Green's function pointwise estimates for spectrally stable discrete shock profiles

Lucas Coeuret

Institut de Mathématiques de Toulouse (IMT)

NumHyp2023 - Bordeaux - 29th of June 2023

Advisors : Jean-François Coulombel and Grégory Faye (IMT)

2 Definition and existence of stationary discrete shock profiles

3 Stability and Green's function of stationary discrete shock profiles

Conservation law, shocks and finite difference schemes

• We consider a one-dimensional scalar conservation law

$$\partial_t u + \partial_x f(u) = 0, \quad t \in \mathbb{R}_+, x \in \mathbb{R}, \ u : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R},$$

where the flux $f : \mathbb{R} \to \mathbb{R}$ is a smooth function.

The result that will be presented also holds for systems of conservations laws.

• Steady Lax shock: We consider $(u^-, u^+) \in \mathbb{R}^2$ such that

 $f(u^{-}) = f(u^{+})$ (Rankine-Hugoniot condition)

and

$$f'(u^+) < 0 < f'(u^-)$$
. (Lax shock)

Example : We can consider the Burgers equation $(f(u) = \frac{u^2}{2})$ and the shock associated to the states $u^- = 1$ and $u^+ = -1$.

We introduce a conservative one-step explicit finite difference scheme $\mathcal{N} : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$ such that for $u = (u_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$ and $j \in \mathbb{Z}$

$$\mathcal{N}(u)_{j} := u_{j} - \nu \left(F\left(\nu; u_{j-p+1}, \ldots, u_{j+q}\right) - F\left(\nu; u_{j-p}, \ldots, u_{j+q-1}\right) \right),$$

where $p, q \in \mathbb{N} \setminus \{0\}$, the numerical flux $F :]0, +\infty[\times \mathbb{R}^{p+q} \to \mathbb{R}^d$ is a smooth function and we fix $\nu = \frac{\Delta t}{\Delta x} > 0$ satisfying a CFL condition.

Assumptions:

- $\forall u \in \mathbb{R}$, $F(\nu; u, ..., u) = f(u)$ (consistency condition)
- ℓ^2 -stability for some constant states
- The scheme introduces numerical diffusion (numerical viscosity) rather than numerical dispersion (at least for the states u^{\pm}).

Example : We consider the modified Lax Friedrichs scheme

$$orall u\in\mathbb{R}^{\mathbb{Z}}, orall j\in\mathbb{Z}, \quad \mathcal{N}(u)_j:=rac{u_{j+1}+u_j+u_{j-1}}{3}-
urac{f(u_{j+1})-f(u_{j-1})}{2}.$$

We are interested in solutions of

$$\forall n \in \mathbb{N}, \quad u^{n+1} = \mathcal{N}(u^n), \qquad u^0 \in \mathbb{R}^{\mathbb{Z}}.$$
 (1)

Stationary discrete shock profile (SDSP): We suppose that there exists a sequence $\overline{u} = (\overline{u}_j)_{j \in \mathbb{Z}} \in \mathbb{R}^{\mathbb{Z}}$ that satisfies

$$\mathcal{N}(\overline{u}) = \overline{u} \quad ext{and} \quad \overline{u}_j \stackrel{
ightarrow}{
ightarrow} u^{\pm}.$$

For moving shocks, discrete shock profiles are traveling waves solutions of (1) that link two states u^{\pm} . (Difficulties depending on whether the speed of the traveling wave is rational or not).

Example : We consider the initial condition (mean of the standing shock on each cell $[(j - \frac{1}{2})\Delta x, (j + \frac{1}{2})\Delta x]$)

$$\forall j \in \mathbb{Z}, \quad u_j^0 := \begin{cases} 1 & \text{if } j \leq -1, \\ 0 & \text{if } j = 0, \\ -1 & \text{if } j \geq 1. \end{cases}$$

For standing Lax shocks, in some cases, we have the proof of the existence of a continuous one-parameter family $(\overline{u}^{\delta})_{\delta \in I}$ of SDSPs.

- Jennings, Discrete shocks (1974)
 - scalar case
 - conservative monotone scheme
- Majda and Ralston, *Discrete Shock Profiles for Systems of Conservation Laws* (1979)
 - system case
 - weak Lax shocks
- Different cases: Smyrlis (1990), Liu-Yu (1999), Serre (2004) etc...

