estimates are convergent and also
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satisfy a central limit theorem. In Section 3.2 we repeat the study for a
level counting estimate, while in Section 3.3 we present an alternative nu-
merical method to estimate the parameters using an EM-type algorithm.
Section 3.4 is devoted to the asymptotic study of the Fisher information of
the model. Moreover, we compare the rates of convergence of the empirical
estimators to the optimal asymptotic rate. We show that the normalizing
rate of convergence does not correspond in general to the rate of conver-
gence of Fisher’s information. In Section 4, we give some applications of
the asymptotic results obtained in Section 3.1 and 3.2. All the proofs are
postponed to Section 5.

2 Multifractal wavelet models

In this paper, we will always work with functions on [0, 1]. To begin with,
let us first introduce some useful definitions around multifractal functions.
The Haussdorf dimension dH(A) of a set A is defined as follows. Let C(A, δ)
be the set of all δ−covering (Ci) of A with open sets Ci of diameter |Ci| ≤ δ.
Let also

Hs,δ(A) = inf
(Ci)i∈C(A,δ)

∑

i

|Ci|s

Hs(A) = lim
δ→0

Hs,δ(A)

dH(A) = inf{s : Hs(A) = 0}

Definition 2.1. Let f be a function on [0, 1].

1) Let x0 ∈ [0, 1] and h ≥ 0, the set Ch(x0) is the set of all functions
f on [0, 1] such that there exist a polynomial P of degree less than h
and a neighborhood V of x0 satisfying

|f(x)− P (x)| = O (x− x0)
h (x ∈ V ).

2) Let hf (x0) = sup{h ≥ 0, f ∈ Ch(x0)} and

Eh = {x ∈ [0, 1], hf (x) = h} (h ≥ 0).

The spectrum of singularity df of f is the function on R
+ which

associates to each h ≥ 0 the Haussdorf dimension of the set Eh.
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Multifractal analysis of a function was first introduced in a physical
framework in Frisch and Parisi (1985). Given a function f , one of the main
goal of this analysis is the computation of the spectrum of singularities df .
When df does not vanish in at least two points we say that f is multifrac-
tal. The spectrum of singularities of a function f is a relevant quantity
to describe the smoothness variation of f . Multifractal functions can be
constructed using their decomposition into an appropriate wavelet basis as
described in Arneodo et al. (1999) and Jaffard (2000). Since we restrict
attention to functions on [0, 1], we will only consider periodized wavelets in
the Schwartz class. This implies that all moments of the wavelets vanish.
In an equivalent way, we could have used compactly supported wavelets as
it is stated in Jaffard (2000) but the results are heavier to state.

Following the construction provided in Meyer (1990) we define a wavelet
ψ̃ in the Schwartz class, and construct the periodized wavelet ψ(x) =
∑

l∈Z
ψ̃(x − l). The functions ψjk = ψ(2jx − l), ∀j ∈ N, k ∈ [0, 2j − 1]

are obtained from the first wavelet by dilatation and translation. Then
(2j/2ψjk)(j,k) provides an orthonormal basis of the Hilbert space L2([0, 1])

(observe the presence of a normalizing factor 2j/2). Let f ∈ L2([0, 1]) on
one hand, its wavelet coefficients may be computed as

wjk = 2j

∫ 1

0
f(t)ψjk(t)dt (j ∈ N, k ∈ [0, 2j − 1]).

On the other hand, f may be reconstructed using its wavelet coefficients

f =
∞∑

j=0

2j−1∑

k=0

wjkψjk (2.1)

Using this wavelet representation, we now turn on the construction of ran-
dom functions exhibiting multifractal properties. This will be done consid-
ering sparse random wavelet series. Let ρj , j ∈ N

∗ be a repartition function
on R. Further, let Zj = (Zjk)k=0,...,2j−1 be 2j independent random vectors
having common distribution ρj . Now, build a random function F using
the reconstruction formula (2.1) where for any j ∈ N

∗, k = 0, . . . , 2j − 1
|wjk| = 2−jZjk . To study the multifractal properties of the random func-
tion F , Aubry and Jaffard (2002), Jaffard (2000) introduced the following



Estimation of Multifractal Process 5

functions:

ρ̃(α, ε) = lim sup
j→∞

log2(2
jρj [α− ε, α+ ε])

j

= 1 + lim sup
j→∞

log P(Zjk ∈ [α− ε, α+ ε])

j

ρ̃(α) = inf
ε>0

ρ̃(α, ε)

Under some assumptions on (ρj)j∈N∗ , which can be found in Jaffard (2000),
or Aubry and Jaffard (2002), Jaffard et al. prove that the spectrum of
singularity of F can be calculated. Indeed, they show that, for all h > 0

dF (h) = h sup
α∈(0,h]

ρ(α)

α
(a.s.). (2.2)

In this paper, we focus on the simplest statistical model derived from the
ones described in the last paragraph. Let (Xjk)j∈N∗, k=0,...,2j−1 be a trian-
gular array of independent Bernoulli random variables: for η0 ∈ (0, 1)

P(Xjk = 1) = 1 −P(Xjk = 0) = 2(η0−1)j.

Further, take for j ∈ N
∗ and k = 0, . . . , 2j − 1 random wavelet coefficients

wjk = 2−α0jXjk for α0 ∈ (0, 1). So we get

wjk ∼ 2(η0−1)jδ2−α0j + (1− 2(η0−1)j)δ0 (2.3)

The corresponding function f is then defined by its wavelet decomposition

into the basis ψjk by f =
∑∞

j=0

∑2j−1
k=0 wjkψjk. So, this simple multifrac-

tal model is characterized by two parameters η0 and α0 in (0, 1). On one
hand η0 describes the lacunarity of the wavelet series (that is its sparsity).
On the other hand the coefficient α0 is inversely proportional to the inten-
sity of the value of the wavelet coefficients. These parameters completely
characterizes the spectrum of singularity of the random functions involved.
Generating a function with this method may seem too restrictive. However,
such processes appear naturally when studying multifractal processes. As
a matter of fact, Jaffard et al. in their work (Aubry and Jaffard, 2002; Ar-
neodo et al., 1998; Jaffard, 2000) use such modelization and they show in
Aubry and Jaffard (2002) that the spectrum of singularity of the function
f is almost surely

df (h) =
1 − η0

α0
h, ∀h ∈

[

α0,
α0

1 − η0

]

. (2.4)
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Figure 1: Multifractal function

In Figure 1 we plot a realization of such a multifractal function. The
lacunarity coefficient is η0 = 0.4 while α0 = 0.3. In this paper, we will
build and study estimators of these two parameters when the observation
is a wavelet series observed in a white noise model.

