3 * 3 Suites et Séries de Fonctions – Feuille 1.

3 4 3

Exercice 1. Etudier les suites de fonctions définies sur \mathbb{R} par

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, g_n(x) = \frac{nx^3}{1 + nx^2}, \ h_n(x) = \frac{1}{1 + (x + n)^2}, \ k_n(x) = e^{-x} \sum_{k=0}^n \frac{x^k}{k!} \ n \in \mathbb{N}.$$

Exercice 2.

- (1) Etudier la suite de fonctions définie sur \mathbb{R}_+ par $f_n(x) = \left(\sum_{k=0}^{2n} x^k\right)^{-1}$, $n \in \mathbb{N}$.
- (2) Etudier la suite de fonctions définie sur [0,1] par $f_n(x) = 4^n \left(x^{2^n} x^{2^{n+1}}\right)$, $n \in \mathbb{N}$.
- (3) Etudier la suite de fonctions définie sur $[1, +\infty[$ par $f_n(x) = n(\sqrt[n]{x} 1)$.
- (4) Etudier la suite de fonctions définies sur \mathbb{R} par $f_n(x) = \sqrt[2n]{1+x^{2n}}$.
- (5) On pose pour $n \in \mathbb{N}$: $f_n(x) = \sqrt{n+1}\sin^n(x)\cos(x)$. Montrer que la suite $(f_n)_n$ est simplement convergente sur \mathbb{R} , la convergence est-elle uniforme sur \mathbb{R} ?
- (6) Etudier la convergence simple et uniforme sur \mathbb{R}_+ de la suite de fonctions $f_n: x \mapsto x^n e^{-x}/n!$ et déterminer $\lim_n \int_{\mathbb{R}_+} f_n(t) dt$. Commentaire?

Exercice 3. Soit $f \in \mathcal{C}^1(\mathbb{R})$ à dérivée uniformément continue sur \mathbb{R} . On pose pour $n \in \mathbb{N}^*$: $f_n(x) = nf(x+n^{-1}) - f(x)$). Montrer que la suite $(f_n)_n$ converge uniformément sur \mathbb{R} vers f'. Par un exemple, montrer que l'hypothèse de continuité uniforme sur f' est essentielle.

Exercice 4. Que dire d'une fonction $f \in \mathscr{C}^0([a,b])$ vérifiant $\int_a^b t^n f(t) dt = 0$, $\forall n \in \mathbb{N}$?

Exercice 5. Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$ on pose $f_n(x) = Arctan(x/n)$.

- 1) Montrer que la suite $(f_n)_n$ est simplement convergente sur \mathbb{R} . La convergence est-elle uniforme?
 - 2) Montrer que la suite $(f'_n)_n$ converge uniformément sur \mathbb{R} .

Exercice 6. Soit $f \in \mathscr{C}^0(\mathbb{R}_+)$ vérifiant $f(0) = 0 = \lim_{+\infty} f(x)$. On pose pour $n \in \mathbb{N}^*$, $x \in \mathbb{R}_+$: $g_n(x) = f(nx)f(x/n)$. Montrer que la suite $(g_n)_n$ est uniformément convergente sur \mathbb{R}_+ .

Exercice 7. Soit $f \in \mathcal{C}^0(\mathbb{R})$ vérifiant pour tout $x \in \mathbb{R}^*$: |f(x)| < |x|. Montrer que la suite des itérés $(f^n := f \circ f \cdots \circ f)_n$ est uniformément convergente vers la fonction nulle sur [-a, a] pour tout a > 0.

Exercice 8. Soit $(f_n)_n$ une suite de fonctions uniformément continues sur \mathbb{R} qui converge uniformément sur \mathbb{R} vers f, montrer que f est uniformément continue.

Exercice 9. Soit $(P_n)_n$ une suite de polynômes uniformément convergente sur \mathbb{R} vers f, montrer que f est un polynôme.

Exercice 10. Soient $I \subset \mathbb{R}$ un intervalle, $P \in \mathbb{R}[X] \setminus \{X\}$ vérifiant $P(I) \subset I$ et $(P_n)_n$ la suite d'applications définie par $P_1 = P$ et $P_{n+1} = P_n \circ P$ pour tout $n \geq 2$. On suppose que la suite $(P_n)_n$ converge uniformément sur I vers f. Montrer que f est constante.

