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Abstract

We establish the consistency of a nonparametric maximum likelihood estimator
for a class of stochastic inverse problems. We proceed by embedding the framework
into the general settings of early results of Pfanzagl related to mixtures [23, 24].
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Introduction

Let (Si, Ti)i∈N∗ be a sequence of i.i.d. random variables with values in Rp×Rn
+ and with

common law µS⊗µT . Let (εi)i∈N∗ be a sequence of i.i.d. standard normal random variables
on Rn, independent of the preceding sequence. We consider in the sequel the inverse
problem which consists in estimating the law µS given the finite sequence (Yi, Ti)16i6N

where
Yi := f(Si, Ti) + σ εi, (1)

and where f : Rp × Rn → Rn is a known smooth function, which can be in particular
nonlinear in the first variable. The asymptotic is taken in N , and n remains fixed. It is
assumed that σ is some known non-negative variance parameter. We emphasise the fact
that in the triplet (Yi, Ti, Si), we observe only the couple (Yi, Ti), and we are interested in
the estimation of the joint law of the unobserved random variables Si.

In the sequel, L(Z) denotes the law of the random variable Z. For example, one
has L(Si, Ti) = µS ⊗ µT . In the same spirit, L(Z1 |Z2) denotes the conditional law
of Z1 given Z2. Finally, we denote by P(Rd) the convex set of probability measures
on Rd equipped with its Borel σ-field and with the Cb(Rd,R) dual topology. We will
sometimes denote S, T , Y for any random variable with law µS = L(S1), µT = L(T1), and
µY = L(Y1) respectively. Finally, we will denote by yi = (yi,1, . . . , yi,n), ti = (ti,1, . . . , ti,n)
and si = (si,1, . . . , si,p) any realisation of the random variables Yi, Ti and Si respectively.

Before starting the mathematical analysis of the problem, let us give briefly some ex-
planations regarding the notations and the motivations. The random variables Yi =
(Yi,1, . . . , Yi,n) represents the values measured for individual number i at times Ti =
(Ti,1, . . . , Ti,n). The random variable Si stands for the individual parameter and the ran-
dom variable σ εi models the (homoscedastic) random noise which is added to the possibly
nonlinear true value f(Si, Ti). This kind of data is known as repeated measurements, or
called longitudinal since each individual (from i = 1 to i = N) is observed ni := n times
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and provides a whole vector of consecutive observations Yi = (Yi,1, . . . , Yi,n) performed at
the corresponding individual times (Ti,1, . . . , Ti,n) = Ti. Since Ti is a sequence of measur-
ing times, one can assume for simplicity that the law µT is a tensor product of uniform
laws on disjoint consecutive compact intervals of the real half line R+. One can think
about µT and n as the design of the experiment, whereas f and L(Si |Ti) and L(εi) cor-
respond to the model chosen for the inverse problem, relating the individual observation
Yi to the individual parameter Si and to the individual measuring times Ti. Usually in
applications, f is of the form

f(s, Ti) = (qs(Ti,1), . . . , qs(Ti,n)), (2)

where for any s in Rp, qs : R → R is a smooth function depending smoothly on the param-
eter s, for example a linear combination of time dependent exponentials with coefficients
related to s. Function qs represents in such a scheme the true evolution in time of the
phenomenon of interest for an individual of parameter s.

Practical applications of models like (1) are numerous in signal transmission, in to-
mography, in econometrics, in geophysics, etc, cf. [22]. Let us give briefly a concrete
example in Biology. We consider the decay of the concentration of a medicine in human
blood. One has p = 2 and q(A,α)(t) = A exp(−αt) in (2), where A stands for the quantity
of medicine in the blood at time 0, and where α stands for the rate at which the medicine
is eliminated. At the beginning of the experiment, the medicine is given to N independent
patients. For patient number i, n measurements (Yi,j)16j6n of the concentration of the
medicine in blood are made, at times (ti,j)16j6n. One of the simplest model used in this
context is

Yi,j = q(Ai,αi)(ti,j) + σεi,j, with i = 1, . . . , N and j = 1, . . . , n.

