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Abstract Using the ideas coming from the singularity theory, we study the eigenvectors of the
Cartan matrices of finite root systems, and of q-deformations of these matrices.

1 Introduction

Let A(R) be the Cartan matrix of a finite root system R. The coordinates of its eigenvectors
have an important meaning in the physics of integrable systems; we will say more on this below.

The aim of this note is a study of these numbers, and of their q-deformations, using some
results coming from the singularity theory.

We discuss three ideas:
(a) Cartan/Coxeter correspondence;
(b) Sebastiani - Thom product;
(c) Givental’s q-deformations.
Let us explain what we are talking about.

Let us suppose that R is simply laced, i.e. of type A,D, or E. These root systems are in
one-to-one correspondence with (classes of) simple singularities

f : CN → C, cf. [1]. Under this correspondence, the root lattice Q(R) is identified with the
lattice of vanishing cycles, and the Cartan matrix A(R) is the intersection matrix with respect
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to a distinguished base. The action of the Weyl group on Q(R) is realized by Gauss - Manin
monodromies - this is the Picard - Lefschetz theory (for some details see §2 below).

Remarkably, this geometric picture provides a finer structure: namely, the symmetric matrix
A = A(R) comes equipped with a decomposition

A = L+ Lt (1)

where L is a nondegenerate triangular ”Seifert form”, or ”variation matrix”. The matrix

C = −L−1Lt (2)

represents a Coxeter element of R; geometrically it is the operator of ”classical monodromy”.

We call the relation (1) - (2) between the Cartan matrix and the Coxeter element the Car-
tan/Coxeter correspondence. It works more generally for non-symmetric A (in this case (1) should
be replaced by

A = L+ U (3)

where L is lower triangular and U is upper triangular), and is due to Coxeter, cf. [5], no. 1,
p. 767, see §3 below.

In a particular case (corresponding to a bipartition of the Dynkin graph) this relation is
equivalent to an observation by R.Steinberg, cf. [18], cf. §3.3 below.

This corresppondence allows one to relate the eigenvectors of A and C, cf. Theorem 1.

A decomposition (1) will be called a polarization of the Cartan matrix A. In 4.1 below we
introduce an operation of Sebastiani - Thom, or joint product A ∗ B of Cartan matrices (or of
polarized lattices) A and B. The root lattice of A ∗ B is the tensor product of the root lattice
of A and the root lattice of B. With respect to this operation the Coxeter eigenvectors factorize
very simply.

For example, the lattices E6 and E8 decompose into three ”quarks”:

E6 = A3 ∗A2 ∗A1 (4)

E8 = A4 ∗A2 ∗A1 (5)

These decompositions are the main message from the singularity theory, and we discuss them
in detail in this note.

We use (4), (5), and the Cartan/Coxeter correspondence to get expressions for all Cartan
eigenvectors of E6 and E8; this is the first main result of this note, see 4.9, 4.11 below.

(An elegant expression for all the Cartan eigenvectors of all finite root systems was given by
P.Dorey, cf. [6] (a), Table 2 on p. 659.)

In the paper [9], A.Givental has proposed a q-twisted version of the Picard - Lefschetz theory,
which gave rise to a q-deformation of A,

A(q) = L+ qLt. (6)
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Again, as Givental remarked, the decomposition (3) allows us to drop the assumption of
symmetry in the definition above. In the last section, §5, we calculate the eigenvalues and eigen-
vectors of A(q) in terms of the eigenvalues and eigenvectors of A. This is the second main result
of this note.

It turns out that if λ is an eigenvalue of A then

λ(q) = 1 + (λ− 2)√q + q (7)

will be an eigenvalue of A(q). The coordinates of the corresponding eigenvector v(q) are
obtained from the coordinates of v = v(1) by multiplication by appropriate powers of q; this is
related to the fact that the Dynkin graph of A is a tree, cf. 5.2. For an example of E8, see (25).

In physics the coordinates of the Perron - Frobenius Cartan eigenvectors appear as the particle
masses (or, dually, as the soliton energies) in affine Toda field theories, cf. [6,7].

Historically, E8 made its first appearance in the pioneering papers by A. B. Zamolodchikov
[19] on the two-dimensional critical Ising model in a magnetic field.

The Appendix outlines some of the results of a neutron scattering experiment [20] where one
has observed the two lowest-mass E8 particles of the Zamolodchikov theory [19].

2 Recollections from the singularity theory

Here we recall some classical constructions and statements, cf. [1].

2.1 Lattice of vanishing cycles

Let f : (CN , 0) → (C, 0) be the germ of a holomorphic function with an isolated critical point
at 0, with f(0) = 0. We will be interested only in polynomial functions (from the list below, cf.
§2.4), so f ∈ C[x1, . . . , xN ]. The Milnor ring of f is defined by

Miln(f, 0) = C[[x1, . . . , xN ]]/(∂1f, . . . , ∂Nf)

where ∂i := ∂/∂xi; it is a finite-dimensional commutative C-algebra. (In fact, it is a Frobenius,
or, equivalently, a Gorenstein algebra.) The number

µ := dimC Miln(f, 0)

is called the multiplicity or Milnor number of (f, 0).
A Milnor fiber is

Vz = f−1(z) ∩ B̄ρ
where

B̄ρ = {(x1, . . . , xN )|
∑
|xi|2 ≤ ρ}

for 1� ρ� |z| > 0.
For z belonging to a small disc Dε = {z ∈ C| |z| < ε}, the space Vz is a complex manifold

with boundary, homotopically equivalent to a bouquet ∨SN−1 of µ spheres, [15].
The family of free abelian groups

Q(f ; z) := H̃N−1(Vz;Z) ∼= Zµ, z ∈
•
Dε := Dε \ {0}, (8)
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(H̃ means that we take the reduced homology for N = 1), carries a flat Gauss - Manin
conection.

Take t ∈ R>0 ∩
•
Dε; the lattice Q(f ; t) does not depend, up to a canonical isomorphism, on

the choice of t. Let us call this lattice Q(f). The linear operator

T (f) : Q(f) ∼−→ Q(f) (9)

induced by the path p(θ) = eiθt, 0 ≤ θ ≤ 2π, is called the classical monodromy of the germ
(f, 0).

