
Wavelet estimation of a multifractal function

Fabrice Gamboa and Jean-Michel Loubes

Abstract

We prove that multifractal functions, characterized by their wavelet representation
can be estimated in the white noise model by a Bayesian estimation method. We give
rates of convergence for two different models. Further, we study empirical methods for
estimating the hyperparameters of the model, which lead to a fully tractable estimator.
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1 Introduction

In the last decade much emphasis has been placed on non parametric estimation by wavelet

methods. The reasons of the success of wavelets in non parametric statistics are mainly

twofold. First, wavelet basis are unconditional basis of at most all usual function spaces

[Mey87]. Further, estimates built on wavelets are easy to compute [Mal89] and are asymp-

totically optimal [DJKP95], [HKPT98], [DJ96].

In this paper, we will focus on wavelet estimates of very irregular functions namely multi-

fractal functions. Roughly speaking, a multifractal function is a function whose Hölder local

regularity index does not range in a singleton. That means that the function may be very

regular in some areas while it is very irregular in others. Such function with rapid changes of

regularity have been first introduced to model physical phenomena as turbulence [BAF+91],

or net events as the road or data traffic [RCRB99]. A way to study these functions is the
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multifractal analysis first introduced in [FP85]. This analysis is concerned with the reparti-

tion of points having a given regularity.

In this paper, we will focus on the estimation on multifractal function defined on the compact

[0, 1]. In this frame, Jaffard et al [ABJM99], [Jaf00b], [Jaf00a], [AJ01] or Roueff in [Rou01]

have recently shown that some lacunary random series built on wavelets have multifractal

properties. In others words, using wavelets, they built a random process having trajectories

in a multifractal set of functions. That is a probability measure P on this set. We will con-

sider here an unknown function f ∗ on [0, 1] lying in the support of P. More precisely, we will

set

f ∗ =

∞∑

j=0

2j
∑

k=0

w∗
jkψjk.

Where the wavelet coefficients (w∗
jk) are realizations of random variables drawn according to

a lacunar random model (ψ has some specific regularity assumptions (see Section 2) and for

any j, k integer, ψjk = ψ(2j · −k) is the level j kth periodized wavelet). In this paper, we aim

at estimating the function f ∗ observed in a Gaussian white noise model. Hence, we observe

the noisy wavelet coefficients:

djk = w∗
jk + εjk, εjk ∼ N

(

0,
σ2

n

)

with j ≥ 0 k = 0, . . . , 2j − 1, where σ is the variance and n the number of observations, and

0 ≤ J ≤ ∞ is the maximal number of resolution level observed. In a theoretical approach

J = ∞ while J = log n if the coefficients come from a discrete wavelet transform. Our aim

is to estimate a multifractal signal, using a Bayesian procedure. We show that the Bayesian

estimate converges in L2 in mean and give the rate of convergence. This model differs from

the one recently studied by Sapatinas et al [ASS98] and Johnstone et al [JS01]. Indeed, here,

the prior does not only involve the decay of the wavelet coefficients but also their location. An

important drawback when characterizing a function by its belonging to a Besov space, is that
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any information concerning correlations on the location of large wavelet coefficients is lost. As

a matter of fact, Besov norms are invariant under permutations of wavelet coefficients. This

information is important when studying very irregular functions since it is well known that

large wavelet coefficients are located at the singularities. The rate of convergence found here

also differs from the usual ones (found using thresholding procedures). The Bayesian estimate

studied in this paper could be used in practical situations to denoise multifractal functions.

For example, speech signal in a noisy environment (see www-rocq.inria.fr/fractales/ for

more on this kind of problems).

The paper is organized as follows. In the next section, we present the model described by

Jaffard et al to construct multifractal functions with wavelet series. Section 3 is devoted to

the study of a Bayesian estimate using upper bounds proved in Section 7.1. Section 4 provides

an estimation of the hyperparameters of the prior either by an algorithmic procedure or by a

direct approach. In Section 5, a step towards an adaptive estimation of multifractal functions

is given. The simulations are presented in Section 6, while all the proofs and the technical

lemmas are gathered in Section 7.

2 Multifractal wavelet models

Multifractal analysis of a function was first introduced in a physical frame in [FP85]. Given

a function f , one of the main goal of this analysis is the computation of its spectrum of

singularities df . Roughly speaking, for h > 0, df(h) is the Hausdorff dimension of the set

where f may be approximated at order h by a polynomial having degree not greater than h.

Multifractal properties of a function f may be studied through its expansion on a wavelet

basis. Indeed, Arneodo et al in [ABJM99], [Jaf00a], [Jaf00b] show that if f is written as

f =

∞∑

j=0

2j
∑

k=0

wjkψjk, (2.1)
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and setting, for α ∈ (0, 1),

Nj(α) = #{k, |wjk| ≥ 2−αj}

ρ(α) = inf
ε>0

lim supj→∞
log2(Nj(α + ε) −Nj(α− ε))

j
,

where log2 is the base 2 logarithm (hereafter, log will denote the natural logarithm). Then,

for h > 0,

df(h) = h sup
α∈(0,h]

ρ(α)

α
. (2.2)

The functions (Nj) and ρ quantifify the sparsity of the wavelet coefficients (wjk). Roughly

speaking, for α ∈ (0, 1) and large j there are about 2ρ(α)j coefficients (wj,k)j∈N of size of order

2−αj. We will now build stochastic wavelet models where the spectrum of singularities is not

random.

2.1 Random multifractal model

We assume now that the wavelet coefficients in the decomposition (2.1) are drawn randomly.

In this frame, let P be the probability distribution on the Borel measurable space L2([0, 1])

induced by the previous random series. In this paper, we will made Bayesian inference with

P. We will consider simple statistical models (simple choices of the wavelet coefficients) such

that the spectrum of singularities is not random and may be computed using a formula like

(2.2). These multifractal models will be characterized by two parameters η0 and α0 lying in

(0, 1). On one hand η0 will describe the lacunarity of the wavelet series (that is its sparsity).