If we state Si := (Ai, αi), the random variables S1, . . . , SN are i.i.d. and correspond to
the biological specificity of each patient. We are interested in the estimation of the distri-
bution µS of the common law of these random variables (population pharmacokinetics).
Deconvolution methods are useless since the required condition n → +∞ is unrealistic.
The number of observations n for each individual remains small, a few units in practice.
Our framework where the asymptotic is taken on the number of individuals N is the only
mean to perform the estimation of the “population law” µS.

A stochastic inverse problem is an inverse problem for which the subject of the inver-
sion is a probability measure, like in (1). The related theoretical and applied literature
is huge, with many connected components. It contains in particular deconvolution prob-
lems, mixtures models, (non)linear mixed effects models, (non)linear filtering problems,
etc. Even a common keyword or phrase like our “stochastic inverse problems” is most of
the time missing and/or ignored. Therefore, it is quite hard to give a descent state of the
art, but a bit less difficult is to show various natures of a particular subclass of problems.

We emphasise the fact that (1) is not a standard regression problem since f is known
whereas the Si and their law are unknown. Moreover, our problem (1) in not of Ibragimov
and Hasminskii type since the Si are not observed. Notice that when n is very large
deconvolution techniques can give an estimation of each Si. The approach developed
recently in [13] in useless for our problem since we consider an asymptotic in N and not
in n.

One of the common difficulties of stochastic inverse problems like (1) lies in the fact
that they are ill-posed. The inverse of the underlying operator is not continuous in general,
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so that a small perturbation of the data may induce a large change for the common law
of the unobserved random variable. If the unknown was a function in a Hilbert space
instead of a probability density function, one could try a singular value decomposition
(SVD), following for example Cavalier, Golubev, Picard and Tsybakov in [5].

Several authors have investigated nonparametric maximum likelihood estimation for
stochastic inverse problems, and related Expectation Maximisation (EM, cf. [8]) algo-
rithms. In the context of mixtures, Lindsay showed in [14, 15] by using elementary convex
analysis that the fully nonparametric maximum likelihood is achieved by a discrete prob-
ability measure with finite number of atoms related to the sample size, connecting by this
way this kind of problems with convex analysis algorithms (Simplex algorithm, Fedorov
methods, etc). One can find some developments in [16, 17, 3, 2]. The consistency of such
estimators was established at least by Pfanzagl in [23]. In [25], Schumitzky gave an EM
like algorithm for Lindsay’s estimator. In another direction, Eggermont and Lariccia have
developed smoothing techniques for problems involving Fredholm integral operators, cf.
[9] and references therein.

To sum up, our aim in this paper is to estimate µS, the common law of the unobserved
i.i.d. random variables Si in (1), when µS belongs to some class FS ⊂ P(Rp). The rest of
the paper is divided as follows. Section 1 introduces a nonparametric Likelihood Estimator
(NPML) for µS, and is devoted to establish its consistency up to identifiability. Section
2 presents finite dimensional and algorithmic approaches to approximate the NPML.
Finally, in Section 3, various related questions are discussed.

1 An NPML and its consistency

Conditionally on the Si, the Yi are independent but not identically distributed, due
to the dependence over Ti. However, since the individual observed datum consists in
Xi := (Yi, Ti), it is quite natural to see Si as the unique unobserved random variable in
the triplet (Yi, Si, Ti). The law L(Xi) = L(Yi, Ti) is nothing else but∫

s∈Rp

γσ,n(y − f(s, t)) dµT (t) dµS(s) dy,

where “(y, t) = x” and where γσ,n is the Gaussian probability density function on Rn given
by γσ,n(u) := (2πσ2)−n/2 exp(−‖x‖2

2/2σ
2). Similarly, the law L(Yi) of Yi is the following

mixture [∫
s∈Rp

∫
t∈Rn

+

γσ,n(y − f(s, t)) dµT (t) dµS(s)

]
dy,

where the mixing law is µS ⊗ µT and where the mixed family is the following f -deformed
Gaussian location family

{γσ,n(• − f(s, t)) where (s, t) ∈ Rp × Rn} = γσ,n ∗
{
δf(s,t) where (s, t) ∈ Rp × Rn

}
.