In all the examples below T (f) has finite order h. The eigenvalues of T (f) have the form
e2πik/h, k ∈ Z. The set of suitably chosen k’s for each eigenvalue are called the spectrum of our
singularity.

2.2 Morse deformations

The C-vector space Miln(f, 0) may be identified with the tangent space to the base B of the
miniversal defomation of f . For

λ ∈ B0 = B \∆

where ∆ ⊂ B is an analytic subset of codimension 1, the corresponding function fλ : CN → C
has µ nondegenerate Morse critical points with distinct critical values, and the algebra Miln(fλ)
is semisimple, isomorphic to Cµ.

Let 0 ∈ B denote the point corresponding to f itself, so that f = f0, and pick t ∈ R>0 ∩
•
Dε

as in §2.1.
Afterwards pick λ ∈ B0 close to 0 in such a way that the critical values z1, . . . zµ of fλ have

absolute values � t.
As in §2.1, for each

z ∈ D̃ε := Dε \ {z1, . . . zµ}

the Milnor fiber Vz has the homotopy type of a bouquet ∨SN−1 of µ spheres, and we will be
interested in the middle homology

Q(fλ; z) = H̃N−1(Vz;Z) ∼= Zµ

The lattices Q(fλ; z) carry a natural bilinear product induced by the cup product in the
homology which is symmetric (resp. skew-symmetric) when N is odd (resp. even).

The collection of these lattices, when z ∈ D̃ε varies, carries a flat Gauss - Manin connection.
Consider an ”octopus”

Oct(t) ⊂ C

with the head at t: a collection of non-intersecting paths pi (”tentacles”) connecting t with zi
and not meeting the critical values zj otherwise. It gives rise to a base

{b1, . . . , bµ} ⊂ Q(fλ) := Q(fλ; t)

(called ”distinguished”) where bi is the cycle vanishing when being transferred from t to zi along
the tentacle pi, cf. [8], [1].

The Picard - Lefschetz formula describes the action of the fundamental group π1(D̃ε; t) on
Q(fλ) with respect to this basis. Namely, consider a loop γi which turns around zi along the
tentacle pi, then the corresponding transformation of Q(fλ) is the reflection (or transvection)
si := sbi

, cf. [14], Théorème fondamental, Ch. II, p. 23.
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The loops γi generate the fundamental group π1(D̃ε). Let

ρ : π1(D̃ε; t)→ GL(Q(fλ))

denote the monodromy representation. The image of ρ, denoted by G(fλ) and called the mon-
odromy group of fλ, lies inside the subgroup
O(Q(fλ)) ⊂ GL(Q(fλ)) of linear transformations respecting the above mentioned bilinear form
on Q(fλ).

The subgroup G(fλ) is generated by si, 1 ≤ i ≤ µ.
As in §2.1, we have the monodromy operator

T (fλ) ∈ G(fλ),

the image by ρ of the path p ⊂ D̃ε starting at t and going around all points z1, . . . , zµ.
This operator T (fλ) is now a product of µ simple reflections

T (fλ) = s1s2 . . . sµ,

- this is because the only critical value 0 of f became µ critical values z1, . . . , zµ of fλ.
One can identify the relative (reduced) homology H̃N−1(Vt, ∂Vt;Z) with the dual group

H̃N−1(Vt;Z)∗, and one defines a map

var : H̃N−1(Vt, ∂Vt;Z)→ H̃N−1(Vt;Z),

called a variation operator, which translates to a map

L : Q(fλ)∗ ∼−→ Q(fλ)

(”Seifert form”) such that the matrix A(fλ) of the bilinear form in the distinguished basis is

A(fλ) = L+ (−1)N−1Lt,

and
T (fλ) = (−1)N−1LL−t.

A choice of a path q in B connecting 0 with λ, enables one to identify Q(f) with Q(fλ), and
T (f) will be identified with T (fλ).

The image G(f) of the monodromy group G(fλ) in GL(Q(f)) ∼= GL(Q(fλ)) is called the
monodromy group of f ; it does not depend on a choice of a path q.

2.3 Sebastiani - Thom factorization

If g ∈ C[y1, . . . , yM ] is another function, the sum, or join of two singularities f ⊕g : CN+M → C
is defined by

(f ⊕ g)(x, y) = f(x) + g(y)

Obviously we can identify
Miln(f ⊕ g) ∼= Miln(f)⊗Miln(g)

Note that the function g(y) = y2 is a unit for this operation.
It follows that the singularities f(x1, . . . , xN ) and

f(x1, . . . , xN ) + x2
M+1 + . . .+ x2

N+M
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are ”almost the same”. In order to have good signs (and for other purposes) it is convenient to
add some squares to a given f to get N ≡ 3 mod (4).

The fundamental Sebastiani - Thom theorem, [16], says that there exists a natural isomor-
phism of lattices

Q(f ⊕ g) ∼= Q(f)⊗Z Q(g),

and under this identification the full monodromy decomposes as

Tf⊕g = Tf ⊗ Tg

Thus, if

Spec(Tf ) = {eµp·2πi/h1}, Spec(Tf ) = {eνq·2πi/h2}

then

Spec(Tf⊕g) = {e(µph2+νqh1)·2πi/h1h2}

2.4 Simple singularities

Cf. [1] (a), 15.1. They are:

xn+1, n ≥ 1, (An)

x2y + yn−1, n ≥ 4 (Dn)

x4 + y3 (E6)

xy3 + x3 (E7)

x5 + y3 (E8)

Their names come from the following facts:
— their lattices of vanishing cycles may be identified with the corresponding root lattices;
— the monodromy group is identified with the corresponding Weyl group;
— the classical monodromy Tf is a Coxeter element, therefore its order h is equal to the

Coxeter number, and

Spec(Tf ) = {e2πik1/h, . . . , e2πikr/h}

where the integers

1 = k1 < k2 < . . . < kr = h− 1,

are the exponents of our root system.
We will discuss the case of E8 in some details below.
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3 Cartan - Coxeter correspondence

3.1 Lattices, polarization, Coxeter elements

Let us call a lattice a pair (Q,A) where Q is a free abelian group, and

A : Q×Q→ Z

a symmetric bilinear map (”Cartan matrix”). We shall identify A with a map

A : Q→ Q∨ := Hom(Q,Z).