On the other hand the value of the coefficient α0 will be exponentially inversely proportional

to the intensity of the value of the wavelet coefficients. These parameters will completely

characterize the spectrum of singularity of the random functions involved. The probabilistic
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results concerning these models and leading to the spectrum of singularities may be found in

[AJ01].

2.1.1 Bernoulli constrained model

The first simplest model is an exact representation of the structure of the multifractal processes

described in term of wavelet series by S. Jaffard in [AJ01]. At each resolution level j, pick

at random [2η0j] locations among the 2j wavelet coefficients, and put these coefficients to

the value 2−α0j while the 2j − [2η0j] are set to zero. This choice of coefficients is made

independently between each level. Generating a function with this method may seem too

restrictive. However, such processes appear naturally when studying multifractal processes

and their spectrum of singularity can be described using parameters α0 and η0. As a matter of

fact the assumptions over the wavelet coefficients lead to the following spectrum of singularities

(see [AJ01]):

df(h) =







0 if h ∈ (0, α0)
η0

α0
h if h ∈ [α0,

α0

η0
]

1 otherwise .

(2.3)

Thus, Bernoulli constrained model enables to model functions with linear spectrum of singu-

larity.

In figure 1 we plot a realization of a multifractal function of the Bernoulli constrained model.

The lacunarity coefficient is η0 = 0.4 while α0 = 0.3.

2.1.2 Gaussian extension to Bernoulli constrained model

The second model we will consider is an extension of the previous one. It allows more flexibility

in the choice of the wavelet coefficients: in the first description, they could only take two
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Figure 1: Multifractal process
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values: either 2−α0j or 0. Here, we allow non zero coefficients to take values different from

2−α0j but still close to that value. Hence, we consider that these coefficients are distributed

following a Gaussian random variable centered in 2−α0j with variance ∆2
j > 0: (N

(
2−α0j,∆2

j

)
).

The other coefficients are still equal to zero. Such model is a generalization of the first rough

model. It is an extension of the model described in Aubry and Jaffard [AJ01].

3 Bayesian estimation

Assuming that a multifractal function f ∗ is drawn from the Bernoulli constrained model

(or its extension), our aim is to estimate this function when it is observed in the white noise

model. Such function is not only characterized by the decay of its non zero wavelet coefficients

but also by their location. As a consequence, estimation will be performed using a Bayesian

procedure which, thanks to the choice of a proper prior, takes into account the multifractal

properties of f ∗.

In the white noise model, we observe all the wavelet coefficients, (w∗
jk) (here and after we put

a ∗ when we deal with realizations of random variables), of the function f ∗, together with a

Gaussian white noise ε having variance σ2

n
where n is the size of an original sample. Hence,

the observations are

d∗jk = w∗
jk + εjk, j ≥ 0, k = 0, . . . , 2j − 1.

The prior distribution is defined on the space of wavelet coefficients. Our Bayesian estimator

will be the posterior mode. This estimate maximizes the posterior likelihood (the law of the

coefficients given the observations). We first consider the Bernoulli constrained model. Then

we will extend our results to the more general case.
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3.1 Bernoulli constrained model

Let briefly come back on the prior distribution of the wavelet coefficients. Given α0 > 0 and

η0 > 0, at each level j ≥ 0, we set randomly [2η0j] coefficients wjk to the value 2−α0j and the

other coefficients to zero. So that, at level j, the wavelet coefficients of the unknown function

f ∗ lies in the set:

Ωj =






ω = (ωk)k=0,...,2j−1 ∈ {0, 2−α0j},

2j−1∑

k=0

ωk = 2(η0−α0)j






(j ∈ N).

The prior on this set is the uniform probability. Hence, if wj =






wj0
...

wj 2j−1




, then

∀ω ∈ Ωj, P(wj = ω) =
1

C
[2η0j ]

2j

.

So that, at each level j ≥ 0, the prior on the coefficients is uniform. The distribution of wj on

Ωj is [C
[2η0j ]

2j ]−1
∑

ω∈Ωj
δω. For ω ∈ Ωj, the canonical distribution of dj =






dj1
...

dj2j−1




 given

{ωj = ω} is the Gaussian distribution N(ω, σ2Id2j ). Given dj = d∗j , the posterior distribution

puts the weight:

exp(− 1
2σ2 ‖d∗j − ω‖2)

C
[2η0j ]

2j

∑

ωj∈Ωj
exp(− 1

2σ2 ‖d∗ − ωj‖2)

on the configuration ω ∈ Ωj. So the posterior mode ŵj satisfies

ŵj = arg max
wj∈Ωj

p(wj|d∗j) = arg min
wj∈Ωj

− log p((wj)|d∗j)

= arg min
wj∈Ωj

1

2σ2

2j
∑

k=0

|d∗jk − wjk|2, (3.1)

where p(.|d∗j) is the posterior density with respect to the uniform measure on Ωj. With the

particular form of the optimization problem (3.1), we recognize a constrained least squares

estimator, whose solution can be found as follows. First, observe that:

|x| < |x− 2−α0j| if and only if x < 2−α0j−1. (3.2)
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So, to take into account the constraint that the number of non zero coefficients at each scale

is [2η0j], we sort, for each j > 0, the d∗jk’s in a decreasing order:

d∗j,(0) ≥ · · · ≥ d∗j,([2η0j ]) ≥ . . . d∗j,(2j−1).

Then, thanks to (3.2), we estimate the [2η0j] corresponding wavelet coefficients by 2−α0j and

the others by zero. As a result, the Bayesian estimator of f ∗ is given by:

f̂n =

j1∑

j=0

2j
∑

k=0

2−α0j1|d∗
jk
|≥d∗

(j[2η0j ])
ψjk

where the maximum resolution level, namely the integer j1 = j1(n), will be chosen in an

optimal way (see below). In order to study this estimator, we fix the following frame.

