FONCTIONS D’UNE VARIABLE REELLE
CONTINUITE, NOTES DE COURS

PATRICE LASSERE, 29 SEPTEMBRE 2011

1. R, ENSEMBLES, APPLICATIONS.

1.1. Valeur absolue, Bornes supérieure, inférieure.

Définition 1. On définit la valeur absolue d’un nombre réel x par

T stx >0
|z| :== max{z, —x} = ,
—x st x < 0.
Pour z,y € R, d(z,y) := |x — y| est la distance euclidienne entre les deuz réels x et y.

Propriété 1. Soient v,y € R et e >0, on a :
(1) |x| >0 et (\x|:O<:>x:0).
2)Ve>0 : (Jz]<e) < (—e<x<e).
3) lzyl =[] - |yl.

(4) |z +y| < ||+ yl.
B)lr—y|<eesr—ec<y<z+te.

(6)

6) |I2l — Iyl| < o~ yl.

Démonstration : Pour (1,2,3,4) voir votre cours de terminale ou exercice. Pour (6) si 'on écrit
r = (z —y) +y l'inégalité triangulaire (3) nous donne |z| < |z —y|+ |y| soit |z| —|y| < |z —y|;
on échange alors les roles de x et y pour obtenir 'autre inégalité. CQFD

Exercices : e Montrer par recurrence sur U'entier n que |a;+ag+- - -+a,| < |ag|+|as|+- - +|a,]
ol ai,ag,...,aq, € R.
e Montrer pour tout x,y € R :

T+ z )
\ | _l7] . lyl Va2 +y? < |z +yl, Ve +yl < Vx| + Vvl

L+jr+yl — 14z 1+
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Définition 2. e Soit X une partie non vide de R et m un nombre réel. On dira que m est un
majorant de X si
VeeX : x<m,

dans ce cas, on dira que X est majgorée; et siVx € X : x > m on dira que m est un minorant
de X et X sera manorée. Toute partie a la fois majorée et minorée sera dite bornée.
e La borne supérieure d’une partie X C R est, lorsqu’elle existe le plus petit des majorants
de X on la note sup X ; de méme, la borne inférieure d’une partie X C R est, lorsqu’elle
existe le plus grand des minorants de X, on la note inf X.

e Si une partie non vide X C R n’est pas majorée, on écrira sup X = +00, de méme pour une
partie non vide X C R non minorée on écrira inf X = —oo; avec la convention pour [’ensemble
vide : sup() = —oo et inf ) = +o0.

Remarques : e Soit m un majorant d’'un ensemble X, si m € X on dira que m est le
grand élément ou maximum de X, on le notera max(X). Attention a ne pas confondre borne
supérieure et plus grand élément ou maximum. Par exemple A = [0, 1] n’admet pas de plus
grand élément mais une borne supérieure sup A = 1. Méme remarque entre 'inf et le minimum.
e +00 et —oo définis plus haut ne sont pas des nombres réels. Il est clair que si A n’est pas
vide inf A < sup A.

e Voici les propriétés arithmétiques de +o0 : 00 4+ 00 = 00, —00 — 00 = —00, 00 — (—00) = 00,
cotec=00, cER, —cotc=—o00, c€R, (£oo)-c=+o0, ¢ >0, 0000 =00, 00(—00) = —00.
Et ne pas oublier que les opérations oo — 0o, 0 - 00, 00/00, ¢/0 ne sont pas définies.

Exercice : Soit A C R un ensemble. Montrer que maxA est défini de maniére unique s’il
existe. Montrer que maxA existe si et seulement si sup A € A. Dans ce cas maxA = sup A. On
a une propriété analogue pour l'inf et le min.

Théoréme 1. Dans R, toute partie non vide majorée admet une borne supérieure.

Remarques : Ce théoréme est fondamental et loin d’étre trivial ; observez bien qu’il peut étre
faux si I'on est pas dans R. Par exemple dans Q 'ensemble {z € Q : x < 7} est majoré (4 est
un des majorants) mais il n’admet pas (prouvez le! exercice) de borne supérieure dans Q.

Démonstration : Admise. [ |

Exercice : Si A C R est majorée, montrer que sa borne supérieure est unique.

Proposition 1. (caractérisation de la borne supérieure). La borne supérieure b d’une partie X
majorée de R est caractérisée par :

VeeX : 2<b) e (Ve>0,Jz.eX : b—e<ux)

Remarque : Comprendre cette proposition et sa démonstration est essentiel.

Démonstration : Vx € X : 2 < b nous dit que X est majoré par b, la deuxiéme assertion
signifie que tout réel strictement inférieur & b n’est pas un majorant de X : tout les majorant
de X sont donc supérieur & b qui est donc bien la borne supérieure de X. [ |
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En considérant 'ensemble —X = {—z, x € X} on a aussi des énoncés du méme type pour
la borne inférieure :

Proposition 2.

(1) 1) Dans R, toute partie non vide minorée admet une borne inférieure.

(2) 2) (caractérisation de la borne inférieure). La borne inférieure b d’une partie X minorée
de R est caractérisée par :

VereX :x>b) e (Ve>0,Jaz.eX : b+e>u.)

Terminons ce paragraphe par la liste des propriétés essentielles des bornes sup et inf. Il est
essentiel pour toute la suite d’en maitriser parfaitement les démonstrations.

Proposition 3. Soient A, B deux parties de R, on pose A+ B :={a+b, a € A,b € B}, cA =
{ca, a € A}, —A :={—a, a € A}. Alors

e A C B implique que sup A < sup B et inf A > inf B (monotonie).

o sup(—A) = —inf A et inf(—A) = —sup(A) (réflexion).

e sup(A+a) =a+supA, inf(A+a)=a+inf A, Va € R (translation).

o sup(cA) =c-sup A, Vc e Ry (homogénéité).

e sup(A + B) =sup A +sup B, inf(A + B) = inf A +inf B (additivité) & partir du moment
ot les sommes des sup ou des inf sont bien définies conformément a la remarque plus haut.