A polarized lattice is a triple (Q,A,L) where (Q,A) is a lattice, and

L : Q
∼−→ Q∨

(”variation”, or ”Seifert matrix”) is an isomorphism such that

A = A(L) := L+ L∨ (10)

where
L∨ : Q = Q∨∨

∼−→ Q∨

is the conjugate to L.
The Coxeter automorphism of a polarized lattice is defined by

C = C(L) = −L−1L∨ ∈ GL(Q). (11)

We shall say that the operators A and C are in a Cartan - Coxeter correspondence.

Example Let (Q,A) be a lattice, and {e1, . . . , en} an ordered Z-base of Q. With respect to
this base A is expressed as a symmetric matrix A = (aij) = A(ei, ej) ∈ gln(Z). Let us suppose
that all aii are even. We define the matrix of L to be the unique upper triangular matrix (`ij)
such that A = L + Lt (in particular `ii = aii/2; in our examples we will have aii = 2.) We will
call L the standard polarization associated to an ordered base. �

Polarized lattices form a groupoid:
an isomorphosm of polarized lattices f : (Q1, A1, L1) ∼−→ (Q2, A2, L2) is by definition an

isomorphism of abelian groups f : Q1
∼−→ Q2 such that

L1(x, y) = L2(f(x), f(y))

(and whence A1(x, y) = A2(f(x), f(y))).

3.2 Orthogonality

Lemma 1 (i) (orthogonality)
A(x, y) = A(Cx,Cy).

(ii) (gauge transformations) For any P ∈ GL(Q)

A(P∨LP ) = P∨A(L)P, C(P∨LP ) = P−1C(L)P.

�
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3.3 Black/white decomposition and a Steinberg’s theorem

Cf. [18], [4]. Let α1, . . . , αr be a base of simple roots of a finite reduced irreducible root system
R (not necessarily simply laced).

Let
A = (aij) = (〈αi, α∨j 〉)

be the Cartan matrix.
Choose a black/white coloring of the set of vertices of the corresponding Dynkin graph Γ (R)

in such a way that any two neighbouring vertices have different colours; this is possible since
Γ (R) is a tree (cf. 5.2).

Let us choose an ordering of simple roots in such a way that the first p roots are black, and
the last r − p roots are white. In this base A has a block form

A =
(

2Ip X
Y 2Ir−p

)
Consider a Coxeter element

C = s1s2 . . . sr = CBCW , (12)

where

CB =
p∏
i=1

si, CW =
r∏

i=p+1
si.

Here si denotes the simple reflection corresponding to the root αi.
The matrices of CB , CW with respect to the base {αi} are

CB =
(
−I −X
0 I

)
, CW =

(
I 0
−Y −I

)
,

so that

CB + CW = 2I −A. (13)

This is an observation due to R.Steinberg, cf. [18], p. 591.

We can also rewrite this as follows. Set

L =
(
I 0
Y I

)
, U =

(
I X
0 I

)
.

Then A = L+ U , and one checks easily that

C = −U−1L, (14)

so we are in the situation 3.1. This explains the name ”Cartan - Coxeter coresspondence”.
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3.4 Eigenvectors’ correspondence

Theorem 1 Let
L =

(
Ip 0
Y Ir−p

)
, U =

(
Ip X
0 Ir−p

)
be block matrices. Set

A = L+ U, C = −U−1L.

Let µ 6= 0 be a complex number, √µ be any of its square roots, and

λ = 2−√µ− 1/√µ. (15)

Then a vector vC =
(
v1
v2

)
is an eigenvector of C with eigenvalue µ if and only if

vA =
(

v1√
µv2

)
is an eigenvector of A with the eigenvalue λ1.

Proof: a direct check. �

3.4.1 Remark

Note that the formula (15) gives two possible values of λ corresponding to ±√µ. On the other
hand, λ does not change if we replace µ by µ−1.

In the simplest case of 2× 2 matrices the eigenvalues of A are 2± (√µ+
√
µ−1), whereas the

eigenvalues of C are µ±1.

Corollary 1 In the notations of 3.1, a vector

x =
∑

xjαj

is an eigenvector of A with the eigenvalue 2(1− cos θ) iff the vector

xc :=
∑

e±iθ/2xjαj

where the sign in e±iθ/2 is plus if i is a white vertex, and minus otherwise, is an eigenvector of
C with eigenvalue e2iθ.

Cf. [7].

Proof Without loss of generality, we can suppose that A is expressed in a basis of simple roots
such that the first r − p ones are white, and the last p roots are black.

Then A has a block form

A =
(

2Ir−p X
Y 2Ip

)
=
(
Ir−p 0
Y Ip

)
+
(
Ir−p X

0 Ip

)
= L+ U

Applying Theorem 1 with
1 this formulation has been suggested by A.Givental.
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v1 =

 eiθ/2x1
..

eiθ/2xr−p

 and v2 =

e−iθ/2xr−p+1
..

e−iθ/2xr


and the well-known eigenvalues of the Cartan matrix A,

λ = 2− 2 cos θk, with θk = 2πk/h, k ∈ Exp(R)

we obtain : xc :=
∑
e±iθ/2xjαj is an eigenvector of C with the eigenvalue e2iθk iff eiθkx =

eiθk
∑
xjαj is an eigenvector of A with the eigenvalue 2− 2 cos θk. �

3.5 Example: the root systems An.

We consider the Dynkin graph of An with the obvious numbering of the vertices.
The Coxeter number h = n+ 1, the set of exponents:

Exp(An) = {1, 2, . . . , n}

The eigenvalues of any Coxeter element are eiθk , and the eigenvalues of the Cartan matrix
A(An) are 2− 2 cos θk, θk = 2πk/h, k ∈ Exp(An).

