
FONCTIONS D'UNE VARIABLE RÉELLE

CONTINUITÉ, NOTES DE COURS

PATRICE LASSÈRE, 29 SEPTEMBRE 2011

1. R, Ensembles, Applications.

1.1. Valeur absolue, Bornes supérieure, inférieure.

Dé�nition 1. On dé�nit la valeur absolue d'un nombre réel x par

|x| := max{x,−x} =

{
x si x ≥ 0

−x si x < 0.

Pour x, y ∈ R, d(x, y) := |x− y| est la distance euclidienne entre les deux réels x et y.

Propriété 1. Soient x, y ∈ R et ε > 0, on a :

(1) |x| ≥ 0 et
(
|x| = 0⇔ x = 0

)
.

(2) ∀ ε > 0 : (|x| < ε) ⇐⇒ (−ε < x < ε).

(3) |xy| = |x| · |y|.
(4) |x+ y| ≤ |x|+ |y|.
(5) |x− y| ≤ ε⇔ x− ε ≤ y ≤ x+ ε.

(6)
∣∣∣|x| − |y|∣∣∣ ≤ |x− y|.

Démonstration : Pour (1,2,3,4) voir votre cours de terminale ou exercice. Pour (6) si l'on écrit
x = (x− y)+ y l'inégalité triangulaire (3) nous donne |x| ≤ |x− y|+ |y| soit |x| − |y| ≤ |x− y| ;
on échange alors les rôles de x et y pour obtenir l'autre inégalité. CQFD �

Exercices : •Montrer par recurrence sur l'entier n que |a1+a2+· · ·+an| ≤ |a1|+|a2|+· · ·+|an|
où a1, a2, . . . , an ∈ R.
• Montrer pour tout x, y ∈ R :

|x+ y|
1 + |x+ y|

≤ |x|
1 + |x|

+
|y|

1 + |y|
,
√
x2 + y2 ≤ |x|+ |y|,

√
|x+ y| ≤

√
|x|+

√
|y|.
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Dé�nition 2. • Soit X une partie non vide de R et m un nombre réel. On dira que m est un
majorant de X si

∀x ∈ X : x ≤ m,

dans ce cas, on dira que X est majorée ; et si ∀x ∈ X : x ≥ m on dira que m est un minorant
de X et X sera minorée. Toute partie à la fois majorée et minorée sera dite bornée.
• La borne supérieure d'une partie X ⊂ R est, lorsqu'elle existe le plus petit des majorants
de X on la note supX ; de même, la borne inférieure d'une partie X ⊂ R est, lorsqu'elle
existe le plus grand des minorants de X, on la note infX.
• Si une partie non vide X ⊂ R n'est pas majorée, on écrira supX = +∞, de même pour une

partie non vide X ⊂ R non minorée on écrira infX = −∞ ; avec la convention pour l'ensemble
vide : sup ∅ = −∞ et inf ∅ = +∞.

Remarques : • Soit m un majorant d'un ensemble X, si m ∈ X on dira que m est le
grand élément ou maximum de X, on le notera max(X). Attention à ne pas confondre borne
supérieure et plus grand élément ou maximum. Par exemple A = [0, 1[ n'admet pas de plus
grand élément mais une borne supérieure supA = 1. Même remarque entre l'inf et le minimum.
• +∞ et −∞ dé�nis plus haut ne sont pas des nombres réels. Il est clair que si A n'est pas
vide inf A ≤ supA.
• Voici les propriétés arithmétiques de ±∞ : ∞+∞ =∞, −∞−∞ = −∞, ∞− (−∞) =∞,
∞±c =∞, c ∈ R, −∞±c = −∞, c ∈ R, (±∞) ·c = ±∞, c > 0,∞·∞ =∞,∞(−∞) = −∞.
Et ne pas oublier que les opérations ∞−∞, 0 · ∞, ∞/∞, c/0 ne sont pas dé�nies.

Exercice : Soit A ⊂ R un ensemble. Montrer que maxA est dé�ni de manière unique s'il
existe. Montrer que maxA existe si et seulement si supA ∈ A. Dans ce cas maxA = supA. On
a une propriété analogue pour l'inf et le min.

Théorème 1. Dans R, toute partie non vide majorée admet une borne supérieure.

Remarques : Ce théorème est fondamental et loin d'être trivial ; observez bien qu'il peut être
faux si l'on est pas dans R. Par exemple dans Q l'ensemble {x ∈ Q : x ≤ π} est majoré (4 est
un des majorants) mais il n'admet pas (prouvez le ! exercice) de borne supérieure dans Q.

Démonstration : Admise. �

Exercice : Si A ⊂ R est majorée, montrer que sa borne supérieure est unique.

Proposition 1. (caractérisation de la borne supérieure). La borne supérieure b d'une partie X
majorée de R est caractérisée par :

(∀x ∈ X : x ≤ b) et (∀ ε > 0, ∃xε ∈ X : b− ε < xε)

Remarque : Comprendre cette proposition et sa démonstration est essentiel.

Démonstration : ∀x ∈ X : x ≤ b nous dit que X est majoré par b, la deuxième assertion
signi�e que tout réel strictement inférieur à b n'est pas un majorant de X : tout les majorant
de X sont donc supérieur à b qui est donc bien la borne supérieure de X. �
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En considérant l'ensemble −X = {−x, x ∈ X} on a aussi des énoncés du même type pour
la borne inférieure :

Proposition 2.

(1) 1) Dans R, toute partie non vide minorée admet une borne inférieure.

(2) 2) (caractérisation de la borne inférieure). La borne inférieure b d'une partie X minorée
de R est caractérisée par :

(∀x ∈ X : x ≥ b) et (∀ ε > 0, ∃xε ∈ X : b+ ε > xε)

Terminons ce paragraphe par la liste des propriétés essentielles des bornes sup et inf. Il est
essentiel pour toute la suite d'en maitriser parfaitement les démonstrations.

Proposition 3. Soient A,B deux parties de R, on pose A+B := {a+b, a ∈ A, b ∈ B}, cA :=
{ca, a ∈ A},−A := {−a, a ∈ A}. Alors
• A ⊂ B implique que supA ≤ supB et inf A ≥ inf B (monotonie).
• sup(−A) = − inf A et inf(−A) = − sup(A) (ré�exion).
• sup(A+ a) = a+ supA, inf(A+ a) = a+ inf A, ∀ a ∈ R (translation).
• sup(cA) = c · supA, ∀ c ∈ R?