First of all, to simplify the notations, we fix a resolution level j ≥ 0 and forget indexes in

j for a while. Set l = 2j, p = 2η0j and, for x =






x1
...
xl




 ∈ R

l let k(x) ∈ {1, . . . , l}l be the

reordering permutation associated with x:

xk1(x) ≥ xk2(x) ≥ · · · ≥ xkl(x).

So k1(x) is the location of the greatest value of (xi)i=1,...,l, k2(x) the location of the second

largest coefficient and so on. We consider

k̂ = k(d) (3.3)

where d∗ = (d∗i )i=1,...,l are the observed data. So we get

d∗
k̂1

≥ d∗
k̂2

≥ · · · ≥ d∗
k̂l
.

According to our former calculations, the Bayesian estimate is built with the estimated coef-

ficients (ŵjk) defined as follows:
{

ŵjk = 2−α0j , if k ∈ {k̂0, . . . , k̂p}
ŵjk = 0 , if k ∈ {k̂p+1, . . . , k̂n}.

(3.4)
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Hence, the accuracy of our approximation will depend on the quality of the estimation of the

true location of the maximal wavelet coefficients. Bounds for bias and variance are given in

the following lemma.

Lemma 3.1 There exists a constant C such that, for any j1 ∈ N and for n large enough,

‖f ∗ − Ef̂n‖2
2 ≤ C2−(1−η0+2α0)j1

E‖f̂n − Ef̂n‖2
2 ≤ n exp

(

−n2j1(η0−1−2α0)

4

)

There is a trade off between the two terms. Hence, the maximum resolution level to be used

for the reconstruction minimizes the L2 error. The following theorem describes the asymptotic

behavior of our nonparametric estimator in the asymptotically optimal case.

Theorem 3.2 Assume that α0 <
1
2
. Let (j1(n)) be such that

2j1 = O

([
n

lognβ

] 1
1+2α0−η0

)

,

with β > 8. Then, there exists a positive constant c1 such that:

E
[

‖f ∗ − f̂n‖2
2

]

≤ c1
logn

n
. (3.5)

Remark 3.3 The condition α0 <
1
2

implies that the wavelet coefficients can not be too small.

Otherwise, the function f ∗ can not be differentiated from the noise which prevents any esti-

mation.

The proof of Theorem 3.2 will follows from the study of cluster analysis in a Gaussian mixture,

whose parameter depends on n.
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3.2 Gaussian Model

Up to now, we have tried to recover functions whose wavelet coefficients can only take two

values: 0 and 2−α0j. From now on, we extend our results to the case where we allow non zero

coefficients to take values different from 2−α0j as stated in Section 2.1. We may rewrite the

model as follows:

For j ∈ {0, . . . , j1}, let Fj = (fjk)k=0,...,2j−1 be a random vector valued in ({0, 2−α0j})2j

.

Assume that the sequence Fj has uniform distribution on Ωj (see Section 3.1) and is indepen-

dent. Let (zjk), j = 0, . . . , j1, k = 0, . . . , 2j − 1 be independent Gaussian variables N
(
0,∆2

j

)
.

Assume moreover that (zjk) are independent with (Fj) and the noise. The variances ∆j > 0

are such that
∑

j 2−j∆2
j <∞. The coefficients of the observed random function

f ∗ =
∞∑

j=0

∑

k

w∗
jkψjk

are:

w∗
jk = f ∗

jk + z∗jk1fjk 6=0, j = 0, . . . , j1, k = 0, . . . , 2j − 1. (3.6)

We observe this function with a Gaussian additive noise:

{

d∗jk = w∗
jk + εjk

j ≥ 0, k = 0, . . . , 2j − 1.
(3.7)

We propose to use an estimator close to the Bayesian previously used: we first look for the

highest coefficients that will be non zero and then smooth them.

f̂n =

j1∑

j=0

2j−1∑

k=0

ŵjkψjk

where:

ŵjk =







2−α0j +
∆2

j

∆2
j +σ2

n

(d∗jk − 2−α0j) , ∀k ∈ {k̂0, . . . , k̂p}
0 , ∀k /∈ {k̂0, . . . , k̂p}

(3.8)
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where k̂ = k(d∗), d∗ = (djk)k=0,...,2j−1. corresponds to the location for a fixed level j of the p

highest observed coefficients which must correspond to the true non-zero coefficients.

The following theorem describes the behavior of our new estimator.

Theorem 3.4 Assume that f ∗ has been drawn according to the Gaussian extension of the

Bernoulli constrained model. Further, assume that α0 <
1
2
. Let (j1(n)) be such that

2j1 = O

([
n

lognβ

] 1
1+2α0−η0

)

,

with β > 8. Then, this sequence is asymptotically optimal and there exists a positive constant

c3 such that:

E‖f ∗ − f̂n‖2
2 ≤ c3

log n

n
. (3.9)

Remark 3.5 The ideas of the linear smoothing effect come from the following statement.

Consider two independent Gaussian variables

X ∼ N
(
m1, ξ

2
1

)
, Y ∼ N

(
m2, ξ

2
2

)
.

We have

E(X|X + Y ) = m1 +
ξ2
1

ξ2
1 + ξ2

2

(X + Y − (m1 +m2))

Var(X − E(X|X + Y )) =
ξ2
1ξ

4
2 + ξ4

1ξ
2
2

(ξ2
1 + ξ2

2)
2
.

4 Estimation of hyper-parameters

Hereafter, we consider the model of Section 3.1. In the former section, we constructed a

Bayesian estimator that depends on two parameters. We have performed Bayesian estimate

assuming that these parameters were known. In the Bayesian terminology, they are the

hyperparameters of the model. In this Section, we provide two different methods to estimate
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them. The first method uses the EM algorithm which leads to maximum likelihood estimate.