3 Parametric estimation of lacunarity wavelet series

We aim at estimating the parameters η0 and α0 of a multifractal function f
observed with some measurement errors. We will not address the nonpara-
metric estimation problem since it has already been tackled by the authors
in a previous work (Gamboa and Loubes, 2005). Throughout the paper,
we make the assumption that the wavelet basis, in which the function has
the decomposition (2.3), is known.

In the white noise model, we observe the wavelet coefficients wjk of the

function f together with a Gaussian white noise εjk having variance σ2

n
where n is the number of observations. We assume that the observations
are dyadic and n = 2j1 , (j1 > 0). Recall that the wavelet coefficients are
obtained from discrete regression model

Yi = f(i/2j1) +Wi, i = 1, . . . , n (3.1)

Pro1.eps
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by performing the Discrete Wavelet Transform (DWT). Such transform is
performed by Mallat’s fast algorithm (Mallat, 1989) that requires only O(n)
operations. Hence, the observations are drawn from the following model:

djk = wjk + εjk, j = 1, . . . , j1, k = 0, . . . , 2j − 1

As a result, the law of the observed coefficients djk is determined by the
prior given by the model (2.3):

djk ∼ 2(η0−1)jN
(

2−α0j ,
σ2

n

)

+ (1 − 2(η0−1)j)N
(

0,
σ2

n

)

(3.2)

We could have also considered an extension of the previous model, allowing
the coefficients wjk to differ slightly from the two values 0 and 2−α0j . For
this, we may take, using the same notations with 1 ≤ j ≤ j1, k = 0, . . . ,
2j − 1 :

wjk ∼ 2(η0−1)jN (2−α0j ,∆2
j) + (1 − 2(η0−1)j)N (0,∆2

j), (3.3)

where ∆2
j is a strictly positive sequence satisfying the following condition

∆2
j = O(2−j). (3.4)

In this case, assumptions (3.4) imply that both models share the same
asymptotic properties.

3.1 Moment estimators

A first natural way to build empirical estimates of (η0, α0) is to use the
moment method. To begin with, observe that we obviously have

Edjk = 2(η0−1−α0)j, Ed2
jk =

σ2

n
+ 2(η0−1−2α0)j.

This leads to the following empirical moment estimates of (η0, α0): for a
function fn =

∑j1
j=1

∑

k wjkψjk whose coefficients are drawn according the
prior defined in Section 2, observed in a white noise model, define:

α̂n =
1

j1 log 2

(

log

[ ∑j1
j=1

∑2j−1
k=0 djk

∑j1
j=1

∑2j−1
k=0 d2

jk − σ2

])

(3.5)

η̂n = α̂n +
1

j1 log 2
log

j1∑

j=1

2j−1∑

k=0

djk (3.6)
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The following theorem describes the asymptotic behavior of the moment
estimators.

Theorem 3.1. Assume that η0 − 2α0 > 0 and set

κ = −
j1∑

j=1

22(η0−1−α0)j − 2(η0−1−2α0)j =
2η0−1−2α0 − 22(η0−1−α0)

(1 − 22(η0−1−α0))(1− 2(η0−1−2α0))

(3.7)
Then, α̂n and η̂n are consistent estimators of α0 and η0. Further, we have:

log(n)
√
nη0(α̂n − α0)

L−→ N (0, 1) (3.8)

log(n)nη0−α0 (η̂n − η0)
L−→ N

(
0, κ+ σ2

)
(3.9)

Remark 3.1. If α0 is known, the asymptotic result (3.9) is true in the less
restrictive case η0 > α0. For the remaining subcase η0 − α0 ≤ 0, the mean
of djk goes to zero. Hence, an estimator directly based on the mean could
not be consistent.

The proof of the previous theorem will be tackled using the two following
technical lemmas on asymptotic normality for sums of coefficients djk and
d2

jk. ∆-method (see in van der Vaart, 1998) enables to get the final result.
The proof is postponed to the Appendix.

Lemma 3.1. For η0 > α0, set Cj1 = 2(α0−η0)j1 = nα0−η0 → 0. Then,

C−1
j1



Cj1

j1∑

j=1

2j−1∑

k=0

djk − 1




L−→ N

(
0, σ2 + κ

)
(3.10)

Lemma 3.2. For η0 > 2α0, set Dj1 = 2(2α0−η0)j1 = n2α0−η0 , and observe
that Dj1 vanishes as n goes to infinity. Then we get:

√
nη0



Dj1





j1∑

j=1

2j−1∑

k=0

d2
jk − σ2



− 1




L→ N (0, 1) (3.11)

The two conditions η0 > α0 and η0 > 2α0 of Lemma 3.1 and 3.2 mean
that the true signal f must contain enough energy in order to estimate the
parameters.
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The first estimator defined in (3.6) estimates in fact η0 − α0 while the
second estimates the quantity η0−2α0. Only a computational trick enables
us to estimate the parameters separately, but the relations between these
parameters are worth a closer attention. Maybe a change in the represen-
tation of the model should be appropriate.

Remark 3.2. The estimation problem can be linked with the estimation
of the index of a multifractional process. Such issue is tackled by Benassi
et al. (1998). Indeed, both rates of convergence depend on the value of the
true parameter, as in a nonparametric framework. Moreover, the technics
used in the proofs are quite similar, since in both settings, one deals with a
rescaling of a quadratic variation.

3.2 Level counting estimator

The main drawback of the previous mean estimator is that the estimation
of the lacunarity parameter η0 is linked with the intensity parameter α0.
To overcome this link, we build another estimator for η0.
For this, recall that the distribution of the coefficients is given by the mix-
ture,

djk ∼ 2(η0−1)jN
(

2−α0j ,
σ2

n

)

+ (1 − 2(η0−1)j)N
(

0,
σ2

n

)

.