+ (homogénéité).
• sup(A+ B) = supA+ supB, inf(A+ B) = inf A+ inf B (additivité) à partir du moment

où les sommes des sup ou des inf sont bien dé�nies conformément à la remarque plus haut.

Démonstration : Exercice obligatoire ! C'est le devoir 1. Par exemple montrons que sup(A+
B) = supA + supB. Si A est vide, il en est de même pour A + B soit supA + supB =
−∞ + supB = −∞ = sup(A + B) (souvenez vous que la somme des sup est est bien dé�nie
donc supB 6= +∞) ; on procède de même si B est vide.
Si A et B sont non vides, alors supA ≥ a pour tout a ∈ A, et supB ≥ b pour tout b ∈ B.

Donc supA + supB ≥ a + b pour tous a ∈ A, b ∈ B. supA + supB est bonc un majorant de
A+B et par suite sup(A+B) ≤ supA+ supB.
Pour l'inégalité inverse, observons dejà que si sup(A+B) = +∞ alors sup(A+B) ≤ supA+

supB implique sup(A + B) = supA + supB. Supposons donc sup(A + B) < +∞. Soient
a ∈ A, b ∈ B, on a a+ b ≤ sup(A+ B) et donc a ≤ sup(A+ B)− b. Ceci étant vrai pour tout
a ∈ A on a donc supA ≤ sup(A+B)−b. En particulier supA < +∞ et b ≤ sup(A+B)−sup(A)
pour tout b ∈ B qui implique supB ≤ sup(A+B)−sup(A) ou encore supA+supB ≤ sup(A+B)
ce qu'il fallait démontrer. CQFD. �

Exercices : • Soit a ∈ R véri�ant ∀ ε > 0, |a| ≤ ε. Montrer que a = 0.

• Montrer que max{|x| |y|} ≤
√
x2 + y2 ≤ 2max{|x| |y|} puis améliorer la seconde inégalité.

• Que dire d'une partie A dans R véri�ant supA = inf A ?
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1.2. Applications - Rudiments de vocabulaire.

Dé�nition 3. Soient E,F deux ensembles et f : E → F une application.
• On dira que f est injective si et seulement si : ∀x, x′ ∈ E, (f(x) = f(x′) =⇒ x = x′.
• On dira que f est surjective si et seulement si : ∀ y ∈ F, ∃x ∈ E : y = f(x).
• On dira que f est bijective si elle est injective et surjective ; autrement dit, si et seulement

si : ∀ y ∈ F, ∃x ∈ E : y = f(x).

Exemples-exercices : • La fonction g : R → R+ dé�nie par g(x) = x2 est surjective
mais pas injective, par contre la fonction f : R → R dé�nie par f(x) = x2 est ni surjective
ni injective alors que la fonction h : R+ → R+ dé�nie par h(x) = x2 est bijective et son
application réciproque h−1 : R+ → R+ dé�nie par h−1(x) =

√
x.

• Soient E,F,G trois ensembles et f : E → F, g : F → G. Si g ◦ f est injective montrer que
f est injective. Si g ◦ f est surjective montrer que g est surjective.
• Montrer que la composée de deux injections (resp. surjections, bijections) est une injection
(resp. surjection, bijection).
•
(1) Déterminer une bijection de N→ N∗.
(2) Déterminer une bijection de {1/n; n ≥ 1} dans {1/n; n ≥ 2}.
(3) Déduire de la question précédente une bijection de [0, 1] dans [0, 1[.

(4) Déterminer une bijection de N→ Z

Corrigé :
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(1) Posons f : N→ N∗, dé�nie par f(n) = n + 1. Remarquons f est bien à image dans N∗.
Il reste à prouver que f est bijective, ce qui est très facile avec la dé�nition : si n ∈ N∗,
on a f(k) = n ⇐⇒ k + 1 = n ⇐⇒ k = n− 1, l'équation f(k) = n admet une unique
solution dans N, ce qui dit bien que f est bijective.

(2) Posons g : {1/n; n ≥ 1} → {1/n; n ≥ 2}, dé�nie par g(1/n) = 1/(n + 1). Remarquons
là aussi que l'ensemble d'arrivée est bien cohérent avec l'ensemble de départ. D'autre
part, g est bijective.

(3) C'est plus compliqué ! ! ! Ecrivons [0, 1] = {1/n; n ≥ 1} ∪A, où A est le complémentaire
de {1/n; n ≥ 1} dans [0, 1]. On dé�nit h de la façon suivante :
� Si x = 1/n, alors h(x) = 1/(n+ 1).
� Sinon, c'est-à-dire si x ∈ A, h(x) = x.

Alors h est bijective ! Prouvons d'abord qu'elle est injective : si h(x) = h(x′), on distingue
3 cas :
� Si x ∈ A et x′ ∈ A, alors h(x) = x et h(x′) = x′ ce qui entraîne x = x′.
� Si x ∈ A et x′ /∈ A, écrivant x′ = 1/k, on a x = h(x) = h(x′) = 1/(k + 1), ce qui
implique x /∈ A, ce qui est impossible.

� Si x /∈ A et x′ /∈ A, écrivant x = 1/k et x′ = 1/n, on a 1/(k + 1) = h(x) = h(x′) =
1/(n+ 1) ce qui entraîne k + 1 = n+ 1 et par suite x = x′.

Dans tous les cas possibles, on trouve x = x′, et h est injective. Prouvons maintenant
que h est surjective, et choisissons y ∈ [0, 1[. Si y ∈ A, en particulier y 6= 1, et on a
h(y) = y. Si y /∈ A, y = 1/n, où n est entier strictement plus grand que 1 puisque y 6= 1.
On a alors h(1/(n− 1)) = y. Dans tous les cas, y possède un antécédent, ce qui prouve
que h est surjective.