Démonstration : Exercice obligatoire! C’est le devoir 1. Par exemple montrons que sup(A +
B) = sup A + sup B. Si A est vide, il en est de méme pour A + B soit sup A + sup B =
—00 4+ sup B = —oo = sup(A + B) (souvenez vous que la somme des sup est est bien définie
donc sup B # +00) ; on procéde de méme si B est vide.

Si A et B sont non vides, alors sup A > a pour tout a € A, et sup B > b pour tout b € B.
Donc sup A +sup B > a + b pour tous a € A, b € B. sup A + sup B est bonc un majorant de
A + B et par suite sup(A + B) < sup A + sup B.

Pour I'inégalité inverse, observons deja que si sup(A+ B) = 400 alors sup(A+ B) < sup A+
sup B implique sup(A + B) = sup A + sup B. Supposons donc sup(A + B) < +oo. Soient
acAbe B,onaa+b<sup(A+ B) et donc a < sup(A+ B) — b. Ceci étant vrai pour tout
a € Aon adoncsup A < sup(A+ B)—b. En particulier sup A < +oo et b < sup(A+B)—sup(A4)
pour tout b € B qui implique sup B < sup(A+B)—sup(A) ou encore sup A+sup B < sup(A+B)
ce qu’il fallait démontrer. CQFD. [ |

Exercices : e Soit a € R vérifiant Ve > 0, |a| < . Montrer que a = 0.
e Montrer que max{|z| |y|} < v/2? + y? < 2max{|z||y|} puis améliorer la seconde inégalité.
e Que dire d’une partie &/ dans R vérifiant sup &/ = inf &7 ?
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1.2. Applications - Rudiments de vocabulaire.

Définition 3. Soient E, F deux ensembles et f : E — F une application.

e On dira que f est injective si et seulement si :Vax, o' € E,(f(x) = f(2)) = x=2'.

e On dira que [ est surjective si et seulement si : Vy € F), Elx el y=f(x).

e On dira que f est bigective si elle est injective et surjective ; autrement dit, si et seulement
si:Vye F,dz e E : y= f(x).

€ nm wipidRie (¢ sunpehive € unjechive o e wiypclive ek~
Vo mp.diue » 3 mwyZC‘nm'.?) o Guagrcive % Q,W.gzck:t el »
Exemples-exercices : e La fonction ¢ : R — R, définie par g(z) = 22 est surjective
mais pas injective, par contre la fonction f : R — R définie par f(z) = x? est ni surjective
ni injective alors que la fonction A : R, — R, définie par h(x) = z? est bijective et son

application réciproque h™' : R, — R, définie par h='(z) = /7.

e Soient E, F, G trois ensembles et f : E— F,g : F — G.Si go f est injective montrer que
f est injective. Si g o f est surjective montrer que g est surjective.
e Montrer que la composée de deux injections (resp. surjections, bijections) est une injection
(resp. surjection, bijection).

[ ]

1)
2)
3)

)

4) Déterminer une bijection de N — 7Z

Déterminer une bijection de N — N*.
Déterminer une bijection de {1/n; n > 1} dans {1/n; n > 2}.
Déduire de la question précédente une bijection de [0, 1] dans [0, 1].

(
(
(
(

Corrigé :
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(1) Posons f: N — N*, définie par f(n) = n + 1. Remarquons f est bien a image dans N*.
Il reste a prouver que f est bijective, ce qui est trés facile avec la définition : si n € N*,
ona f(k)=n < k+1=n < k=n—1, 'équation f(k) =n admet une unique
solution dans N, ce qui dit bien que f est bijective.

(2) Posons g : {1/n; n> 1} — {1/n; n > 2}, définie par g(1/n) = 1/(n + 1). Remarquons
la aussi que ’ensemble d’arrivée est bien cohérent avec ’ensemble de départ. D’autre
part, g est bijective.

(3) C’est plus compliqué !l Ecrivons [0,1] = {1/n; n > 1} U A, ou A est le complémentaire
de {1/n; n > 1} dans [0, 1]. On définit h de la fagon suivante :

— Six=1/n,alors h(z) =1/(n+1).
— Sinon, c¢’est-a-dire si x € A, h(z) = x.
Alors h est bijective ! Prouvons d’abord qu’elle est injective : si h(x) = h(z’), on distingue
3 cas :
~Size Aet 2’ € A, alors h(z) =z et h(z') = 2’ ce qui entraine x = '
~Siz e Aeta’ ¢ A, écrivant ' = 1/k, on a x = h(z) = h(2’) = 1/(k+ 1), ce qui
implique = ¢ A, ce qui est impossible.
~Siz¢ Aet 2’ ¢ A, écrivant x = 1/k et 2’ =1/n,ona 1/(k+ 1) = h(z) = h(z) =
1/(n+ 1) ce qui entraine k + 1 =n + 1 et par suite z = 2.
Dans tous les cas possibles, on trouve x = 2/, et h est injective. Prouvons maintenant
que h est surjective, et choisissons y € [0,1[. Si y € A, en particulier y # 1, et on a
h(y) =y.Siy ¢ A, y = 1/n, ol n est entier strictement plus grand que 1 puisque y # 1.
On a alors h(1/(n — 1)) = y. Dans tous les cas, y posséde un antécédent, ce qui prouve
que h est surjective.