As a consequence if we rescale the coefficients by
√
n we get the following

distribution
√
ndjk ∼ 2(η0−1)jN (mj , σ

2) + (1 − 2(η0−1)j)N (0, σ2).

with mj = 2j1/2−α0j, j = 1, . . . , j1. Under the hypothesis of Theorem 3.1
we have that mj goes to infinity with j. As a result, the two components
of the rescaled mixture

(1) = N (mj , σ
2), (2) = N (0, σ2)

are asymptotically well separated. So, the two kinds of wavelet coefficients
can be efficiently separated using a thresholding procedure. We will use
this idea to build an estimator of the lacunarity parameter η0.
Let ln be an increasing sequence of positive real numbers and set

Sn =
1

n

j1∑

j=1

2j−1∑

k=0

1√ndjk≥ln .
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Define the following estimator:

η̃n = 1 +
1

log2 n
log2 (Sn) (3.12)

Since the two groups of random variables are well separated when the level
of resolution j increases, the number of rescaled coefficients

√
ndjk above

a fixed level ln can be used to estimate the proportion of coefficients which
belong to the first group (1).

Theorem 3.2. Assume as previously that α0 <
1
2 and η0 − 2α0 > 0 Take

ln = log2 n, then η̂n is a consistent estimator of the lacunarity parameter
of the mixture, η0, and

n
η0
2 log(n) (η̃n − η0)

L→ N (0, 1) . (3.13)

Lemma 3.3. Assume that α0 <
1
2 and η0 − 2α0 > 0. Set also dj1 = 2

η0
2

j1

= n
η0
2 , and cj1 = 2(1−η0)j1 = n1−η0 . Set also

F (ln) = P(N (0, 1) ≥ ln).

If ln satisfies the three following conditions:

ln → +∞, 2(α− 1
2
)j1 − ln → +∞, cj1F (ln) ≤M,

for a given positive constant M . Then as n goes to infinity:

dj1 (cj1 [Sn − F (ln)])
L→ N (0, 1 + κ2) , (3.14)

where κ2 = limj1→∞(cj1F (ln)−cj1F 2(ln)) <∞ on the choice of the growing
sequence (ln).

We point out that such estimator is more accurate than the estima-
tor η̂n defined in Section 3.1. Indeed, the parameter η0 only depends on
the number of non zero whereas the mean based estimator artificially links
the position and the intensity of the wavelet coefficients. As a result, the
estimator η̃n counts the number of significant observed coefficients and is
more directly concerned with the proportion of the mixture η0 without any
consideration about the values taken by the coefficients.
Hence n

η0
2 logn is the common rate of convergence for both estimator α̂n

and η̃n and is a characteristic of the multifractal model under the restric-
tion that the intensity parameter satisfies α0 <

η0

2 .



Estimation of Multifractal Process 11

For applications, we first can see that the estimation of the intensity coef-
ficient α0 relies on the prior knowledge of the variance of the observation
noise σ. Hence, this estimation issue is of great interest in practice. A way
of estimating this quantity is given by the following procedure: first, com-
pute η̃ whose expression (3.12) is independent from the variance. Then,
using (3.6), we can deduce an estimation of α0, when an estimator of η0 is
known:

α̃n = η̃n − 1

j1 log 2
log

j1∑

j=1

2j
∑

k=0

djk.

Then, using (3.5), we can construct a moment estimator of the variance:

σ̂2
n =

j1∑

j=1

2j−1∑

k=0

d2
jk − 2−α̃nj1(n)

j1∑

j=1

2j−1∑

k=0

djk. (3.15)

This estimator can be studied in a similar way as the study of the moment
estimator defined by (3.5).

Remark 3.3. As from Theorem 3.2, n
η̃n−η0

2 = exp
(

logn
2 (η̃n − η0)

)

goes to

1 in probability, we have that lognn
η̃n
2 (α̂n−α0)

L→ N (0, 1) and log nn
η̃n
2 (η̃n

−η0)
L→ N (0, 1). Thus, we may construct asymptotic confidence interval for

α0 and η0 and test on the values of these parameters.

3.3 Estimation of model parameters with EM algorithm

In this part, we show that the parameters of the multifractal signal (in-
tensity α0, lacunarity η0 and level of noise σ) can be estimated using an
EM algorithm well suited for such a mixture framework. Indeed, the EM
algorithm is a recursive algorithm used to maximize log-likelihood when
the variables are not directly observed. A direct application is the classi-
fication problem in mixture settings (see for instance McLeish and Small,
1986). Let us illustrate this algorithm on a single Gaussian mixture model.
Let Y1, . . . , Yn be an i.i.d sample of a random vector Y having density:
f (y,Ψ0) = π0φ

(
y;µ0

1, σ0

)
+ (1 − π0)φ

(
y;µ0

2, σ0

)
, where φ (y;µi, σ) is the

Gaussian density function with mean µi and variance σ2, for i ∈ {1, 2}.
The parameter of interest is Ψ0 = (π0, θ

T )T , where θ = (µ0
1, µ

0
2, σ0)

t. The
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log-likelihood is:

L (Ψ0) =
n∑

j=1

log
(
π0φ

(
Yj;µ

0
1, σ0

)
+ (1 − π0

1)φ
(
Yj;µ

0
2, σ0

))
.

To apply the EM-algorithm, we transform this model into a missing ob-
servation model. For j ∈ {1, . . . , n}, let Zj , be a random variable equal
to 1 if Yj comes from the first component, i.e with law N (µ0

1, σ0), and
µ0

2 = 0 otherwise. The complete data are Xc = (XT
1 , ..., X

T
n ), with X1 =

(Y1, Z1)
T , ..., Xn = (Yn, Zn)T . In the complete model the log-likelihood is:

Lc (Ψ0) =
n∑

j=1

zj log
[
π0φ

(
yj ;µ

0
1, σ0

)]
+ (1 − zj) log [(1 − π0)φ (yj ; 0, σ0)] .

(3.16)
Set yobs the values of the data (Y1, . . . , Yn)

′

. From the theory of EM algo-
rithm, we know that maximizing in the parameter of interest Ψ the log-
likelihood is equivalent to maximizing in a recursive way, the following
quantity, where all the estimated quantities are taken at the k-th step:

Q
(

Ψ,Ψ(k)
)

= E
(

Lc (Ψ) /yobs; Ψ
(k)
)

=

n∑

j=1

E
(

Zj/yobs; Ψ
(k)
)

log
[

π(k)φ
(

yj ;µ
(k)
1 , σ(k)

)]

+ E
(

(1 − Zj)/yobs; Ψ
(k)
)

log
[

(1 − π(k))φ
(

yj ; 0, σ
(k)
)]

.