(4) Rappelons que tout entier peut s'écrire 2k s'il est pair, et 2k + 1 s'il est impair. Posons
f(2k) = k, et f(2k + 1) = −k. Reste à véri�er que f est bijective, ce qui est laissé au
lecteur ! �

Propriété 2. Soient E,F deux ensembles et f : E → F une application.
• f est injective si et seulement si : � ∀x, x′ ∈ E, (f(x) = f(x′) =⇒ x = x′ � si et

seulement si � tout élément de F admet au plus un antécédent dans E � si et seulement si
� pour tout élément y ∈ F , l'équation f(x) = y possède au plus une solution �.
• f est surjective si et seulement si : � ∀ y ∈ F, ∃x ∈ E : y = f(x) � si et seulement

si � tout élément de F admet au moins un antécédent dans E � si et seulement si � pour tout
élément y ∈ F , l'équation f(x) = y possède au moins une solution �.
• f est bijective si et seulement si : ∀ y ∈ F, ∃x ∈ E : y = f(x) si et seulement si � tout

élément de F admet un et un seul antécédent dans E � si et seulement si � pour tout élément
y ∈ F , l'équation f(x) = y possède une unique solution �.
• Si f : E → F est bijective, il existe alors une unique application notée f−1 : F → E

véri�ant f ◦ f−1 = idF et f−1 ◦ f = idE c'est la l'application réciproque de f . f−1 : F → E
est alors aussi bijective et (f−1)−1 = f .
• Soient f : E → F , g : F → E deux applications. Véri�ant f ◦ g = idF et g ◦ f = idE.

Alors, elles sont toutes deux bijectives et réciproques l'une de l'autre.

Démonstration : Exercice. �

Exemple : On dira qu'un ensemble A est dénombrable lorsqu'il existe une bijection f :
A → N. Il est important d'observer que R n'est pas dénombrable : pour cela on va construire
un sous-ensemble de R qui n'est pas dénombrable (exercice : montrer que tout sous ensemble
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d'un ensemble dénombrable est au plus dénombrable, autrement dit, �ni ou dénombrable).
Le sous-ensemble de R qui nous intéresse est M =]0, 1], supposons, par l'absurde que M soit
dénombrable et soitM = {r1, r2, . . . , rn, . . .} une énumération deM . Ecrivons le développement
décimal de chacun de ces réels, de telle sorte qu'il ne se termine pas par une in�nité de 0 (i.e.
on écrira par exemple 0.5 sous la forme 0.4999999 . . . ), ce développement est alors unique et
on a

rn = 0, an1an2an3 . . . , n ∈ N?

où ani ∈ {0, 1, 2 . . . , 9} pour tous n, i ∈ N?. On peut alors écrire

r1 = 0, a11a12a13 . . . a1n . . .

r2 = 0, a21a22a33 . . . a2n . . .

... =
...

rn = 0, an1an2an3 . . . ann . . .

... =
...

On choisit alors pour tout entier n, un nouvel entier bn ∈ {1, 2 . . . , 8} di�érente de ann. Alors
le réel b = 0.b1b2b3 . . . est dans M , donc b = rk pour un certain entier k, mais ceci est absurde
car par construction bk, la k-ième décimale de b est di�érente de akk, celle de rk. Contradiction.
CQFD. �

Dé�nition 4. Image directe, image réciproque Soient f : E → F une application,
A un partie de E et B un partie de F . On appelle image directe de A par f l'ensemble
f(A) := {y ∈ F : ∃x ∈ A : f(x) = y}. On appelle image réciproque de B par f l'ensemble
f−1(B) := {x ∈ E : f(x) ∈ B}.

Exemples-exercices : • j Attention ! il faut être très attentif car la notation f−1 peut
donc représenter deux objets : l'application réciproque f−1 : F → E de f lorsqu'elle existe,
(i.e. lorsque f est bijective) et l'application réciproque f−1 : P(F ) → P(E) de f qui
existe toujours et ne suppose en rien que f soit bijective. Lorsque f est bijective, f−1(B)
représente aussi bien l'image directe de B par l'application f−1 que l'image réciproque de B
par f (véri�cation facile par double inclusion).
• f désigne une application de E dans F . A est un sous-ensemble non vide de E et B un
sous-ensemble non-vide de F . Justi�er les inclusions

(1) f(f−1(B)) ⊂ B.

(2) A ⊂ f−1(f(A)).

(3) A-t-on égalité en général ?

Solution :

(1) Prenons x ∈ f(f−1(B)). Alors, il existe y élément de f−1(B) tel que x = f(y). Puisque
y est dans f−1(B), on sait que f(y) est élément de B. Donc x est élément de B ce qui
prouve l'inclusion.

(2) Prenons x élément de A. Alors f(x) est élément de f(A), ce qui signi�e exactement que
x est élément de f−1(f(A)).
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(3) Prenons f : {1, 2} → {1, 2}, 1 7→ 1 et 2 7→ 1 et B = {1, 2}. Alors f−1(B) = {1, 2} et
f(f−1(B)) = {1} qui est di�érent de B.
Pour l'autre exemple, prenons A = {1}. Alors f(A) = {1} et f−1(f(A)) = {1, 2} qui est
di�érent de A.

Dé�nition 5. 1) Soit A ⊂ R symétrique par rapport à l'origine (i.e. x ∈ A =⇒ −x ∈ A
ou encore A = −A), on dira que f : A → R est paire si f(x) = f(−x), ∀x ∈ A. Si
f(x) = −f(−x), ∀x ∈ A on dira que f est impaire.

2) On dira qu'un réel T est une période de f : R→ R si f(x) = f(x+ T ), ∀x ∈ R. Si f
admet une période T non nulle on dira que f est T -périodique.

Exemples-exercices : • Si f est impaire et 0 ∈ A montrer que f(0) = 0.
• Montrer que toute fonction f : A → R se décompose de manière unique sous la forme
f = g + h avec g paire et h impaire.
• Une fonction f : R→ R peut-elle être injective ? surjective ?

Dé�nition 6. S'il existe m ∈ R tel que ∀x ∈ X : f(x) ≤ m on dira que f est majorée sur
X (on dé�nit de la même manière la notion de fonction minorée sur X). Toute fonction f à
la fois majorée et minorée sur X sera dire bornée sur X.
Soit X une partie non vide de R et f : X → R. on dira que f présente point a ∈ X
un maximum si ∀x ∈ X : f(x) ≤ f(a) ; elle présente au point a un maximum local si
∃h > 0 : ∀x ∈ X∩]a− h, a+ h[ : f(x) ≤ f(a) ; on le nomme aussi maxx∈X f(x). On dé�nit
de la même manière les notions de minimum et de minimum local.