(4) Rappelons que tout entier peut s’écrire 2k s'il est pair, et 2k + 1 8’il est impair. Posons
f(2k) =k, et f(2k + 1) = —k. Reste a vérifier que f est bijective, ce qui est laissé au
lecteur! |

Propriété 2. Soient E, F deur ensembles et f : E — F une application.

o f est injective si et seulement si : « VYx,o' € E,(f(x) = f(a)) = x=2a"» siet
seulement si « tout élément de F admet au plus un antécédent dans E » si et seulement si
« pour tout élément y € F, l'équation f(x) =y posséde au plus une solution ».

o [ est surjective si et seulement si : «Vy € F,3z € E . y = f(x)» si et seulement
st « tout élément de F' admet au moins un antécédent dans E » si et seulement si « pour tout
élément y € F, 'équation f(x) =y posséde au moins une solution ».

o f est bijective si et seulement si : Yy € F,3x € E : y= f(x) si et seulement si « tout
élément de F' admet un et un seul antécédent dans E » si el seulement st « pour tout élément
y € F, Uéquation f(x) =y posséde une unique solution ».

o Si f 1 E — F est bijective, il existe alors une unique application notée f~* : F — E
vérifiant fo f~1 = idp et f o f = idg c’est la ’application réciproque de f. f~' : F — FE
est alors aussi bijective et (f~1)1 = f.

o Sotent f : E— F, g : F — E deux applications. Vérifiant fog = idp et go f = idg.
Alors, elles sont toutes deux bijectives et réciproques ['une de [’autre.

Démonstration : Exercice. [ ]

Exemple : On dira qu'un ensemble A est dénombrable lorsqu’il existe une bijection f
A — N. Il est important d’observer que R n’est pas dénombrable : pour cela on va construire
un sous-ensemble de R qui n’est pas dénombrable (exercice : montrer que tout sous ensemble
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d’un ensemble dénombrable est au plus dénombrable, autrement dit, fini ou dénombrable).
Le sous-ensemble de R qui nous intéresse est M =|0, 1], supposons, par I'absurde que M soit
dénombrable et soit M = {ry,79,...,7y,...} une énumération de M. Ecrivons le développement
décimal de chacun de ces réels, de telle sorte qu’il ne se termine pas par une infinité de 0 (i.e.
on écrira par exemple 0.5 sous la forme 0.4999999...), ce développement est alors unique et
on a

Tn =0,0p10p20,3 ..., n € N*
ol an; € {0,1,2...,9} pour tous n,i € N*. On peut alors écrire

r = O,a11a12a13 Qi ..

9 = 0,@21(122(133 . Qop ..

Tn = O,anlangang o Qpp -

On choisit alors pour tout entier n, un nouvel entier b, € {1,2...,8} différente de a,,. Alors
le réel b = 0.b1bobs ... est dans M, donc b = r; pour un certain entier k, mais ceci est absurde
car par construction by, la k-iéme décimale de b est différente de ayy, celle de r;. Contradiction.
CQFD. [ |

Définition 4. I'mage directe, 1mage réciproque Soient f : FE — F une application,
A un partie de E et B un partie de F. On appelle image directe de A par f l'ensemble
flA):={yeF : Jze€ A : f(x)=y}. On appelle image réciproque de B par f l’ensemble
fYB):={z€FE : f(x)e€ B}.

Exemples-exercices : o j Attention! il faut étre trés attentif car la notation f~! peut
donc représenter deux objets : 'application réciproque f=' : F — E de f lorsqu’elle existe,
(i.e. lorsque f est bijective) et I'application réciproque f=' : P(F) — P(E) de f qui
existe toujours et ne suppose en rien que f soit bijective. Lorsque f est bijective, f~(B)
représente aussi bien l'image directe de B par I'application f~! que I'image réciproque de B
par f (vérification facile par double inclusion).

e f désigne une application de E dans F. A est un sous-ensemble non vide de F et B un
sous-ensemble non-vide de F'. Justifier les inclusions

(1) f(f71(B)) C B.
(2) Ac f7H(f(A)).

(3) A-t-on égalité en général ?

Solution :

(1) Prenons z € f(f~1(B)). Alors, il existe y élément de f~!(B) tel que x = f(y). Puisque
y est dans f~1(B), on sait que f(y) est élément de B. Donc x est élément de B ce qui
prouve l'inclusion.

(2) Prenons x élément de A. Alors f(x) est élément de f(A), ce qui signifie exactement que
x est élément de f1(f(A)).
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(3) Prenons f : {1,2} — {1,2}, 1+~ let 2+ 1 et B = {1,2}. Alors f~1(B) = {1,2} et
f(f~Y(B)) = {1} qui est différent de B.
Pour Pautre exemple, prenons A = {1}. Alors f(A) = {1} et f71(f(A)) = {1,2} qui est
différent de A.

Définition 5. 1) Soit A C R symétrique par rapport o Uorigine (i.e. v € A — —x € A
ou encore A = —A), on dira que f : A — R est paire si f(x) = f(—x), Vo € A. Si
flz) =—f(—x), Yx € A on dira que f est impaire.

2) On dira qu’un réel T est une période de f : R - R si f(z) = f(x+T), Ve €R. Si f

admet une période T non nulle on dira que f est T-périodique.

Exemples-exercices : e Si f est impaire et 0 € A montrer que f(0) = 0.

e Montrer que toute fonction f : A — R se décompose de maniére unique sous la forme
f =g+ h avec g paire et h impaire.

e Une fonction f : R — R peut-elle étre injective 7 surjective 7

Définition 6. S’il existe m € R tel que Vo € X : f(x) < m on dira que f est majorée sur
X (on définit de la méme maniére la notion de fonction minorée sur X ). Toute fonction f a
la fois majorée et minorée sur X sera dire bornée sur X.

Soit X une partie non vide de R et f : X — R. on dira que f présente point a € X
un maximum siVx € X : f(x) < f(a); elle présente au point a un mazimum local si
Jh>0 : Ve e XNja—h,a+h]: f(x) < f(a); on le nomme aussi max,cx f(x). On définit
de la méme maniere les notions de minimum et de minimum local.

Exercices : e Soit f : R — R définie par f(z) = ﬁ Montrer que f est majorée sur R,

admet-elle un maximum 7 Montrer que f est minorée sur R, admet-elle un minimum ?
o ..
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2. LIMITES.

