AGRÉGATION INTERNE DE MATHÉMATIQUES

L'INTÉGRALE DE DIRICHLET $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

PATRICE LASSÈRE

Résumé. Afin de bien réviser l'intégration et plus précisément les intégrales à paramétres, amusons nous avec plusieurs méthodes de calcul pour l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

1. Préliminaires

La convergence de l'intégrale impropre $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est classique : il n'y a pas de problèmes à l'origine car $t \mapsto \sin(t)/t$ s'y prolonge continuement, le seul problème est donc en $+\infty$. Intégrable sur [0,1], il est suffisant de s'assurer de la convergence sur $[1,+\infty[$: soit x>1, une intégration par parties donne

$$\int_{1}^{x} \frac{\sin(t)}{t} dt = \left[-\frac{\cos(t)}{t} \right]_{1}^{x} - \int_{0}^{x} \frac{\cos(t)}{t^{2}} dt$$

lorsque x tends vers $+\infty$ le terme « entre crochets » tends vers $\sin(1)$ et le second (puisque $|\cos(t)/t^2| \le t^{-2} \in L^1([1,+\infty[))$ vers $\int_1^\infty \cos(t)/t^2 dt \in \mathbb{R}$. Par conséquent $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ converge.

Par contre l'intégrale $\int_0^{+\infty} |\frac{\sin(t)}{t}| dt$ diverge, pour s'en convaincre le méthode classique consiste à écrire pour tout entier $N \geq 2$

$$\int_{1}^{N} \left| \frac{\sin t}{t} \right| dt \ge \sum_{k=1}^{N} \int_{k\pi+\pi/4}^{k\pi+3\pi/4} \left| \frac{\sin t}{t} \right| dt$$

$$\ge \sum_{k=1}^{N} \frac{\sqrt{2}}{2} \int_{k\pi+\pi/4}^{k\pi+3\pi/4} \frac{dt}{t}$$

$$\ge \sum_{k=1}^{N} \frac{\pi\sqrt{2}}{k\pi+3\pi/4} \ge \sqrt{2} \sum_{k=1}^{N} \frac{1}{k} \nearrow +\infty.$$

D'où la non absolue intégrabilité (tout ceci bien entendu marche aussi pour les intégrales $\int_0^{+\infty} |\frac{\sin(t)}{t^{\alpha}}| dt$, $\alpha \in]0,1]...$).

On peut aussi plus simplement écrire

$$\left|\frac{\sin t}{t}\right| \ge \left|\frac{\sin^2 t}{t}\right| = \frac{1 - \cos 2t}{2t} := g(t) \ge 0$$

et observer que g n'est pas intégrable en $+\infty$ (en effet, $\cos 2t/t$ l'est pour les mêmes raisons que $\sin t/t$ mais pas 1/t...) ce qui, via les théorèmes de comparaison pour les fonctions positives assure la non-intégrabilité de $t\mapsto |\frac{\sin(t)}{t}|$ en l'infini.

Pour terminer, remarquons que par une intégration par parties légitime

$$\int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt = \left[-\frac{\sin^2 t}{t}\right] + \int_0^{+\infty} \frac{2\sin(t)\cos(t)}{t} dt = \int_0^{+\infty} \frac{\sin(2t)}{t} dt$$

d'où la remarquable formule

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt.$$

2. CALCULS DE
$$\int_0^{+\infty} \frac{\sin(t)}{t} dt$$

Exercise 1: Soit
$$F(x) = \int_0^{+\infty} \frac{\sin(xt)}{t(t^2+1)} dt$$
.

- 1) Préciser le domaine de définition de F.
- 2) Étudier la continuite et l'existence des dérivées premières et secondes.
- 3) Exprimer F(x) en fonction de $C := \int_0^{+\infty} \frac{\sin(t)}{t} dt$
- 4) En déduire la valeur de C.

Solution : L'intégrale définissant F est clairement convergente pour tout $x \in \mathbb{R}$: F est définie sur \mathbb{R} et est impaire. Posons $f(x,t) = \frac{\sin(xt)}{t(t^2+1)}$.

Soit a > 0, pour $x \in [-a, a]$ et $t \in \mathbb{R}_+$ on a

$$|f(x,t)| = \left| \frac{\sin(xt)}{t} \cdot \frac{1}{t^2 + 1} \right| \le \frac{|x|}{t^2 + 1} \le \frac{a}{t^2 + 1} \in L^1(\mathbb{R}_+),$$

vu la régularité de f le théorème de continuité des intégrales à paramètres assure que $F \in \mathscr{C}^0([-a,a])$, et ceci pour tout a>0: F est donc continue sur \mathbb{R} .