Exercice 11. Soit $f:]0,1] \ni t \mapsto f(t) = \sin(1/t)$. Montrer que f n'est pas limite uniforme sur [0,1] d'une suite de polynômes.

1

Exercice 12. Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ où f_n est définie sur \mathbb{R} par : $f_n(x) = \cos^n(x/\sqrt{n})$ (commencer par montrer que pour tout réel $u: 1-u^2/2 \leq \cos(u) \leq 1-u^2/2+u^4/24$ puis, que pour tout $u \in [0,1/2]: -u-u^2 \leq \log(1-u) \leq -u$).

Exercice 13. Montrer que la suite $(f_n)_n$ où f_n est définie $sur \,]-\pi, \pi [par \, f_n(x) = \sum_{p=1}^n 2^{-p} \tan(2^{-p}x)]$ est simplement convergente $sur \,]-\pi, \pi [vers une limite que l'on précisera (on pourra utiliser après l'avoir démontrée, la formule <math>\tan(y/2) = \cot(y/2) - 2\cot(y)$).

Devoir 1, à rendre en TD le vendredi 13 janvier.

Exercice 14. Soient 0 < a < b < 1 et $f \in \mathcal{C}([a,b])$. On prolonge f sur $\mathbb{R} \setminus [a,b]$ en posant f(x) = 0 pour $x \leq 0$, f(x) = xf(a)/a pour 0 < x < a, $f(x) = \frac{1-x}{1-b}f(b)$ pour b < x < 1 et f(x) = 0 si $x \geq 1$. Enfin, pour tout entier n on pose:

$$J_n = \int_{-1}^{1} (1 - t^2)^n dt, \quad P_n(x) = J_n^{-1} \int_{0}^{1} f(t) (1 - (t - x)^2)^n dt.$$

- (1) Soit $f \in \mathcal{C}([a,b])$, montrer que son prolongement à \mathbb{R} est continu et donner une représentation graphique.
- (2) Montrer que P_n est un polynôme en x de degré $\leq 2n$.
- (3) Montrer que pour $x \in [0,1]$:

$$P_n(x) = J_n^{-1} \int_{-1+x}^{1+x} f(t)(1 - (t-x)^2)^n dt = J_n^{-1} \int_{-1}^{1} f(u+x)(1-u^2)^n du.$$

- (4) En déduire que pour tout $x \in [0,1]$: $P_n(x) f(x) = J_n^{-1} \int_{-1}^1 [f(u+x) f(x)] (1-u^2)^n du$.
- (5) Soit $\varepsilon > 0$, montrer qu'il existe $\delta > 0$ tel que $|f(x+u) f(x)| \le \varepsilon/2$ pour tout $x \in [0,1]$ et $|u| < \delta$.
- (6) Montrer que $|f(x+u) f(x)| \le \frac{2\|f\|_{\infty} u^2}{\delta^2}$ pour tout $x \in [0,1]$ et tout $|u| \ge \delta$.
- (7) Montrer que $|f(x+u) f(x)| \le \varepsilon/2 + \frac{2\|f\|_{\infty}u^2}{\delta^2}$ pour tout $u \in [-1, 1]$ et $x \in [0, 1]$.
- (8) Montrer que pour tout $n \in \mathbb{N}$ et $x \in [0,1]$:

$$|P_n(x) - f(x)| \le \varepsilon/2 + \frac{2||f||_{\infty}}{\delta^2 J_n} \int_{-1}^1 u^2 (1 - u^2)^n du \le \varepsilon/2 + \frac{||f||_{\infty}}{(n+1)\delta^2}.$$

(9) En déduire que la suite $(P_n)_n$ converge uniformément vers f sur a, b].

Page perso.: http://www.math.univ-toulouse.fr/lassere/Mel:lassere@math.univ-toulouse.fr

(10) Démontrer le théorème de Weierstrass : toute fonction continue sur un segment $[\alpha, \beta] \subset \mathbb{R}$ est limite uniforme sur $[\alpha, \beta]$ d'une suite de polynômes.