2.1. Définitions, exemples.

Définition 7. Soient a < b deux nombres réels, f : ]a,b|— R une application. Pour ¢ €la,b]
on dira que f admet pour limite | € R lorsque x tends vers c et on écrira lim, . f(x) =1 si et
seulement st :

Ve>0,3n) >0 : 0<|z—cl<nle) = |f(z)-1I<e.

Commentaires : e Bien remarquer que 0 <
|r — ¢ < n(e) ie. x €lc — ., c[Ulc,c + e -
x ne peut donc étre égal a c. La valeur de la
fonction au point ¢ est sans importance pour
sa limite, la limite traduit le comportement de
la fonction lorsque z « tends » vers le point
c. Par exemple les fonctions définies sur [0, 1]
par f(z) =z et glz) =axsiz #1, f(1) =0
admettent toutes les deux 1 comme limite en
r =1

e Avec la définition de la valeur absolue
(Ve>0,3dn(e) >0 : 0< |z —c| <nle) = |f(x)=1]<e¢)
équivaut a
Ve>0,ane) >0 : c—nle)<z<c+nle) = l—c< f(z)<l+e)

Autrement dit, au voisinage de ¢ et pour tout € > 0 (c’est I'erreur) aussi petit qu’on le désire, le
graphe de f sera & une distance inférieure a € de [ ( ¢’est | f(x)—[| < €) pourvu que z soit proche
de ¢ (i.e. pourvu que 0 < |z — ¢| < n(¢)). De maniére imagée, lim,_,. f(x) = [ si et seulement
si pour tout bande horizontale centrée en [ et d’épaisseur 2¢ (voir la figure ci-dessous) il existe
n(e) > 0 tel que le graphe de f sur ¢ —n(e),c+ n(e)[\{c} est tout entier inclu dans la bande.

|
£

22 A

& M‘@("V Q’ i ‘i

w->C
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e Si f n’admet pas [ comme limite au point ¢, il faut donc trouver un ¢y > 0 tel que pour tout
n > 0 il existe z,, €]c —n,c+ n[\{c} vérifiant | f(x,) — | > <.

e Il est parfois utile (ou plus agréable) de se ramener a une limite en zéro par un changement de
variables i.e. lim, . f(z) =1 <= lim,_o f(c+h) = [. Par exemple calculer la limite au point

a de la fonction f définie sur R\ {a} par f(x) = % Faire de méme pour f(z) = =% n > 2.

On définit de méme les limites « & droite » et « a gauche » en un point :

Définition 8. (1) Soient a < b deuz nombres réels, f : ]a,b]— R une application. On
dira que [ admet pour limite a droite | € R lorsque x tends vers a et on écrira
lim, o+ f(z) = lim, 4, »5q f(2) =1 si et seulement si :

Ve>0,3ne) >0 : a<|z<a+nle) = |f(z)—I<e.
(2) De méme, on dira que f admet pour limite & gauche | € R lorsque x tends vers b et
on écrira lim,_y,  f(z) = lim,_p 4<p f(2) =1 si et seulement si :
Ve>0,dne) >0 : b—nle) <z <b = |f(z)—1| <e.
(3) Enfin, pour c €]a;b[ on dira que f admet pour limite & gauche | € R lorsque = tends
vers ¢ par valeurs inférieures si la restriction f : |a,c[— R de f au segment |a, c[ admet

[ comme limite & gauche au sens précédent. On définit de méme la limite a droite au
point c.

r 1
z+1 2
e La fonction définie pour = # 0 par f(z) = e | o

sin(1/xz) n’admet pas de limite en zéro. L 08 0
= 0 =]

: 05 : -0s

4 E}

-4 2 i} 2 4 D& i} 05

il s

EIW 0.08 [t} 00 01 UUW UUUE [t} UUUE oo

Exemples - Exercices : e Montrer (avec les € et les §) que lim,

y=sin(1/x)
y=sin(1/x)

-0 1<x<01 -0.01=x<0.01

1

=sin(1 )

¥

e La fonction f : [0,2] — R définie par
x? si z€l0,1] ¥
flx)=41/2 si x=1 i
r—1 si zé€ll, 2]
admet 1 comme limite & gauche en x = 1
et zéro comme limite & droite en z = 1, elle

admet aussi 0 comme limite & droite en z = 0
et 1 comme limite & gauche en x = 1.

Q
A
o

Définition 9. (limites en +oo et limites infinies).
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(1) Soient [ : |a,+oo[— R une application. On dira que f admet pour limite | € R lorsque
x tends vers 400 et on écrira lim,_, o, f(x) =1 si et seulement si :

Ve>0,3A>) >0 : x> A(e) = |f(z) -1 <e.

De méme, on dira que f : ] — 00,b[— R admet pour limite | € R lorsque x tends vers
—o0 et on écrira lim,_,_ f(x) =1 si et seulement si :

Ve>0,3A>) >0 : < A(e) = |f(zx) -1 <e.

(2) Soient f : ]a,+o00[— R une application. On dira que f admet pour limite +00 lorsque
x tends vers 400 et on écrira lim,_, o, f(x) = +o00 si el seulement si :

VA>0,3B(A) >0 : z>B(e) = f(x)> A

De méme on dira que admet f admet pour limite —oo lorsque x tends vers +oo et on
éerira lim,_, 4o f(x) = —00 si et seulement si :

VA<0,3B(A)>0 : 2> B(e) = f(x) <A

(3) Pour f :]—o00,b[— R on définit de la méme maniére les limites lim,_,_, f(z) = £o0
(exercice).