Assume now that the law µT has a density ψ with respect to the Lebesgue measure on
Rn

+. Then, one has that the law L(Xi) = L(Yi, Ti) is absolutely continuous with respect
to the Lebesgue measure on Rn × Rn

+ with probability density function K(µS) given by

K(µS)(y, t) := ψ(t)

∫
s∈Rp

γσ,n(y − f(s, t)) dµS(s). (3)
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When µS has density ϕ with respect to Lebesgue’s measure on Rp, we will denote K(ϕ)
instead of K(µS), viewing by this way K as a linear operator over probability density
functions.

K(ϕ)(y, t) = ψ(t)

∫
s∈Rp

γσ,n(y − f(s, t))ϕ(s) ds.

Here again, the law L(Xi) = L(Yi, Ti) is a mixture, with mixing law µS and mixed family

{ψ(t) γσ,n(• − f(s, t)) with (s, t) ∈ Rp × Rn}.

Notice that K(µS)(y, t) is always positive, and thus, log K(µS) always makes sense. The
log-likelihood can be expressed by mean of the unknown law µS as follows

LN(µS) := PN log K(µS), (4)

where PN is the empirical measure of the sample (Xi)16i6N defined by

PN :=
1

N

N∑
i=1

δ(Yi,Ti). (5)

Notice that we have used above the standard notation PNF to denote the expectation
of function F with respect to probability law PN . When f is of the form (2), the log-
likelihood LN defined above in (4) reads

LN(µS) =
1

N

N∑
i=1

log

∫
s∈Rp

exp

(
− 1

2σ2

n∑
j=1

(Yi,j − qs(Ti,j))
2

)
dµS(s) + C

=
1

N

N∑
i=1

n∑
j=1

log

∫
s∈Rp

exp

(
− 1

2σ2
(Yi,j − qs(Ti,j))

2

)
dµS(s) + C,

where

C := −n
2

log(2πσ2) +
1

N

N∑
i=1

logψ(Ti,1, . . . , Ti,n).

The quantity C does not have any effect on the arg-maximum of the log-likelihood func-
tional LN . In particular, the density ψ of µT does not play a direct role in the NPML (6)
below since one can rewrite LN as follows

LN(µS) = PN logψ + PN log K#(µS),

where

(K#(µS))(y, t) :=

∫
s∈Rp

γσ,n(y − f(s, t)) dµS(s).

On any set F , the arg-maximum of LN is equal to the arg-maximum of L#
N defined by

L#
N(µS) := PN log K#(µS).

The functional L#
N does not depend on µT directly, but only implicitly via the sample

T1, . . . , TN throughout PN . However, the law µT plays a role in identifiability, and the
good choice of this law is always a crucial issue.
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Definition 1.1 (Identifiability). We say that the mixture model (1) is identifiable if and
only if K is injective, as a map from FS to P(Rn). Namely, for any couple (µ, ν) ∈ FS×FS

with ν 6= µ, one has K(µ) 6= K(ν) in P(Rn). Similarly, we say that µ ∈ FS is identifiable
in (1) if and only if K(ν) 6= K(µ) in P(Rn) for any ν ∈ FS with ν 6= µ.

Clearly, the model is identifiable if and only if every element of FS is identifiable.
Identifiability is essential for any estimation issue of the true mixing law µS. This condition
is quite difficult to check in great generality. However, one can find some clues for example
in [6] and references therein. In practice, and when possible, identifiability must be
checked for the particular model considered, and is deeply related to the properties of
function f and to the distribution µT of the observation times. We are now able to state
the following Theorem.

Theorem 1.2 (Consistency of NPML). Assume that FS ⊂ P(Rp) is a compact convex
subset of a linear space, that the model is identifiable, that L(T ) = ψ(t) dt, that µS ∈ FS,
and that for almost all (y, t) ∈ Rn × Rn

+, the map K(•)(y, t) : FS → R is continuous.
Then, the NPML estimator µ̂S,N given by

µ̂S,N := arg max
µ∈FS

LN(µ) (6)

is well defined, unique, and converges almost surely toward µS when N goes to +∞.