The second one is an empirical method based on moments. For a complete theoretical study,

we refer to [GL01]. In both cases, we deal with the case where we observe a real multifractal

signal corrupted with a Gaussian white noise. Hence the wavelet coefficients are obtained

using the discrete wavelet algorithm [Mal98] and the maximum number of resolution levels

available j1 is given by 2j1 = n, the number of observations.

4.1 Estimation of model parameters with EM algorithm

The EM algorithm is a recursive algorithm used to maximize log-likelihood when the variables

are not directly observed. A direct application is the classification problem in mixture settings

(see for instance Mc Leish in [MS86]). Let us illustrate this algorithm on a single Gaussian

mixture model. Let Y1, . . . , Yn be an i.i.d sample of a random vector Y having density:

f (y,Ψ) = πφ (y;µ1, σ) + (1 − π)φ (y;µ2, σ) ,

where φ (y;µi, σ) is the Gaussian density function with mean µi and variance σ2, for i ∈ {1, 2}.

The parameter of interest is Ψ = (π1, θ
T )T , where θ = (µ1, µ2, σ)t. The log-likelihood is:

L (Ψ) =

n∑

j=1

log (π1φ (Yj;µ1, σ) + (1 − π1)φ (Yj;µ2, σ)) .

To apply the EM-algorithm, we transform this model into a missing observation model. For

j ∈ {1, . . . , n}, let Zj, be a random variable equal to 1 if Yj comes from the first component,

i.e with law N (µ1, σ), and 0 otherwise. The complete data are Xc = (XT
1 , ..., X

T
n ), with

X1 = (Y1, Z1)
T , ..., Xn = (Yn, Zn)T . Suppose that X1, ..., Xn are i.i.d with Z1, ..., Zn, a n

sample of a Bernoulli trial with parameter π. In the complete model the log-likelihood is:

Lc (Ψ) =

n∑

j=1

zj log [π1φ (yj;µ1, σ)] + (1 − zj) log [(1 − π1)φ (yj; 0, σ)] . (4.1)
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Set yobs the values of the data (Y1, . . . , Yn)
′

. From the theory of EM algorithm, we know that

maximizing in the parameter of interest Ψ the log-likelihood is equivalent to maximizing in a

recursive way, the following quantity, where all the estimated quantities are taken at the k-th

step:

Q
(
Ψ,Ψ(k)

)
= E

(
Lc (Ψ) /yobs; Ψ

(k)
)

=
n∑

j=1

E
(
Zj/yobs; Ψ

(k)
)
log [π1φ (yj;µ1, σ)]+

E
(
(1 − Zj)/yobs; Ψ

(k)
)
log [(1 − π1)φ (yj; 0, σ)] .

We now may apply this general algorithm to our wavelet model with known variance σ2.

Write m = 2−α0j and π = 2(η−1)j . At a fixed level j, the augmented likelihood is

L(d∗jk, m, π) =
∑

k

log πzjk exp(− n

2σ2
(d∗jk −m)2zjk)(1 − π)1−zjk exp(− n

2σ2
d∗jk

2(1 − zjk))

= (log
π

1 − π
;m2;m)(

∑

k

zjk;−
n

2σ2

∑

k

zjk;
n

σ2

∑

k

d∗jkzjk)
′

+ 2j log(1 − π)

= a(θ)
′

b(X) + c(θ) + d(X)

We recognize an exponential family. Then, EM algorithm can be written at the i+ 1-step:

• E step:

E(b(X)|d∗, θi) = (
∑

k

ẑ
(i)
jk ;− n

2σ2

∑

k

ẑ
(i)
jk ;

n

σ2

∑

k

d∗jkẑ
(i)
jk )

where ẑ
(i)
jk = P(zjk = 1|d∗, θ(i)).

• M step: in order to maximize the functions:
{

f(π) = log
(

π
1−π

)∑

k zjk + 2j log(1 − π)

g(m) = − n
2σ2m

2
∑

k zjk + nm
σ2

∑

k d
∗
jkzjk

write the first order condition and this gives raise to the two estimated parameters:

m̂(i+1) =

∑

k d
∗
jkẑ

(i)
jk

∑

k ẑ
(i)
jk

π̂(i+1) =
1

2j

∑

k

ẑ
(i)
jk (4.2)
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In the numerical simulations of Section 5, we used the EM algorithm in the following way:

using j1 = log2 n resolution levels, we ran the algorithm with the successive data d∗j., ∀j ≤ j1.

The starting point of each iteration is the estimator obtained in the previous step.

4.2 Parametric estimation of lacunarity wavelet series

A natural way to build empirical estimates of (η0, α0) is to use the moment method. To begin

with, observe that we have

Edjk = 2(η0−1−α0)j , Ed2
jk =

σ2

n
+ 2(η0−1−2α0)j.

This lead to the following empirical moments estimates of α0:

α̂n =
1

j1 log 2

(

log

[ ∑j1
j=1

∑2j−1
k=0 djk

∑j1
j=1

∑2j−1
k=0 d

2
jk − σ2

])

. (4.3)

If we rescale the coefficients by
√
n we get the following distribution

√
ndjk ∼ 2(η0−1)jN (mj, σ

2) + (1 − 2(η0−1)j)N (0, σ2).

with mj = 2j1/2−α0j, j = 1, . . . , j1. Under the hypothesis of Theorem 4.1 we have that mj

goes to infinity with j. As a result, the two components of the rescaled mixture

Compound 1 = N (mj, σ
2), Compound 2 = N (0, σ2)

are asymptotically well separated. So, the two kinds of wavelet coefficients can be efficiently

separated using a thresholding procedure. We will use this idea to build an estimator of the

lacunarity parameter η0.

Let ln be an increasing sequence of positive real numbers and set Sn =
1

n

j1∑

j=1

2j−1∑

k=0

1√ndjk≥ln .