Exercices : • Soit f : R → R dé�nie par f(x) = 1
1+x2

. Montrer que f est majorée sur R,
admet-elle un maximum? Montrer que f est minorée sur R, admet-elle un minimum?
• ...



8 PATRICE LASSÈRE, 29 SEPTEMBRE 2011

2. Limites.

2.1. Dé�nitions, exemples.

Dé�nition 7. Soient a < b deux nombres réels, f : ]a, b[→ R une application. Pour c ∈]a, b[
on dira que f admet pour limite l ∈ R lorsque x tends vers c et on écrira limx→c f(x) = l si et
seulement si :

∀ ε > 0,∃ η(ε) > 0 : 0 < |x− c| < η(ε) =⇒ |f(x)− l| < ε.

Commentaires : • Bien remarquer que 0 <
|x − c| < η(ε) i.e. x ∈]c − ηε, c[∪]c, c + ηε[ :
x ne peut donc être égal à c. La valeur de la
fonction au point c est sans importance pour
sa limite, la limite traduit le comportement de
la fonction lorsque x � tends � vers le point
c. Par exemple les fonctions dé�nies sur [0, 1]
par f(x) = x et g(x) = x si x 6= 1, f(1) = 0
admettent toutes les deux 1 comme limite en
x = 1.

• Avec la dé�nition de la valeur absolue

(∀ ε > 0,∃ η(ε) > 0 : 0 < |x− c| < η(ε) =⇒ |f(x)− l| < ε)

équivaut à

(∀ ε > 0,∃ η(ε) > 0 : c− η(ε) < x < c+ η(ε) =⇒ l − ε < f(x) < l + ε)

Autrement dit, au voisinage de c et pour tout ε > 0 (c'est l'erreur) aussi petit qu'on le désire, le
graphe de f sera à une distance inférieure à ε de l ( c'est |f(x)−l| < ε) pourvu que x soit proche
de c (i.e. pourvu que 0 < |x − c| < η(ε)). De manière imagée, limx→c f(x) = l si et seulement
si pour tout bande horizontale centrée en l et d'épaisseur 2ε (voir la �gure ci-dessous) il existe
η(ε) > 0 tel que le graphe de f sur c− η(ε), c+ η(ε)[\{c} est tout entier inclu dans la bande.
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• Si f n'admet pas l comme limite au point c, il faut donc trouver un ε0 > 0 tel que pour tout
η > 0 il existe xη ∈]c− η, c+ η[\{c} véri�ant |f(xη)− l| ≥ ε0.

• Il est parfois utile (ou plus agréable) de se ramener à une limite en zéro par un changement de
variables i.e. limx→c f(x) = l ⇐⇒ limh→0 f(c+h) = l. Par exemple calculer la limite au point

a de la fonction f dé�nie sur R\{a} par f(x) = x2−a2
x−a . Faire de même pour f(x) = xn−an

x−a , n ≥ 2.

On dé�nit de même les limites � à droite � et � à gauche � en un point :

Dé�nition 8. (1) Soient a < b deux nombres réels, f : ]a, b[→ R une application. On
dira que f admet pour limite à droite l ∈ R lorsque x tends vers a et on écrira
limx→a+ f(x) = limx→a, x>a f(x) = l si et seulement si :

∀ ε > 0,∃ η(ε) > 0 : a < |x < a+ η(ε) =⇒ |f(x)− l| < ε.

(2) De même, on dira que f admet pour limite à gauche l ∈ R lorsque x tends vers b et
on écrira limx→b− f(x) = limx→b, x<b f(x) = l si et seulement si :

∀ ε > 0,∃ η(ε) > 0 : b− η(ε) < x < b =⇒ |f(x)− l| < ε.

(3) En�n, pour c ∈]a; b[ on dira que f admet pour limite à gauche l ∈ R lorsque x tends
vers c par valeurs inférieures si la restriction f : ]a, c[→ R de f au segment ]a, c[ admet
l comme limite à gauche au sens précédent. On dé�nit de même la limite à droite au
point c.

Exemples - Exercices : • Montrer (avec les ε et les δ) que limx→1
x

x+ 1
=

1

2
.

• La fonction dé�nie pour x 6= 0 par f(x) =
sin(1/x) n'admet pas de limite en zéro.

• La fonction f : [0, 2]→ R dé�nie par

f(x) =


x2 si x ∈ [0, 1[

1/2 si x = 1

x− 1 si x ∈]1, 2]
admet 1 comme limite à gauche en x = 1

et zéro comme limite à droite en x = 1, elle
admet aussi 0 comme limite à droite en x = 0
et 1 comme limite à gauche en x = 1.

Dé�nition 9. (limites en ±∞ et limites in�nies).
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(1) Soient f : ]a,+∞[→ R une application. On dira que f admet pour limite l ∈ R lorsque
x tends vers +∞ et on écrira limx→+∞ f(x) = l si et seulement si :

∀ ε > 0,∃A(ε) > 0 : x > A(ε) =⇒ |f(x)− l| < ε.

De même, on dira que f : ] −∞, b[→ R admet pour limite l ∈ R lorsque x tends vers
−∞ et on écrira limx→−∞ f(x) = l si et seulement si :

∀ ε > 0,∃A(ε) > 0 : x < A(ε) =⇒ |f(x)− l| < ε.

(2) Soient f : ]a,+∞[→ R une application. On dira que f admet pour limite +∞ lorsque
x tends vers +∞ et on écrira limx→+∞ f(x) = +∞ si et seulement si :

∀A > 0,∃B(A) > 0 : x > B(ε) =⇒ f(x) > A.

De même on dira que admet f admet pour limite −∞ lorsque x tends vers +∞ et on
écrira limx→++∞ f(x) = −∞ si et seulement si :

∀A < 0,∃B(A) > 0 : x > B(ε) =⇒ f(x) < A.

(3) Pour f : ]−∞, b[→ R on dé�nit de la même manière les limites limx→−∞ f(x) = ±∞
(exercice).