¹On a aussi $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \sum_{n>1} \frac{\sin(n)}{n} = \frac{\pi}{2}$

$$\left|\partial_x f(x,t)\right| = \left|\frac{\cos(xt)}{t^2 + 1}\right| \le \frac{1}{t^2 + 1} \in L(\mathbb{R}),$$

par le théorème de dérivation des intégrales à paramètres, $F \in \mathscr{C}^1(\mathbb{R})$ et $F'(x) = \int_0^{+\infty} \frac{\cos(xt)}{t^2 + 1} dt$. \Rightarrow Pour l'existence de la dérivée seconde l'affaire est plus délicate, car

$$\left|\partial_x^2 f(x,t)\right| = \left|\frac{-t\sin(xt)}{t^2 + 1}\right| \underset{t \to \infty}{\sim} \left|\frac{\sin(xt)}{t}\right|,$$

et cette dernière n'est (comme $\left|\frac{\sin(t)}{t}\right|$) pas intégrable en $+\infty$: toute tentative de domination (même locale) pour appliquer le théorème précédent est donc vaine. L'astuce constiste par une intégration par parties à écrire F' sous une forme acceptable pour justifier la dérivation sous l'intégrale :soit $x \in \mathbb{R}^*$:

$$F'(x) = \int_0^{+\infty} \frac{\cos(xt)}{t^2 + 1} dt = \left[\frac{\sin(xt)}{x(t^2 + 1)} \right]_0^{\infty} + \int_0^{+\infty} \frac{2t \sin(xt)}{x(t^2 + 1)^2} dt$$
$$= \int_0^{+\infty} \frac{2t \sin(xt)}{x(t^2 + 1)^2} dt.$$

Ainsi, pour $x \neq 0$ on a

$$F'(x) = \int_0^{+\infty} \frac{\cos(xt)}{t^2 + 1} dt = \int_0^{+\infty} \frac{2t \sin(xt)}{x(t^2 + 1)^2} dt$$

sous cette seconde forme, on va pouvoir appliquer le théorème de dérivation des intégrales à paramètres, en effet soit a>0, pour $x\geq a$

$$\left| \frac{\partial}{\partial x} \left(\frac{2t}{x} \cdot \frac{\sin(xt)}{(t^2 + 1)^2} \right) \right| \le \left| \frac{2t}{x^2} \cdot \frac{\sin(xt)}{(t^2 + 1)^2} \right| + \left| \frac{2t^2 \cos(xt)}{x(t^2 + 1)^2} \right|$$

$$\le \frac{|2t|}{a^2(t^2 + 1)^2} + \frac{2t^2}{a(t^2 + 1)^2} \in L^1(\mathbb{R})$$

on peut donc dériver sous l'intégrale : F est deux fois dérivable sur \mathbb{R}^* et

$$F''(x) = \int_0^{+\infty} \left(-\frac{2t}{x^2} \cdot \frac{\sin(xt)}{(t^2 + 1)^2} + \frac{2t^2 \cos(xt)}{x(t^2 + 1)^2} \right) dt, \quad \forall x \in \mathbb{R}^*.$$

Cette expression est un peu chargée, faisons une intégration par parties :

$$F''(x) = \int_0^{+\infty} \left(-\frac{2t}{(t^2+1)^2} \cdot \frac{\sin(xt)}{x^2} + \frac{2t^2 \cos(xt)}{x(t^2+1)^2} \right) dt$$

$$= \left[\frac{\sin(xt)}{x^2(t^2+1)} - \frac{t \cos(xt)}{x(t^2+1)} \right]_0^{\infty} - \int_0^{+\infty} \left(\frac{x \cos(xt)}{x^2(t^2+1)} - \frac{\cos(xt) - xt \sin(xt)}{x(t^2+1)} \right) dt$$

$$= -\int_0^{+\infty} \frac{t \sin(xt)}{t^2+1} dt.$$

Il est intéressant à ce stade d'observer que nous retrouvons finalement la formule

$$F''(x) = \int_0^{+\infty} \frac{\partial^2}{\partial x^2} f(x, t) dt, \quad x \in \mathbb{R}^*,$$

mais pour justifier une dérivation sous l'intégrale une transformation de F' (voir (x)) à été nécessaire; remarquez aussi que l'existence de F''(0) reste ouverte. Nous avons donc :

$$F'(x) = \int_0^{+\infty} \frac{\cos(xt)}{t^2 + 1} dt, \quad \forall x \in \mathbb{R},$$
$$F''(x) = -\int_0^{+\infty} \frac{t \sin(xt)}{t^2 + 1} dt, \quad \forall x \in \mathbb{R}^*.$$

 \Rightarrow Ainsi, pour tout $x \in \mathbb{R}^*$,

$$F(x) - F''(x) = \int_0^{+\infty} \frac{\sin(xt)}{t(t^2 + 1)} dt + \int_0^{+\infty} \frac{t \sin(xt)}{x(t^2 + 1)} dt$$
$$= \int_0^{+\infty} \frac{\sin(xt)}{t} dt = \begin{cases} C, & \forall x \in \mathbb{R}_+^*, \\ -C, & \forall x \in \mathbb{R}_-^*. \end{cases}$$