Précisions : e Silim, . ., f(x) =1 le graphe de f « tends » vers la droite y = [ lorque x tends
vers 400 ; autrement dit le graphe de f sera dans le tube | — ¢ < y < [ 4+ € pourvu que z soit
assez grand i.e. pourvu que x > A c’est trés exactement ce que veut dire « Ve > 0,3 A(e) >
0:z2>A) = |f(zx)—=1I] <ev».

e De méme, dire que lim, ,, f(z) = 400 c’est dire que le graphe de f sera au dessus de
toute droite horizontale y = A pourvu que x soit suffisamment grand, i.e. pourvu que z > B;
autrement dit : « VA >0,3B(A) >0 : x> B(e) = f(z) > A».

Ces deux situations sont illustrées sur les figures ci-dessous :

/ ‘
b
£
)t
Lo ==
{5 — k
—>

o, A x
,Qj%,u. 1@(1.):400 b4 * < & Q»mw’#(x) = /e, ¥

A
4 AL OO

Exercices : e Montrer que la fonction sinus n’admet pas de limite en +oo.
. . R . . x|, stz eRY,
e Etudier I'existence de limite a I'origine des fonctions suivante : f(z) = {ll | : 0
, siz=0.
||, six <0,
g(x) = .
lz| + 1, siz>0.
e Soient f(z) = 2?,g(z) = sin(z), * € R, montrer soigneusement que pour tout ¢ € R
lim, . f(z) = ¢ et lim,_,. g(x) = sin(c).

et h(z) = |z|, x € R.
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e Montrer que lim, /> tan(z) = +o0.
e Montrer que lim,_, ., arctan(x) = 7/2.

2.2. Propriétés.

Proposition 4. (unicité de la limite) Si f : ]a,b|— R admet une limite en ¢ €la,b|, elle est
unique.

Exercice : Faire de méme pour les limite & gauche, a droite, en l'infini.

Démonstration : Supposons que f admette deux limites [; # [y au point ¢ et posons § :=
|l; — l3|. Alors vu les hypothéses nous pouvons écrire

(hmf(x) :ll) = Ve>0,am) >0 : 0<|z—c <m(e) = |f(z)—UlL]<e)

Tr—cC

<limf(m):l2> = (Ve>0,3mE) >0 : 0< |z —c <m(e) = |f(z)—l|<e).

Tr—C

e > (0 étant arbitraire choisissons € = §/3; alors pour tout = €|a, b[ vérifiant |z — c| < n3(e) :=
min{n;(¢),n2(¢)} nous aurons

0=1[h —b]<|f(zx) =Ll +|— f(z)] <0/3+6/3=25/3
ce qui est absurde! CQFD. [ |

Proposition 5. [ : Ja,b|— R admet une limite | au point ¢ €|a,b] si et seulement si
limg e, f(z) =1=lim,._ f(2).

Démonstration : Exercice, cela résulte des définitions. |

Le résultat qui suit est fondamental : il permet de traduire en termes de suite la notion de
limite ce qui rend souvent les choses plus faciles & manipuler.

Théoréme 2. [ : ]a,b|— R admet une limite | € R au point ¢ €|a,b| si et seulement si, pour
toute suite (x,,), Cla,b\{c} : lim, z, = ¢ = lim, f(z,) =L

Remarque : Ce théoréme reste valable si a = +00 ou | = fo00... par exemple lim, o, f(x) =
4 si et seulement si pour toute suite (z,), tendant vers +oo la suite (f(x,)), tends vers 4.
Démonstration : e (condition nécessaire (=)). Par hypothése lim,_,. f(z) = [ autrement dit
(1) Ve>0,dne) >0 : jJz—cl<n. = |f(x)—=1] <e.

Considérons maintenant une suite (x,,), convergente vers ¢, nous avons donc :

(2) Ve>0,dN(e) >0 : n>N(e) = |z,—c¢|<e.

e > 0 étant fixé, choisissons N (¢) tel que n > N(e) implique |z, — ¢| < n(e) (un tel choix est
possible vu (2)...); alors |z, — ¢| < n(¢) implique vu (1) que |f(z,) — | < . Résumons nous :
nous avons montré que pour tout € > 0, il existe un entier N(e) vérifiant n > N(e) =
|f(x,) — | <e:cen’estrien d’autre que la définition de lim,, f(z,) = . CQFD.
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e (condition suffisante (<)). On procéde par contraposéeﬂ : si f ne tends pas vers [ au point
¢, alors il existe[] £y > 0 tel que pour tout n > 0 il existe z,, €]a, b[\{c} vérifiant simultanément
0< |z, —c| <net|f(z,) —I >eo. nétant arbitraire, on choisit pour tout n e N*: n =1/n:
il existe alors x,, €la, b[\{c} vérifiant 0 < |z, —c| < 1/net |f(z,) — 1] > c0. 0 < |z, — | < 1/n
pour tout n > 1 implique que lim, z, = ¢; mais |f(z,) — l| > € pour tout n > 1 nous assure
que la suite (f(x,)), ne peut converger vers [ ; on a donc bien non(1) : CQFD. [ |

Remarque : Cette caractérisation de la limite est bien utile pour montrer qu’une fonction
n’admet pas de limite en un point : par exemple §’il existe une suite (z,), convergente vers c
telle que (f(x,,)), diverge alors f n’admet pas de limite au point c; aussi s’il existe deux suites
(Zn)n €t (yn)n toutes deux convergentes vers ¢ mais telles que les suites (f(z,))n et (f(yn))n
convergent vers des limites différentes alors encore une fois f n’admet pas de limite au point c.

Exercices : e Montrer avec les suites que la fonction sinus n’admet pas de limite en +oo0.
e La fonction définie sur R* par f(z) = sin(z~!) admet-t-elle une limite en z =07

Proposition 6. (propriétes usuelles des limites) Soient —o0 < a < b < 400, et f,g :]a,b[— R
admettant en un point ¢ €)a, b[ une limite : lim,_,. f(z) = I3, lim, . g(x) = l5. Alors :
(1) f est bornée sur un voisinage de c.