Précisions : • Si limx→+∞ f(x) = l le graphe de f � tends � vers la droite y = l lorque x tends
vers +∞ ; autrement dit le graphe de f sera dans le tube l − ε < y < l + ε pourvu que x soit
assez grand i.e. pourvu que x > A c'est très exactement ce que veut dire � ∀ ε > 0,∃A(ε) >
0 : x > A(ε) =⇒ |f(x)− l| < ε �.
• De même, dire que limx→+∞ f(x) = +∞ c'est dire que le graphe de f sera au dessus de
toute droite horizontale y = A pourvu que x soit su�samment grand, i.e. pourvu que x > B ;
autrement dit : � ∀A > 0,∃B(A) > 0 : x > B(ε) =⇒ f(x) > A �.
Ces deux situations sont illustrées sur les �gures ci-dessous :

Exercices : • Montrer que la fonction sinus n'admet pas de limite en +∞.

• Etudier l'existence de limite à l'origine des fonctions suivante : f(x) =

{
|x|, si x ∈ R?,

1, si x = 0.
,

g(x) =

{
|x|, si x ≤ 0,

|x|+ 1, si x > 0.
et h(x) = |x|, x ∈ R.

• Soient f(x) = x2, g(x) = sin(x), x ∈ R, montrer soigneusement que pour tout c ∈ R :
limx→c f(x) = c2 et limx→c g(x) = sin(c).
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• Montrer que limx→π/2− tan(x) = +∞.
• Montrer que limx→+∞ arctan(x) = π/2.

2.2. Propriétés.

Proposition 4. (unicité de la limite) Si f : ]a, b[→ R admet une limite en c ∈]a, b[, elle est
unique.

Exercice : Faire de même pour les limite à gauche, à droite, en l'in�ni.

Démonstration : Supposons que f admette deux limites l1 6= l2 au point c et posons δ :=
|l1 − l2|. Alors vu les hypothèses nous pouvons écrire(

lim
x→c

f(x) = l1

)
⇐⇒ (∀ ε > 0,∃ η1(ε) > 0 : 0 < |x− c| < η1(ε) =⇒ |f(x)− l1| < ε)(

lim
x→c

f(x) = l2

)
⇐⇒ (∀ ε > 0,∃ η2(ε) > 0 : 0 < |x− c| < η2(ε) =⇒ |f(x)− l2| < ε) .

ε > 0 étant arbitraire choisissons ε = δ/3 ; alors pour tout x ∈]a, b[ véri�ant |x− c| < η3(ε) :=
min{η1(ε), η2(ε)} nous aurons

δ = |l1 − l2| ≤ |f(x)− l1|+ |l2 − f(x)| < δ/3 + δ/3 = 2δ/3

ce qui est absurde ! CQFD. �

Proposition 5. f : ]a, b[→ R admet une limite l au point c ∈]a, b[ si et seulement si
limx→c+ f(x) = l = limx→c− f(x).

Démonstration : Exercice, cela résulte des dé�nitions. �

Le résultat qui suit est fondamental : il permet de traduire en termes de suite la notion de
limite ce qui rend souvent les choses plus faciles à manipuler.

Théorème 2. f : ]a, b[→ R admet une limite l ∈ R au point c ∈]a, b[ si et seulement si, pour
toute suite (xn)n ⊂]a, b[\{c} : limn xn = c =⇒ limn f(xn) = l.

Remarque : Ce théorème reste valable si a = ±∞ ou l = ±∞... par exemple limx→+∞ f(x) =
4 si et seulement si pour toute suite (xn)n tendant vers +∞ la suite (f(xn))n tends vers 4.

Démonstration : • (condition nécessaire (⇒)). Par hypothèse limx→c f(x) = l autrement dit

(1) ∀ ε > 0,∃ η(ε) > 0 : |x− c| < ηε =⇒ |f(x)− l| < ε.

Considérons maintenant une suite (xn)n convergente vers c, nous avons donc :

(2) ∀ ε > 0,∃N(ε) > 0 : n ≥ N(ε) =⇒ |xn − c| < ε.

ε > 0 étant �xé, choisissons N(ε) tel que n ≥ N(ε) implique |xn − c| < η(ε) (un tel choix est
possible vu (2)...) ; alors |xn − c| < η(ε) implique vu (1) que |f(xn)− l| < ε. Résumons nous :
nous avons montré que pour tout ε > 0, il existe un entier N(ε) véri�ant n ≥ N(ε) =⇒
|f(xn)− l| < ε : ce n'est rien d'autre que la dé�nition de limn f(xn) = l. CQFD.
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• (condition su�sante (⇐)). On procède par contraposée 1 : si f ne tends pas vers l au point
c, alors il existe 2 ε0 > 0 tel que pour tout η > 0 il existe xη ∈]a, b[\{c} véri�ant simultanément
0 < |xη − c| < η et |f(xη)− l| ≥ ε0. η étant arbitraire, on choisit pour tout n ∈ N? : η = 1/n :
il existe alors xn ∈]a, b[\{c} véri�ant 0 < |xn − c| < 1/n et |f(xn)− l| ≥ ε0. 0 < |xn − c| < 1/n
pour tout n ≥ 1 implique que limn xn = c ; mais |f(xn) − l| ≥ ε0 pour tout n ≥ 1 nous assure
que la suite (f(xn))n ne peut converger vers l ; on a donc bien non(1) : CQFD. �

Remarque : Cette caractérisation de la limite est bien utile pour montrer qu'une fonction
n'admet pas de limite en un point : par exemple s'il existe une suite (xn)n convergente vers c
telle que (f(xn))n diverge alors f n'admet pas de limite au point c ; aussi s'il existe deux suites
(xn)n et (yn)n toutes deux convergentes vers c mais telles que les suites (f(xn))n et (f(yn))n
convergent vers des limites di�érentes alors encore une fois f n'admet pas de limite au point c.

Exercices : • Montrer avec les suites que la fonction sinus n'admet pas de limite en +∞.
• La fonction dé�nie sur R? par f(x) = sin(x−1) admet-t-elle une limite en x = 0 ?