We now may apply this general algorithm to our wavelet model. Write
µ0

1 = 2−α0j , µ2 = 0 and π0 = 2(η0−1)j . At a fixed level j, the augmented
likelihood is

L(d∗jk,m, π)

=

(

log
π

1 − π
;m2;m

)(
∑

k

zjk;− n

2(σ(k))2

∑

k

zjk;
n

(σ(k))2

∑

k

d∗jkzjk

)′

+ 2j log(1 − π) = a(θ)
′

b(X) + c(θ) + d(X),

with θ = (α0 η0 σ0)
′

. We recognize an exponential family. Then, the EM
algorithm can be written at the i+ 1-step:
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• E step: E(b(X)|d∗, θi) = (
∑

k ẑ
(i)
jk ;− n

2(σ(k))2

∑

k ẑ
(i)
jk ; n

(σ(k))2

∑

k d
∗
jkẑ

(i)
jk )

where ẑ
(i)
jk = P(zjk = 1|d∗, θ(i)).

• M step: in order to maximize the functions:






f(π) = log
(

π
1−π

)
∑

k zjk + 2j log(1 − π)

g(m) = − n
2(σ(k))2

m2
∑

k zjk + nm
(σ(k))2

∑

k d
∗
jkzjk

write the first order condition and this gives raise to the three esti-
mated parameters:

m̂(i+1) =

∑

k d
∗
jkẑ

(i)
jk

∑

k ẑ
(i)
jk

π̂(i+1) =
1

2j

∑

k

ẑ
(i)
jk ,

(σ̂(i+1))2 =

∑

k ẑ
(i)
jk (d∗jk − m̂(i+1))
∑

k ẑ
(i)
jk

.

The starting point of each iteration is the estimator obtained in the previ-
ous step.
An application of the previous estimators is the reconstruction of a multi-
fractal signal observed in a white noise model, as it is done in Gamboa and
Loubes (2005).

3.4 On the efficiency of the estimation procedure

We have constructed different estimators for the parameters of the lacu-
narity wavelet series that defines the multifractal function. We can see
that such prior model creates asymptotic behaviour which are very differ-
ent from the one encountered in regular models (see for instance van der
Vaart, 1998). In particular, the rate of convergence of the estimators de-
pends on the values of both the intensity parameter α0 and the lacunarity
parameter η0.
Define Ln(η, α) the log-likelihood of the model for the parameters η and α
in (0, 1).

Ln(η, α) =

log2 n
∑

j=1

2j−1∑

k=0

log

(

2(η−1)jφ
2−αj , σ2

n

(djk) + (1 − 2(η−1)j)φ
0, σ2

n

(djk)

)

,
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where φm,σ2(x) is the density of a Gaussian variable with mean m and
variance σ2. The following propositions give its asymptotic expansion

Theorem 3.3. Write In(η0) = E
(

− d2

dη2

∣
∣
(α0,η0) Ln(η, α)

)

the Fisher’s in-

formation in η for the model (2.3). We have the following asymptotic
expansion:

In(η0) = log(n)n2η0−1 + o(1).

This result must be compared with the rate of convergence of the esti-
mator of the lacunarity parameter. We recall that we proved the following
Central Limit Theorem: log(n)n

η0
2 (η̃n − η0) → N (0, 1) . As a result, if we

compare the rate of convergence with the order of Fisher’s information of
the model, we can see that in the range 1

2 < η0 <
2
3 , the estimator η̃n is

asymptotically super efficient in the Cramer Rao sense.

Theorem 3.4. Set Jn(α0) = E
(

− d2

dα2

∣
∣
(α0,η0) Ln(η, α)

)

the Fisher’s infor-

mation in α for the model (2.3). The following asymptotic order holds:

Jn(α0) = log2(n)n1+η0−2α0 + o(1).

In this case, we recall that log(n)nη0−α0(α̂n − α0) → N (0, κ + σ2).
As a consequence, the normalizing rate of convergence for the Fisher’s
information never corresponds to the rate of convergence of the Central
Limit Theorem.

4 Testing for a multifractal structure against white noise

Our goal is to construct a procedure to check if an observed data correspond
to the model (2.3), where both α0 and η0 are known. Due to the complexity
of the mixture, with both mean and variance depending on n (the number
of observations), we only focus on the last resolution level j1(n) = log2 n:
for all k = 0, . . . , 2j − 1,

√
nwj1k = Xk ∼ nη0−1N (mn, 1) + (1 − nη0−1)N (0, 1) ,

where mn = n
1
2
−α0 .

We construct a goodness of fit test by the Neyman-Pearson procedure. We
test

H0 : w0, . . . , wn−1 ∼ h0 = nη0−1φmn,1(x) + (1− nη0−1)φ0,1(x)
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against
H1 : w0, . . . , wn−1 ∼ h1 = φ0,1(x).

We have used the following notations:
h0 is the density of the rescaled coefficients under the null hypothesis H0

while h1 is the density under the hypothesis H1.
Going back to the white noise model (3.1), under H1 the observed signal
(Yi)i=1,...,n only contains white noise (f = 0).
Hence, we are testing the multifractal model (α0, η0) in white noise, against
pure white noise. The so-called Neyman-Pearson procedure rejectsH0 when
the log-likelihood ratio statistic is too small. Hence, setting

Sn(X) =
1

n

n−1∑

i=0

log

[
h0

h1
(Xi)

]

.

We reject H0 when this statistic is less than some threshold depending on
the required level. It is well known, that this is the most powerful way to
decide between H0 and H1.
We will now study the asymptotic behaviour of this testing procedure.
The following lemma studied the rate of E(Sn(X)) under H0 and H1.

Lemma 4.1.

EH0(Sn(X)) =
1

2
nη0−2α0(1 + o(1)) (4.1)

EH1(Sn(X)) = nη0−1(1 + o(1)). (4.2)

Unusually, under H1, this expectation goes to zero, while it tends to
infinity under H0. Hence, we will be able to construct a convergent test.