Example : We consider the same initial condition u^0 as before but add a mass δ at j = 0. We look at the limit of the solution of the numerical scheme.

We will use the terms "translation of the profile" and "derivative of the profile" even tough we are in a discrete setting.

The end goal would be to prove a property of nonlinear orbital stability for some SDSPs:

For admissible perturbations h, prove that the solution u^n of the numerical scheme for the initial condition $u^0 = \overline{u} + h$ converges towards the set of translations of the SDSP $\{\overline{u}^{\delta}, \delta \in I\}$.

We are going to present a possible first step towards such a result.

- Jennings, Discrete shocks (1974)
 - scalar case
 - conservative monotone scheme
- Liu-Xin, L¹-stability of stationary discrete shocks, (1993)
 - system case
 - Lax-Friedrichs scheme
 - weak Lax shocks
 - zero mass perturbation (dropped in Ying (1997))
- Different cases: Liu-Yu (1999), etc...

 \Rightarrow Extension of the result of Lafitte-Godillon, *Green's function pointwise estimates* for the modified Lax-Friedrichs scheme, (2003)

Linearization of the numerical scheme about the SDSP

We define the bounded operator $\mathcal{L}: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ obtained by linearizing \mathcal{N} about $\overline{u}:$

$$\forall h \in \ell^2(\mathbb{Z}), \forall j \in \mathbb{Z}, \quad (\mathcal{L}h)_j := \sum_{k=-p}^{q} a_{j,k} h_{j+k},$$

with $a_{j,k} \to a_k^{\pm}$ as $j \to \pm \infty$. We are interested in solutions of the linearized numerical scheme

$$\forall n \in \mathbb{N}, \quad h^{n+1} = \mathcal{L}h^n, \qquad h^0 \in \ell^2(\mathbb{Z}).$$

We define the Green's function

$$\forall n \in \mathbb{N}, \forall j_0 \in \mathbb{Z}, \quad \mathcal{G}(n, j_0, \cdot) = (\mathcal{G}(n, j_0, j))_{j \in \mathbb{Z}} := \mathcal{L}^n \delta_{j_0} \in \ell^2(\mathbb{Z}).$$

Spectral assumptions on $\mathcal L$

 $\bullet~1$ is a simple eigenvalue of the operator $\mathcal L.$

$$"\mathcal{N}(\overline{u}^{\delta}) = \overline{u}^{\delta} \text{ and thus } \mathcal{L} \frac{\partial \overline{u}^{\delta}}{\partial \delta} = \frac{\partial \overline{u}^{\delta}}{\partial \delta}."$$

- The operator \mathcal{L} has no other eigenvalue of modulus equal or larger than 1. (Spectral stability)
- We assume that

a

$$orall \kappa \in \mathbb{S}^1 ackslash \left\{1
ight\}, \quad \left|\sum_{k=-p}^q \kappa^k a_k^\pm
ight| < 1$$

and that there exist an integer $\mu\in\mathbb{N}\backslash\left\{0\right\}$ and a complex number β_{\pm} with positive real part such that

$$\sum_{k=-p}^{\gamma} a_k^{\pm} e^{i\xi k} \underset{\xi \to 0}{=} \exp(-i\alpha_{\pm}\xi - \beta_{\pm}\xi^{2\mu} + O(|\xi|^{2\mu+1})).$$

with $\alpha_{\pm} := f'(u^{\pm})\nu$.

 \mathbb{S}^1

 $\sigma(\mathcal{L})$

Little detour

For $\beta \in \mathbb{C}$ with positive real part, we define the functions $H_{2\mu}^{\beta}, E_{2\mu}^{\beta} : \mathbb{R} \to \mathbb{C}$ via

$$\begin{aligned} \forall x \in \mathbb{R}, \quad H_{2\mu}^{\beta}(x) &:= \frac{1}{2\pi} \int_{\mathbb{R}} e^{ixu} e^{-\beta u^{2\mu}} du, \\ \forall x \in \mathbb{R}, \quad E_{2\mu}^{\beta}(x) &:= \int_{x}^{+\infty} H_{2\mu}^{\beta}(y) dy. \end{aligned}$$