F est donc solution de l'équation différentielle F-F''=C sur \mathbb{R}_+^\star et F-F''=-C sur \mathbb{R}_-^\star ce qui nous donne

$$F(x) = \begin{cases} ae^x + be^{-x} + C, & \forall x \in \mathbb{R}_+^*, \\ ce^x + de^{-x} - C, & \forall x \in \mathbb{R}_-^*. \end{cases}$$

(remarquez que ces équations impliquent $\lim_{0_+} F''(x) = C = -\lim_{0_-} F''(x)$ qui assurent si $C \neq 0$ que F'' admet à l'origine des limites à droite et à gauche différentes ce qui (propriété classique de l'application dérivéée, Darboux par exemple) nous permet d'affirmer que F''(0) n'existe pas mais F' est tout de même dérivable à droite et à gauche en 0 avec $F''(0_+) = C = -F''(0_-)...$) F étant impaire, a = -d, b = -c soit

$$F(x) = \begin{cases} ae^x + be^{-x} + C, & \forall x \in \mathbb{R}_+^*, \\ -be^x - ae^{-x} - C, & \forall x \in \mathbb{R}_-^* \end{cases}$$

et F continue à l'origine avec F(0) = 0 implique

$$F(0) = 0 = \lim_{x \to 0_{+}} F(x) = a + b + C = \lim_{x \to 0_{-}} F(x) = -a - b - C$$

soit a+b=-C; de même, F' continue à l'origine avec $F'(0)=\pi/2$ donne $a-b=\pi/2$ i.e. $2a=\pi/2-C, 2b=-C-\pi/2$ et finalement

$$F(x) = \frac{\pi}{2}\operatorname{sh}(x) - C\operatorname{ch}(x) + C, \quad \forall x \in \mathbb{R}_{+}^{\star}.$$

Arr Il reste à évaluer C. Pour cela, montrons que $\lim_{x\to +\infty} F(x) = C$. Soit x>0,

$$F(x) - C = F''(x) = \int_0^{+\infty} \left(-\frac{2t}{x^2} \cdot \frac{\sin(xt)}{(t^2 + 1)^2} + \frac{2t^2 \cos(xt)}{x(t^2 + 1)^2} \right) dt$$

(on a encore ici besoin de la première expression de F'' pour conclure facilement) pour $x \ge a > 0$, on a la domination

$$\left| -\frac{2t}{x^2} \cdot \frac{\sin(xt)}{(t^2+1)^2} + \frac{2t^2 \cos(xt)}{x(t^2+1)^2} \right| \le \frac{2t}{a^2(t^2+1)^2} + \frac{2t^2}{a(t^2+1)^2} \in L^1(\mathbb{R}_+).$$

Donc par le théorème de la convergence dominée

$$\lim_{x \to +\infty} (F(x) - C) = \int_0^{+\infty} \lim_{x \to +\infty} \left(-\frac{2t}{x^2} \cdot \frac{\sin(xt)}{(t^2 + 1)^2} + \frac{2t^2 \cos(xt)}{x(t^2 + 1)^2} \right) dt = 0$$

soit avec ()

$$\lim_{x \to +\infty} F(x) = C \quad \text{et} \quad F(x) \underset{+\infty}{\sim} \left(\frac{\pi}{2} - C\right) e^x + C$$

qui donnent

$$C = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}.$$

C.Q.F.D.

Exercice 2: On considère l'application $f(x) := \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt$.

- 1) Montrer que $f \in \mathscr{C}^1(\mathbb{R}_+^*)$.
- 2) En déduire une forme explicite de f sur \mathbb{R}_+^{\star} .
- 3) Montrer que f est continue à l'origine.
- 4) En déduire que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Solution : 1) Écrivons $f(x) = \int_0^{+\infty} g(x,t) dt$ où $g(x,t) = e^{-xt} \frac{\sin(t)}{t}$. Pour x = 0, $f(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt$ et nous retrouvons l'intégrale de Dirichlet ; pour x > 0, comme $|g(x,t)| \le e^{-xt} \in L^1(\mathbb{R}_+)$, f est encore bien définie : f est finalement définie sur \mathbb{R}_+ .

Soit a > 0, nous avons

$$|g(x,t)| \le e^{-at} \in L^1(\mathbb{R}_+)$$
 et $\left| \frac{\partial g}{\partial x}(x,t) \right| = |-\sin(t)e^{-xt}| \le e^{-at} \in L^1(\mathbb{R}_+).$

De ces deux inégalités, le théorème de continuité et dérivabilité des intégrales à paramètres assure que $f \in \mathscr{C}^1(\mathbb{R}_+^*)$ et

$$\forall x \in \mathbb{R}_+^*, \qquad f'(x) = -\int_0^{+\infty} \sin(t)e^{-xt}dt.$$