Proposition 6. (propriétes usuelles des limites) Soient −∞ ≤ a < b ≤ +∞, et f, g : ]a, b[→ R
admettant en un point c ∈]a, b[ une limite : limx→c f(x) = l1, limx→c g(x) = l2. Alors :

(1) f est bornée sur un voisinage de c.

(2) Si f est bornée au voisinage de c et si limx→c |f(x)| = 0 alors limx→c |f(x) · g(x)| = 0.

(3) limx→c (f(x) + g(x)) = l1 + l2.

(4) limx→c λ · f(x) = λ · l1, ∀λ ∈ R.
(5) limx→c f(x) · g(x) = l1 · l2.
(6) Si l2 6= 0 : limx→c

f(x)
g(x)

= l1
l2
.

(7) limx→c |f(x)| = |l1|. 3

(8) (f ≥ 0 et limx→c f(x) = l1) =⇒ l1 ≥ 0.

(9) (f ≥ g, limx→c f(x) = l1 et limx→c g(x) = l2) =⇒ l1 ≥ l2.

(10) (th. des gendarmes) (f ≥ g ≥ h, et limx→c f(x) = limx→c h(x) = l) =⇒ limx→c g(x) =
l.

Démonstration : On pourrait bien sûr invoquer le cours sur les suites mais cela est peu
sportif : il faut manipuler les ε et η. Par exemple pour (4) : soit x ∈]a, b[ on peut écrire :

|f(x)g(x)− l1l2| = |f(x){g(x)− l2}+ l2{f(x)− l1}| ≤ |f(x)| · |g(x)− l2|+ |l2| · |f(x)− l1|
et comme f admet une limite en c elle est bornée au voisinage de c (c'est (1)) donc |f(x)| ·
|g(x)− l2| tends vers 0 lorsque x tends vers c (c'est (2)) ; de même |l2| · |f(x)− l1| tends vers 0
en c et le résultat suit... Pour le reste, exercice. �

1. Contraposée : pour montrer une implication (1) =⇒ (2) il est équivalent de montrer non(2) =⇒ non(1), c'est le raisonnement
par contraposée ; bien remarquer qu'il est di�érent du raisonnement par l'absurde qui consiste à supposer simultanément (1) et
non(2) pour en déduire une contradiction.

2. C'est la négation de � ∀ ε > 0, ∃ η(ε) > 0 : |x− c| < ε =⇒ |f(x)− l| < ε �...

3. Il est essentiel de bien connaitre la double inégalité
∣∣∣|x| − |y|∣∣∣ ≤ |x− y| ≤ |x|+ |y|.
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3. Continuité

3.1. Dé�nitions, propriétés générales.

Dé�nition 10. Soit f : ]a, b[→ R et c ∈]a, b[, on dira que f est continue au point c si et
seulement si f admet une limite l en c et l = f(c). autrement dit :

∀ ε > 0,∃ η(ε, c) > 0 : |x− c| < η(ε, c) =⇒ |f(x)− f(c)| < ε.

On dira que f est continue sur ]a, b[ si elle est continue en chaque point de ]a, b[.

Remarque : Pour la continuité il faut donc
deux choses : l'existence de la limite l et l'éga-
lité l = f(c). Si l'on reprend l'exemple du dé-
but (�gure 1) ou les deux fonctions admettent
1 comme limite en x = 1 ; seule f est continue :

Propriété 3.

(1) Une fonction f sera continue au point c si, et seulement si pour toute suite (xn)n conver-
gente vers c la suite (f(xn))n converge vers f(c).

(2) Si f est dé�nie sur ]a, b[\{c} mais admet une limite l au point c, alors si on pose f̃(c) =

l, f̃ = f sur ]a, b[\{c}, la fonction f̃ ainsi dé�nie est continue au point c : c'est le
prolongement par continuité de f au point c.

(3) Si f : ]a, b[→ R n'admet pas de limite l au point c ∈]a, b[, alors deux cas peuvent se
produire : ou bien f admet des limites à droite et à gauche au point c distinctes : on
dira alors que f présente au point c une discontinuité de première espèce ; ou bien
au moins une des deux limites (à gauche et à droite) n'existe pas : on dira alors que f
présente au point c une discontinuité de seconde espèce.

Démonstration : Ce sont des conséquences immédiates de la dé�nition de la continuité et
de la notion de limite. �

Exemples-exercices : • La fonction f dé�nie par f(x) =

{
|x|, si x ∈ R?,

1, si x = 0.
que nous avons vu

au paragraphe précédent admet la limite 0 6= f(0) = 1 en 0 : elle n'est donc pas continue à
l'origine, quel type de discontinuité avons nous ?

• Montrer que la fonction f dé�nie sur R par f(x) =

{
2, si x ≥ 0,

1, si x < 0,
n'est pas continue en x = 0

de deux manières di�érentes : par la dé�nition et avec les suites, quel type de discontinuité
avons nous ?
• Mêmes questions avec
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f(x) =

{
sin(x−1), si x ∈ R?,

1, si x = 0.

Propriété 4. Soient f, g : ]a, b[→ R et c ∈]a, b[, si f et g sont continues au point c alors :

(1) f + g est continue au point c.

(2) λf est continue au point c pour tout λ ∈ R.
(3) f · g est continue au point c

(4) Si g(c) 6= 0 alors f/g est continue au point c.

(5) |f | est continue au point c.

(6) Soit J un intervalle contenant f(]a, b[) et h : J → R une application continue en f(c),
alors g ◦ f est continue au point c.

Démonstration : Exercice. �

Applications : On en déduit � facilement � la continuité des fonctions usuelles sur leur do-
maines de dé�nition (polynômes, fractions rationnelles, fonctions trigonométriques, log, exp...)
ainsi que toutes celles que l'on peut déduire des précédentes par combinaison linéaire, multipli-
cation, composition... sur leur domaines de dé�nition.

3.2. Les théorèmes fondamentaux.

Théorème 3. Soit I un intervalle de R et f : I → R une application continue. Si a et b sont
deux points de I tels que f(a)f(b) ≤ 0 alors il existe c ∈ [a, b] tel que f(c) = 0.