2) S
3) hmﬁc( (@) +g(x)) =l + L.
4) lim, . A f(x) =X -1, VA ER.
5) im, . f(z) - g(x) =1y - ls.
6) Sily A0 : lim, . @) b

)

)

)

)

f est bornée au voisinage de c et si lim,.|f(z)| =0 alors im, . |f(z) - g(z)| = 0.

glz) — la

7 hmx%c‘f ‘ - ’l1’ EI
8) (f >0 et lim, . f(x)=10) = 1, >0.
9 (f >gv hmx—wf( )_ll et hma}—mg( ):l2) - ll > l2-

(10) (th. des gendarmes) (f > g > h, et lim,_,. f(z) = lim,,.h(z) =1) = lim, . g(z) =
[.

(
(
(
(
(
(
(
(

Démonstration : On pourrait bien sir invoquer le cours sur les suites mais cela est peu
sportif : il faut manipuler les ¢ et 7. Par exemple pour (4) : soit x €]a, b[ on peut écrire :

[f(@)g(x) = hila| = [f(2){g(x) = Lo} + LA f(x) = W} < |f(@)] - [9(x) = L] + [l2| - |f(z) = ]
et comme [ admet une limite en c elle est bornée au voisinage de ¢ (c’est (1)) donc |f(x)] -

|g(x) — l3| tends vers 0 lorsque x tends vers ¢ (c’est (2)); de méme |lo| - |f(z) — [1] tends vers 0
en c et le résultat suit... Pour le reste, exercice. |

1. Contraposée : pour montrer une implication (1) = (2) il est équivalent de montrer non(2) = non(1), c’est le raisonnement
par contraposée; bien remarquer qu’il est différent du raisonnement par I’absurde qui consiste & supposer simultanément (1) et
non(2) pour en déduire une contradiction.

2. C’est la négation de « Ve > 0,3n(e) >0 : [z —c|<e = |f(z) =1l <e»..

3. 11 est essentiel de bien connaitre la double inégalité ‘|z| - \y|‘ <lz—y| < |z|+ |yl
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3. CONTINUITE

3.1. Définitions, propriétés générales.

Définition 10. Soit f : ]a,b[— R et ¢ €]a,b], on dira que f est continue au point ¢ si et
seulement si f admet une limite | en c et | = f(c). autrement dit :

Ve>0,3dn(e,c) >0 : |[x—c <nle,e) = |f(x) — f(o)| <e.

On dira que f est continue sur |a,b| si elle est continue en chaque point de |a, b|.

Remarque : Pour la continuité il faut donc
deux choses : I'existence de la limite [ et 1’éga-
lité | = f(c). Si 'on reprend I'exemple du dé-
but (figure 1) ou les deux fonctions admettent
1 comme limite en x = 1; seule f est continue :

Propriété 3.

(1) Une fonction f sera continue au point ¢ si, et seulement si pour toute suite (), conver-
gente vers ¢ la suite (f(x,)), converge vers f(c).

(2) Si f est définie sur|a,b[\{c} mais admet une limite | au point c, alors si on pose f(c) =
I, [ = f surla,b\{c}, la fonction f ainsi définie est continue au point c : c’est le
prolongement par continuité de f au point c.

(3) Si f :]a,b[— R n’admet pas de limite | au point ¢ €|a, b, alors deux cas peuvent se
produire : ou bien f admet des limites a droite et a gauche au point ¢ distinctes : on
dira alors que f présente au point ¢ une discontinuité de premaiére espéce; ou bien
au moins une des deux limites (4 gauche et & droite) n’existe pas : on dira alors que f
présente au point ¢ une discontinuité de seconde espéce.

Démonstration : Ce sont des conséquences immédiates de la définition de la continuité et
de la notion de limite. |

Exemples-exercices : e La fonction f définie par f(z) = |11=\, Zi i Eﬂs*’ que nous avons vu
au paragraphe précédent admet la limite 0 # f(0) = 1 en 0 : elle n’est donc pas continue a
I'origine, quel type de discontinuité avons nous ?

2, sixz >0,
1, sixz <0,
de deux maniéres différentes : par la définition et avec les suites, quel type de discontinuité
avons nous !

e Mémes questions avec

e Montrer que la fonction f définie sur R par f(z) = n’est pas continue en z = 0
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sin(z™1), si x € R*,
1, six =0.

Propriété 4. Soient f,g : |a,b|— R et c €]a,b[, si f et g sont continues au point ¢ alors :

(1) f+ g est continue au point c.
2) Af est continue au point ¢ pour tout A € R.

3) f- g est continue au point ¢

(2)
(3)
(4) Si g(c) # 0 alors f/g est continue au point c.
(5) |f| est continue au point c.

(6)

6) Soit J un intervalle contenant f(la,b]) et h : J — R une application continue en f(c),
alors g o f est continue au point c.

Démonstration : Exercice. [ ]

Applications : On en déduit « facilement » la continuité des fonctions usuelles sur leur do-
maines de définition (polynomes, fractions rationnelles, fonctions trigonométriques, log, exp...)
ainsi que toutes celles que 'on peut déduire des précédentes par combinaison linéaire, multipli-
cation, composition... sur leur domaines de définition.

3.2. Les théorémes fondamentaux.

Théoréme 3. Soit I un intervalle de R et f . I — R une application continue. Si a et b sont
deux points de I tels que f(a)f(b) <0 alors il existe ¢ € [a,b] tel que f(c) = 0.

Démonstration : Supposons par exemple que a < b. Quitte a changer f en —f, on peut
supposer que f(a) < 0 < f(b). On construit alors deux suites (a,), et (b,), par récurrence de
la maniére suivante :
On commence par poser ag = a et by = b, on a donc f(ag) < 0 < f(by). Supposons maintenant
a, et b, construits tels que a, < b, et f(a,) <0< f(b,); posons ¢, = % alors :

—si f(c,) <0 on pose a,i1 = ¢, et by = by.

