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2 — FINITE DIFFERENCE SCHEME AND DISCRETE SHOCK PROFILES

1 — CONSERVATION LAWS AND SHOCKS

We consider a one-dimensional scalar conservation law

diu+0xf(u) =0, teRy, x€eR, 1)
MZIR_|_ XIR%M,

where the space of states U/ is an open set of R, the flux f : Y — R is a smooth
function.

Those PDEs tend to have discontinuous solutions, even for smooth initial data.
Shocks: For (1=, u™;s) € U? x R, we define the (1, u™;s)-shock
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It is a solution of (1) if and only if the Rankine-Hugoniot condition is satisfied

fu®) = fu™) =s(u" —u")

We also impose an entropy conditon (Oleinik’s condition E)

flu) —fu?) _ fu) = fu")
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Example : We can consider the Burgers equation (f(u) = %-). The shock (1, —1;0)
satisfies the Rankine-Hugoniot condition.

3 — LINEAR STABILITY, GREEN’S FUNCTION

We define a bounded operator L : /*(Z) — ¢*(Z) by linearizing N about ° :

Vhe L2(Z),Vj€Z, (Lh)j:= Y a;jxhiu, (4)

with a;, — a;—L as j — £oco. We are interested in solutions of the linearized numeri-

cal scheme

Wt =cnt, KW e ?(2). (5)

Green’s function: We define the (temporal) Green’s function

Q(O,l,-) .= 51 (6)
VvneN, Gn+1,1,-):=LG(n,l-).

Vn € IN,

VI e Z,

Goal: Find sharp estimates on Green’s function in order to prove orbital stability ot
the discrete shock profile.
A few hypotheses:

e We suppose that f'(u") <0 < f'(u™). (Lax shock/ Entropy condition)
e We suppose thato (L) C {z € C, |z| < 1} U{1}. (Spectral stability)

® The scheme introduces numerical diffusion rather than numerical dispersion

at the states u=.

4 — EXPECTED RESULT (WORK IN PROGRESS)

Example: Burgers equation, modified Lax-Friedrichs scheme
We represent the temporal Green’s function G(n, 1, j) for I = 50.
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residue forms that is independent
from n. This happens because 1 is an _>g
eigenvalue of L (Lax shock). 0 20
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The case of systems of conservation laws would be more complex, with multiple

waves arising from the intial point and "refraction” and "reflection” etfects when /it

they reach the shock. (see [1])

We fix a mesh grid Ax > 0 and a time step At > 0. We introduce a conservative one-
step explicit finite difference scheme N : Y4 — U# such that for u = (uj)icz €U =
andj € Z

At At At
(NU)] = 1/[]' — A—x <F (A—x;ujp+1,. . .,T/l]'_|_q> — F <A—x,u]p, . .,T/l]‘_l_ql>) p (2)

where p,g € IN* and the numerical flux F : (A;u_p,...,u,—1) € RY x UPTT —

IR? is a smooth function. We will consider that it satisfies a standard consistency
condition (for smooth/constant solutions) and #*-stability for some constant states.
We are interested in solutions of

Vne N, u"t! = Nu", u’ e U2, (3)

Discrete shock profiles (DSP)

Traveling waves solutions of (3)

that link two states u=.

Is there an enhanced consistency con-
dition on the numerical scheme for
discontinuous/shock solutions?

—

Stationary discrete shock profile: We consider u—,u™ € U such that the shock
(u—,u™;0) satisfies the Rankine Hugoniot condition. We suppose that there exist a

sequence u° = (ﬁ;) ez € U?% that satisfies

N@)=uw and u; — u=.
j—Eoo
There are still a lot of questions about the existence and stability of DSPs. (see [2]
for answers in the case of monotone schemes)
Example : We can consider the modified Lax-Friedrichs scheme for Burgers equa-

tion.
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5 — SPATIAL DYNAMICS (BASED ON [3] AND [1])

Spatial Green’s function: For z ¢ o (L) and I € Z, we define
G(z,1,-) := (zId — L)~ 16 € ¢*(Z). (7)

It is the Laplace transform of the temporal Green’s function. Using the inverse
Laplace tranform with I' a path that surrounds the spectrum o (L), we have

1
F e N T \do
Vvne N*,Vl,je Z, G(nl,j) 2i7t/rz G(z,1,j)dz (8)
e For any z( outside of o(L), there is a neigh-
borhood U and two positive constants C, ¢
such that forall z € U

Vi,l e Z, |G(z,1,j)| < Cexp(—cl|j—1|).

* We can meromorphically extend the spatial
Green’s function G(-, [, j) near 1 and decom-
pose using particular solutions of the dy-
namical system (7).

Using these results and a good choice of path I', we hope to prove sharp estimates
on the temporal Green'’s function. (Work in progress)

Idea of the proof: We rewrite the eigenvalue problem
(zId — L)u=0
as a discrete dynamical system
VieZ, Wi = M(z)W;. 9)

We are interested in solutions of (9) that tend towards 0 as j tends to +oc0 or —oo
(Jost solutions, geometric dichotomy) and use them to express the spatial Green’s
function.
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