Theorem 4.1. Under the conditions

α0 <
1

2
, η0 − 2α0 > 0, (4.3)

we have the following asymptotics:

2n−1− η0
2

+2α0

n−1∑

k=0

[

log

(
h0

h1
(Xk)

)

− 1

2
nη0−2α0

]

L−→ N (0, 1) (4.4)

under the null hypothesis H0.
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Let for ξ ∈]0, 1[,Nξ be the upper ξ-quantile of the Gaussian distribution.
As a consequence of the two previous results, the test:

decideH0 if 2n−1− η0
2

+2α0

n−1∑

k=0

[

log

(
h0

h1
(Xk)

)

− 1

2
nη0−2α0

]

≥ −Nξ

H1 if 2n−1− η0
2

+2α0

n−1∑

k=0

[

log

(
h0

h1
(Xk)

)

− 1

2
nη0−2α0

]

< −Nξ,

has asymptotic level ξ and is convergent. In the following figure, we study
the power of these tests when the parameters are not known but replaced
by their estimates found in Section 3. Indeed, we compute the probability
under assumption H1 to accept the hypothesis H1 when ξ increases. For
n = 1024 observations, we set

Tn = 2n−1−η̃n/2+2α̂n

n−1∑

k=0

[

ĥ0

h1
(xk) −

1

2
nη̂n−2α̂n

]

,

where ĥ0 is the density of the mixture with parameters α̂n and η̃n. In
Figure 2, we have drawn the power of the test when the level increases
for different values of the true parameters (η0, α0). We point out that the
power of the test is very high, even when we use the estimated coefficients
η̃n and α̂n. The reason of this result is that the estimation error does not
change the structure of the test and therefore, the two assumptions are
still very well separated. Moreover, as expected, the power is higher when
the lacunarity coefficient η0 increases and when the intensity coefficient α0

decreases.

5 Proofs

Throughout the proofs, we will use the following notations.
The maximum number of observations available is linked with the max-

imal resolution level by the relationship 2j1 = n.
The densities of the Gaussian mixture are written fα = Φ2−αj ,σ2/n and

f0 = Φ0,σ2/n, while σ2
n = σ2/n denotes the variance of the observation

noise. mj1 = 2j1(1/2−α0) = mn is the mean of the first component of the
rescaled mixture.

Also recall the important sequences Cj1 = 2(α0−η0)j1 , Dj1 = 2(2α0−η0)j1 ,
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Figure 2: Power of the test for different (η, α)

and cj1 = 2(1−η0)j1 , dj1 = 2j1η0/2. Their asymptotic behaviour depends
on the range of the parameters α0 and η0, which will be made precise at
the beginning of each proof.

Proof of Lemma 3.1. To begin with, we point out that the parameters are
such that η0 − α0 > 0, hence Cj1 decreases to zero. For η0 ∈ (0, 1), define

Ln(η0) = Cj1

∑j1
j=1

∑2j−1
k=0 djk.

By obvious calculations we can see that the normalizing constant Cj1 is
such that:

ELn(η0) = Cj1

j1∑

j=1

2(η0−α0)j j1→∞−→ 1 (5.1)

Taking into account the independence of the wavelet coefficients, the vari-
ance of Ln(η0) is given by:

Var(Ln(η0)) = C2
j1σ

2 + C2
j1

j1∑

j=1

2(η0−2α0)j(1 − 2(η0−1)j) (5.2)

As a result, Chebychev’s inequality, as well as the calculations (5.1) and

loubesfig2.eps
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(5.2) leads to: Ln(η0)
P−→ 1. So consistency in probability of the empirical

mean estimator η̂n is proved.
Using the ∆-method (see for instance in van der Vaart, 1998), we now turn
on the asymptotic distribution of Ln(η0). By straightforward calculations
we obtain that for all t ∈ R, the characteristic function of the random
variable Ln(η0), using Taylor’s expansion of order 2:

E exp (itLn(η0)) = E exp



itCj1

j1∑

j=1

∑

k

djk





= exp(it) exp

(

−C2
j1

t2

2
(σ2 + κ)

)

+O(t2C2
j1) (5.3)

where κ is given in (3.7). As a consequence, by a continuity argument,
using Lévy’s theorem, Lemma 3.1 is proved.

Proof of Lemma 3.2. Here, we assume that η0 > 2α0, hence we have Dj1 →
0. Our aim is to prove a Central Limit Theorem for the quantity

Dj1





j1∑

j=1

2j−1∑

k=0

d2
jk − σ2



− 1,

with a proper scaling coefficients.
Using a Taylors’s expansion up to the second order in t we find the following
expansions:

(

1 − 2it
σ2

n

)−n
2

= exp

(

itσ2 − t2σ4

n

)

+ o(t2/n)

exp

(

i2−2α0jt

1 − 2itσ2

n

)

= 1 + i2−2α0jt−
(

2 · 2−2α0j σ
2

n
+

2−4α0j

2

)

t2 + o(1)

[

1 + 2(η0−1)j

(

exp

(

i2−2α0jt

1 − 2itσ2

n

)

− 1

)]2j

= exp

(

2(η0−2α0)jt− t2
n(η0−4α0)j

2

)

+ o(1).
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As a result we have the following asymptotic expansion of the charac-
teristic function

E exp



it
√
nη0



Dj1




∑

jk

d2
jk − 1



− 1







 = exp

(

− t
2

2

)

+ o(1) (5.4)

Using (5.4), a continuity argument and Levy’s theorem, we may conclude
that

√
nη0



Dj1




∑

jk

d2
jk − σ2



− 1




L→ N (0, 1) (5.5)

which proves the statement of Lemma 3.2.

Proof of Theorem 3.1. We recall that η0 − 2α0 > 0.
The proof falls into two parts: the first one deals with the asymptotic
distribution of α̂n while the other is the asymptotic normality of η̂n.

1. Define the quantity Tn as

Tn =
1

j1
log2Cj1

j1∑

j=1

2j−1∑

k=0

djk =
1

j1
log2Cj1 + α0 − η̂n = η0 − η̂n.

Since (5.3) shows that

C−1
j1



Cj1

j1∑

j=1

2j−1∑

k=0

djk − 1




L−→ N

(
0, σ2 + κ

)
(5.6)

so the ∆-method together gives the following limit:

j1C
−1
j1
Tn

L−→ N
(
0, σ2 + κ

)
(5.7)

Indeed, if Φ is Hadamard differentiable at a point θ, provided there

exists a sequence rn such that rn(Xn−θ) L−→ X, the following conver-

gence holds rn(Φ(Xn) − Φ(θ))
L−→ Φ

′

(θ)X. Applying the last result
with θ = 0 and Φ(x) = log(1 + x) proves (5.7). Finally, the form
of the estimator together with the result (5.7) proves the statement
of Theorem 3.1. We must keep in mind that the data are dyadic
with the correspondence 2j1 = n. This gives a rate of convergence in
log(n)nα0−η0 .
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2. As in the previous proof, the ∆-method, with Φ(x) = log(1+x) gives
the asymptotic distribution of the estimator.