Proof. The random map LN is a.s. continuous from FS to R since the map K(•)(y, t) :
FS → R is continuous for any (y, t) ∈ Rn ×Rn

+. By linearity and identifiability of K and
strict concavity of the logarithm, the map LN is a.s. strictly concave. Thus, it achieves
a.s. a unique sup over the compact convex set FS. The existence and unicity of the
estimator µ̂S,N is therefore proved. Finally, thanks to our choice of settings, the desired
consistency result follows from [23, Theorem 3.4] and [23, Section 5], since the required
hypotheses are fulfilled:

• Condition 1. FS is a compact Hausdorff space, and a subset of a linear space.

• Condition 2. For almost all (yi, ti)16i6N , the map
∏N

i=1 K(•)(yi, ti) is continuous
on FS for the topology of FS.

• Condition 3. For almost all (y, t) ∈ Rn × Rn
+, the map K(•)(y, t) is concave on

FS.

Remark 1.3. Let us give various remarks about Theorem 1.2 and its extensions.

1. Identifiability. Following again [23], one can relax the identifiability of the model
to the identifiability of µS, but it is not really useful in practice since µS is unknown!
For any x := (y, t) ∈ Rn × Rn, let us denote by kx : Rp → R+ the function
kx(s) := γn,σ(y − f(s, t)). Let T be the biggest open subset of Rn such that ψ > 0
over T . Then, identifiability of the model corresponds to a condition on the set
of functions C := {kx : Rp → R+ with x ∈ Rn × T } appearing in the mixture (3).
Namely, it must separate the elements of FS. In other words, when f is smooth,
the C class must be large enough to fully characterise any element of FS by duality
as a set of test functions for a distribution of order zero in the sense of L. Schwartz
distributions Theory. Such a necessary and sufficient separation condition relies on
both f and T and can, depending on the particular choice of F , be weaker than

Compiled November 23, 2004 17:29 by pdfLATEX. Page 5.



the full injectivity of f in the first variable when the second runs over T . Notice
that the smoothness of f together with its injectivity in the first variable induces
in general a “degree of freedom” requirement on (n, p). If FS ⊂ D′(K) for some
compact subset K of Rp, then C separates the elements of µS as soon as the vector
space spanned by C is dense in C∞(K) for the uniform topology.

2. Heteroscedasticity. At least when the elements of FS are compactly supported,
Theorem 1.2 remains true for a class of heteroscedastic models of the form

Yi = f(Si, Ti) + σ εi + g(Si, Ti) · εi, (7)

where σ > 0 is known, where g : Rp × Rn → Rn
+ is a smooth function and where

the dot mark ′′·′′ denotes the component-wise vectors multiplication. One can also
incorporate a matrix between g and εi. Notice that condition g > 0 ensures that
the variance of the conditional law is bounded below by σ2 and thus, the mixture
makes sense. The mixed family is a location-scale (f, g)-deformed Gaussian family:{

γ(σ2+g(s,t)2)1/2, n(• − f(s, t)) where (s, t) ∈ Rp × Rn
}
.

In concrete applications, it is quite usual to state that g and f are co-linear in the
heteroscedastic model above, say g = σ′ f , making the noise roughly proportional
to the measured value.

3. Non Gaussian noise. Theorem 1.2 remains true when the Gaussian law of the
noise εi in (1) is replaced by an absolutely continuous law with respect to the
Lebesgue measure on Rn. The related location mixed family is not Gaussian in that
case, but this does not block the derivation of the consistency of the NPML.

4. Non homogeneity via censure. Let (ni)i∈N∗ be a sequence of i.i.d. random vari-
ables independent of (Si, Ti)i∈N∗ , with values in the set Nn of subsets of {1, . . . , n},
and with common law pκ := P(ni = κ) > 0 for any κ ∈ Nn. Assume that for each
i, one has access only to Zi := (Yi,j, j ∈ ni) instead of the whole vector of measure-
ments Yi := (Yi,1, . . . , Yi,n) itself. Then, the new inverse problem corresponds to the
new sample

((Z1, T1,n1), . . . , (ZN , TN ,nN))

which is the censored version of the original sample with unobserved Si values

((Y1, Si, T1), . . . , (YN , Si, TN)).

