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Large time behavior of finite difference schemes for the transport equation

We consider the transport equation (c > 0)

∂tu + c∂xu = 0, t ≥ 0, x ∈ R,
ut=0 = u0.

We set ∆t,∆x > 0, λ := ∆t
∆x .

Example of explicit one-step finite difference approximation:
We consider n ∈ N, j ∈ Z.
• Upwind scheme:

un+1
j = cλunj−1 + (1− cλ)unj .

• Modified Lax Friedrichs scheme: (0 < D < 1
2λ )

un+1
j =

(
λD +

cλ

2

)
unj−1 + (1− 2Dλ)unj +

(
λD − cλ

2

)
unj+1.

• O3 scheme

un+1
j = −cλ(1− (cλ)2)

6
unj−2 +

cλ(1 + cλ)(2− cλ)

2
unj−1

+
(1− (cλ)2)(2− cλ)

2
unj −

cλ(1− cλ)(2− cλ)

6
unj+1.
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Large time behavior of finite difference schemes for the transport equation

Modified Lax Friedrichs scheme: cλ = 1
2 and u0 = δ := (δj,0)j∈Z

Decay rate :
1√
n 3 / 24
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Lax Wendroff scheme: cλ = 1
2 and u0 = δ := (δj,0)j∈Z
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1 Introduction

2 Generalization of the Local Limit Theorem

3 Idea of the proof : Spatial dynamics
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Introduction

We consider the Modified Lax Friedrichs scheme

un+1
j =

(
λD +

cλ

2

)
unj−1 + (1− 2Dλ) unj +

(
λD − cλ

2

)
unj+1

Thus,
∀n ∈ N, un+1 = a ∗ un,

where a = (· · · , 0, a−1, a0, a1, 0, · · · ) ∈ CZ.
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Introduction

An explicit one-step finite difference approximation can be written as

∀n ∈ N, un = an ∗ u0,

u0 ∈ CZ,

where a ∈ CZ is finitely supported and an = a ∗ · · · ∗ a.

Goal: We want to study an for large values of n to better understand the
large time behavior of the finite difference scheme.
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Introduction

A detour through Probability - The Local Limit Theorem

We consider a random walk

Sn := X1 + · · ·+ Xn

where Xn are i.i.d. random variables (same law as some random variable
X with values in Z) and we use the notation

∀j ∈ Z, aj := P(X = j).

We then have
∀n ∈ N,∀j ∈ Z, anj = P(Sn = j).

Central Limit Theorem :

√
n

(
Sn
n
− E(X )

)
L→ N (0,V (X )).
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A detour through Probability - The Local Limit Theorem

We consider a random walk

Sn := X1 + · · ·+ Xn

where Xn are i.i.d. random variables (same law as some random variable
X with values in Z) and we use the notation

∀j ∈ Z, aj := P(X = j).

We then have
∀n ∈ N,∀j ∈ Z, anj = P(Sn = j).

Local Limit Theorem : Under suitable conditions on the sequence a

anj −
1√

2πV (X )n
exp

(
−|j − nE(X )|2

2nV (X )

)
=

n→+∞
o

(
1√
n

)
uniformly on Z.

9 / 24



Large time behavior of finite difference schemes for the transport equation
Introduction

A detour through Probability - The Local Limit Theorem

anj −
1√

2πV (X )n
exp

(
−|j − nE(X )|2

2nV (X )

)
−1
n
q

(
j − nE(X )√

V (X )n

)
=

n→+∞
o

(
1
n

)
,

where
∀x ∈ R, q(x) := C (X )(x3 − 3x)e−

x2
2

with C (X ) a constant depending on the random variable X .

Problem: For a finite difference scheme, the sequence a does not always
have non negative or even real coefficients.
Thus, we are looking for a generalization of the Local Limit Theorem.
We also want to find precise bounds for anj .
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Introduction

Fourier Series
For a ∈ `1(Z), we introduce Fa the Fourier series associated to a:

∀κ ∈ S1, Fa(κ) :=
∑
k∈Z

akκk .