√
nη0 log



Dj1





j1∑

j=1

2j−1∑

k=0

d2
jk − σ2








L−→ N (0, 1) (5.8)

As a result, we may split the estimator of α0 as follows:

α̂n =
1

j1 log 2

(

log

[ ∑

jk djk
∑

jk d
2
jk − σ2

])

=
1

j1 log 2



η̂n − η0 + log



dj1




∑

jk

d2
jk − σ2











+ α0

This implies that

log(n)
√
nη0 α̂n − α0

=

√
nη0

nη0−α0
nη0−α0(η̂n − η0) +

√
nη0 log



Dj1




∑

jk

d2
jk − σ2









But η0 > 2α0, so the first term in the previous sum goes to zero.

Indeed
√

nη0

nη0−α0
→ 0. So the asymptotic distribution is given by the

second term, which proves the statement (3.8) of the theorem.

From now on, we recall that the parameters of the mixture are such
that: α0 <

1
2 and η0 − 2α0 > 0.

Proof of Lemma 3.3. First, note that nSn =

j1∑

j=1

2j−1∑

k=0

1Xjk≥ln , and Zj =

2j−1∑

k=0

1Xjk≥ln ∼ B(2j ,P (Xjk ≥ ln)) , where B(N, θ) denotes the Binomial

distribution with parameters N and θ. Under the assumptions:

ln → +∞, 2(α− 1
2
)j1 − ln → +∞, cj1F (ln) ≤M,
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for a given positive constantM , we get the following asymptotic expansions.

E(cj1Sn) = 1 − F (ln) + o(1)

Var(dj1 [cj1(Sn − F (ln))]) = 1 + cj1F (ln) + o(1)

As a matter of fact:

E(cj1Sn) = cj1

(

F (ln) + 2(η0−1)j1(1 − F (ln))
)

+ o(1)

Var[cj1(Sn − F (ln))] = 2−η0j1 (1 + cj1F (ln) − F (ln)) .

which proves the previous result. Now, see that

E [exp(itdj1 (dj1 [cj1(Sn − F (ln))]− 1))]

= exp(−itdj1) exp(−itcj1dj1F (ln))E [exp(itdj1cj1Sn)]
︸ ︷︷ ︸

Tn

.

Tn =

j1∏

j=1

exp

[

2j log

(

1 + 2(η0−1)j

[

ei
tdj1

cj1
n − 1

])]

= exp(itdj1) exp(itcj1dj1F (ln))

· exp

(

− t
2

2
(1 + cj1F (ln) − cj1F

2(ln))

)

+ o(1)

As a result we get:

dj1 [cj1(Sn − F (ln))]
L→ N

(
0, 1 + lim(cj1F (ln) − cj1F

2(ln))
)

as soon as ln → +∞, with F (ln) = O
(

1
cj1

)

, and 2(α0− 1
2
)j1 > ln.

Proof of Theorem 3.2. Using the fact that

E




1

n

j1∑

j=1

2j−1∑

k=0

1{Xjk≥ln}





︸ ︷︷ ︸

Sn

= F (ln) + 2(η0−1)j1(1 − F (ln)) + o(1)

we get the following asymptotic equivalence: E(Sn)−F (ln)
1−F (ln) ∼ 2(η0−1)j1 . As a

result, consider for estimator of η0

η̃n = 1 +
1

j1
log2

(
Sn − F (ln)

1 − F (ln)

)

(5.9)
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Since F (ln) → 0, we get that j1(η̃n − η0) = log(cj1Sn). Using the previous
lemma 3.3, we know the asymptotic distribution of dj1(cj1Sn − 1). As
a consequence, the ∆-method, as in the previous proofs, enables us to
conclude that

log(n)n
η0
2 (η̃n − η0)

L→ N (0, 1)

which concludes the proof of the theorem.

Proof of Theorem 3.3. The log-likelihood of the mixture is given for (η, α)
by

Ln(η, α) =

log2 n
∑

j=1

2j−1∑

k=0

log
(

2(η−1)jfα(djk) + (1− 2(η−1)j)f0(djk)
)

.

d

dη
Ln(η, α) =

log2 n
∑

j=1

2j−1∑

k=0

j log(2)2(η−1)j(fα(djk) − f0(djk))

2(η−1)j(fα(djk) − f0(djk)) + f0(djk)

d2

dη2
Ln(η, α) =

log2 n
∑

j=1

2j−1∑

k=0

(j log 2)22(η−1)j(fα(djk) − f0(djk))f0(djk)

[2(η−1)j(fα(djk) − f0(djk)) + f0(djk)]2

Fisher’s information is given by

I(η0) = E

(

− d2

dη2

∣
∣
(η0,α0) Ln(η, α)

)

= −
log2 n
∑

j=1

(j log 2)22j

∫

f0(x)
2(η0−1)j(fα0(x) − f0(x))

2(η0−1)j(fα0(x) − f0(x)) + f0(x)
dx

︸ ︷︷ ︸

uj

The proof relies on asymptotic expansions in the both cases, x > mn/2 and
x < mn/2 and an extensive use of the equality

1

1 − x
− (1 + x) =

x2

1 − x
.



Estimation of Multifractal Process 23

Since α0 <
1
2 , mj1 = 2j1(1−2α0) → ∞ and we get:

uj =

∫

2(η0−1)j(fα0(x)− f0(x))
dx

1 + 2(η0−1)j
fα0(x)− f0(x)

f0(x)

=

∫

2x≤2−α0j

2(η0−1)j (fα0(x) − f0(x))dx

1 + 2(η0−1)j
[

exp
(

−mj(1−2x2α0j)
2

)

− 1
]

+

∫

2x>2−α0j

2(η0−1)jf0(x)dx

2(η0−1)j +
f0(x)

fα0(x) − f0(x)

= (I) + (II)

Hence, we get:

(I) =

∫

2x≤2−α0j

22(η0−1)j e
− x2

2σ2
n√

2πσn

·
(

1 − exp

(

−mj(1− 2x2−α0j)

2

))

dx(1 + o(1))

=

∫

2x≤2−α0j

22(η0−1)j e
− x2

2σ2
n√

2πσn

dx(1 + o(1))

= 22(η0−1)j(1 + o(1)).