Define the following estimator:

η̃n = 1 +
1

log2 n
log2 (Sn) . (4.4)
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Since the two groups of random variables are well separated when the level of resolution j

increases, the number of rescladed coefficients
√
ndjk above a fixed level ln = log2 n can be

used to estimate the proportion of coefficients which belong to the second group (2). We have

the following theorem over asymptotic property of our estimates.

Theorem 4.1 Assume that η0 − 2α0 > 0, we have:

log(n)
√
nη0(α̂n − α0)

L−→ N (0, 1). (4.5)

n
η0
2 log(n) (η̃n − η0)

L→ N (0, 1) . (4.6)

The proof of the previous theorem can be found in [GL01].

5 Numerical Simulations

The following results have been obtained using Matlab software in the Bernoulli constraint

model. In Figure 2, we present the Bayesian reconstruction of multifractal function generated

with a choice of η0 = 0.4 and α0 = 0.1 observed with a Gaussian noise with variance 4. The

figure 3 shows the same signal with a noise with variance 8. In the Figure 4, the coefficients

of the multifractal function are drawn with a choice of η0 = 0.5 and α0 = 0.05, while the

function is observed with a Gaussian noise with variance 4. Each figure is divided into four

part: in the first subfigure, we plot the multifractal function. The second subplot shows the

observed data while the third subplot shows the estimator of the function. Finally, in the last

subplot, we plot the absolute difference of the true signal and the estimator.

We can see that, even if some peaks are badly allocated, the Bayesian reconstruction provide

good visual performances and preserves the energy of the signal. Moreover, most of the errors

are encountered at the border of the interval, which is due to boundaries effects. The last figure

shows estimation errors with classical thresholded estimators, visushrink and sureshrink.
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The aim of Table 1 and Table 2 is to compare the estimation efficiency of the different

estimators built in this paper, the Bayes estimate with known prior, the two adaptive versions

of the previous estimator, with the classical hard thresholded estimator. The thresholding

level is selected using the SURE procedure. We present here the mean of the L2 error obtained

for 50 simulations for two different signals with two different Gaussian noise with n = 104

observations. The first signal is constructed with a lacunarity parameter η0 = 0.5 and an

intensity parameter α0 = 0.05 while for the second function we have η0 = 0.4 and α0 = 0.1.

The following notations are used in Table 1. f̂∗ is the Bayesian estimator with the true

coefficients and the optimal cut-off level j∗1(n) . Since all the adaptive type estimators are

built with a maximum number if level that does not depend on the characteristics of the signal,

we will use for comparison the estimator f̂ , the estimator for known parameters α0 and η0

but with ĵn = log2(n). f̂EM stands for the Bayesian estimator whose coefficients are given by

the EM algorithm while those of f̂param are calculated by the empirical estimators. Finally

f̂H is the theoretical hard-thresholded estimator. In Table 2, we have studied the following

estimators: f̃EM and f̃param, which differ from f̂EM and f̂param since the optimal resolution

level is computed with the estimated values of both lacunarity and intensity parameters, for

the two estimation methods.

First, the results show clearly that the classical thresholding procedure outperforms the Bayes

procedure. This is not surprising since the methodology aims at reconstructing this particular

kind of signals and is well adapted to separate small wavelet coefficients from the noise, while

the thresholded estimator oversmooths the noisy data.

Last, the asymptotic behaviour of both Bayes adaptive estimator and parametric adaptive

estimator are similar to the behaviour of f̂ . This shows that the parametric estimation of

the hyperparameters of the prior law works well and provides an efficient way of denoising
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Multifractal Functions MSE: f̂∗ MSE:f̂ MSE:f̂EM MSE:f̂param MSE:f̂H

η0 = .5 α0 = .05 snr=3 9.10−4 0.015 0.034 0.032 0.102
η0 = .5 α0 = .05 snr=6 3.10−3 0.058 0.0772 0.0796 0.290
η0 = .4 α0 = .1 snr=3 2.10−3 0.03 0.048 0.055 0.104
η0 = .4 α0 = .1 snr=6 7.10−3 0.079 0.092 0.109 0.298

Table 1:

Multifractal Functions MSE: f̂∗ MSE:f̃EM MSE:f̃param

η0 = .5 α0 = .05 snr=3 9.10−4 0.01 0.012
η0 = .5 α0 = .05 snr=6 3.10−3 0.038 0.032
η0 = .4 α0 = .1 snr=3 2.10−3 0.022 0.028
η0 = .4 α0 = .1 snr=6 7.10−3 0.072 0.078

Table 2:

multifractal functions. Using the estimated parameters to find the optimal level improves also

the estimation procedure.

6 Concluding Remarks

Towards an adaptive estimation

We have constructed a Bayesian estimator with a prior that heavily relies on two hyperpa-

rameters. In order to get a fully tractable estimator, we provided two ways of estimating

them, either by using the maximum likelihood approach or with moment estimates. For a full

theoretical approach, we should study the rate of convergence of the estimator with estimated

parameters. Hence, it is natural to try to replace the true parameters by the estimates given

in Section 4. Unfortunately, we do not get precise rates of convergence in both cases, since

we face two main difficulties.

On the one hand, when using EM algorithm, we only get an approximation of the parameters

α̂
(k)
n and η̂

(k)
n , for k large enough. So, the estimator f̂

(k)
n is an approximation of f̂n and the

algorithm does not provide a precise control over the convergence.

22



On the other hand, the moments estimators α̂n and η̃n should be plugged into the expression

of the estimate and used to build the following estimator:

f̂n =
∑

j≤ĵ1n

2j−1∑

k=0

2−α̂nj1djk≥d
(j[2η̂nj ])

ψjk, (6.1)

with 2ĵ1n = (n/ logn)
1

1+2α̂n−η̂n . So, the L2 error involves term of the following form

|2−α̂nj1djk≥d
(j[2η̂nj ])

− 2−α0j1djk≥d
(j[2η0j ])

|2,

whose behavior is a very difficult issue. Moreover, to estimate the parameters of the prior,

we need a fixed maximum level of resolution, here with value j1 = log2(n). But the optimal

number of level for constructing the signal depends itself on the value of these parameters.