If a is finitely supported then Fa can be holomorphically extended on
C\ {0}.

The consistency of the scheme implies

Fa(1) = 1 and F ′a(1) = cλ.

The `2-stability is equivalent to having that

max
S1
|Fa| ≤ 1. (Von Neumann condition)

Stronger hypothesis (Dissipation)

We will suppose that

∀κ ∈ S1\ {1} , |Fa(κ)| < 1.
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Introduction

S1

Fa(S1)

•1•−1

Lax-Friedrichs scheme, cλ = 1
2

Fa(e it) = cos(t) + icλ sin(t).
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Introduction

S1

Fa(S1)

•1

Lax-Wendroff scheme, cλ = 1
2

Fa(e it) = 1− 2(cλ)2 sin2
( t
2

)
+ icλ sin(t).
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Large time behavior of finite difference schemes for the transport equation
Generalization of the Local Limit Theorem

Thomée’s result

The goal of Thomée was to clasify the `∞ stable schemes. It is equivalent
to searching for the sequences a such that (an)n is bounded in `1(Z).

The logarithm of Fa at 1 as an asymptotic expansion of the form

Fa(e it) =
t→0

exp
(
icλt +iq(t) −βt2µ + o(t2µ)

)
where β ∈ C with <(β) > 0, µ ∈ N and q is a polynomial with real
coefficients

q(t) = b2t
2 + · · ·+ b2µ−1t

2µ−1.

icλ: Consistency of the scheme
iq(t)−βt2µ: Dissipation Hypothesis
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Large time behavior of finite difference schemes for the transport equation
Generalization of the Local Limit Theorem

We have

Fa(e it) =
t→0

exp
(
icλt +iq(t) −βt2µ + o(t2µ)

)
.

Thomée ’65 (generalizeable for multiple tangency points)

The family (an)n∈N is bounded in `1(Z) (and the scheme is `∞ stable) if
and only if q = 0. In this case, there exists algebraic bounds on anj .

We can observe that the condition q = 0 implies that the modified
equation associated to our scheme is

∂tu + c∂xu = (−1)µ+1 β

∆t
∆x2µ∂2µ

x u.
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Generalization of the Local Limit Theorem

We have

Fa(e it) =
t→0

exp
(
icλt +iq(t) −βt2µ + o(t2µ)

)
.

Scheme iq(t) 2µ `∞ stability

Upwind scheme 0 2 Yes

Modified Lax Friedrichs scheme 0 2 Yes

O3 scheme 0 4 Yes

Lax Wendroff scheme −i cλ(1−(cλ)2)
6 t3 4 No
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Generalization of the Local Limit Theorem

Recent developments We assume that the logarithm of Fa has an
asymptotic expansion of the form

Fa(e iξ) =
ξ→0

exp
(
icλξ − βξ2µ + o(ξ2µ)

)
where β ∈ C with <(β) > 0 and µ ∈ N.

Generalized Gaussian Bounds
Under the previous hypotheses (consistency, dissipation, ,`2 and `∞

stability), there exist two constants C , c > 0 such that

∀n ∈ N\ {0} ,∀j ∈ Z, |anj | ≤
C

n
1
2µ

exp

(
−c
(
|j − ncλ|

n
1
2µ

) 2µ
2µ−1

)
.

Due to Diaconis, Saloff-Coste ’14, generalization in Coulombel, Faye ’21
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Generalization of the Local Limit Theorem

We define
∀x ∈ R, Hβ

2µ(x) :=
1
2π

∫
R
e−ixue−βu

2µ
du.

It is the fundamental solution of

∂tu + (−1)µβ∂2µ
x u = 0.

For µ = 1, we have

Hβ
2µ(x) =

1√
4πβ

exp

(
−|x |

2

4β

)
.

