DISCUSSION ON THE PAPER "LEAST ANGLE REGRESSION”

JEAN-MICHEL LOUBES AND PASCAL MASSART

The issue of model selection has drawn the attention of both applied and theoretical
statisticians for a long time. Indeed, there has been an enormous range of contribution in
model selection proposal, which includes the work by Akaike [1], Mallows [7], Foster and
George [5], Birgé and Massart [3] or Abramovich, Benjamini, Donoho and Johnstone [2].
Over the last decade, modern computer-driven methods have been developed such as All
Subsets, Forward Selection, Forward Stagewise or LASSO. Such methods are useful in the
setting of standard linear model, where we observe noisy data, and wish to predict the
response variable using only a few number of covariables, since they provide automatically
linear models that fit the data. The procedure described in this paper is, on the one
hand, numerically very efficient and on the other hand, very general, since, with slight
modifications, it enables to recover the estimates given by the LASSO and Stagewise.

I. ESTIMATION PROCEDURE

The “LARS” method is based on a recursive procedure selecting, at each step, the
covariables having largest absolute correlation with the response y. In the case of an
orthogonal design, the estimates can then be viewed as an [!-penalized estimator. Consider
the linear regression model where we observe y with some random noise ¢, with orthogonal
design assumptions:

y=Xp+e.
Using the soft-thresholding form of the estimator, we can write it, in an equivalent way,
as the minimum of an ordinary least-squares and a ! penalty over the coefficients of the
regression. As a matter of fact, at step k = 1,...,m, the estimators B’“ = X4 are
given by
pt = arg min, (Y = llz + 225 (F) ll) -

There is a trade-off between the two terms, balanced by the smoothing decreasing sequence
A2 (k). The more stress is laid on the penalty, the more parsimonious the representation
will be. The choice of the ! penalty enables to keep the largest coefficients, while the
smallest one are shrinked towards zero in a soft-thresholding scheme. This point of view
is investigated in the LASSO algorithm as well as in studying the False Discovery Rate
(FDR).

So, choosing these weights in an optimal way determine the form of the estimator as well
as its asymptotic behaviour. In the case of the algorithmic procedure, the suggested level
is the k£ 4 1 order statistic:

A2 (k) = |yl gy

As a result, it seems possible to study the asymptotic behaviour of the LARS estimates
under some conditions on the coefficients of 3. For instance, if there exists a roughness
parameter p € [0,2], such that E;n:1 |8;|7 < M, metric entropy theory results lead to

upper bound for the mean squares error || B — B||?. Here we refer to the results obtained
in [8]. Consistency should be followed by the asymptotic distribution, as it is done for
the LASSO in [6].

The interest for such an investigation is double: first, it gives some insight to the properties

of such estimators. Secondly it suggests an approach for choosing the threshold A\? which
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can justify the empirical cross-validation method, developed later in the paper. Moreover,
the asymptotic distributions of the estimators are needed for inference.
Other choices of penalty and loss functions can also be considered. First of all for v € (0, 1],

consider
m

L(B) =) (XB)].

j=1
If v < 1, the penalty is not convex anymore, but there exist algorithms to solve the
minimization problem. Constraints on the {7 norm of the coefficients are equivalent to
lacunarity assumptions and may make easier estimation of sparse signals, which it is often
the case for high dimensional data for instance.
Moreover, replacing the quadratic loss function with a [* loss gives rise to a robust esti-
mator, the penalized absolute deviation of the form

it = arg min (1Y = pallus + 2720 lully)
nelR

Hence, it is possible to get rid of the problem of variance estimation for the model with
this estimates whose asymptotic behaviour can be derived from [8], in the regression
framework.