As a result, we can not study the behaviour of (6.1).

However, we can point out that the random wavelet series f ∗ =
∑

jk w
∗
jkψjk, where the wavelet

coefficients are drawn according to one of the two previous statistical models, is such that,

for any p > 0, there exists a finite positive constant Cp with:

∀j > 0,
2j−1∑

k=0

E|w∗
jk|p ≤ Cp2

(−α0p+η0)j.

This implies that the function f ∗ belongs a.s to the sparse Besov spaces Bs
p∞ for s ≤ α0 + 1−η0

p

(see in [Jaf00b]). As a consequence, the classical adaptive thresholded estimator converges at

a rate of convergence in n
−1+ 1

2+2α0−η0 . This adaptive rate of convergence is far from the rate

of convergence found in Section 3. Indeed, our estimation procedure is based on a parametric

approach and a choice of a good prior, well suited to fit the model of multifractal functions.

7 Appendix

7.1 Technical Lemmas

In this section, the analysis of the asymptotic behaviour of a Gaussian mixture provides upper
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bounds for the classification problem described in Section 3. The problem can be stated as

follows.

Consider n random variables, Xi, i = 1, . . . , n of to two different populations (I) and (II):

X1, . . . , Xp
︸ ︷︷ ︸

(I)

, Xp+1, . . . , Xn
︸ ︷︷ ︸

(II)

(7.1)

where the population (I) consists of independent Gaussian variables N (a, σ2) with a > 0 and

the population (II) consists of independent Gaussian variables N (0, σ2). Moreover, the two

groups are assumed to be independent. We consider a decreasing reordering of the variables

X(1) ≥ · · · ≥ X(p) ≥ · · · ≥ X(n). (7.2)

This model is a mixture model, as defined by Mc Leish and Small in [MS86], where we know

precisely the different proportions and the values of the different means. The link with our

Bayesian estimator is the following: at each fixed level j the wavelet coefficients can take two

different values a = aj = 2−α0j or 0. So if we rescale the coefficients by multiplying them

by the same parameter
√

n
σ

, the estimation problem turns to be a classification problem of

random variables following Gaussian laws N (0, 1) or N (
√

n
σ
a, 1). Our aim here is to bound

the error of misclassifying a variable. Hence, we want to bound the following quantities

P(dk∗

0
< dk̂pj

), and P(dk∗

2j
−1
< dk̂pj

) (7.3)

(see (3.3) for the definition of the notations) which can be rewritten in the previous frame

P(X1 < X(p)), and P(Xn < X(p)). (7.4)

If we define the rank statistics Ri, i = 0, . . . , n − 1 these two probabilities can be rewritten

as P(R1 < p) and P(Rn < p). Such problem has been studied very early in statistics (see

Gumbel in [Gum58] for example).
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The following lemma gives a first rough upper bound for the errors, that will be sufficient in

our work. The proof follows from straightforward combinatory calculations:

Lemma 7.1
{

P(X1 < X(p)) ≤ (n− p)P(X1 < Xp+1)

P(Xn < X(p)) ≥ P(maxi>pXi < mini≤pXi).

Under the assumption 1−2α0 > 0, the two groups of Gaussian variables can be differentiated

since the mean mn = 2j1/2−α0j goes far from zero quickly enough.

The following lemma, whose proof uses the previous lemma, describes the asymptotic behavior

of the two previous probabilities.

Lemma 7.2 There exist two finite positive constants c1 and c2 such that

P(X1 < X(p+1)) ≤ c1exp

(

−m
2
n

4

)

,

P(Xn > X(p)) ≤ c2 exp

(

−2(η0−1)jm2
n

4

)

.

7.2 Proofs

proof of Lemma 3.1: Following Mallat in [Mal98] we consider the approximation spaces (Vj)j≥0

defining the multiresolution analysis associated with the wavelet ψ (for any j ∈ N (ψj,k)k=0,2j−1

is a basis of Vj). Further, let Πj be the projector operator on Vj. Due to orthonormality of

wavelet basis we have the following decomposition:

E‖f ∗ − f̂‖2
2 ≤ E‖f̂ − Πj1f

∗‖2
2 + ‖f ∗ − Πj1f

∗‖2
2.

The bias term is such that there exists a positive constant c2 such that:

E‖f ∗ − Πj1f
∗‖2

2 = O

(
∑

j>j1

2−j
∑

k

(w∗
jk)

2

)

= O
(
c22

−(1−η0+2α0)j1
)
.
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For the stochastic term, we have:

E||f̂ − Πj1f
∗||22 = E

∑

(j,k)

2−j|ŵjk − w∗
jk|2

= E
∑

j

2−j





pj∑

l=0

|ŵjk∗

l
− 2−α0j|2 +

2j−1∑

l=pj+1

|ŵjk∗

l
|2




=
∑

j

2−j2−2α0j





pj∑

l=0

P(k∗l /∈ {k̂0, . . . , k̂pj
}) +

2j−1∑

l=pj+1

P(k∗l ∈ {k̂0, . . . , k̂pj
})





≤
∑

j

2−j2−2α0j
(

[2η0j]P(dk∗

0
< dk̂pj

) + (2j − [2η0j])(1 − P(dk∗

2j
−1
< dk̂pj

))
)

≤ T1 + T2.

where we have set pj = [2η0j] − 1.

It remains to study the asymptotic behaviour of the misclassifying errors. Using the upper

bound provided by Lemma 7.2 and putting together all the results, we obtain for the first

remainder term:

T1 ≤
∑

j≤j1

2−j2η0j−2α0jP(X1 < X(p)) ≤
∑

j≤j1

2(η0−2α0)j2−
j1
2 2α0j exp(−2j1−2α0j

4
)

≤ exp(−2j1(1−2α0)

4
)2(η0−α0− 1

2
)j1 .