—si f(c,) > 0 on pose a1 = Gy €t by = Cy.
Dans les deux cas on a a, < apq1 < bpyg < by et f(ans1) < f(bpy1). La suite (ay,), est donc
croissante, (b,), est décroissante et a, < b,, Vn € N. En outre, par construction nous avons

b
b"_GWZQ_Z’ Vn e N,

soit lim,(a, — b,) = 0 : les suites sont donc adjacentes, elle convergent vers la méme limite
¢ € [a,b] et comme par construction f(a,) < 0 < f(by,), Vn € N en passant a la limite, la
continuité de f au point ¢ nous donne f(c) = 0. CQFD. |
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Remarques : e On peut énoncer ce résultat en disant que sur un intervalle, une fonction
continue qui ne s’annule pas doit garder un signe constant.

e La méthode précédente donne un algorithme simple pour trouver la valeur approchée d’une
solution de I'équation f(x) = 0 : c’est la méthode de résolution par dichotomie, on s’arréte
lorsque (b — a)/2™ est inférieur ou égal a la précision demandée (pourquoi?).

e Ce théoréme est trivialement en général faux si f n’est pas continue, par exemple considérer

f(z) = {1’1 S% v eﬂs ", il est aussi faux si I n’est pas un intervalle, par exemple 'application
-1, siz =0,

1 siz>0 :
’ . " prends les valeurs 1 et —1 mais ne s’annule
-1, siz <0,

continue définie sur R* par f(z) = {
jamais.

Théoréme des valeurs intermédiaires : Toute application f continue sur un intervalle
[a,b] [ prends toutes les valeurs comprises entre f(a) et f(b).

Démonstration : Si d est compris entre f(a) et f(b), appliquer les théoréme précédent a la
fonction z — f(z) — d. [ |

Corollaire : L’image d’un intervalle par une fonction continue est un intervalle.

Démonstration : Exercice (f(I) sera un intervalle ssi yy,y2 € f(I) = [y1,92] C f(I)...
pour cela appliquer convenablement le théoréme des valeurs intermédiaires). |

Remarques : e L’intervalle peut étre réduit a un point si f est constante : I = R, f = 12,
alors f(I) = {12}.
e L’intervalle f([a, b]) n’admet pas forcément f(a) et f(b) comme extrémités. Par exemple, pour

f(x) =2? on a f([-2,2]) = [0,4] = [f(0), f(2)].

2lr) puk w o

T w el

_IV\LQA \~Q/>WW
W kol

e Si f n’est pas continue, tout ceci n’a plus de sens : par exemple 'image f(R) pour la fonction

x six € R* . .
flz) = 2l _ " est {—12} URY qui n’est pas un intervalle.
—12, six =0,
e Si [ n’est pas un intervalle, le résultat ne subsiste pas non plus : considérez par exemple la
fonction continue sur R* et définie par f(z) = 2’2 e Z 8’, alors f(R*) = {—2,2} qui n’est
-2, six ,
pas un intervalle.

Théoréme 4. L’image d’un intervalle fermé borné |a,b] par une fonction continue f est encore
un intervalle (éventuellement réduit & un point) fermé borné [m, M. En particulier, toute
fonction f continue sur un intervalle fermé borné [a,b] est bornée et atteint ses bornes.
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Démonstration : e Posons M = sup,¢(,y f(2). Si M < +00, on choisit (définition du sup)
pour tout n € N* un réel z,, € [a,b] vérifiant f(z,) > M — 1/n. Si M = 400, on choisit
(re-définition du sup) alors x,, € [a,b] tel que f(z,) > n. Dans les deux cas, lim, f(z,) = M.
Par construction (z,), C [a,b] : bornée, la suite (z,,), admet donc[] une une sous-suite (z,, )
convergente vers ¢ € [a,b]. f étant continue au point ¢, on a forcément limy, f(z,,) = f(c) i.e.
M = f(c). Donc f(c) = M < oo : f est donc majorée et atteint sa borne supérieure.

e Pour la borne inf, on se raméne f a la situation précédente en remplacant f par —f. |

Remarques : o Tout comme le théoréme des valeurs intermédiaires ce dernier résultat est
dans la pratique fondamental et il est essentiel de bien savoir I'utiliser.

e Le fait que l'intervalle doit étre fermé borné est essentiel : par exemple la fonction continue
définie sur [0, 1] par f(z) = x est bornée mais n’atteint pas sa borne supérieure qui est 1; de
méme la fonction continue sur [0, 1] et définie par g(z) = 1/(z — 1) n’est cette fois pas majorée
enfin la fonction définie sur Iintervalle fermé non borné [0, +oo[ définie par f(x) = e est
bornée minorée par 0 mais n’atteint pas sa borne inférieure.

R

,ﬁ(}Z(’L[); [01(*[ 1(7(!:01“"[0)\%‘[ it ’ %(@MC U{Z}) % u\«g.b

e [’image par une fonction continue d’intervalle est un intervalle, 'image d’un intervalle fermé
borné est un intervalle fermé borné; mais attention 'image d’un intervalle ouvert n’est pas
nécessairement ouverte : 'image de I'intervalle ouvert | — 2,2[ par h(x) = 2% est I'intervalle
non ouvert [0,4[. L’image peut méme est un intervalle fermé borné (considérer une fonction
constante ou périodique...).

4. Continuité uniforme.

Définition 11. Soit I un intervalle de R, f : I — R , on dira que f est uniformément
continue sur I si et seulement si :

Ve>0,ane) >0 : |[x—zo| <nle) = |f(x)— f(xo)| <e, Vo € 1.

Remarques : Voici ci-dessous les définitions de la continuité sur I et celle de la continuité
uniforme :

Vag€ I, Ve>0,In(e,x9) >0 : |x—a0] <nle,xz0) = |f(x)— f(zo)| <e.
Ve>0,3ne) >0 : |z —xo| <nle) = |f(x)— f(zo)| <&, Vg € I.

