AGRÉGATION INTERNE : COMBINATOIRE, DÉNOMBREMENT, PROBABILITÉS 3

Exercice 1

Soit I_n le nombre d'involutions de {1,2,...,n}. Vérifier que l'on a : I_{n+1} = I_n + nI_{n-1}. En déduire un équivalent de I_n. Etudier ∑_{n≥0} l_n zⁿ et expliciter sa somme.
 Soit d_n le nombre de dérangements (i.e. sans points fixes) de {1,2,...,n}, montrer que d_n =

Application: n invités laissent leur chapeau au vestiaire puis repartent les uns aprés les autres en reprenant un chapeau au hasard. Montrer que la probabilité p_n qu'ils repartent tous avec un chapeau ne leur appartenant pas tends vers e^{-1} lorsque n tends vers $+\infty$.

Exercice 2 Soit T_n le nombre de partitions d'un ensemble à n éléments. Montrer que $T_{n+1} = \sum_{k=0}^{n} C_n^k T_k$ puis $\sum_{n\geq 0} \frac{T_n x^n}{n!} = \exp(e^x - 1)$.

Exercice 3 Expliciter le nombre a_n de facons de composer une somme de n francs avec des pièces de 1, 2 et 5 francs.

Exercice 4 Dénombrer le nombre de manières de distribuer n euros à p personnes (faire un calcul direct ou bien utiliser les séries entières).

Exercice 5 Soit G un groupe fini non commutatif. On note p(G) la probabilité pour que deux éléments de G tirés au hasard commutent entre eux. Montrer que $p(G) \leq \frac{5}{8}$ et préciser pour quels groupes cette valeur maximale est atteinte.

Exercice 6 Combien d'entiers distincts trouve-t-on dans la suite d'entiers

$$\left[\frac{1^2}{1980}\right], \left[\frac{2^2}{1980}\right], \dots, \left[\frac{1980^2}{1980}\right] ?$$

Exercice 7 Soit $E = \{1, 2, ..., n\}$ Montrer que le nombre de couples $(X, Y) \in \mathcal{P}(E) \times \mathcal{P}(E)$ vérifiant $X \subset Y$ vaut 3^n .

Exercice 8 Avec la formule de Wallis (1655)

$$\frac{\pi}{2} = \frac{2.2}{1.3} \frac{4.4}{3.5} \frac{6.6}{5.7} \dots = \prod_{n \ge 1} \frac{4n^2}{4n^2 - 1}.$$

montrer que dans le jeu de pile ou face la probabilité p_n lors de 2n jets successifs d'obtenir n pile et n face satifait, quand n tends vers l'infini, à l'équivalent

$$p_n \sim \frac{1}{\sqrt{\pi n}}.$$

Exercice 9 On choisit deux points au hasard et de manière indépendante sur un segment I de longueur d. Soit 0 < l < d, quelle est la probabilité que la distance entre ces deux points soit supérieure ou égale à l?

Exercice 10 Si x et y sont choisis au hasard dans [0,1] (avec une densité uniforme), quelle est la probabilité que l'entier le plus proche de $\frac{x}{y}$ soit pair?

Exercice 11

- 1) Montrer qu'il n'est pas possible de piper deux dés de sorte que la variable aléatoire « somme des deux faces » soit uniformément répartie.
- 2) Est-il toutefois possible de piper les deux dés et que la variable aléatoire « somme des deux faces » continue à suivre la loi usuelle associée à deux dés « normaux »?

Exercice 12 Soient $X_1, X_2, \ldots, X_n, \ldots$ une suite de variable aléatoires indépendantes, de même loi, ne prenant qu'un nombre fini de valeurs a_1, a_2, \ldots, a_N où les a_i sont des entiers positifs dont le p.g.c.d. est 1. On pose $S_0 = 0$, $S_n = X_1 + \cdots + X_n$ et on définit pour $k \in \mathbb{N}$ l'événement

$$A_k = \{ \exists n \in \mathbb{N} : S_n = k \}.$$

Montrer que $\lim_{k \to +\infty} p(A_k) = \frac{1}{E(X_1)}$

Méthode: Si $f(s) := E(s^{X_1})$, montrer que

$$\sum_{k>0} p(A_k)s^k = \frac{1}{1 - f(s)}, \quad |s| < 1.$$

Montrer ensuite que le polynôme $\frac{1-f(s)}{1-s}$ n'a que des racines de module ≤ 1 et en déduire que les coefficients b_n du développement en série entière de la fonction $\frac{1}{1-f(s)} - \frac{1}{(1-s)E(X_1)}$ tendent vers zéro si n tends vers l'infini.

Exercice 13 Soient X_1, \ldots, X_n, \ldots des variables aléatoires indépendantes et uniformément distribuées sur [0,1]. Le rayon de convergence R de la série entière $\sum_{n\geq 1} z^n X_1 \ldots X_n$ est une variable aléatoire, quelle est sa loi?

Exercice 14 (probabilité qu'un entier soit « sans facteurs carrés ») On se propose de démontrer que la probabilité r_n que deux entiers pris au hasard dans $\{1, \ldots, n\}$ soient premiers entre-eux verifie

$$r_n = \frac{1}{n^2} \sum_{d>1} \mu(d) E\left(\frac{n}{d}\right)^2$$
 et $\lim_n r_n = \frac{6}{\pi^2}$

où l'application (c'est la « fonction de möebius ») $\mu: \mathbb{N}^{\star} \to \{-1,0,1\}$ est définie par :

$$\mu(n) = \begin{cases} 1 & si \ n = 1, \\ 0 & si \ n \ poss\`{e}de \ au \ moins \ un \ facteur \ carr\'{e}, \\ (-1)^k & si \ n = p_1 \dots p_k o\`{u} \ les \ p_i \ sont \ des \ nombres \ premiers \ distincts. \end{cases}$$

soient p_1, \ldots, p_k les nombres premiers $\leq n$ et pour $1 \leq i \leq k$:

$$V_i := \{(a, b) \in \{1, \dots, n\}^2 : p_i \text{ divise } a \text{ et } b\}.$$

1. Montrer que

$$card\left(\bigcup_{i=1}^{k} V_{i}\right) = \sum_{\emptyset \neq I \subset \{1,\dots,n\}} (-1)^{1+card(I)} card\left(\bigcap_{i \in I} V_{i}\right)$$

$$= -\sum_{\emptyset \neq I \subset \{1,\dots,n\}} (-1)^{card(I)} E\left(\frac{n}{\prod_{i \in I} p_{i}}\right)^{2}$$

$$= -\sum_{d=2}^{n} \mu(d) E\left(\frac{n}{d}\right)^{2}$$

Et en déduire r_n .

2. Montrer que
$$\left| r_n - \sum_{d=1}^n \frac{\mu(d)}{d^2} \right| = 0 \left(\frac{\log(n)}{n} \right)$$
.

3. Montrer que
$$\sum_{n\geq 1} \frac{1}{n^2} \sum_{d\geq 1} \frac{\mu(d)}{d^2} = \sum_{i\geq 1} \sum_{\substack{divise \ i}} \frac{\mu(l)}{i^2} = 1.$$

4. Conclure.