- Remarque: Il faut se garder, malgré les questions suivantes, de vouloir par ces théorèmes de domination obtenir la continuité de f à l'origine : en effet f est à l'origine définie par l'intégrale de Dirichlet qui est notoirement non absolument convergente et une domination de g dans un voisinage de l'origine impliquerai assurément l'absolue convergence. C'est pourquoi d'ailleurs les dominations n'ont lieu que sur $[a, +\infty[...]$
- 2) L'expression de f'(x) que nous venons d'obtenir nous permet un calcul explicite : soit x>0

$$f'(x) = -\int_0^{+\infty} \sin(t)e^{-xt}dt = -\frac{1}{2i} \int_0^{+\infty} \left(e^{it} - e^{-it}\right)e^{-xt}dt$$

$$= -\frac{1}{2i} \int_0^{+\infty} \left(e^{t(i-x)} - e^{-t(i+x)}\right)dt$$

$$= -\frac{1}{2i} \left(\left[\frac{e^{t(i-x)}}{i-x}\right]_0^{\infty} + \left[\frac{e^{-t(i+x)}}{i+x}\right]_0^{\infty}\right)$$

$$= -\frac{1}{2i} \left(-\frac{1}{i-x} - \frac{1}{i+x}\right) = -\frac{1}{1+x^2}$$

(les deux termes « entre crochets » sont nuls à l'infini car par exemple $\left|\frac{e^{-t(i+x)}}{i+x}\right| = \frac{e^{-xt}}{\sqrt{x^2+1}} \to 0$ lorsque t tends vers $+\infty$). En intégrant cette formule, il vient

$$\exists C \in \mathbb{R} : \forall x \in \mathbb{R}_+^* \qquad f(x) = -\arctan(x) + C.$$

La constante C n'est pas difficile à déterminer, en effet la formule ci-dessus implique que

$$\lim_{x \to +\infty} f(x) = -\frac{\pi}{2} + C$$

et pour tout x > 0

$$|f(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x} \underset{x \to +\infty}{\longrightarrow} 0$$

soit

$$-\frac{\pi}{2} + C = 0$$
 et $C = \frac{\pi}{2}$.

Résumons nous :

$$f(x) = \begin{cases} -\arctan(x) + \frac{\pi}{2}, & \text{si } x > 0\\ \int_0^{+\infty} \frac{\sin(t)}{t} dt, & \text{si } x = 0. \end{cases}$$

3) Il s'agit de montrer que

$$\lim_{x \to 0_+} |f(x) - f(0)| = \lim_{x \to 0_+} \left| \int_0^{+\infty} \frac{\sin(t)}{t} \left(e^{-xt} - 1 \right) \right| dt = 0.$$

Cette limite n'est pas triviale, on va faire une intégration par parties : considérons pour t>0, $G(t)=\int_t^\infty \frac{\sin(u)}{u}du$. G est dérivable et $G'(t)=-\frac{\sin(t)}{t}$, en outre la convergence de $\int_0^{+\infty} \frac{\sin(t)}{t}dt$ implique $\lim_{t\to\infty} G(t)=0$. Ainsi

$$f(x) - f(0) = \int_0^{+\infty} \frac{\sin(t)}{t} \left(e^{-xt} - 1 \right)$$

$$= -\int_0^{+\infty} G'(t) \left(e^{-xt} - 1 \right)$$

$$= \left[G(t) \left(e^{-xt} - 1 \right) \right]_0^{\infty} - \int_0^{+\infty} G(t) x e^{-xt} dt$$

$$= \int_0^{+\infty} G\left(\frac{u}{x} \right) e^{-u} du := -\int_0^{+\infty} H(x, u) du$$

et la fonction

$$H(x, u) = \begin{cases} G\left(\frac{u}{x}\right)e^{-u} & \text{si } x \neq 0, \\ 0 & \text{si } x = 0. \end{cases}$$

est continue sur $\mathbb{R}^+ \times \mathbb{R}_+^*$ (la continuité en (0, u) découle de $\lim_{t\to\infty} G(t) = 0$); elle est aussi dominée par

$$|H(x,u)| \le e^{-u} \in L^1(\mathbb{R}_+).$$

Donc par convergence dominée

$$(\checkmark) \qquad \lim_{x \to 0_+} |f(x) - f(0)| = \lim_{x \to 0} \left| -\int_0^{+\infty} H(x, u) du \right| = \left| -\int_0^{+\infty} \lim_{x \to 0} H(x, u) du \right| = 0.$$

f est donc bien continue à l'origine.

4) (X) et (V) donnent immédiatement

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}.$$

Exercise 4: Soient
$$f(x) = \int_0^\infty \frac{\sin(t)}{t+x} dt$$
, $g(x) = \int_0^\infty \frac{e^{-xt}}{t^2+1} dt$.