Finally, a penalty over both the number of coefficients and the smoothness of the coef-
ficients can be used to study, from a theoretical point of view, the asymptotics of the
estimate. Such a penalty is analogous to complexity penalties studied in [9]:

* = i Y — pl|? + 222 (k k)) .
pe=arg _min (Y =l + 2250l + pen(k)

II. MaLLows’ C,,

We would like now to discuss the crucial issue of selecting the number £ of influential
variables. To make clear this discussion, let us first assume the variance o2 of the regression
errors to be known. Interestingly the penalized criterion which is proposed by the authors
is exactly equivalent to Mallows’ C, when the design is orthogonal (this is indeed the
meaning of their Theorem 3). More precisely, using the same notations as in the paper,
let us focus on the following situation which illustrates what happens in the orthogonal
case where LARS is equivalent to the Lasso. One observes some random vector y in R,
with expectation p and covariance matrix o2l,. The variable selection problem that we
want to solve here is to determine which components of y are influential. According to
Lemma 1, given k, the kth LARS estimate fi;, of i can be explicitly computed as a soft
thresholding estimator. Indeed, considering the order statistics of the absolute values of
the data denoted by

Wyl > Wl = - > 1Yl
and defining the soft threshold function 7 (.,t) with level t > 0 as

t
) =2l (1— — |,

[k, =1 <yi, |y|(k+1)) :
In order to select k, the authors propose to minimize the C, criterion
Cy (i) = ly — ill” — nor® -+ 2ko. (1)

Our purpose is to analyze this proposal with the help of the results on penalized model
selection criteria proved in [3] and [4]. In those papers some oracle type inequalities are
proved for selection procedures among some arbitrary collection of projection estimators
on linear models when the regression errors are Gaussian. In particular one can apply
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them to the variable subset selection problem above, assuming the random vector y to
be Gaussian. If one decides to penalize in the same way the subsets of variables with the
same cardinality, then the penalized criteria studied in [3] and [4] take the form

Gy (i) = lly — fuel” = no® + pen (k) (2)

where, pen (k) is some penalty to be chosen and fi;, denotes the hard threshold estimator
with components

firi =1 (yz |y|(k+1))
where
n (v,t) = b [T
The essence of the results proved by Birgé and Massart in this case is the following. Their
analysis covers penalties of the form

pen (k) = 2ka*C <log <%) + C’)

(note that the FDR penalty proposed in [2] corresponds to the case C' = 1). It is proved in
[3] that if the penalty pen (k) is heavy enough, i.e. C'> 1 and C’ is an adequate absolute
constant, then the model selection procedure works in the sense that, up to constant,
the selected estimator g performs as well as the best estimator among the collection
{itx,1 <k <n} in terms of quadratic risk. On the contrary, it is proved in [4] that if
C < 1, then at least asymptotically, whatever C”, the model selection does not work, in
the sense that even if u = 0, the procedure will systematically choose large values of k,
leading to a suboptimal order for the quadratic risk of the selected estimator fiz. So, to
summarize, some 2ko?log (n/k) term should be present in the penalty, in order to make
the model selection criterion (2) work. In particular, the choice pen (k) = 2ko? is not
appropriate, which means that Mallows’ C, does not work in this context. At a first
glance, those results seem to indicate that some problems could occur with the use of the
Mallows’ C,, criterion (1). But fortunately, this is not at all the case because some very
interesting phenomenon occurs, due to the soft thresholding effect. As a matter of fact, if
we compare the residual sums of squares of the soft threshold estimator 7, and the hard
threshold estimator i, we easily get

~ 112 ~ 12 2 2
ly = 7kl® = 1y = 7ll® = D 10t Tots ol = & 10lGes)
i=1

so that the "soft” C, criterion (1) can be interpreted as a "hard” criterion (2) with random
penalty

pen (k) = klyl,.) + 2k (3)

Of course this kind of penalty escapes stricto sensu to the analysis of [3] and [4] as
described above since the penalty is not deterministic. But it is quite easy to realize
that in this penalty, |y|?k +1) plays the role of the apparently ”"missing” logarithmic factor
2021og (n/k). Indeed, let us consider the pure noise situation where y = 0 in order to
keep the calculations as simple as possible. Then, if we consider the order statistics of a
sample Uy, ..., U, of the uniform distribution on [0, 1]

Unp <Up) < ... < U,

taking care of the fact that these statistics are taken according to the usual increasing
order while the order statistics on the data are taken according to the reverse order,
o2 |y|?k 41y has the same distribution as