An eigenvector of A(An) with the eigenvalue 2− 2 cos θ has the form

x(θ) = (
n−1∑
k=0

ei(n−1−2k)θ,

n−2∑
k=0

ei(n−2−2k)θ, . . . , 1) (16)

Denote by C(An) the Coxeter element

C(An) = s1s2 . . . sn

Its eigenvector with the eigenvalue e2iθ is:

XC(An) = (
n−j∑
k=0

e2ikθ)1≤j≤n

For example, for n = 4:

CA4 =


0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

 and XC(A4) =


1 + e2iθ + e4iθ + e6iθ

1 + e2iθ + e4iθ

1 + e2iθ

1


is an eigenvector with eigenvalue e2iθ.
Similarly, for n = 2:

CA2 =
(

0 −1
1 −1

)
, XC(A2) =

(
1 + e2iγ

1

)
�
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4 Sebastiani - Thom product; factorization of E8 and E6

4.1 Join product

Suppose we are given two polarized lattices (Qi, Ai, Li), i = 1, 2.
Set Q = Q1 ⊗Q2, whence

L := L1 ⊗ L2 : Q ∼−→ Q∨,

and define
A := A1 ∗A2 := L+ L∨ : Q ∼−→ Q∨

The triple (Q,A,L) will be called the join, or Sebastiani - Thom, product of the polarized
lattices Q1 and Q2, and denoted by Q1 ∗Q2.

Obviously
C(L) = −C(L1)⊗ C(L2) ∈ GL(Q1 ⊗Q2).

It follows that if Spec(C(Li)) = {e2πiki/hi , ki ∈ Ki} then

Spec(C(L)) = {−e2πi(k1/h1+k2/h2), (k1, k2) ∈ K1 ×K2} (17)

4.2 E8 versus A4 ∗A2 ∗A1: elementary analysis

The ranks:
r(E8) = 8 = r(A4)r(A2)r(A1);

the Coxeter numbers:
h(E8) = h(A4)h(A2)h(A1) = 5 · 3 · 2 = 30.

It follows that
|R(E8)| = 240 = |R(A4)||R(A2)||R(A1)|.

The exponents of E8 are:
1, 7, 13, 19, 11, 17, 23, 29.

All these numbers, except 1, are primes, and these are all primes ≤ 30, not dividing 30.
They may be determined from the formula

i

5 + j

3 + 1
2 = 30 + k(i, j)

30 , 1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

so
k(i, 1) = 1 + 6(i− 1) = 1, 7, 13, 19;

k(i, 2) = 1 + 10 + 6(i− 1) = 11, 17, 23, 29.

This shows that the exponents of E8 are the same as the exponents of
A4 ∗A2 ∗A1.

The following theorem is more delicate.
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4.3 Decomposition of Q(E8)

Theorem 2 (Gabrielov, cf. [8], Section 6, Example 3). There exists a polarization of the root
lattice Q(E8) and an isomorphism of polarized lattices

Γ : Q(A4) ∗Q(A2) ∗Q(A1) ∼−→ Q(E8). (18)

In the left hand side Q(An) means the root lattice of An with the standard Cartan matrix
and the standard polarization

A(An) = L(An) + L(An)t

where the Seifert matrix L(An) is upper triangular.
In the process of the proof, given in §4.4 - 4.6 below, the isomorphism Γ will be written down

explicitly.

4.4 Beginning of the proof

For n = 4, 2, 1, we consider the bases of simple roots e1, . . . , en in Q(An), with scalar products
given by the Cartan matrices A(An).

The tensor product of three lattices

Q∗ = Q(A4)⊗Q(A2)⊗Q(A1)

will be equipped it with the ”factorizable” basis in the lexicographic order:

(f1, . . . , f8) := (e1 ⊗ e1 ⊗ e1, e1 ⊗ e2 ⊗ e1, e2 ⊗ e1 ⊗ e1, e2 ⊗ e2 ⊗ e1,

e3 ⊗ e1 ⊗ e1, e3 ⊗ e2 ⊗ e1, e4 ⊗ e1 ⊗ e1, e4 ⊗ e2 ⊗ e1).

Introduce a scalar product (x, y) on Q∗ given, in the basis {fi}, by the matrix

A∗ = A4 ∗A2 ∗A1.

4.5 Gabrielov - Picard - Lefschetz transformations αm, βm

Let (Q, (, )) be a lattice of rank r. We introduce the following two sets of transformations
{αm}, {βm} on the set Bases− cycl(Q) of cyclically ordered bases of Q.

If x = (xi)i∈Z/rZ is a base, and m ∈ Z/rZ, we set

(αm(x))i =

xm+1 + (xm+1, xm)xm if i = m
xm if i = m+ 1
xi otherwise

and

(βm(x))i =

 xm if i = m− 1
xm−1 + (xm−1, xm)xm if i = m

xi otherwise

We define also a transformation γm by

(γm(x))i =
{
−xm if i = m
xi otherwise
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1 − 2 − 3 − 5 − 6 − 7 − 8
|
4

Fig. 1 Gabrielov’s ordering of E8.

4.6 Passage from A4 ∗A2 ∗A1 to E8

Consider the base f = {f1, . . . f8} of the lattice Q∗ := Q(A4)⊗Q(A2)⊗Q(A1) described in §4.4,
and apply to it the following transformation

G′ = γ2γ1β4β3α3α4β4α5α6α7α1α2α3α4β6β3α1, (19)

cf. [8], Example 3.
Then the base G′(f) has the intersection matrix given by the Dynkin graph of E8, with the

ordering indicated in Figure 1 below.
This concludes the proof of Theorem 2 �

4.7 The induced map of root sets

By definition, the isomorphism of lattices Γ , (21), induces a bijection between the bases

g : {f1, . . . , f8}
∼−→ {α1, . . . , α8} ⊂ R(E8).

where in the right hand side we have the base of simple roots, and a map

G : R(A4)×R(A2)×R(A1)→ R(E8), G(x, y, z) = Γ (x⊗ y ⊗ z)

of sets of the same cardinality 240 which is not a bijection however: its image consists of 60
elements.