- 1) Montrer que $f, g \in \mathscr{C}^2(\mathbb{R}^*)$ (pour f, on pourra commencer par montrer que $f(x) = \int_0^\infty \frac{1-\cos(t)}{(t+x)^2} dt$).
- 2) Montrer que f et g sont solutions de l'équation différentielle y'' + y = 1/x.
- 3) En déduire que f g est 2π -périodique (sur son domaine de définition).
- 4) Montrer que f et g sont équivalentes à 1/x en $+\infty$ puis, que f=g.
- 5) En déduire la valeur que $\int_0^\infty \frac{\sin(t)}{t} dt$

Solution : 1) et 2) Ces intégrales impropres sont clairement convergentes pour tout $x \in \mathbb{R}_+$; posons pour $(x,t) \in \mathbb{R}_+ \times \mathbb{R}_+ : f(x,t) = \sin(xt)/t + x, g(x,t) = e^{-tx}/t^2 + 1$. Les dominations

$$|g(x,t)| \leq \frac{1}{1+t^2}, \quad \forall t \in \mathbb{R}_+,$$

$$\forall t \in \mathbb{R}_+, \quad \left| \frac{\partial g(x,t)}{\partial x} \right| \leq \frac{te^{-at}}{1+t^2} \in L^1(\mathbb{R}_+), \quad \forall x \geq a > 0,$$

$$\forall t \in \mathbb{R}_+, \quad \left| \frac{\partial^2 g(x,t)}{\partial x^2} \right| \leq \frac{t^2 e^{-at}}{1+t^2} \in L^1(\mathbb{R}_+), \quad \forall x \geq a > 0,$$

assurent par convergence dominée que g est continue sur \mathbb{R}_+ et de classe \mathscr{C}^2 sur \mathbb{R}_+^{\star} avec

$$g'(x) = -\int_0^\infty \frac{te^{-xt}}{t^2 + 1} dt, \ g''(x) = \int_0^\infty \frac{t^2 e^{-xt}}{t^2 + 1} dt, \quad \forall x \in \mathbb{R}_+^*.$$

On en déduit immédiatement que g''(x) + g(x) = 1/x sur \mathbb{R}_{+}^{\star} .

Pour f c'est un peu plus délicat car l'application $t \mapsto f(x,t)$ est notoirement non absolument intégrable sur \mathbb{R}_+ et toute domination est veine, on commence donc par une intégration par parties pour obtenir une expression plus exploitable de f.

$$f(x) = \int_0^\infty \frac{\sin(t)}{t+x} dt = \left[\frac{1 - \cos(t)}{t+x} \right]_0^\infty + \int_0^\infty \frac{1 - \cos(t)}{(t+x)^2} dt = \int_0^\infty \frac{1 - \cos(t)}{(t+x)^2} dt$$

(afin d'alléger les calculs on a choisi $1 - \cos(t)$ comme primitive de $\sin(t)$ choix qui annule le « terme entre crochets »). De là, si $h(x,t) = 1 - \cos(t)/(t+x)^2$ et pour $x \ge a > 0$

$$\forall t \in \mathbb{R}_+, \quad \left| \frac{\partial h(x,t)}{\partial x} \right| = \left| -\frac{2(1-\cos(t))}{(t+x)^3} \right| \le \frac{2}{(t+a)^3} \in L^1(\mathbb{R}_+), \quad \forall x \ge a > 0,$$

$$\forall t \in \mathbb{R}_+, \quad \left| \frac{\partial^2 h(x,t)}{\partial x^2} \right| = \left| \frac{6(1-\cos(t))}{(t+x)^4} \right| \le \frac{12}{(t+a)^3} \in L^1(\mathbb{R}_+), \quad \forall x \ge a > 0,$$

ces dominations impliquent que $f \in \mathscr{C}^2(\mathbb{R}_+^*)$ avec

$$f''(x) = \int_0^\infty \frac{6(1 - \cos(t))}{(t+x)^4} dt, \quad \forall x \in \mathbb{R}_+^*$$

et avec une intégration par parties

$$f''(x) = \int_0^\infty \frac{6(1 - \cos(t))}{(t+x)^4} dt = \left[-\frac{2(1 - \cos(t))}{(t+x)^3} \right]_0^\infty + \int_0^\infty \frac{2\sin(t)}{(t+x)^3} dt$$

$$= \left[-\frac{\sin(t)}{(t+x)^2} \right]_0^\infty + \int_0^\infty \frac{\cos(t)}{(t+x)^2} dt = \int_0^\infty \frac{\cos(t)}{(t+x)^2} dt$$

$$= \int_0^\infty \frac{dt}{(t+x)^2} - \int_0^\infty \frac{1 - \cos(t)}{(t+x)^2} dt$$

$$= \frac{1}{x} - f(x), \quad x > 0.$$

- 3) f et g sont solutions sur \mathbb{R}_+^{\star} de l'équation y'' + y = 1/x, f g est donc solution de l'équation y'' + y = 0: c'est la restriction à \mathbb{R}_+^{\star} d'une solution sur \mathbb{R} de y'' + y = 0 donc 2π -périodique.
- 4) Soit x > 0, vu ce qui précède

$$f(x) = \frac{1}{x} - \int_0^\infty \frac{2\sin(t)}{(t+x)^3} dt$$

et comme

$$\left| \int_0^\infty \frac{2\sin(t)}{(t+x)^3} dt \right| \le \int_0^\infty \frac{2dt}{(t+x)^3} = \frac{2}{x^2} = o(x^{-1})$$

i.e.

$$f(x) = \frac{1}{x} + o(x^{-1}) \sim \frac{1}{x}$$

Pour g, on procède de même encore plus simplement.