It is the heat kernel / normal distribution.
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Generalization of the Local Limit Theorem

We define
∀x ∈ R, Hβ

2µ(x) :=
1
2π

∫
R
e−ixue−βu

2µ
du.

Generalized Local Limit Theorem
Under the previous hypotheses, we have

anj −
1

n
1
2µ

Hβ
2µ

(
j − ncλ

n
1
2µ

)
=

n→+∞
o

(
1

n
1
2µ

)
where the error term is uniform on Z

Due to Randles, Saloff-Coste ’15 (also ’17 for a multidimensional general-
ization)

17 / 24



Large time behavior of finite difference schemes for the transport equation
Generalization of the Local Limit Theorem

Main Theorem
Under the previous hypotheses, there exist two constants C , c > 0 such
that for all n ∈ N\ {0} and j ∈ Z∣∣∣∣anj − 1

n
1
2µ

Hβ
2µ

(
j − ncλ

n
1
2µ

)∣∣∣∣ ≤ C

n
1
µ

exp

(
−c
(
|j − ncλ|

n
1
2µ

) 2µ
2µ−1

)
.

Corollary

Under the previous hypotheses, there exists a constant C > 0 such that
for all u0 ∈ `2(Z)

∀n ∈ N\ {0} , ‖an ∗ u0 − Hn ∗ u0‖`2(Z) ≤
C

n
1
2µ
‖u0‖`2(Z) ,

where

Hn =

(
1

n
1
2µ

Hβ
2µ

(
j − ncλ

n
1
2µ

))
j∈Z

.
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Generalization of the Local Limit Theorem

Upwind scheme: cλ = 1
2 and u0 = δ := (δj,0)j∈Z
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Large time behavior of finite difference schemes for the transport equation
Idea of the proof : Spatial dynamics

Idea of the proof

Fourier Analysis : We have for n ∈ N, j ∈ Z,

anj =
1
2π

∫ 2π

0
e ijtFa(e it)ndt.

We then use integrations by parts and contour deformations to
obtain estimates on anj .

Other approach : The goal is to use another representation of the
coefficients anj using functional calculus.
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Idea of the proof : Spatial dynamics

We introduce the Laurent operator

La : u ∈ `2(Z) 7→ a ∗ u ∈ `2(Z).

Young’s convolution inequality implies that this operator is well-defined
and bounded. Fourier analysis implies that

σ(La) = Fa(S1).

If you consider Γ a path that surrounds Fa(S1), then for n ∈ N∗, j ∈ Z,

anj =
1
2iπ

∫
Γ

zn
(
(zId − La)−1δ

)
j
dz . (Inverse Laplace transform)

We try our best to choose Γ that is inside the unit disk so that the factor
zn decreases exponentially. However, this is not possible near 1.
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Idea of the proof : Spatial dynamics

We have

∀n ∈ N,∀j ∈ Z, anj =
1
2iπ

∫
Γ

zn
(
(zId − La)−1δ

)
j
dz .

O S1

Fa(S1)

•1
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We have

∀n ∈ N,∀j ∈ Z, anj =
1
2iπ

∫
Γ

zn
(
(zId − La)−1δ

)
j
dz .

O S1

Γ •

This will not be a good enough choice of Γ.
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Idea of the proof : Spatial dynamics

We have

∀n ∈ N,∀j ∈ Z, anj =
1
2iπ

∫
Γ

zn
(
(zId − La)−1δ

)
j
dz .

O S1

•

We need a holomorphic extension of
(
(zId − La)−1δ

)
j
in a neighborhood

of 1 and a precise choice of Γ depending on n and j .
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Idea of the proof : Spatial dynamics

Perspective

There are still some results that have not yet been generalized for
implicit schemes.
Could we expect a better asymptotic expansion of anj ?
Apply the same idea of proof to study the stability near discrete
shock profiles for systems of conservation law. (Linearizing near
particular non constant solutions, work in progress)
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