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1 – CONSERVATION LAWS AND SHOCKS

We consider a one-dimensional scalar conservation law

∂tu + ∂x f (u) = 0, t ∈ R+, x ∈ R,
u : R+ ×R→ U , (1)

where the space of states U is an open set of R, the flux f : U → R is a smooth
function.

Those PDEs tend to have discontinuous solutions, even for smooth initial data.

Shocks: For (u−, u+; s) ∈ U 2 ×R, we define the (u−, u+; s)-shock

∀t ∈ R+, ∀x ∈ R, u(t, x) =
{

u− if x < st,
u+ if x ≥ st.

It is a solution of (1) if and only if the Rankine-Hugoniot condition is satisfied

f (u+)− f (u−) = s(u+ − u−).

We also impose an entropy conditon (Oleinik’s condition E)

∀u ∈]u−, u+[,
f (u)− f (u+)

u− u+
<

f (u−)− f (u+)

u− − u+
.

Example : We can consider the Burgers equation ( f (u) = u2

2 ). The shock (1,−1; 0)
satisfies the Rankine-Hugoniot condition.

2 – FINITE DIFFERENCE SCHEME AND DISCRETE SHOCK PROFILES

We fix a mesh grid ∆x > 0 and a time step ∆t > 0. We introduce a conservative one-
step explicit finite difference schemeN : UZ → UZ such that for u = (uj)j∈Z ∈ UZ

and j ∈ Z

(N u)j := uj −
∆t
∆x

(
F
(

∆t
∆x

; uj−p+1, . . . , uj+q

)
− F

(
∆t
∆x

; uj−p, . . . , uj+q−1

))
, (2)

where p, q ∈ N∗ and the numerical flux F : (λ; u−p, . . . , uq−1) ∈ R∗+ × U p+q →
Rd is a smooth function. We will consider that it satisfies a standard consistency
condition (for smooth/constant solutions) and `2-stability for some constant states.
We are interested in solutions of

∀n ∈N, un+1 = N un, u0 ∈ UZ. (3)

Is there an enhanced consistency con-
dition on the numerical scheme for
discontinuous/shock solutions?

⇒
Discrete shock profiles (DSP)
Traveling waves solutions of (3)
that link two states u±.

Stationary discrete shock profile: We consider u−, u+ ∈ U such that the shock
(u−, u+; 0) satisfies the Rankine Hugoniot condition. We suppose that there exist a
sequence us = (us

j )j∈Z ∈ UZ that satisfies

N (us) = us and us
j →j→±∞

u±.

There are still a lot of questions about the existence and stability of DSPs. (see [2]
for answers in the case of monotone schemes)
Example : We can consider the modified Lax-Friedrichs scheme for Burgers equa-
tion.
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3 – LINEAR STABILITY, GREEN’S FUNCTION

We define a bounded operator L : `2(Z)→ `2(Z) by linearizing N about us :

∀h ∈ `2(Z), ∀j ∈ Z, (Lh)j :=
q

∑
k=−p

aj,khj+k, (4)

with aj,k → a±k as j→ ±∞. We are interested in solutions of the linearized numeri-
cal scheme

∀n ∈N, hn+1 = Lhn, h0 ∈ `2(Z). (5)

Green’s function: We define the (temporal) Green’s function

∀l ∈ Z, G(0, l, ·) := δl
∀n ∈N, G(n + 1, l, ·) := LG(n, l, ·). (6)

Goal: Find sharp estimates on Green’s function in order to prove orbital stability of
the discrete shock profile.
A few hypotheses:

• We suppose that f ′(u+) < 0 < f ′(u−). (Lax shock/ Entropy condition)

• We suppose that σ(L) ⊂ {z ∈ C, |z| < 1} ∪ {1}. (Spectral stability)

• The scheme introduces numerical diffusion rather than numerical dispersion
at the states u±.

4 – EXPECTED RESULT (WORK IN PROGRESS)
Example: Burgers equation, modified Lax-Friedrichs scheme
We represent the temporal Green’s function G(n, l, j) for l = 50.

Observations :
•We see a gaussian wave that travels
at a speed f ′(u+) ∆t

∆x , "entering"
the shock that is located at 0. The
spreading is caused by the numerical
diffusion.

• When it reaches the shock, a
residue forms that is independent
from n. This happens because 1 is an
eigenvalue of L (Lax shock).
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The case of systems of conservation laws would be more complex, with multiple
waves arising from the intial point and "refraction" and "reflection" effects when/if
they reach the shock. (see [1])

5 – SPATIAL DYNAMICS (BASED ON [3] AND [1])

Spatial Green’s function: For z /∈ σ(L) and l ∈ Z, we define

G(z, l, ·) := (zId−L)−1δl ∈ `2(Z). (7)

It is the Laplace transform of the temporal Green’s function. Using the inverse
Laplace tranform with Γ a path that surrounds the spectrum σ(L), we have

∀n ∈N∗, ∀l, j ∈ Z, G(n, l, j) =
1

2iπ

∫
Γ

znG(z, l, j)dz. (8)

• For any z0 outside of σ(L), there is a neigh-
borhood U and two positive constants C, c
such that for all z ∈ U

∀j, l ∈ Z, |G(z, l, j)| ≤ C exp(−c|j− l|).

• We can meromorphically extend the spatial
Green’s function G(·, l, j) near 1 and decom-
pose using particular solutions of the dy-
namical system (7).

•

•

•

S1

σ(L)

•
1

B(1, δ)

Using these results and a good choice of path Γ, we hope to prove sharp estimates
on the temporal Green’s function. (Work in progress)

Idea of the proof: We rewrite the eigenvalue problem

(zId−L)u = 0

as a discrete dynamical system

∀j ∈ Z, Wj+1 = Mj(z)Wj. (9)

We are interested in solutions of (9) that tend towards 0 as j tends to +∞ or −∞
(Jost solutions, geometric dichotomy) and use them to express the spatial Green’s
function.
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