Sur \mathbb{R}_+^* , f-g est continue 2π -périodique et tends vers 0 en $+\infty$: elle est donc identiquement nulle et on a

$$\int_0^\infty \frac{\sin(t)}{t+x} dt = \int_0^\infty \frac{e^{-xt}}{t^2+1} dt, \quad \forall x \in \mathbb{R}_+^*.$$

5) Pour conclure, voir l'exercice précédent.

Exercice 3: Montrer que

$$\int_0^{\pi/2} e^{-x\cos(t)}\cos(x\sin(t))dt = \frac{\pi}{2} - \int_0^x \frac{\sin(t)}{t}dt$$

et en déduire que $\int_0^{\pi/2} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Solution : Soit $x \in \mathbb{R}$, on a

$$\int_{0}^{\pi/2} e^{-x\cos(t)}\cos(x\sin(t))dt = \operatorname{Re}\left(\int_{0}^{\pi/2} e^{-x\cos(t)}e^{ix\sin(t)}dt\right)$$

$$= \operatorname{Re}\left(\int_{0}^{\pi/2} \sum_{n=0}^{\infty} \frac{(-x)^{n}e^{-int}}{n!}dt\right)$$

$$= \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n!} \int_{0}^{\pi/2} \operatorname{Re}\left(e^{-int}\right)dt$$

$$= \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n!} \left[\frac{\sin(nt)}{n}\right]_{0}^{\pi/2}$$

$$= \frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n!} \frac{\sin(n\pi/2)}{n!}$$

$$= \frac{\pi}{2} + \sum_{k=0}^{\infty} \frac{(-x)^{2k+1}}{(2k+1)!} \frac{\sin((2k+1)\pi/2)}{2k+1}$$

$$= \frac{\pi}{2} - \sum_{k=0}^{\infty} \frac{(-1)^{k}x^{2k+1}}{(2k+1)(2k+1)!}$$

$$= \frac{\pi}{2} - \sum_{k=0}^{\infty} \int_{0}^{x} \frac{(-1)^{k}t^{2k+1}}{(2k+1)!} \frac{dt}{t}$$

$$= \frac{\pi}{2} - \int_{0}^{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}t^{2k+1}}{(2k+1)!} \frac{dt}{t}$$

$$= \frac{\pi}{2} - \int_{0}^{x} \frac{\sin(t)}{t} dt.$$

Les deux échanges $\int \sum = \sum \int$ sont justifiés par la normale convergence des deux séries entières sur le domaine d'intégration (leur rayon de convergence étant infini).

♥ Une convergence dominée élémentaire $\left(\left|e^{-x\cos(t)}\cos(x\sin(t))\right| \le 1 \in L^1([0,\pi/2])\right)$ implique

$$\lim_{x \to +\infty} \int_0^{\pi/2} e^{-x\cos(t)} \cos(x\sin(t)) dt = 0,$$

²que l'on peut aussi éviter en coupant l'intégrale en deux...

soit, vu la formule établie au dessus

$$\lim_{x \to +\infty} \left(\frac{\pi}{2} - \int_0^x \frac{\sin(t)}{t} dt \right) = 0$$

et par conséquent $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Exercice 5 : (avec des intégrales doubles-1) En intégrant $f(x,t) = e^{-xy} sin(x)$ sur $[\epsilon, T] \times [0, +\infty[$, $0 < \epsilon < T$, calculer $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Solution : Soient $0 < \varepsilon < T$, nous avons

$$\int_{\varepsilon}^{T} \frac{\sin(x)}{x} dx = \int_{\varepsilon}^{T} \sin(x) \left(\int_{0}^{\infty} e^{-xy} dy \right) dx$$

$$= \int_{0}^{\infty} \left(\int_{\varepsilon}^{T} \sin(x) e^{-xy} dx \right) dy$$

$$= \int_{0}^{\infty} \frac{e^{-y\varepsilon} (\cos \varepsilon + y \sin \varepsilon) - e^{-yT} (\cos T + y \sin T)}{y^{2} + 1} dy$$

$$= \int_{0}^{\infty} g_{\varepsilon,T}(y) dy$$

l'application ci-dessus du théorème de Fubini est justifiée par $|f(x,y)| \leq e^{-xy}$ et

$$\int_{\varepsilon}^{T} \left(\int_{0}^{\infty} e^{-xy} dy \right) dx = \int_{\varepsilon}^{T} \left[-\frac{e^{xy}}{x} \right]_{0}^{\infty} dx = \int_{\varepsilon}^{T} \frac{dx}{x} = \log \frac{T}{\varepsilon} < \infty.$$

pour tous $0 < \varepsilon < T$.