But since 1−2α0 > 0 we have 2j1(1−2α0) → ∞ when j1 increases. As a result, we can conclude

that T1 goes to zero with exponential rate of convergence whatever the value of η0 is.

For the second term, we get the following upper bound:

T2 ≤
∑

j≤j1

2−2α0jP(Xn > X(p)) ≤
∑

j≤j1

2j(1+η0−2α0) exp(−c2m2
n2(η0−1)j)

≤ exp(−c2n2(η0−1−2α0)j1)2(1+η0−2α0)j1.

Proof of Theorem 3.2: Using results of Lemma 3.1, we have the following trade off between
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the two terms:

E‖f̂ − f ∗‖2
2 ≤ c12

j1(η0−1−2α0) + n exp

(

−n2j1(η0−1−2α0)

4

)

.

Hence an optimal choice of the resolution level is given by 2j1 = O( n
log nβ )

1
1+2α0−η0 , with β > 8.

It yells the following rate of convergence:

E‖f̂ − f ∗‖2
2 = 0

(
log n

n

)

,

which proves the result.

Proof of Theorem 3.4: We can see that there are slight changes with the first model. As a

matter of fact, an additional estimation issue is added to the original classification problem.

Here, the quadratic loss is divided into three terms corresponding to misschosing the location

of the greatest coefficients and an extra term corresponding to the estimation error.

Working as previously we decompose the error term into a stochastic term and a bias term.

E‖f ∗ − Πj1f
∗‖2

2 ≤
∑

j>j1

2−jE|d∗jk|2

≤
∑

j>j1

2−j∆2
j + c22

−j1(1−η0+2α0).

But
∑

j>j1
2−j∆2

j ≤ 1
n
.

The stochastic term is bounded by:

E||f̂ − Π1f
∗||22 = E

j1∑

j=0

∑

k

2−j|ŵjk − w∗
jk|2

=

j1∑

j=0

2−jE

(
pj∑

l=0

(w∗
j,k∗

l
)21k∗

l
/∈{k̂0,...,k̂pj

}

)

(I)

+

j1∑

j=0

2−jE

(
pj∑

l=0

(ŵj,k∗

l
− wj,k∗

l
)21k∗

l
∈{k̂0,...,k̂pj

}

)

(II)

+

j1∑

j=0

2−jE





2j−1∑

l=pj+1

ŵ2
j,k∗

l
1k∗

l
∈{k̂0,...,k̂pj

}



 (III).

The three quantities can be bounded as shown in the following lemma:
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Lemma 7.3

(I) ≤
∑

j≤j1

2(η0−1)jP
1
2 (k∗l /∈ {k̂0, . . . , k̂pj

)A
1/2
j (7.5)

(II) ≤
∑

j≤j1

2−j
∑

l>pj

P
1
2 (k∗l ∈ {k̂0, . . . , k̂pj

})E 1
2

(

2−α0j σ2

n

∆2
j + σ2

n

+
∆2

j

∆2
j + σ2

n

εjk

)4

(7.6)

(III) ≤
∑

j≤j1

2(η0−1)j(2j − 2η0j)
P

1
2 (k∗n ∈ {k̂0, . . . , k̂pj

})
(∆2

j + 2−j1σ2)2
B

1/2
j . (7.7)

Where, for j = 1, . . . , 2j1, we have set Aj = 2σ4
j +6 2−2α0jσ2

j + 2−4α0j and Bj = 32−2j1σ4∆8
j +

2−4α0jσ82−4j1 + 6σ6∆5
j2

−2α0j2−3j1 with σ2
j = ∆2

j + 2−j1σ2.

The proof of this lemma is rather technical and is postponed at the end of this section.

We point out that the coefficients Aj and Bj both tend towards zero as n increases. So,

the convergence of the first and second terms of the quadratic loss will be ensured by the

good classification properties of the model. As a matter of fact the only modifications with

the first model is the change of the variance. Observe that these variables still have the

same asymptotic behavior. Hence, from Lemma 7.2, we may conclude that the probability of

misclassifying the coefficients tends to zero exponentially fast (because ∆2
j ≤ c̃2−j, j ∈ N for

some c̃ > 0). As a consequence, the quadratic rate of convergence will only depends on the

central term. Indeed, we may find some positive constants c, c1, and c2:

j1∑

j=0

2(η0−1)jP
1
2 (k∗l /∈ {k̂0, . . . , k̂pj

})A1/2
j ≤

j1∑

j=0

2(η0−1)jn exp(−2j(η0−1)m2
n

8
)[3(∆2

j +
σ2

n
)2

+ 2 2−2α0j(∆2
j +

σ2

n
) + 2−4α0j]

≤ c1n exp(−c22j1(η0−1)m2
n) sup

j≤j1

(∆2
j)2

(η0−1)j1 .

This term is of the same order as the stochastic term in 3.2, since we made the assumption
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that the variance term satisfies ∆2
j = O(2−j). We now study the second term:

∑

j

2−j
∑

l>pj

P
1
2 (k∗l ∈ {k̂0, . . . , k̂pj

})E 1
2

(

2−α0j σ2

n

∆2
j + σ2

n

+
∆2

j

∆2
j + σ2

n

εjk

)4

≤
j1∑

j=0

2(η0−1)j
∆2

j
σ4

n2 + ∆4
j

σ2

n

(∆2
j + σ2

n
)2

≤
j1∑

j=0

2(η0−1)j σ
2

n
≤ c22

j1(η0−1)/n.

which goes to zero as well.