The problem is that the Zi are not in the same space, but are still independent.
Our goal then is to rewrite the problem in a i.i.d framework. One method consists
in extending the data space to the larger direct sum space E := ⊕κ∈NnEκ, where
Eκ is a copy of R|κ| corresponding to the components present in κ, where |κ| := #κ.
It is then easy to write down the law of (Zi, Ti,ni). Such a model is quite heavy to
write down but gives rise to a simple extended log-likelihood:

LN(µS) := PN log pκ + PN logψ + PN log Kκ(µS),

where for any µ ∈ FS

Kκ(µ)(z, t, κ) :=

∫
s∈Rp

γσ,|κ|(z − πκ(f(s, t))) dµ(s),
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where πκ is the projection of E on Eκ and where the empirical measure PN is now

PN :=
1

N

N∑
i=1

δ(Zi,Ti,ni).

The PN log pκ + PN logψ part of the log-likelihood does not depend on µS, and
thus, it does not influence the arg-maximum of the log-likelihood and can be safely
removed. For each i, the Ti,j involved in the log-likelihood are those with j ∈ ni.
Finally, one can notice that such type of independent censoring does not correspond
to all realistic censure, since in practice, the ni can depend on the Yi it self via for
example (

I{Yi,1>τ}, . . . , I{Yi,n>τ}
)

where τ is a detection threshold.

5. Continuity of the operator. The continuity assumption on K relies in general
on function f , on the nature of FS, and on the law of the noise εi, which is Gaussian
and homoscedastic here. Some concrete examples of F are given below.

6. Full extension. Mixing all the previous extensions is delicate.

Example 1.4. Consider for instance the set FS ⊂ P(Rp) defined by

FS := FM,A
S :=

{
ϕ(s) ds; where ϕ ∈ C1

K([0,M ]) and ‖ϕ‖L1 = 1, ‖|∇ϕ|‖∞ 6 A
}
, (8)

where K is a fixed compact subset of Rp and where M, A are fixed non negative real
numbers. Equipped with the L∞ topology, this set is a compact convex subset of a linear
space, as required by Theorem 1.2. Since the underlying mixture model is a “Gaussian
position” one, we get for any couple (ϕ1, ϕ2) ∈ FS ×FS and any (y, t) ∈ Rn × Rn

|K(ϕ1)(y, t)−K(ϕ2)(y, t)| 6 ‖ϕ1 − ϕ2‖∞‖ψ‖∞(2πσ2)−n/2,

which gives the L∞ continuity of K(•)(y, t) for any couple (y, t) ∈ Rn×Rn. Since we deal
with a “Gaussian position model” (homoscedasticity), the operator norm does not depend
on (y, t) and function f plays not role. The L∞ a.s. consistency up to identifiability of
the NPML follows then from Theorem 1.2.

Example 1.5. Consider the set GS ⊂ P(Rp) defined by

GS := GA,α
S := {ϕ(s) ds; where ϕ ∈ Hα(K) with ‖ϕ‖L1 = 1 and ‖ϕ‖Hα 6 A},

where K is a fixed compact subset of Rp, A is a fixed non negative real number and
Hα(K) is the Sobolev space over the compact K. Provided that α > 1

2
− 1

p
, Rellich-

Sobolev embedding Theorem yields that FS is a compact convex subset of a linear space
for the L2 topology, cf. [1, 19], as required by Theorem 1.2. Since the underlying mixture
model is a “Gaussian position” one, we get for any couple (ϕ1, ϕ2) ∈ FS × FS and any
(y, t) ∈ Rn × Rn

|K(ϕ1)(y, t)−K(ϕ2)(y, t)| 6 ‖ϕ1 − ϕ2‖2‖ψ‖∞(4πσ2)−n/4,

which gives the L2 continuity of K(•)(y, t) for any couple (y, t) ∈ Rn ×Rn. Since we deal
with a “Gaussian position model” (homoscedasticity), the operator norm does not depend
on (y, t) and function f plays not role. The L2 a.s. consistency up to identifiability of the
NPML follows then from Theorem 1.2.
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2 Algorithms for the NPML

2.1 Finite dimensional approximation

The first step towards a practical implementation is to transform the maximum µ̂S,N

of the log-likelihood LN over the whole infinite dimensional class FS into a maximum
µ̂S,N,m over a finite dimensional convex subset FS,m, where (FS,m)m∈N∗ is an exhaustive
sequence of subsets of FS, i.e. adh(∪m∈N∗Fm) = F .