La différence est que dans la définition de la continuité uniforme le n marche pour tous les z,
il est uniforme en zg.

Théoréme 5. Toute fonction f continue sur un intervalle fermé borné [a,b] est uniformément
continue.

4. C’est le théoréeme fondamental du cours sur les suites.
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Démonstration : Admise. [ |

Remarques-mode d’emploi : e Dans la pratique, pour montrer qu’une fonction continue
f I — R est uniformément continue sur I, on dispose (ormi la définition) de deux conditions
suffisantes : la premiére est que I soit un intervalle fermé borné (voir théoréme plus haut)
ol, un peut plus généralement que f admette une limite finie aux points frontiéres de I (voir
I'exercice 3 de la feuille 6); la seconde est que f soit a-Lipschitzienne sur I, i.e. qu’il existe
deux constantes o« > 0, C' > 0 telles que |f(z) — f(y)| < Clz —y|*, Y,y € I (par exemple
pour assurer la continuité uniforme sur R, de f(z) = sin/z... voir feuille 6).

e Pour montrer qu'une fonction continue f : I — R n’est pas uniformément continue sur I on
cherche en général (voir de multiples exemples en TD) dans I deux suites (2, )n, (Yn)n vérifiant
lim, |z, —yn| =0et 3C >0 : |f(z,) — f(yn)] = C, ¥n > ng (ces deux suites convergent vers
lune extrémité I 1a ou l'uniforme continuité se perd....).

3.3. Applications réciproques.

Théoréme 6.

(1) Soit f : I — R une application monotone sur un intervalle I, si f(I) est un intervalle
alors [ est continue sur I. En particulier, st f : I — R est continue et strictement
monotone elle est donc injective et induit une application réciproque f~1 : f(I) — I
qui est continue.

(2) La réciproque est vraie : toute fonction f continue et injective sur I est strictement
monotone sur I.

En résumé : Une fonction continue [ sur un intervalle I est injective si et seulement si elle
est strictement monotone sur cet intervalle. Dans ce cas, J := f(I) est un intervalle sur lequel
Vinverse fCY J = f(I) — I est définie et continue.

Démonstration : e On suppose par exemple f croissante. Soit a € I qui n’est pas la borne
"sup" de [ (ie si par exemple [ =|2, 3] alors a €]2,3[...). f étant croissante elle admet en a une
limite & droite [ > f(a) (penser aux suites). Supposons que [ > f(a) alorsz >a = f(x) >1
et  <a = f(z) < f(a). La fonction f ne prends donc aucune valeur entre f(a) et [ mais
puisque a n’est pas le plus grand élément de [ il existe b € [ : b > a qui assure f(a) <1 < f(b)
et tout ceci est absurde car f(I) est un intervalle et donc [f(a), f(b)] C f(I). Ainsil = f(a): f
est donc bien continue a droite sur 7\ sup(/); on montre de méme que f est continue a gauche
sur I\ inf(7) : f est bien continue sur I.

Pour I'application : si f est continue sur Uintervalle I alors f(I) est un intervalle (c’est le
TVI...) et étant strictement monotone elle réalise une bijection f=* : f(I) — I qui sera aussi
strictement monotone (I’écrire...) la premiére partie du théoréme assure alors la continuité de

f~tsur f(I).

e On suppose f continue et injective sur [a, b]
et, sans perdre de généralité f(a) < f(b), mon-
trons qu’alors .
]
.— . L
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f est strictement croissante sur [a, b]. Pour
cela, supposons le contraire et soient a <
r <y < bavee f(r) > f(y). Il y a deux
possibilités : ou bien f(a) < f(x) ou bien
f(a) > f(z). Dans le premier cas on choi-
sit L €]f(a), f(x)[N]f(y), f(z)]. Par le TVI

Remarque : e Le théoréme est faux si [
n’est plus un intervalle : par exemple la fonc-
tion f(x) = 1/x est continue et injective sur
R* ot elle n’est pas strictement monotone.

29 SEPTEMBRE 2011

il existe a < a < x < B < y tels que
fla) = f(B) = L. Mais f est injective et ceci
ne peut se produire. Donc f(a) > f(x) soit (in-
jectivité) f(a) > f(x) et ce cas se traite comme
le précédent. f est bien strictement monotone.
[

Il en résulte la continuité des applications réciproques de fonctions usuelles décrites dans la

paragraphe suivant.
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Bestiaire des fonctions réciproques usuelles :

e L’application log : R% — R est continue et strictement croissante : elle admet donc une
application réciproque continue : exp : R — R7.

o &

Gl

) Jagloe)

«}:%

e L’application cos : [0,7] — [—1,1] est continue et strictement décroissante : elle admet
donc une application réciproque continue : arcos : [—1,1] — [0, 7).

e L’application sin : [—7/2,7/2] — [—1, 1] est continue et strictement croissante : elle admet
donc une application réciproque continue : arcsin : [—1,1] — [—7/2,7/2].

e Lapplication tan : | — w/2,7/2[— R est continue et strictement croissante : elle admet
donc une application réciproque continue : arctan : R —| — 7/2,7/2[.
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e L’application ch : R — R définie par ch(xz) = (e” 4+ e*)/2 est continue, sa restriction a
R, strictement croissante a valeurs dans [1,+oo[ : elle admet donc une application réciproque
continue : argch : [1,4+o00[— R,.

e L’application sh : R — R définie par sh(z) = (e — e*)/2 est continue strictement
croissante a valeurs dans : elle admet donc une application réciproque continue : argsh : R — R.

e L’application th : R — R définie par th(z) = sh(x)/ch(z) est continue strictement
croissante sur R & valeurs dans | — 1, 1] : elle admet donc une application réciproque continue :
argth : ] —1,1[— R.
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