Démonstration : Supposons par exemple que a ≤ b. Quitte à changer f en −f , on peut
supposer que f(a) ≤ 0 ≤ f(b). On construit alors deux suites (an)n et (bn)n par récurrence de
la manière suivante :
0n commence par poser a0 = a et b0 = b, on a donc f(a0) ≤ 0 ≤ f(b0). Supposons maintenant
an et bn construits tels que an ≤ bn et f(an) ≤ 0 ≤ f(bn) ; posons cn = an+bn

2
alors :

� si f(cn) ≤ 0 on pose an+1 = cn et bn+1 = bn.
� si f(cn) > 0 on pose an+1 = an et bn+1 = cn.

Dans les deux cas on a an ≤ an+1 ≤ bn+1 ≤ bn et f(an+1) ≤ f(bn+1). La suite (an)n est donc
croissante, (bn)n est décroissante et an ≤ bn, ∀n ∈ N. En outre, par construction nous avons

bn − an =
bn
2n
, ∀n ∈ N,

soit limn(an − bn) = 0 : les suites sont donc adjacentes, elle convergent vers la même limite
c ∈ [a, b] et comme par construction f(an) ≤ 0 ≤ f(bn), ∀n ∈ N en passant à la limite, la
continuité de f au point c nous donne f(c) = 0. CQFD. �
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Remarques : • On peut énoncer ce résultat en disant que sur un intervalle, une fonction
continue qui ne s'annule pas doit garder un signe constant.
• La méthode précédente donne un algorithme simple pour trouver la valeur approchée d'une
solution de l'équation f(x) = 0 : c'est la méthode de résolution par dichotomie, on s'arrête
lorsque (b− a)/2n est inférieur ou égal à la précision demandée (pourquoi ?).
• Ce théorème est trivialement en général faux si f n'est pas continue, par exemple considérer

f(x) =

{
1, si x ∈ R?,

−1, si x = 0,
, il est aussi faux si I n'est pas un intervalle, par exemple l'application

continue dé�nie sur R? par f(x) =

{
1, si x > 0,

−1, si x < 0,
prends les valeurs 1 et −1 mais ne s'annule

jamais.

Théorème des valeurs intermédiaires : Toute application f continue sur un intervalle
[a, b] f prends toutes les valeurs comprises entre f(a) et f(b).

Démonstration : Si d est compris entre f(a) et f(b), appliquer les théorème précédent à la
fonction x 7→ f(x)− d. �

Corollaire : L'image d'un intervalle par une fonction continue est un intervalle.

Démonstration : Exercice (f(I) sera un intervalle ssi y1, y2 ∈ f(I) =⇒ [y1, y2] ⊂ f(I)...
pour cela appliquer convenablement le théorème des valeurs intermédiaires). �

Remarques : • L'intervalle peut être réduit à un point si f est constante : I = R, f ≡ 12,
alors f(I) = {12}.
• L'intervalle f([a, b]) n'admet pas forcément f(a) et f(b) comme extrémités. Par exemple, pour
f(x) = x2, on a f([−2, 2]) = [0, 4] = [f(0), f(2)].

• Si f n'est pas continue, tout ceci n'a plus de sens : par exemple l'image f(R) pour la fonction

f(x) =

{
|x|, si x ∈ R?,

−12, si x = 0,
est {−12} ∪ R?

+ qui n'est pas un intervalle.

• Si I n'est pas un intervalle, le résultat ne subsiste pas non plus : considérez par exemple la

fonction continue sur R? et dé�nie par f(x) =

{
2, si x > 0,

−2, si x < 0,
, alors f(R?) = {−2, 2} qui n'est

pas un intervalle.

Théorème 4. L'image d'un intervalle fermé borné [a, b] par une fonction continue f est encore
un intervalle (éventuellement réduit à un point) fermé borné [m,M ]. En particulier, toute
fonction f continue sur un intervalle fermé borné [a, b] est bornée et atteint ses bornes.
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Démonstration : • Posons M = supx∈[a,b] f(x). Si M < +∞, on choisit (dé�nition du sup)
pour tout n ∈ N? un réel xn ∈ [a, b] véri�ant f(xn) > M − 1/n. Si M = +∞, on choisit
(re-dé�nition du sup) alors xn ∈ [a, b] tel que f(xn) > n. Dans les deux cas, limn f(xn) = M .
Par construction (xn)n ⊂ [a, b] : bornée, la suite (xn)n admet donc 4 une une sous-suite (xnk

)k
convergente vers c ∈ [a, b]. f étant continue au point c, on a forcément limk f(xnk

) = f(c) i.e.
M = f(c). Donc f(c) =M <∞ : f est donc majorée et atteint sa borne supérieure.
• Pour la borne inf, on se ramène f à la situation précédente en remplacant f par −f . �

Remarques : • Tout comme le théorème des valeurs intermédiaires ce dernier résultat est
dans la pratique fondamental et il est essentiel de bien savoir l'utiliser.
• Le fait que l'intervalle doit être fermé borné est essentiel : par exemple la fonction continue
dé�nie sur [0, 1[ par f(x) = x est bornée mais n'atteint pas sa borne supérieure qui est 1 ; de
même la fonction continue sur [0, 1[ et dé�nie par g(x) = 1/(x−1) n'est cette fois pas majorée ;
en�n la fonction dé�nie sur l'intervalle fermé non borné [0,+∞[ dé�nie par f(x) = e−x est
bornée minorée par 0 mais n'atteint pas sa borne inférieure.

• L'image par une fonction continue d'intervalle est un intervalle, l'image d'un intervalle fermé
borné est un intervalle fermé borné ; mais attention l'image d'un intervalle ouvert n'est pas
nécessairement ouverte : l'image de l'intervalle ouvert ] − 2, 2[ par h(x) = x2 est l'intervalle
non ouvert [0, 4[. L'image peut même est un intervalle fermé borné (considérer une fonction
constante ou périodique...).

4. Continuité uniforme.

Dé�nition 11. Soit I un intervalle de R, f : I → R , on dira que f est uniformément
continue sur I si et seulement si :

∀ ε > 0,∃ η(ε) > 0 : |x− x0| < η(ε) =⇒ |f(x)− f(x0)| < ε, ∀x0 ∈ I.

Remarques : Voici ci-dessous les dé�nitions de la continuité sur I et celle de la continuité
uniforme :

∀x0 ∈ I, ∀ ε > 0, ∃η(ε, x0) > 0 : |x− x0| < η(ε, x0) =⇒ |f(x)− f(x0)| < ε.