(II) =

∫

2x>2−α0j

2(η0−1)j f0(x)

2(η0−1)j +
(

exp
(

−mj(1−2x2α0j)
2

)

− 1
)−1

dx

=

∫

2x>2−α0j

2(η0−1)j f0(x)

2(η0−1)j +
exp

(
mj(1−2x2α0j)

2

)

(

1 − exp
(

mj(1−2x2α0j)
2

))

dx

=

∫

2x>2−α0j

f0(x)(1− 2(1−η0)j exp

(
mj(1 − 2x2α0j

2

)

dx+ o(1)

= ce−m2
j (1 + o(1)),

for a given positive constant c.

As a result, we get the asymptotic equivalence uj = 22(η0−1)j +ce−m2
j +o(1)



24 F. Gamboa and J–M. Loubes

which implies the following asymptotic expansion for Fisher’s information:
In(η0) = log(n) n(2η0−1) + o(1).

Proof of Theorem 3.4. Recall that the loglikelihood is given by

Ln(η, α) =

log2 n
∑

j=1

2j−1∑

k=0

log
[

2(η−1)j(fα(djk) − f0(djk)) + f0(djk)
]

.

So we get

J(α0) = E

[

− d2

dα2
|α=α0 Ln(η, α)

]

=

log2 n
∑

j=1

2η0j(j log 2)2

σ2
n

∫

fα0(x)(x− 2 · 2−2α0j)dx

+

log2 n
∑

j=1

(
j log 2

σn

)2

2(η0−2α0)j(1 − 2(η0−1)j)

·
∫

(x− 2−α0j)2f0(x)fα0(x)

2η0−1(fα0(x) − f0(x)) + f0(x)
dx

= A + B

The first term is analogous to the one studied in the previous proof, so
A = log(n)nη0−α0+1(1 + o(1)). The second term B is such that:

B =
∑

j

(
j log 2

σn

)2

2(η0−2α0)j

∫
(x− 2−α0j)2f0(x)fα0(x)

2(η0−1)j(fα0(x)− f0(x)) + f0(x)
︸ ︷︷ ︸

uj

.

Using the following decomposition we get:

uj =

∫

1−2x2α0j≥0
(x− 2−α0j)2

fα0(x)

1 + 2(η0−1)j
fα0(x) − f0(x)

f0(x)

dx

+

∫

1−2x2α0j<0
(x− 2−α0j)2

f0(x)
f0(x)

fα0 (x) + 2(η0−1)j
[

1 − f0(x)
fα0 (x)

]dx

=

∫

1−2x2α0j≥0
(x− 2−α0j)2fα0(x)(1 + 2(η0−1)j)dx(1 + o(1))
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+ 2(1−η0)j

∫

1−2x2α0j<0
(x− 2−α0j)2f0(x)dx(1 + o(1))

σ2

n
(1 + 2(η0−1)j) + 2(1−η0)j

[
σ2

n
+ 2−2α0j

]

(1 + o(1))

Hence,

B =
∑

j

j2n2(η0−2α0)j

(

2(η0−1)j 1

n
+ 2(1−η0)j 1

n

)

+ o(1)

= (logn)2n2(η0−α0)−1(1 + o(1)).

As a result, the following asymptotic expansion holds

Jn(α0) = log2(n)n1+η0−2α0(1 + o(1)).

Proof of Lemma 4.1. First, we point out that we have:

log
h0

h1
(x) = log

[

1 − nη0−1 + nη0−1 exp
(

mn

(

x− mn

2

))]

.

The proof relies on the asymptotic expansion of this log-likelihood depend-
ing whether emn(x−mn/2) → 0 or emn(x−mn/2) → +∞. Hence, observe that
for u < 1/2

| log(1 − u) + u| = −u− log(1 − u) ≤ 2u2 (5.10)

and apply this bound either to log



1−nη0−1 + nη0−1emn(x−mn/2)
︸ ︷︷ ︸

−u



 for n

large enough, or to

log
[

1 − nη0−1 + nη0−1emn(x−mn/2)
]

= (η0 − 1) log(n) +mn

(

x− mn

2

)

+ log



1 − (1− n1−η0)e−mn(x−mn/2)

︸ ︷︷ ︸

u



 .
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So we obtain

EH0(Sn(X)) = (1 − nη0−1)

∫
e−x2/2

√
2π

log
[

1 − nη0−1 + nη0−1emn(x−mn/2)
]

dx

+ nη0−1

∫
e−

(x−mn)2

2√
2π

log
[

1 − nη0−1 + nη0−1emn(x−mn/2)
]

dx

= A+B.

On the one hand we have that (1 − nη0−1)−1A is equal to:
∫

x<mn/2

(

log
[

1 − nη0−1 + nη0−1emn(x−mn/2)
]

+ nη0−1 − nη0−1emn(x−mn/2)
) e−x2/2

√
2π

dx

−
∫

x<mn/2

(

nη0−1 − nη0−1emn(x−mn/2)
) e−x2/2

√
2π

dx

+

∫

x>mn/2

[

(η0 − 1) log(n) +mn

(

x− mn

2

)] e−x2/2

√
2π

dx

+

∫

x>mn/2

(

log
[

1 − (1− n1−η0)e−mn(x−mn/2)
]

− (1 − n1−η0)e−mn(x−mn/2)
) e−x2/2

√
2π

dx

+

∫

x>mn/2
(1 − n1−η0)e−mn(x−mn/2) e

−x2/2

√
2π

dx.

Using inequality (5.10), the first integral is nη0−1o(1) while by Lebesgue
theorem, the second one is nη0−1(−1 + o(1)). Moreover, there exists a con-
stant c2 such that, for n large enough, the three last integrals are bounded
by exp(−c2mn). Hence, these integrals are nη0−1o(1). Finally, we get

A = (1 − nη0−1)nη0−1(−1 + o(1)) = nη0−1(−1 + o(1)).