We have

Theorem

Under some more precise assumptions, there exists a positive constant c and a sequence $V \in \ker(Id - \mathcal{L})$ such that for all $n \in \mathbb{N} \setminus \{0\}$, $j_0 \in \mathbb{N}$ and $j \in \mathbb{Z}$

$$\begin{split} \mathcal{G}(n, j_{0}, j) \\ = & E_{2\mu}^{\beta_{+}} \left(\frac{j_{0} + n\alpha_{+}}{n^{\frac{1}{2\mu}}} \right) V(j) \quad (\text{Excited eigenvector}) \\ & + \mathbb{1}_{j \in \mathbb{N}} O\left(\frac{1}{n^{\frac{1}{2\mu}}} \exp\left(-c \left(\frac{|n\alpha_{+} - (j - j_{0})|}{n^{\frac{1}{2\mu}}} \right)^{\frac{2\mu}{2\mu - 1}} \right) \right) \quad (\text{Gaussian wave}) \\ & + \mathbb{1}_{j \in -\mathbb{N}} O\left(\frac{1}{n^{\frac{1}{2\mu}}} \exp\left(-c \left(\frac{|n\alpha_{+} + j_{0}|}{n^{\frac{1}{2\mu}}} \right)^{\frac{2\mu}{2\mu - 1}} \right) e^{-c|j|} \right) \quad (\text{Exponential residual}) \\ & + O(e^{-cn - c|j - j_{0}|}) \end{split}$$

There is a similar result for $j_0 \in -\mathbb{N}$.

We choose $j_0 = 50$.

Case of systems Reflected waves Transmitted waves 1 j₀

 \bullet Using the inverse Laplace tranform with Γ a path that surrounds the spectrum $\sigma(\mathcal{L}),$ we have

$$\forall n \in \mathbb{N} \setminus \{0\}, \forall j_0, j \in \mathbb{Z}, \quad \mathcal{G}(n, j_0, j) = \frac{1}{2i\pi} \int_{\Gamma} z^n \left((zld - \mathcal{L})^{-1} \delta_{j_0} \right)_j dz.$$
(2)

• We rewrite the eigenvalue problem

$$(zld - \mathcal{L})u = 0$$

as a discrete dynamical system

$$\forall j \in \mathbb{Z}, \quad W_{j+1} = M_j(z)W_j.$$
 (3)

We are interested in solutions of (3) that tend towards 0 as j tends to $+\infty$ or $-\infty$ (Jost solutions, geometric dichotomy) and use them to express $(zld - \mathcal{L})^{-1}\delta_{j_0}$.

• Using this idea and a good choice of path Γ , we prove sharp estimates on the temporal Green's function.

We have thus a precise description of the Green's function for the linearized scheme about spectrally stable stationnary discrete shock profiles.

- Existence of spectrally stable SDSPs?
- Can we now prove nonlinear orbital stability ? (at least in the scalar case?)
- What can we say for dispersive schemes? (Lax-Wendroff for instance)
- Study of the stability for multi-dimensional conservation laws (Carbuncle phenomenon)
- ...

Bibliography I

P. Godillon.

Green's function pointwise estimates for the modified Lax-Friedrichs scheme. *M2AN, Math. Model. Numer. Anal.*, 37(1):1–39, 2003.

G. Jennings. Discrete shocks. Comm. Pure Appl. Math., 27:25–37, 1974.

J.-G. Liu and Z. P. Xin. L¹-stability of stationary discrete shocks. Math. Comp., 60(201):233-244, 1993.

T.-P. Liu and S.-H. Yu.

Continuum shock profiles for discrete conservation laws. I. Construction. *Comm. Pure Appl. Math.*, 52(1):85–127, 1999.

🔋 T.-P. Liu and S.-H. Yu.

Continuum shock profiles for discrete conservation laws. II. Stability. *Comm. Pure Appl. Math.*, 52(9):1047–1073, 1999.

A. Majda and J. Ralston.

Discrete shock profiles for systems of conservation laws. *Comm. Pure Appl. Math.*, 32(4):445–482, 1979.

D. Serre.

 L^1 -stability of nonlinear waves in scalar conservation laws.

In Handbook of differential equations: Evolutionary equations. Vol. I, pages 473–553. Amsterdam: Elsevier/North-Holland, 2004.

Y. S. Smyrlis.

Existence and stability of stationary profiles of the LW scheme. *Commun. Pure Appl. Math.*, 43(4):509–545, 1990.

L. Ying.

Asymptotic stability of discrete shock waves for the Lax-Friedrichs scheme to hyperbolic systems of conservation laws.

Japan J. Indust. Appl. Math., 14(3):437–468, 1997.