Theorem 2.1. Assume that FS is a metric space. Let (FS,m)m∈N∗ be an exhaustive se-
quence of finite dimensional closed convex subsets of FS. Under the assumptions of The-
orem 1.2, and for any fixed sample of size N , the approximated NPML estimator µ̂S,N,m

given by
µ̂S,N,m := arg max

µ∈FS,m

LN(µ). (9)

is well defined, unique, and converges toward the NPML µ̂S,N when m goes to +∞.

Proof. We proceed at fixed N . Since FS,m is a compact convex subset, the approximated
NPML estimator µ̂S,N,m exists, as it was the case for the NPML estimator µ̂S,N in Theorem
1.2. Let us now establish the convergence. By the definition of µ̂S,N,m and µ̂S,N one has
that

LN(µ̂S,N,m) 6 LN(µ̂S,N).

In the other hand, there exists a sequence (µm)m∈N∗ converging towards µ̂S,N in FS and
such that µm ∈ FS,m for any m ∈ N∗. Hence, lower semi continuity of LN induces that,
for any ε > 0, there exists mε ∈ N∗ such that for any m > mε,

LN(µ̂S,N)− ε 6 LN(µm).

But by definition of µ̂S,N,m we have

LN(µm) 6 LN(µ̂S,N,m).

As a result, the following bound holds for any ε > 0 and any m > mε

LN(µ̂S,N)− ε 6 LN(µ̂S,N,m) 6 LN(µ̂S,N). (10)

If µ∗ ∈ FS is an adherence value of the sequence (µ̂S,N,m)m∈N∗ , corresponding to the limit
point of a subsequence (µ̂S,N,mk

)k∈N∗ , then µ∗ = µ̂S,N . Namely, if it was not the case,
then (10) will implies that (L(µ̂S,N,mk

))k∈N∗ converges toward LN(µ̂S,N), and thus that
LN(µ∗) = LN(µ̂S,N), which contradicts the unicity of µ̂S,N as a maximum of LN over
FS. Hence, µ̂S,N is the unique adherence value of the sequence (µ̂S,N,m)m∈N∗ , and the
compacity of FS yields finally that (µ̂S,N,m)m∈N∗ converges towards µ̂S,N , which is exactly
the desired result.

Remark 2.2. The rate of convergence of (µ̂S,N,m)m∈N∗ towards µ̂S,N when m goes to +∞
depends on the regularity of FS,m and LN .

2.2 A Gradient algorithm for log-likelihood maximisation

Since for any m ∈ FS,m and any couple (µ, ν) in FS,m ×FS,m,

LN(µ)− LN(ν) = PN log
K(µ)

K(ν)
,
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the sieves log-likelihood estimator µ̂S,N,m defined in (9) can be viewed as the solution of
the following optimisation issue:

find µ̂S,N,m such that ∀µ ∈ FS,m, PN log
K(µ)

K(µ̂S,N,m)
6 0. (11)

By using the concavity of the objective function, Pfanzagl has proved in [24] that one
may switch, in the definition of the estimator in (11), from the log function to any other
function L : R∗

+ → R, provided that it is concave, strictly increasing, with L(1) = 0.

find µ̂S,N,m such that ∀µ ∈ FS,m, PNL

[
K(µ)

K(µ̂S,N,m)

]
6 0. (12)

As a result defining the estimator for a particular L is enough to get inequality (12) for all
“contrast” function L satisfying the previous assumptions. In particular, the estimator
µ̂S,N,m can be obtained for the special choice L(t) = t − 1, which corresponds exactly
to the definition of the EM algorithm iteration. Hence, maximising the estimator can
be practically computed via the EM algorithm, while Theorem 2.1 still applies, proving
consistency of the estimator. This invariance in L relies on the “concavity” of the model,
as explained in [24].