Q! (Ugesny)



where () denotes the tail function of the chi-square distribution with 1 degree of freedom.
Now using the double approximations Q@' (u) ~ 2log (Jul) as u goes to 0 and U1y =
(k4 1) /n (which at least means that given k, nUy1) tends to k + 1 almost surely as n
goes to infinity but can also be expressed with much more precise probability bounds)
we derive that |y|?k+1) ~ 20%log(n/(k+1)). The conclusion is that it is possible to
interpret the "soft” C, criterion (1) as a randomly penalized "hard” criterion (2). The
random part of the penalty & |y|?k +1) cleverly plays the role of the unavoidable logarithmic

term 20%k log (n/k), allowing the hope that the usual 2ko? term will be heavy enough to
make the selection procedure works as we believe it does. A very interesting feature of the
penalty (3) is that its random part does not depend neither on the scale parameter o2,
nor on the tail of the errors. This means that one could think to adapt the data driven
strategy proposed in [4] to choose the penalty without knowing the scale parameter to this
context, even if the errors are not Gaussian. This would lead to the following heuristics.
For large values of k, one expects the quantity — ||y — fi/|* to behave as an affine function
of k with unknown slope. Just estimate this slope (for instance by making a regression of
—ly — ﬁk||2 with respect to k for large enough values of k) and plug the resulting estimate
mulitplied by 2 in (1) to replace the 2ko? term. Of course, some more efforts would be
requested to complete this analysis and provide rigorous oracle inequalities in the spirit of
those given in [3] and [4] or [2] and also some simulations to check whether our proposal
to estimate o2 is valid or not.

Our purpose was just here to mention some possible explorations starting from the
present paper that we have found very stimulating. It seems to us that it solves practical
questions of crucial interest and raises very interesting theoretical questions: consistency
of LARS estimator, efficiency of Mallows’ C, in this context, use of random penalties in
model selection for more general frameworks.

REFERENCES

[1] AKAIKE, H. Maximum Likelihood identification of Gaussian autoregressive moving average models.
Biometrika, 253-265 (1973).

2] ABRAMOVICH, F., BENJAMINI, Y., DONOHO D. and JOHNSTONE, I. Adapting to unkown
sparsity by controlling the false discovery rate. Technical Report n2000 — 19, Stanford University
(2000).

[3] BIRGE, L. and MASSART, P. Gaussian model selection. .J. Eur. Math. Soc. 3, 203-268 (2001)

[4] BIRGE, L. and MASSART, P. A generalized C, criterion for Gaussian model selection. Technical
Report n°647 , Universités de Paris 6 & Paris 7 (2001).

[5] FOSTER, D. and GEORGE, E. The risk inflation criterion for multiple regression. The Annals of
Statistics, 1947-1975, (1994).

[6] KNIGHT, K. and FU, B. Asymptotics for Lasso type estimators. The Annals of Statistics, 1356-1378
(2000).

[7] MALLOWS. Some comments on C,. Technometrics , 15 661-675 (1973).

[8] LOUBES, J-M. and VAN DE GEER, S. Adaptive Estimation using Thresholding type Penalties.
Statistica Neerlandica , 1-26 (2002).

[9] VAN DE GEER, S. Least squares with complexity penalties. Math Methods of Statistics, 355-374
(2001).

CNRS AND LABORATOIRE DE MATHEMATIQUES, UMR 8628, EQUIPE DE PROBABILITES, STATIS-
TIQUE ET MODELISATION - UNIVERSITE PARIS-SUD, BAT 425, 91405 ORDAY CEDEX

LABORATOIRE DE MATHEMATIQUES, UMR 8628, EQUIPE DE PROBABILITES, STATISTIQUE ET
MODELISATION - UNIVERSITE PARIS-SUD, BAT 425, 91405 ORDAY CEDEX

E-mail address: Jean-Michel.Loubes@math.u-psud.fr

E-mail address: Pascal.Massart@math.u-psud.fr