∀ ε > 0,∃η(ε) > 0 : |x− x0| < η(ε) =⇒ |f(x)− f(x0)| < ε, ∀x0 ∈ I.
La di�érence est que dans la dé�nition de la continuité uniforme le η marche pour tous les x0,
il est uniforme en x0.

Théorème 5. Toute fonction f continue sur un intervalle fermé borné [a, b] est uniformément
continue.

4. C'est le théorème fondamental du cours sur les suites.
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Démonstration : Admise. �

Remarques-mode d'emploi : • Dans la pratique, pour montrer qu'une fonction continue
f : I → R est uniformément continue sur I, on dispose (ormi la dé�nition) de deux conditions
su�santes : la première est que I soit un intervalle fermé borné (voir théorème plus haut)
où, un peut plus généralement que f admette une limite �nie aux points frontières de I (voir
l'exercice 3 de la feuille 6) ; la seconde est que f soit α-Lipschitzienne sur I, i.e. qu'il existe

deux constantes α > 0, C > 0 telles que |f(x) − f(y)| ≤ C |̇x − y|α, ∀x, y ∈ I (par exemple
pour assurer la continuité uniforme sur R+ de f(x) = sin

√
x... voir feuille 6).

• Pour montrer qu'une fonction continue f : I → R n'est pas uniformément continue sur I on
cherche en général (voir de multiples exemples en TD) dans I deux suites (xn)n, (yn)n véri�ant
limn |xn − yn| = 0 et ∃C > 0 : |f(xn)− f(yn)| ≥ C, ∀n ≥ n0 (ces deux suites convergent vers
lune extrémité I là où l'uniforme continuité se perd....).

3.3. Applications réciproques.

Théorème 6.

(1) Soit f : I → R une application monotone sur un intervalle I, si f(I) est un intervalle
alors f est continue sur I. En particulier, si f : I → R est continue et strictement
monotone elle est donc injective et induit une application réciproque f−1 : f(I) → I
qui est continue.

(2) La réciproque est vraie : toute fonction f continue et injective sur I est strictement
monotone sur I.

En résumé : Une fonction continue f sur un intervalle I est injective si et seulement si elle
est strictement monotone sur cet intervalle. Dans ce cas, J := f(I) est un intervalle sur lequel
l'inverse f (−1) J = f(I)→ I est dé�nie et continue.

Démonstration : • On suppose par exemple f croissante. Soit a ∈ I qui n'est pas la borne
"sup" de I (ie si par exemple I =]2, 3] alors a ∈]2, 3[...). f étant croissante elle admet en a une
limite à droite l ≥ f(a) (penser aux suites). Supposons que l > f(a) alors x > a =⇒ f(x) ≥ l
et x ≤ a =⇒ f(x) ≤ f(a). La fonction f ne prends donc aucune valeur entre f(a) et l mais
puisque a n'est pas le plus grand élément de I il existe b ∈ I : b > a qui assure f(a) < l ≤ f(b)
et tout ceci est absurde car f(I) est un intervalle et donc [f(a), f(b)] ⊂ f(I). Ainsi l = f(a) : f
est donc bien continue à droite sur I \ sup(I) ; on montre de même que f est continue à gauche
sur I \ inf(I) : f est bien continue sur I.
Pour l'application : si f est continue sur l'intervalle I alors f(I) est un intervalle (c'est le
TVI...) et étant strictement monotone elle réalise une bijection f−1 : f(I)→ I qui sera aussi
strictement monotone (l'écrire...) la première partie du théorème assure alors la continuité de
f−1 sur f(I).

• On suppose f continue et injective sur [a, b]
et, sans perdre de généralité f(a) < f(b), mon-
trons qu'alors
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f est strictement croissante sur [a, b]. Pour
cela, supposons le contraire et soient a ≤
x < y ≤ b avec f(x) > f(y). Il y a deux
possibilités : ou bien f(a) < f(x) ou bien
f(a) ≥ f(x). Dans le premier cas on choi-
sit L ∈]f(a), f(x)[∩]f(y), f(x)[. Par le TVI

il existe a < α < x < β < y tels que
f(α) = f(β) = L. Mais f est injective et ceci
ne peut se produire. Donc f(a) ≥ f(x) soit (in-
jectivité) f(a) > f(x) et ce cas se traite comme
le précédent. f est bien strictement monotone.
�

Remarque : • Le théorème est faux si I
n'est plus un intervalle : par exemple la fonc-
tion f(x) = 1/x est continue et injective sur
R? où elle n'est pas strictement monotone.

Il en résulte la continuité des applications réciproques de fonctions usuelles décrites dans la
paragraphe suivant.



FONCTIONS D'UNE VARIABLE RÉELLE CONTINUITÉ, NOTES DE COURS 19

Bestiaire des fonctions réciproques usuelles :

• L'application log : R?
+ → R est continue et strictement croissante : elle admet donc une

application réciproque continue : exp : R→ R?
+.

• L'application cos : [0, π] → [−1, 1] est continue et strictement décroissante : elle admet
donc une application réciproque continue : arcos : [−1, 1]→ [0, π].

• L'application sin : [−π/2, π/2]→ [−1, 1] est continue et strictement croissante : elle admet
donc une application réciproque continue : arcsin : [−1, 1]→ [−π/2, π/2].

• L'application tan : ] − π/2, π/2[→ R est continue et strictement croissante : elle admet
donc une application réciproque continue : arctan : R→]− π/2, π/2[.
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• L'application ch : R → R dé�nie par ch(x) = (ex + e−x)/2 est continue, sa restriction à
R+ strictement croissante à valeurs dans [1,+∞[ : elle admet donc une application réciproque
continue : argch : [1,+∞[→ R+.

• L'application sh : R → R dé�nie par sh(x) = (ex − e−x)/2 est continue strictement
croissante à valeurs dans : elle admet donc une application réciproque continue : argsh : R→ R.

• L'application th : R → R dé�nie par th(x) = sh(x)/ch(x) est continue strictement
croissante sur R à valeurs dans ]− 1, 1[ : elle admet donc une application réciproque continue :
argth : ]− 1, 1[→ R.
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