3 Discussion

3.1 Heuristics for the NPML in Theorem 1.2

As usual for maximum log-likelihood, the strong law of large numbers yields that
(PN)N∈N∗ converges a.s. toward K(µS) in P(Rn). In other words, L(Y ) = K(µS). Con-
sequently, for any µ ∈ FS, (LN(µ))N∈N∗ converges toward

L∞(µ) := −Ent(K(µS) |K(µ)) + H(K(µS)),

where Ent(K(µS) |K(µ)) =
∫

(log K(µS) − log K(µ))K(µS) is the Kullback-Leibler rel-
ative entropy of K(µS) with respect to K(µ) and where H(K(µS)) = L∞(µS) is the
Shannon entropy of K(µS). In other words, the log-likelihood random functional LN con-
verges toward the deterministic functional L∞ when N goes to +∞. This deterministic
limit L∞ is the relative entropy functional Ent(• |K(µS)), up to the additive constant
H(K(µS)) which does not play any role for the arg-maximum problem. Since K is in-
jective (identifiability), L∞ is strictly concave with unique maximum achieved at point
µS. The NPML estimator replaces the asymptotic arg-maximum µS with the finite N
arg-maximum µ̂S,N . The non-asymptotic log-likelihood LN is not a relative entropy, but
remains strictly concave. The EM algorithm µN,k+1 = FN(µN,k) consists in approximat-
ing µ̂S,N by finding an entropic lower bound functional for LN which touches LN at the
current step µN,k. The EM algorithm in this context can be seen also as a gradient like
algorithm µN,k+1 = µN,k + GN(µN,k) for the concave functional LN , where GN is the
Gâteau directional derivative of LN . It turns out that this gradient like approach appears
as a fixed point iteration µN,k+1 = FN(µN,k) where FN = GN + Id. The fixed point
problem FN(µ) = µ corresponds exactly to Bayes rule where the unknown µS is replaced
by the current step µ and where L(Y ) = K(µS) is replaced by the first marginal of PN .
Here again, (FN)N∈N∗ converges point-wise toward F∞ which admits µS as unique fixed
point. One of the main feature of EM is the monotonicity of the objective function LN

along the algorithm. The drawback with such a basic EM approach for nonparametric
NPML is the fact that the support is non increasing along the algorithm.
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3.2 Destruction the log-likelihood concavity for mixtures models

The log-likelihood of mixtures models is a concave functional of the unknown mixing
probability measure. However, this structure is very sensitive. Lindsay has showed in [14]
by simply using Minkowski-Caratheodory Theorem that the fully nonparametric NPML
for mixtures models like (1) is achieved by an atomic probability measure with at most
N + 1 atoms. By fully nonparametric, we mean that FS = P(Rp). This observation is
enough robust to remain valid for heteroscedastic models as in Remark 1.3. Unfortunately,
the parametrisation of such discrete probability measures in terms of weights and support
points destroys the concavity of the log-likelihood objective function LN . This lack of
concavity cannot be fixed by the introduction of a stochastic ordering on the set of discrete
probability measures with at most N + 1 atoms.

3.3 Semi-parametric estimation

The convexity structure of the NPML problem is destroyed by the incorporation of
fixed effects estimation. This is typically the case for mixed-effects models where a linear
model structure is imposed to µS and where σ is unknown in (1). In such cases, the global
log-likelihood, seen as a functional of both random and fixed effects, is not concave and
has potentially many local maxima. The semi-parametric approach developed in [24] is
useless since we do not have a consistent estimator of the fixed effects regardless of the
random effect.

Recall that a typical mixed effects model corresponds to some particular structure
(a linear model in general) on the Si in (1). Namely, Si = ΘVi + ηi, where Vi is
an observed vector of per-individual co-variables (sex, weight, etc), where Θ is an un-
known matrix parameter giving the trend (fixed effect), and where ηi is the random
effect of unobserved data. In such a model, the (Vi)i∈N∗ and the (ηi)i∈N∗ are i.i.d., and
the {Ti, Vi, ηi, εi, where i ∈ N∗} are mutually independent random variables. The goal is
then to estimate the Θ matrix and the common law µη of the (ηi)i∈N∗ . Such models are
used for example in Biology to let the measurements take into account the known speci-
ficity of each individual while conducting a survey. The pattern, which is determined by
physiological rules is given by the function f , while the specificity of each individual is
modelled by the random variables (Si)16i6N . If we write Si = ΘVi + m + η′i where m
is a fixed parameter to be estimated and where η′i is a centred random effect, one can
first estimate the law of the centred random effect η′ and then estimate the fixed effects
Θ and m. However, this approach must be adapted when the coefficient σ in (1) is not
known, since it appears in that case as a new fixed effect to be estimated. We believe
that a semi-parametric extension of our method can be made, providing an estimation of
(Θ, µη). The approach presented in [24] does not help since we do not have a consistent
estimator for the fixed effects. Despite the fact that numerous nonparametric techniques
were developed for mixtures models, the widely used approach in applications of nonlinear
mixed effects models is quite rough and consists in a fully parametric estimation of the
first two moments of the law µη of the random effect η, where it is arbitrarily assumed that
this law is normal or log-normal, cf. [20, 21] and [7] for example. Even if they speed up
the effective computations, such fully parametric approaches are not satisfactory since the
consequences it terms of decision are highly sensitive to the arbitrarily chosen structure
for the random effect law (not robust).
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3.4 No rates