Maintenant, observons que pour $0 < \varepsilon \le y$

$$|e^{-y\varepsilon}(\cos\varepsilon + y\sin\varepsilon)| \le 1 + y\varepsilon e^{-y\varepsilon} \le 1 + e^{-1},$$

de même, pour T > 1

$$|e^{-yT}(\cos T + y\sin T)| \le e^{-yT}(1+y) \le e^{-y}(1+y).$$

Ainsi pour $0 < \varepsilon \le y \le T$ et $T \le 1$

$$|g_{\varepsilon,T}(y)| \le \frac{\max\{(1+e^{-1},e^{-y}(1+y))\}}{y^2+1} \in L^1(\mathbb{R}_+).$$

Il est donc légitime d'invoquer le théorème de la convergence dominée pour écrire

$$\lim_{\varepsilon \to 0_+} \lim_{T \to +\infty} \int_0^\infty g_{\varepsilon,T}(y) dy = \int_0^\infty \frac{dy}{y^2 + 1} = \frac{\pi}{2},$$

d'autre part, comme

$$\int_{\varepsilon}^{T} \frac{\sin(x)}{x} dx = \int_{0}^{\infty} g_{\varepsilon,T}(y) dy$$

nous avons finalement

$$\int_0^\infty \frac{\sin(x)}{x} dx = \lim_{\varepsilon \to 0_+} \lim_{T \to +\infty} \int_0^\infty g_{\varepsilon,T}(y) dy = \frac{\pi}{2}.$$

Exercice 6: (avec des intégrales doubles - 2)

En intégrant sur $[0, u] \times [0, u]$, $f(x, y) = \sin(x)e^{-xy}$, montrer que

$$\int_0^u \frac{\sin(x)}{x} (1 - e^{-xu}) dx = \int_0^u \frac{1 - e^{-yu} (\cos(u) + y\sin(y))}{1 + y^2} dy,$$

et en déduire que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt = \frac{\pi}{2}$.

Exercice 7: (avec Riemann-Lebesgue^a)

1) Montrer que

$$\forall n \in \mathbb{N} : \int_0^{\pi/2} \frac{\sin\left((2n+1)t\right)}{\sin(t)} dt = \frac{\pi}{2}.$$

2) Montrer que

$$\lim_{n\to\infty}\left(\int_0^{\pi/2}\frac{\sin\left((2n+1)t\right)}{t}dt-\int_0^{\pi/2}\frac{\sin\left((2n+1)t\right)}{\sin(t)}dt\right)=0.$$

3) En déduire que
$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt = \frac{\pi}{2}$$
.

^aLe Lemme de Reimann-Lebesgue : si $f \in \mathscr{C}^0([a,b])$ alors $\lim_n \int_a^b f(t) \cos(nt) dt = \lim_n \int_a^b f(t) \sin(nt) dt = 0$; la preuve est élémentaire si $f \in \mathscr{C}^1([a,b])$ avec une intégration par parties et un peu plus délicate si f est seulement continue.

Solution : 1) On a pour $x \in]0, 2\pi[$

$$\frac{1}{2} + \cos(x) + \cos(2x) + \dots + \cos(nx) = \frac{\sin((2n+1)x/2)}{2\sin(x/2)},$$

par conséquent pour $x \in]0, \pi[$

$$1 + 2\cos(2x) + 2\cos(4x) + \dots + 2\cos(2nx) = \frac{\sin((2n+1)x)}{\sin(x)},$$

qui donne immédiatement

$$\int_0^{\pi/2} \frac{\sin\left((2n+1)t\right)}{\sin(t)} dt = \frac{\pi}{2}.$$

2) Nous avons

$$\lim_{n \to \infty} \left(\int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt - \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt \right)$$

$$= \lim_{n \to \infty} \int_0^{\pi/2} \frac{\sin(t) - t}{t \sin(t)} \sin((2n+1)t) dt = 0,$$

la dernière limite est nulle via Riemann-Lebesgue par continuité de l'application $t\mapsto \frac{\sin(t)-t}{t\sin(t)}$ sur $[0,\pi/2]$.

3) La convergence de l'intégrale $\int_0^\infty \frac{\sin(t)}{t} dt$ implique

$$\int_{0}^{+\infty} \frac{\sin(t)}{t} dt = \lim_{n \to \infty} \int_{0}^{n\pi/2} \frac{\sin(t)}{t} dt = \lim_{n \to \infty} \int_{0}^{\pi/2} \frac{\sin(nt)}{t} dt,$$

en particulier

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt = \lim_{n \to \infty} \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt,$$

on invoque alors les deux premières questions pour conclure.

Exercice 8 : Calculer par récurrence $I_n = \int_0^{\pi/2} \frac{\sin(2nt)}{\tan(t)} dt$ et en déduire que $\int_0^{\pi/2} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Solution : C'est la même idée que l'exercice précédent.

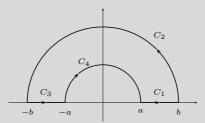
Exercice 9: On pose $f(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt$. Montrer que $f \in \mathscr{C}^0(\mathbb{R}_+) \cap \mathscr{C}^1(\mathbb{R}_+^*)$, calculer f' pour en déduire la valeur de $\int_0^{\pi/2} \frac{\sin(t)}{t} dt$.