Note that the set of vectors α ∈ Q(E8) with (α, α) = 2 coincides with the root system R(E8),
cf. [17], Première Partie, Ch. 5, 1.4.3.

4.8 Passage to Bourbaki ordering

The isomorphism G′ (19) is given by a matrix G′ ∈ GL8(Z) such that

AG(E8) = G′tA∗G
′

where we denoted
A∗ = A(A4) ∗A(A2) ∗A(A1),

the factorized Cartan matrix, and AG denotes the Cartan matrix of E8 with respect to the
numbering of roots indicated on Figure 1.

Now let us pass to the numbering of vertices of the Dynkin graph of type E8 indicated in [2]
(the difference with Gabrielov’s numeration is in three vertices 2, 3, and 4).

The Gabrielov’s Coxeter element (the full monodromy) in the Bourbaki numbering looks as
follows:

CG(E8) = s1 ◦ s3 ◦ s4 ◦ s2 ◦ s5 ◦ s6 ◦ s7 ◦ s8
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1 − 3 − 4 − 5 − 6 − 7 − 8
|
2

Fig. 2 Bourbaki ordering of E8.

Lemma 2 Let A(E8) be the standard Cartan matrix of E8 from [B]:

A(E8) =



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


.

Then
A(E8) = GtA∗G

and
CG(E8) = G−1C∗G

where
C∗ = C(Q(A4) ∗Q(A2) ∗Q(A1)) = C(A4)⊗ C(A2)⊗ C(A1),

is the factorized Coxeter element, and

G =



0 0 0 1 −1 0 0 0
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
−1 1 −1 0 0 1 0 0
0 1 −1 0 0 0 1 0
−1 1 −1 0 0 0 1 0
0 1 −1 0 0 0 0 1
0 1 −1 0 0 0 0 0


(3.8.1)

Here
G = G′P

where P is the permutation matrix of passage from the Gabrielov’s ordering in Figure 1 to the
Bourbaki ordering in Figure 2

4.9 Cartan eigenvectors of E8

To obtain the Cartan eigenvectors of E8, one should pass from CG(E8) to the ”black/white”
Coxeter element (as in §3.3)

CBW (E8) = s1 ◦ s4 ◦ s6 ◦ s8 ◦ s2 ◦ s3 ◦ s5 ◦ s7

Any two Coxeter elements are conjugate in the Weyl group W (E8).
The elements CG(E8) and CBW (E8) are conjugate by the following element of W (E8):
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CG(E8) = w−1CBW (E8)w

where

w = s7 ◦ s5 ◦ s3 ◦ s2 ◦ s6 ◦ s4 ◦ s5 ◦ s1 ◦ s3 ◦ s2 ◦ s4 ◦ s1 ◦ s3 ◦ s2 ◦ s1 ◦ s2

This expression for w can be obtained using an algorithm described in [4], cf. also [3].
Thus, if x∗ is an eigenvector of C∗(E8) then

xBW = wG−1x∗

is an eigenvector of CBW (E8). But we know the eigenvectors of C∗(E8), they are all factor-
izable.

This provides the eigenvectors of CBW (E8), which in turn have very simple relation to the
eigenvectors of A(E8), due to Theorem 1.

Conclusion: an expression for the eigenvectors of A(E8).

Let θ = aπ
5 , 1 ≤ a ≤ 4, γ = bπ

3 , 1 ≤ b ≤ 2, δ = π
2 ,

α = θ + γ + δ = π + kπ

30 ,

k ∈ {1, 7, 11, 13, 17, 19, 23, 29}.

The 8 eigenvalues of A(E8) have the form

λ(α) = λ(θ, γ) = 2− 2 cosα

An eigenvector of A(E8) with the eigenvalue λ(θ, γ) is

XE8(θ, γ) =



cos(γ + θ − δ) + cos(γ − 3θ − δ) + cos(γ − θ − δ)
cos(2γ + 2θ)

cos(2γ) + cos(2γ + 2θ) + cos(2γ − 2θ) + cos(4θ) + cos(2θ)
cos(γ + 3θ − δ) + cos(γ + θ − δ) + cos(−γ + 3θ − δ)

2 cos(2γ) + 2 cos(2γ + 2θ) + cos(2γ − 2θ) + cos(2γ + 4θ) + cos(4θ) + 2 cos(2θ) + 1
cos(γ + 3θ − δ) + cos(γ + θ − δ)

cos(2γ) + cos(2θ − 2δ)
cos(γ − θ − δ)


One can simplify it as follows:

XE8(θ, γ) = −



2 cos(4θ) cos(γ − θ − δ)
− cos(2γ + 2θ)

2 cos2(θ)
−2 cos(γ) cos(3θ − δ)− cos(γ + θ − δ)
−2 cos(2γ + 3θ) cos(θ) + cos(2γ)
−2 cos θ cos(γ + 2θ − δ)

−2 cos(γ + θ − δ) cos(γ − θ + δ)
− cos(γ − θ − δ)


(20)
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4.10 Perron - Frobenius and all that

The Perron - Frobenius eigenvector corresponds to the eigenvalue

2− 2 cos π30 ,

and may be chosen as

vPF =



2 cos π5 cos 11π
30

cos π
15

2 cos2 π
5

2 cos 2π
30 cos π

30
2 cos 4π

15 cos π5 + 1
2

2 cos π5 cos 7π
30

2 cos π
30 cos 11π

30
cos 11π

30


Ordering its coordinates in the increasing order, we obtain

vPF< =



cos 11π
30

2 cos π5 cos 11π
30

2 cos π
30 cos 11π

30
cos π

15
2 cos π5 cos 7π

30
2 cos2 π

5
2 cos 4π

15 cos π5 + 1
2

2 cos 2π
30 cos π

30


In the Ref. [19], A. B. Zamolodchikov obtains the following expression for the PF vector:

vZam(m) =



m
2m cos π5
2m cos π

30
4m cos π5 cos 7π

30
4m cos π5 cos 2π

15
4m cos π5 cos π

30
8m cos2 π

5 cos 7π
30

8m cos2 π
5 cos 2π

15


Setting m = cos 11π

30 , we find indeed :

vPF< = vZam(cos 11π
30 )