To obtain rates of convergence for the maximum likelihood estimator, we consider
a neighbourhood of the true distribution µS, defined by the topology chosen according
to fulfils the conditions of Theorem 1.2. Write V (µS) this neighbourhood, then using
compacity there exist a finite sequence of neighbourhood V (µk), k = 1, . . . , rN such that

FS − V (µS) ⊂ ∪rN
k=1V (µk).

Hence, finding the rate of convergence of nonparametric maximum likelihood estimator
implies studying the deviation probability

P(µ̂S,N /∈ V (µS)) 6
rN∑
k=1

P(µ̂S,N ∈ V (µk))

6
rN∑
k=1

P

(
sup

µ∈V (µk)

1

N

N∑
i=1

log

[
2

(
1 +

(K#(µS))(Xi)

(K#(µ)(Xi)

)−1
]

> log γ

)

for 0 < γ < 1 as it is quoted in [24]. Bounding this deviation inequality requires two
main ingredients. First a bound for the entropy of the mixture class. Recent works by
van der Vaart, see for instance [10] and [12], give upper bounds for the entropy of such
classes and hence provide a control over rN . Second, to conclude, there is a need for a
deviation inequality over the previous empirical process. Unfortunately, to our concern,
concentration bounds in this framework are very difficult to obtain, preventing further
calculations to obtain rates of convergence. Work in this direction was conducted by van
de Geer in [27] but can not be applied in this framework. Thus, it seems rather difficult to
obtain rates of convergence for nonparametric maximum likelihood estimator using this
settings.

3.5 No sieves

In order to construct a practical maximum likelihood estimator, one needs to construct
a family of finite dimensional spaces undergoing the assumptions of Theorem (2.1). Two
main choices are investigated in the statistical literature, but none fulfils all the needed
requirements.

On the one hand, we could consider sieves constructed on log bases. Indeed, for a
basis (ψλ)λ∈Λ of an Hilbert space, consider for a fixed integer m the set

FS,m :=

{
ϕ ∈ FS, s.t. logϕ =

∑
λ∈Λm

βλψλ

}
,

where Λm ⊂ Λ with |Λm| 6 m. If we have taken spline basis for our initial choice of ψλ,
we get the traditional log-spline model, well studied by Stone in [26]. Such sets are made
of densities but are not compact for the chosen topology.

On the other hand consider a Multiresolution analysis, see for instance [18], con-
structed using a wavelet basis, (ζλ)λ∈Λ. Hence the finite dimensional sets corresponding
to the approximation spaces are defined by FS,m =

{
ϕ =

∑
λ∈Λm

βλζλ
}
. Notice that FS,m

is a closed convex subset of an Hilbert space. However, it is not a subset of FS, set of
the densities. This drawback appears frequently when estimating densities by wavelet
estimators: the estimate is not a density. This defect, which in standard issues is not
redhibitory, prevents here the use of Theorem (2.1).
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Conclusion

We have shown that the nonparametric maximum likelihood estimator for (1) is con-
sistent. However, the practical construction of usable sieves in the spirit of Section 2 is
questionable. Improvements and rates of convergence are difficult to obtain in these set-
ting. In the case where a large number of observations for each subject are available, i.e.
n→ +∞, the problem can be divided in two sub-issues: first estimate the random effect
and then build a nonparametric estimator of its density. This point of view is tackled for
example in [4] or [11]. However, when there is no hope for more data, in particular when
dealing with medical data for which typically n is less than 5, we believe that other types
of estimators should be considered.
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