On the other hand, we may split n1−η0B as:
∫

x<mn/2

[

log
[

1 − nη0−1 + nη0−1emn(x−mn/2)
]

+
(

nη0−1 − nη0−1emn(x−mn/2)
)] e−

(x−mn)2

2√
2π

dx
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−
∫

x<mn/2

(

nη0−1 − nη0−1emn(x−mn/2)
) e−

(x−mn)2

2√
2π

dx

+

∫

x>mn/2

[

(η0 − 1) log(n) +mn(x− mn

2
)
] e−

(x−mn)2

2√
2π

dx

+

∫

x>mn/2
log
[

1 − (1 − n1−η0)e−mn(x−mn/2)
] e−

(x−mn)2

2√
2π

dx.

Using the same kinds of argument as those used to expand A we may con-
clude that the main contribution comes from the last term of the third inte-
gral, which can be written after substituting x−mn/2 with u:

∫

u<−mn/2mn

·(u+ mn

2 ) 1√
2π
e−u2/2du of order m2

n/2. Finally, we get that

B = 1/2nη0−2α0(1 + o(1)).

Thus, the first statement of the lemma is proved.
In a similar way, under the hypothesis H1, we have:

EH1(Sn(X)) =

∫
e−x2/2

√
2π

log
[

1 − nη0−1 + nη0−1emn(x−mn
2

)
]

dx

=

∫ (

1x< mn
2

+ 1x≥mn
2

) e−x2/2

√
2π

· log
[

1 − nη0−1 + nη0−1emn(x−mn
2

)
]

dx

= nη0−1(1 + o(1)) → 0.

Proof of Theorem 4.1. ∀ k = 0, . . . , 2j − 1, set

Zn
k = log

h0

h1
(Xk) −EH0

(

log
h0

h1
(Xk)

)

.

First, let us compute the variance of the variables Zn
k . Reasonning as
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previously, we obtain

EH0

(

log
h0

h1
(Xk)

)2

= (1 − nη0−1)

∫
e−x2/2

√
2π

(

log
[

1 − nη0−1 + nη0−1emn(x−mn
2

)
])2

dx

+ nη0−1

∫
e−

(x−mn)2

2√
2π

(

log
[

1 − nη0−1 + nη0−1emn(x−mn
2

)
])2

dx

=
1

4
n1+η0−4α0(1 + o(1)).

As a result we have, using results of Lemma 4.1:

VarH0(Z
n
k ) =

1

4
n1+η0−4α0(1 + o(1)).

Our aim is to apply Lindeberg theorem, see for instance Billingsley (1995).
For this, set s2n =

∑n−1
k=0 σ

2
nk with σ2

nk = E(Zn
k )2. We recall that the data

Zn
k , k = 0, . . . , n− 1 will satisfy a Central Limit Theorem

∑n−1
k=0 Z

n
k

sn

L→ N (0, 1)

whenever the two following conditions are fulfilled

sn > 0 (5.11)

∀ε > 0, lim
n→∞

n−1∑

k=0

1

s2n

∫

|Zn
k
|≥εsn

(Zn
k )2dPH0 = 0. (5.12)

First of all, sn = 1
2n

1+
η0
2
−2α0 + o(1) > 0, so condition (5.11) is checked.

In our context, condition (5.12) can be written as follows:

lim
n→∞

n4α0−1−η0EH0

[

(Zn
k )21

|Zn
k
|≥ ε

2
n1+

η0
2 −2α0

]

= 0 (5.13)
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Let us check this assumption. For ε > 0, we have:

EH0

[

(Zn
k )21

|Zn
k
|≥ ε

2
n1+

η0
2 −2α0

]

≤EH0

[

(Zn
k )21∣∣

∣log
h0
h1

(Xk)
∣
∣
∣≥ ε

2
n1+

η0
2 −2α0− 1

2
nη0−2α0

]

≤c1EH0

[

(Zn
k )21∣∣

∣log
h0
h1

(Xk)
∣
∣
∣≥ ε

2
n1+

η0
2 −2α0

]

≤2c1

(
1

4
n2η0−4α0 + EH0

[

(log
h0

h1
(Xk))

21∣∣
∣log

h0
h1

(Xk)
∣
∣
∣≥ ε

2
n1+

η0
2 −2α0

])

≤2c1(A+B),

where c1 is a positive finite constant.
For the first term A, we have n4α0−1−η0A ≤ 1

4n
η0−1 → 0. For the second

term B, first note that
∣
∣
∣log h0

h1
(X)

∣
∣
∣ ≥ ε

2n
1+

η0
2
−2α0 is equivalent, for n large

enough, to

exp
[

mn

(

x− mn

2

)]

≥ 1 − n1−η0 + n1−η0e
ε
2
n1+

η0
2 −2α0

.

So that, setting

Θn :=
{

x : x ≥ mn

2
+mn log

[

1 + n1−η0

(

exp
[ ε

2
n1+

η0
2
−2α0

])

− 1
]}

we may write, for n large enough,

B ≤ 2

∫

Θn

(

log
[

nη0−1 exp
[

mn

(

x− mn

2

)]])2 exp(−x2

2 )√
2π

dx

≤ 2(η0 − 1)2 log2 n+ 2m2
n

∫

Θn

(

x− mn

2

)2 exp(−x2

2 )√
2π

dx

As the last integral may be bounded, for n large enough, by exp(−c2mn)
where c2 is a positive constant, we get that n4α0−1−η0B → 0. So condition
(5.13) is fulfilled, and Lindeberg theorem holds, so that:

2 n2α0−1− η0
2

n−1∑

k=0

[

log

(
h0

h1
(Xk)

)

−EH0 log

(
h0

h1
(Xk)

)]

L→ N (0, 1).
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So we can write

2n−1− η0
2

+2α0

n−1∑

k=0

[

log

(
h0

h1
(Xk)

)

− 1

2
nη0−2α0

]

= 2n−1− η0
2

+2α0

n−1∑

k=0

[

log

(
h0

h1
(Xk)

)

−EH0 log

(
h0

h1
(Xk)

)

+EH0 log

(
h0

h1
(Xk)

)

− 1

2
nη0−2α0

]

Using the second order error term in the calculation of EH0(Sn) in the proof
of Lemma 4.1, we get that

2 n−1− η0
2

+2α0

n−1∑

k=0

[

E log

(
h0

h1
(Xk)

)

− 1

2
nη0−2α0

]

≤ 2c3n
−η0/2 → 0,

for c3 a finite positive constant. As a consequence, Slutsky’s theorem en-
ables to prove the result.
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