4.11 Factorization of E6

Theorem 3 (Gabrielov, cf. [8], Section 6, Example 2). There exists a polarization of the root
lattice Q(E6) and an isomorphism of polarized lattices

ΓE6 : Q(A3) ∗Q(A2) ∗Q(A1) ∼−→ Q(E6). (21)
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The proof is exactly the same as for Q(E8). The passage from A3 ∗A2 ∗A1 to E6 is obtained
by the following transformation

G′E6
= γ4γ1α1α2α3α4β6β3α1

cf. [8], Example 2.
After a passage from Gabrielov’s ordering to Bourbaki’s, we obtain a transformation

GE6 =


0 −1 1 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 0 1

 ∈ GL6(Z)

such that
A(E6) = GtE6

A∗GE6 and CG(E6) = G−1
E6
C∗GE6

where A∗ = A(A3) ∗A(A2) ∗A(A1) and C∗ = C(A3)⊗ C(A2)⊗ C(A1) and

CG(E6) = s1 ◦ s3 ◦ s4 ◦ s2 ◦ s5 ◦ s6

CG(E6) is the Gabrielov’s Coxeter element in the Bourbaki numbering, cf. [2].
Let CBW (E6) = s1 ◦ s4 ◦ s6 ◦ s2 ◦ s3 ◦ s5 be the "black/white" Coxeter element. CG(E6) and

CBW (E6) are conjugated by the following element of the Weyl group W (E6) :

v = s5 ◦ s3 ◦ s2 ◦ s4 ◦ s1 ◦ s3 ◦ s3 ◦ s1 ◦ s2

Thus, if x∗ is an eigenvector of C∗(E6) then xBW = vG−1
E6
x∗ is an eigenvector of CBW (E6).

Finally, let θ = aπ
4 , 1 ≤ a ≤ 3, γ = bπ

3 , 1 ≤ b ≤ 2, δ = π
2 and

α = θ + γ + δ

The 6 eigenvalues of A(E6) have the form λ(α) = λ(θ, γ) = 2 − 2 cosα. An eigenvector of
A(E6) with the eigenvalue λ(α) is

XE6(θ, λ) =


cos (3γ + 3θ − δ)

2 cos2 θ
−2 cos (3γ + 3θ − δ) cos (γ + θ − δ)

−4 cos2 θ cos (γ + θ − δ)
1− 2 cos (2γ + 3θ) cos θ
−2 cos(γ) cos (θ − δ)



5 Givental’s q-deformations

5.1 q-deformations of Cartan matrices

Let A = (aij) be a n× n complex matrix. We will say that A is a generalized Cartan matrix if

(i) for all i 6= j, aij 6= 0 implies aji 6= 0;
(ii) all aii = 2.
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If only (i) is fulfilled, we will say that A is a pseudo-Cartan matrix.

We associate to a pseudo-Cartan matrix A an unoriented graph Γ (A) with vertices 1, . . . , n,
two vertices i and j being connected by an edge e = (ij) iff aij 6= 0.

Let A be a generalized Cartan matrix. There is a unique decomposition

A = L+ U

where L = (`ij) (resp. U = (uij)) is lower (resp. upper) triangular, with 1’s on the diagonal.
We define a q-deformed Cartan matrix by

A(q) = qL+ U

This definition is inspired by the q-deformed Picard - Lefschetz theory developed by Givental,
[9].

Theorem 4 Let A be a generalized Cartan matrix such that Γ (A) is a tree.
(i) The eigenvalues of A(q) have the form

λ(q) = 1 + (λ− 2)√q + q (22)

where λ is an eigenvalue of A.
(ii) There exist integers k1, . . . , kn such that if x = (x1, . . . , xn) is an eigenvector of A for the

eigenvalue λ then
x(q) = (qk1/2x1, . . . , q

kn/2xn) (23)

is an eigenvector of A(q) for the eigenvalue λ(q).

The theorem will be proved after some preparations.

5.2

Let Γ be an unoriented tree with a finite set of vertices I = V (Γ ).
Let us pick a root of Γ , and partially order its vertices by taking the minimal vertex i0 to be

the bottom of the root, and then going ”upstairs”. This defines an orientation on Γ .

Lemma 3 Suppose we are given a nonzero complex number bij for each edge e = (ij), i < j of
Γ . There exists a collection of nonzero complex numbers {ci}i∈I such that

bij = cj/ci, i < j.

for all edges (ij).
We can choose the numbers ci in such a way that they are products of some numbers bpq.

Proof. Set ci0 = 1 for the unique minimal vertex i0, and then define the other ci one by one,
by going upstairs, and using as a definition

cj := bijci, i < j.

Obviously, the numbers ci defined in such a way, are products of bpq. �
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Lemma 4 Let A = (aij) and A′ = (a′ij) be two pseudo-Cartan matrices with Γ (A) = Γ (A′). Set
bij := a′ij/aij. Suppose that

bij = b−1
ji . (24)

for all i 6= j, and aii = a′ii for all i. Then there exists a diagonal matrix

D = Diag(c1, . . . , cr)

such that A′ = D−1AD.
Moreover, the numbers ci may be chosen to be products of some bpq.

Proof. Let us choose a partial order <p on the set of vertices V (Γ ) as in 5.2.
Warning. This partial order differs in general from the standard total order on {1, . . . , n}.
Let us apply Lemma 3 to the collection of numbers {bij , i <p j}. We get a sequence of

numbers cij such that

bij = cj/ci

for all i <p j. The condition (24) implies that this holds true for all i 6= j.
By definition, this is equivalent to

a′ij = c−1
i aijcj ,

i.e. to A′ = D−1AD. �

5.3 Proof of Theorem 4.

Let us consider two matrices: A(q) = (a(q)ij) with a(q)ii = 1 + q

a(q)ij =
{
aij if i < j
qaij if i > j

and

A′(q) = √qA+ (1−√q)2I = (a(q)′ij)

with a(q)′ii = 1 + q and a(q)′ij = √qa(q)ij , i 6= j.
Thus, we can apply Lemma 4 to A(q) and A′(q). So, there exists a diagonal matrix D as

above such that

A(q) = D−1A′(q)D.