To conclude observe that we may also bound the third term:

j1∑

j=0

2(η0−1)j(2j − 2η0j)
P

1
2 (k∗n ∈ {k̂0, . . . , k̂pj

})
(∆2

j + 2−j1σ2)2
B

1/2
j ≤

j1∑

j=0

exp(−c2m2
n)Fj

where Fj =
2η0jB

1
2
j

(∆2
j + 2−j1σ2)2

, j = 0, . . . , j1. Since Fj does not go to infinity at an exponential

rate, we may conclude that the last term goes to zero at an exponential rate of convergence.

Hence, the two remaining terms (I) and (II) are of the same order as in the case without

noise. As a result, the choice of the same optimal resolution level j1(n) concludes the proof.

Proof of Lemma 7.2: First of all, we point out that, the probabilities remain unchanged

if we multiply the random variables by the same constant. From now the random variables

follow either N (0, 1) or N (mn, 1) (mn = a
√

n
σ

) distribution. We can see that, if α0 <
1
2
, when

n goes to infinity mn → ∞. Under this assumption, the two components of the Gaussian

mixture are well divided, and the classification issue leads to efficient results. Otherwise, the

coefficients of the signal are too small to be differentiated from the Gaussian white noise and

the estimation problem is made impossible.

• We have for some c1 ≥ 0:

P(X(1) < X(p+1)) ≤ P(X1 < Xp+1) = P (N (mn, 1) < N (0, 1)) .

Since the two Gaussian variables are independent, X1 − Xp+1 ∼ N (mn, 2). As a con-
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clusion we have:

P(X1 < Xp+1) ≤ c1exp(−m
2
n

4
). (7.8)

• For the second probability, we use the law of extreme statistics.

Indeed, in each group the random variables are independently equi-distributed. Obviously,

the density of mini=1,...,p Yi is

n− p√
2π

exp(−(x−mn)2

2
)

(∫ x

−∞

1√
2π

exp(−(t−mn)2

2
)dt

)n−p−1

and the density of maxi=p+1,...,n Yi is

p√
2π

exp(−x
2

2
)

(∫ ∞

x

1√
2π

exp(−t
2

2
)dt

)p−1

.

So that,

1 − P(max
i>p

Xi < min
i≤p

Xi)

=

∫ ∫

x>y

(n− p)p√
2π

exp(−x2/2) exp(−(y −mn)2/2)Φ(x)n−p−1(1 − Φ(y −mn))p−1dxdy

≤ p(n− p)

∫ ∫

x>y+mn

exp(−x
2

2
)Φ(x)n−p−1 exp(−y

2

2
)(1 − Φ(y))p−1dxdy

≤ p(n− p)

∫ (∫

x>y+mn

1√
2π

exp(−x
2

2
)dx

)

exp(−y
2

2
)(1 − Φ(y))p−1dy

≤ p(n− p)

∫

exp(−(y +mn)2

2
) exp(−y

2

2
) exp(−(p− 1)

y2

2
)dy

≤ p(n− p) exp

(

− 2(η0−1)jm2
n

2(2(η0−1)j + 1)

)

.

As a result, we have proved that, there exists a positive constant c such that

P(Xn ≥ X(p)) ≤ cnp exp

(

−2(η0−1)jm2
n

4

)

, (7.9)

concluding the proof of the lemma.

Proof of Lemma 7.3:
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• Using Cauchy-Schwarz’s inequality, we obtain for (I):

(I) =E

j1∑

j=0

2−j

pj∑

l=0

w2
j,k∗

l
1k∗

l
/∈{k̂0,...,k̂pj

}

≤
∑

j

2−j(pj + 1)(Ew4
j,k∗

0
)

1
2 P

1
2 (k∗l /∈ {k̂0, . . . , k̂pj

)

≤
∑

j

2(η0−1)j(Ew4
j,k∗

0
)

1
2 P

1
2 (k∗0 /∈ {k̂0, . . . , k̂pj

).

If X is a Gaussian variable with mean m and variance σ2, then

EX4 = 3σ4 + 6m2σ2 +m4.

So, since wj,k∗

l
∼ N

(
2−α0j, σ22−j1 + ∆2

j

)
we obtain:

(I) ≤
∑

j

2(η0−1)jP
1
2 (k∗l /∈ {k̂0, . . . , k̂pj

)(2σ4
j + 6 2−2α0jσ2

j + 2−4α0j),

where σ2
j = ∆2

j + 2−j1σ2, j ∈ N.

• Again, using Cauchy-Schwartz inequality, we obtain for (II)

(II) =
∑

j

2−jE

(
pj∑

l=0

(ŵj,k∗

l
− wj,k∗

l
)21k∗

l
∈{k̂0,...,k̂pj

}

)

≤2−j(pj + 1)E(ŵj,k∗

0
− wj,k∗

0
)2

≤2(η−01)j
∆2

j
σ4

n
+ ∆4

j
σ2

n

(σ2

n
+ ∆2

j)
2
.

• It remains to bound (III):

(III) =
∑

j

2−jE





2j−1∑

l=pj+1

ŵ2
j,k∗

l
1k∗

l
∈{k̂0,...,k̂pj

}





≤
∑

j

2−j
∑

l>pj

E(2−α0j +
∆2

j

∆2
j + σ2

n

(djk − 2−α0j)21k∗

l
∈{k̂0,...,k̂pj

})

≤
∑

j

2−j
∑

l>pj

P
1
2 (k∗l ∈ {k̂0, . . . , k̂pj

})E 1
2

(

2−α0j σ2

n

∆2
j + σ2

n

+
∆2

j

∆2
j + σ2

n

ξjk

)4

.
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where we have set ξjk = djk − 2−α0j. So

(III) ≤
∑

j

2(η0−1)j(2j − 2η0j)
P

1
2 (k∗n ∈ {k̂0, . . . , k̂pj

})
(∆2

j + 2−j1σ2)2
Rj

with

Rj = (3.2−2j1σ4∆8
j + 2−4α0jσ82−4j1 + 6σ6∆5

j2
−2α0j2−3j1)1/2.
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