Exercice 10: (avec Green-Riemann)

1) Soient 0 < a < b. Calculer l'intégrale curviligne de la forme différentielle

$$\omega = \frac{e^{-y}}{x^2 + y^2} \left\{ (x \sin(x) - y \cos(x)) dx + (x \cos(x) + y \sin(x)) dy \right\}$$

le long du contour orienté:



2) En déduire que

$$\frac{\pi}{2} = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

Solution : 1) La forme ω est fermée dans $\mathbb{R}^2 \setminus \{(0,0)\}$ donc dans l'ouvert étoilé $\{re^{i\theta}, r > 0, -\pi/4 < \theta < 5\pi/4\}$, soit avec Poincaré $\int_C \omega = 0$.

- 2) Nous allons successivement faire tendre a vers 0_+ et b vers $+\infty$.
- → En respectant les notations de la figure

$$\lim_{a \to 0_+} \lim_{b \to +\infty} \int_{C_1} \omega = \lim_{a \to 0_+} \lim_{b \to +\infty} \int_{C_3} \omega = \lim_{a \to 0_+} \lim_{b \to +\infty} \int_a^b \frac{\sin(x)}{x} dx = \int_0^\infty \frac{\sin(x)}{x} dx,$$

 \rightsquigarrow Pour C_2 , la paramétrisation $x = b\cos(\theta), \ y = b\sin(\theta)$ où θ varie de 0 à π donne

$$\int_{C_2} \omega = \int_0^{\pi} e^{-b\sin(\theta)} \cos(b\cos\theta) d\theta$$

qui tends vers 0 par convergence dominée puisque $|e^{-b\sin(\theta)}\cos(b\cos\theta)| \le e^{-b\sin(\theta)} \le 1 \in L^1([0,\pi]).$

 \rightarrow De même, pour C_4 , la paramétrisation $x = a\cos(\theta), \ y = a\sin(\theta)$ où θ varie de π à 0 donne

$$\int_{C_4} \omega = -\int_0^{\pi} e^{-a\sin(\theta)} \cos(a\cos\theta) d\theta$$

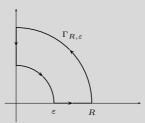
qui tends vers $-\pi$ par convergence dominée puisque $|e^{-a\sin(\theta)}\cos(a\cos\theta)| \le 1 \in L^1([0,\pi])$.

→ En résumé

$$0 = \lim_{a \to 0_+} \lim_{b \to +\infty} \int_C \omega = 2 \int_0^\infty \frac{\sin(x)}{x} dx - \pi$$

CQFD.

Exercice 11 : (avec la formule de Cauchy) Pour $R>0,\ \varepsilon>0$ on note $\Gamma_{R,\varepsilon}$ le circuit ci-dessous



- 1) Calculer $\int_{\Gamma_{R,\varepsilon}} \frac{e^{iz}}{z} dz$.
- 2) Montrer que $\lim_{\varepsilon \to 0_+} \int_{\gamma_{\varepsilon}} \frac{e^{iz} 1}{z} dz = \lim_{R \to +\infty} \int_{\gamma_R} \frac{e^{iz}}{z} dz = 0.$
- 3) En déduire que $\int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Solution: C'est la version holomorphe de l'exercice précédent.

3. Autour de l'intégrale de Dirichlet

Exercice 12: Soit $f \in \mathscr{C}^0([0, +\infty[, \mathbb{R}) \text{ tendant vers } 1 \text{ en } +\infty \text{ et}$

$$\varphi(x) := \int_0^{+\infty} f(t) \left(\frac{\sin(xt)}{t}\right)^2 dt.$$

- 1) Quel est de domaine de définition de φ ? Exprimez la limite L en 0_+ de $\varphi(x)/x$ en fonction d'une intégrale.
- 2) Prouver que l'on a

$$L = \int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

Exercice 13: (E3343) Montrer que

$$\sum_{n=1}^{\infty} \frac{1}{n} \int_{2n\pi}^{+\infty} \frac{\sin(t)}{t} dt = \pi - \frac{\pi}{2} \log(2\pi),$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \int_{2n\pi}^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2} - \frac{\pi}{2} \log(\pi).$$

Exercice 14: (Évaluation du reste) Montrer que pour tout x > 0:

$$\left| \int_{x}^{\infty} \frac{\sin(t)}{t} dt \right| \le \frac{2}{x}.$$

Exercice 15: (E4286) Montrer que

$$\int_0^{+\infty} \frac{\cos^2(x) - \cos(x)}{x} dx = \frac{\gamma}{2}$$

où γ est la constante d'Euler.

Exercice 16:

Lassère Patrice : Institut de Mathématiques de Toulouse, Laboratoire E.Picard, UMR CNRS 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 TOULOUSE.7 mars 2008 lassere@picard.ups-tlse.fr