But the eigenvalues of A′(q) are obviously

λ(q) = √qλ+ (1−√q)2 = 1 + (λ− 2)√q + q.

If v is an eigenvector of A for λ then v is an eigenvector of A′(q) for λ(q), and Dv will be an
eigenvector of A(q) for λ(q). �



20 Laura Brillon et al.

5.4 Remark (M.Finkelberg)

The expression (22) resembles the number of points of an elliptic curve X over a finite field Fq.
To appreciate better this resemblance, note that in all our examples λ has the form

λ = 2− 2 cos θ,

so if we set
α = √qeiθ

(”a Frobenius root”) then |α| = √q, and

λ(q) = 1− α− ᾱ+ q,

cf. [10], Chapter 11, §1, [11], Chapter 10, Theorem 10.5.
So, the Coxeter eigenvalues e2iθ may be seen as analogs of ”Frobenius roots of an elliptic

curve over F1”.

5.5 Examples.

5.5.1 Standard deformation for An

Let us consider the following q-deformation of A = A(An):

A(q) =


1 + q −1 0 . . . 0
−q 1 + q −1 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 −q 1 + q


Then

Spec(A(q)) = {λ(q) := 1 + (λ− 2)√q + q| λ ∈ Spec(A(1))}.
If x = (x1, . . . , xn) is an eigenvector of A = A(1) with eigenvalue λ then

x(q) = (x1, q
1/2x2, . . . , q

(n−1)/2xn)

is an eigenvector of A(q) with eigenvalue λ(q).

5.5.2 Standard deformation for E8

A q-deformation:

AE8(q) =



1 + q 0 −1 0 0 0 0 0
0 1 + q 0 −1 0 0 0 0
−q 0 1 + q −1 0 0 0 0
0 −q −q 1 + q −1 0 0 0
0 0 0 −q 1 + q −1 0 0
0 0 0 0 −q 1 + q −1 0
0 0 0 0 0 −q 1 + q −1
0 0 0 0 0 0 −q 1 + q


Its eigenvalues are

λ(q) = 1 + q + (λ− 2)√q = 1 + q − 2√q cos θ
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where λ = 2− 2 cos θ is an eigenvalue of A(E8).
If X = (x1, x2, x3, x4, x5, x6, x7, x8) is an eigenvector of A(E8) for the eigenvalue λ, then

X = (x1,
√
qx2,
√
qx3, qx4, q

√
qx5, q

2x6, q
2√qx7, q

3x8) (25)

is an eigenvector of AE8(q) for the eigenvalue λ(q).

6 A physicist’s appendix

The following is a brief outline of how the above may be related to the physics of certain mag-
netic systems as observed in a beautiful neutron scattering experiment [20] and anticipated in a
pioneering theoretical work [19].

6.1 The material and the model

The paper [20] reports the results of a magnetic neutron scattering experiment on cobalt niobate
CoNb2O6, a material that to a good first approximation can be pictured as an array of uncoupled
parallel chains with each site occupied by a spin that may point along or opposite to the “easy
magnetization” axis z. In addition to this, each spin is subject to a small external magnetic
field hx in the transverse x direction, on top of which there is also an effective field hz in the
z direction, emerging due to weak action of spins at the neighboring chains. As a result, the
effective Hamiltonian H of such a spin chain may be written as

H = −J
∑
i

σzi σ
z
i+1 − hx

∑
i

σxi − hz
∑
i

σzi , (26)

where J > 0 is the Ising coupling constant, and σxi =
[
0 1
1 0

]
and σzi =

[
1 0
0 −1

]
are the Pauli

matrices, acting in the Hilbert space of the i-th spin of the chain, spanned by the two states

| ↑〉 =
(

1
0

)
and | ↓〉 =

(
0
1

)
, commonly called “spin-up” and “spin-down”. The Hamiltonian (26)

acts on the tensor product of the single-spin Hilbert spaces of each spin of the chain.

6.2 The phase diagram

Qualitatively, magnetism of the cobalt niobate has been rather well understood. At low tempera-
tures, the material has two phases. The ferromagnetic phase is realized at temperatures T below
TC = 2.95K in zero field, and fields hx up to hc = 5.5T at zero temperature. In the ground state
of this phase, all the spins point the same way along the z axis. Qualitatively, the excited states
can be most simply understood at zero field, where the energy cost 2J is associated with creating
a boundary between two regions of differently oriented spins: a so-called “domain wall”. Such a
domain wall is indeed an elementary excitation of the ferromagnetic phase of the Ising chain.
One may also observe, that flipping a single spin in the ground state is equivalent to creating
two domain walls, which then can be separated by an arbitrary distance without incurring any
additional energy cost.

The other phase, called the paramagnetic state, can be simply understood in the limit of
strong field: here, the Ising coupling can be neglected, the spins decouple from each other and line
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T

hc

hx

a domain wall:           a spin flip:

ferromagnetic      paramagnetic

Fig. 3 A sketch of the low-temperature part of the phase diagram of CoNb2O6 near the critical transverse field
hx = hc. The solid line stemming from the point hx = hc at zero temperature is the transition line, separating the
ferromagnetic and the paramagnetic phases. The horizontal blue line with two arrows indicates the range of the
key neutron scattering measurements [20]. The figure also shows the simplest form of the elementary excitations
in each of the two phases, as described in the text: the domain wall and the spin-flip.

up along the field. Even though all the spins point the same way, exactly as in the ferromagnetic
state, their decoupling means that, in the paramagnetic phase it is a single spin flip that becomes
an elementary excitation with the energy cost of 2h.

In the Ising chain, subject to a purely transverse magnetic field (hz = 0), the zero-temperature
(“quantum”) transition from the ferromagnetic to the paramagnetic phases takes place upon
increasing the transverse field across the critical value hx = hc. At this point, the elementary
excitations change their nature from domain walls to single spin flips. This has been schematically
depicted in the Fig. (3).

This quantum phase transition at hx = hc corresponds to the zero-field thermal phase transi-
tion at T = TC in a two-dimensional Ising model on the square lattice (see the Chapter 3 of [21]).
As mentioned above, in the low-temperature experiment [20], in addition to the transverse field
hx, there is also a weak effective longitudinal field hz. The corresponding classical transition is
that in a two-dimensional Ising model on a square lattice in a small longitudinal field hz, which
is the subject matter of the Ref. [19].

In a pioneering work [19], A. B. Zamolodchikov showed that the critical (T = TC) two-
dimensional Ising model in a weak longitudinal field hz is described by an integrable quantum
field theory, defined via its purely elastic S-matrix. The words “purely elastic” mean that, in
an arbitrary n-particle collision, the initial and the final sets of particle energies and momenta
coincide. Moreover, the S-matrix of an arbitrary n-particle collision factorizes into the product
of n(n−1)

2 two-particle S-matrices. The theory involves eight different stable excitations (“parti-
cles”), and thus its two-body S-matrix is an 8 × 8 matrix with elements, corresponding to the
scattering amplitudes of the eight particles off each other. The theory has an infinite set of spin-s
2 integrals of motion with s having no common divisor with 30:

{s} = 1, 7, 11, 13, 17, 19, 23, 29 (mod 30).
These are precisely the exponents of the Lie algebra E8, and 30 is the Coxeter number of the
root system E8. The sum of the first eight spin degeneracies∑

s=1,7,11,...29
[2s+ 1] = 248

2 Here, spin-s is meant with respect to the Lorentz group.
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is equal to the dimension of the Lie algebra E8, cf. [12] (a).
At low energies, all the eight particles have relativistic dispersion

εa(p) =
√
m2
a + p2 (27)

with different ma (a = 1, ..., 8) called the “particle masses”. Among other things, the theory [19]
predicts the relative ratios of the ma as described in the Section 4.10. Since εa(p) ≥ ma, the said
“mass” ma is also the energy gap in the a-th branch of the spectrum. Some of these gaps were
measured in the neutron scattering experiment [20].

6.3 The neutron scattering experiment [20]

Neutron scattering is an extremely efficient experimental method of studying matter. It amounts
to scattering neutrons off the sample to be studied, and is based on conservation laws: if the
incident neutron has momentum p and energy ε, and scatters off with momentum p′ and energy
ε′, the energy and momentum conservation laws imply that the difference, called the momentum
transfer q = p−p′ and energy transfer ω = ε− ε′, have been absorbed by the sample. Similarly,
if the scattering neutron changes its spin by a given amount, the said amount must have been
taken by the sample.

Now, the key point is that the spin, energy and momentum transferred to the sample cannot
be arbitrary, but rather are determined by the allowed states of the system, especially the low-
energy states 3.

One of them is the so-called “ground state”, that is the one with the lowest energy. For the
system in question, there is one and only one such state, and the system assumes it at zero
temperature.

The low-energy states (the ground state included) form a linear space, where one may define
an orthogonal basis. The basis vectors of this space, other than the ground state, are called
“elementary excitations”, these states are coupled to each other so weakly that, for all practical
purposes they can be considered non-interacting. Which implies that, together with the ground
state, they can be viewed as eigenvectors of a Hermitian matrix (the effective Hamiltonian), with
the corresponding eigenvalues being the energy of the states.

The system in question involves an underlying crystal lattice, and thus is invariant under the
group of discrete spatial translations. Thus each eigenstate can be labeled by its momentum p,
which allows one to characterize the energy spectrum by a “dispersion law” ε = ε(p) that defines
the energy ε of an eigenstate (elementary excitation) with momentum p, such as the dispersion
law (27).

In the experiment of R. Coldea et al., the material sample was studied by means of magnetic
neutron scattering. Neutron has spin-1/2, and zero charge. In a magnetic scattering act with
momentum transfer q and energy transfer ω, a neutron flips its spin and, by virtue of the
conservation laws, produces in the sample a spin flip with a given momentum q and energy ω.

If such a spin flip were an elementary excitation, then the scattering would be present only for
its energies ω and momenta q such that satisfy the dispersion law ω = ε(q). In other words, the
neutron scattering intensity S(q, ω) would differ from zero only for ω = ε(q). However, a spin flip
does not necessarily correspond to a single elementary excitation, but rather to a superposition
thereof. As a consequence, the experimentally measured neutron scattering intensity S(q, ω) may
be non-zero for momentum transfers q and energy transfers ω outside the dispersion law ω = ε(q).
Put otherwise, this means that the dispersion ω = ε(q) acquires a “width”. Nevertheless, the

3 The adjective “low” implies “by comparison with other relevant energy scales”.
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ω

ω

m 1 m 2

S(q=0,   )

Fig. 4 A sketch of the zone center (zero-momentum) scattering intensity S(q = 0, ω) peaks, centered at ω = m1

and ω = m2 and resolved in the experiment [20]. The found mass ratio m2/m1 is consistent with m2
m1

= 1+
√

5
2 ,

as per the expression for the vZam(m) in the Subsection 4.10.

scattering signal has a peak near ω = ε(q), which allows experimentalists to extract the dispersion
of the excitations.

In the Eq. (27) the εa(p = 0) = ma, the zone center (zero-momentum) neutron scattering
intensity S(q = 0, ω) would be expected to have peaks at ω = ma. At the lowest temperatures,
and in the immediate vicinity of hx = hc, the experiment [20] succeeded to resolve the first two
excitations of the Eq. (27) and to extract their masses m1 and m2, as shown schematically in the
Fig. 4. The mass ratio m2/m1 was found to be m2

m1
= 1.6± 0.025, consistent with m2

m1
= 1+

√
5

2 ≈
1.618, predicted by the expression for the vZam(m) in the Subsection 4.10.

A reader who would like to find out more about various facets of the story may turn to the
references [22,23,24,25].
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