AGRÉGATION INTERNE DE MATHÉMATIQUES **3 * 3 3 * 3** Intégration & Intégrales et séries à paramètres – 26 Septembre 2010.

1. Intégration

Exercice 1. De Préciser la nature des intégrales impropres suivantes :

- 1) (Intégrales de Fresnel) $\int_0^\infty \cos(t^2)dt$ et $\int_0^\infty \sin(t^2)dt$.
- 2) $\int_{1}^{\infty} x^{-\alpha} \left(\left(\cos(\frac{1}{x}) \right)^{x} 1 \right) dx, \ \alpha \in \mathbb{R} \quad \& \quad \int_{2}^{\infty} \left(\log\left(1 \frac{\log(x)}{x}\right) + \frac{\log(x)}{x} \right) dx.$

Exercice 2. \clubsuit Montrer que l'intégrale impropre $\int_0^\infty \frac{\sin(t)}{t} dt$ est convergente mais non absolument conver $gente. \ \textit{\'Evaluer} \ \grave{a} \ \textit{la main la quantit\'e} \ \int_0^{1/2} \frac{\sin(t)}{t} dt \ \textit{avec une pr\'ecision d\'ecimale d'au moins deux chiffres apr\'es}$ la virgule.

Exercice 3. Let Une parabole rencontre un disque de rayon 1, est-il possible que la lonqueur de l'arc de parabole inscrit dans le cercle soit de longueur supérieure à 4?

Exercice 4. \clubsuit Soit $f \in \mathcal{C}^1([0,1])$ croissante et vérifiant f(0) = 0, f(1) = 1 montrer que la longueur du graphe $de \ f \ est < 2 \ et \leq 2 \ si \ f \ est \ seulement \ seulement \ croissante.$

Exercice 5. Soit $f:[0,1] \mapsto \mathbb{R}$ continue, dérivable à l'origine et telle que f(0) = f'(0) = 0. Montrer que $\int_{a}^{1} f(t)t^{-3/2}dt \ converge.$

Exercice 6. Soit $f \in C^0(\mathbb{R}_+, \mathbb{R}_+)$. Quelles implications existe-t-il entre les propriétés

- 1) $\int_0^\infty f(t)dt \ converge.$ 2) $\lim_{x \to \infty} f(x)dx = 0.$
- 3) f est uniformément continue sur \mathbb{R}_+ .

Exercice 7. $C(\alpha)$ désignant le coefficient de x^{2009} dans le développement limité à l'origine et à un ordre convenable de $(1+x)^{\alpha}$, calculer

$$\int_0^1 C(-t-1) \left(\frac{1}{t+1} + \frac{1}{t+2} \dots + \frac{1}{t+2009} \right) dt.$$

Exercice 8. (Histoires de moments).

- 0) Soient $f \in C([a,b])$, $n \in \mathbb{N}$. On suppose que $\int_{a}^{b} f(t)t^{k}dt = 0$, $\forall k \in \{0,1,\ldots,n\}$. Montrer que fpossède au moins n+1 zéros dans [a,b].
- 1) Soit $f \in C([a,b])$ telle que $\int_a^b f(t)t^n dt = 0$, $\forall n \in \mathbb{N}$. Montrer que f est identiquement nulle (théorème des moments de Hausdorff).
- 2) Le théorème des moments de Hausdorff tombe en défaut sur \mathbb{R}^+ : Soit f définie sur \mathbb{R}^+ par $f(x)=e^{-x^{1/4}}\sin(x^{1/4})$.
 - a) Montrer que $I_n:=\int_0^{+\infty}t^ne^{-\omega t}dt=\frac{n!}{\omega^{n+1}},\quad n\in\mathbb{N}\quad où\ \omega=e^{\frac{i\pi}{4}}.$
 - b) En déduire que $\int_{1}^{+\infty} t^n f(t) dt = 0$, $\forall n \in \mathbb{N}$, (pour cela, remarquer que $I_{4n+3} \in \mathbb{R}$...).
- 3) Soit a > 0 et $f \in \mathcal{C}^0([-a,a])$. Si $\int_{-a}^a t^n f(t) dt = 0$, $\forall n \in \mathbb{N}$, montrer que f impaire sur [-a,a]. De $m\hat{e}me, si \int_{-a}^{a} t^{2n+1} f(t) dt = 0, \quad \forall n \in \mathbb{N}, montrer \ que \ f \ paire \ sur \ [-a, a].$

2. Intégrales à paramètres

Exercice 9. Préciser le domaine de définition de la fonction définie par $f(x) = \int_0^\infty \frac{dt}{1+t^x}$ puis montrer qu'au voisinage $de + \infty$ nous avons $f(x) = 1 + o(x^{-1})$.

Exercice 10. Soit $f \in \mathscr{C}^0(\mathbb{R}, \mathbb{R})$ une fonction continue à support compact (nulle en dehors d'un compact) et \tilde{f} la fonction définie par $\tilde{f}(x) = \int_{\mathbb{R}} f(t)e^{itx}dt$.

- 1) Montrer que $\tilde{f} \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$.
- 2) Montrer que \hat{f} est développable en série entière sur \mathbb{R} .
- 3) Montrer que si \hat{f} est à support compact, alors $f \equiv 0$.
- 4) Montrer que si $f \in \mathcal{C}^2(\mathbb{R}, \mathbb{R})$, alors $\tilde{f} \in L^1(\mathbb{R})$.

Exercice 11. Un calcul de l'intégrale de Dirichlet $\int_0^\infty \frac{\sin(t)}{t} dt$ (pour d'autres méthodes voir ici). On considère les applications $f(x) := \int_0^\infty \frac{\sin(t)}{t+x} dt$, $g(x) := \int_0^\infty \frac{e^{-tx}}{t^2+1} dt$.

- 1) Montrer que f et g sont de classe C^2 sur \mathbb{R}
- 2) Montrer que f et g sont solutions de l'équation différentielle $y'' + y = \frac{1}{x}$.
- 3) Montrer que f-g est 2π -périodique.
- 4) Montrer que f et g sont équivalentes à $\frac{1}{x}$ en $+\infty$ puis que f=g.
- 5) En déduire que $\int_0^\infty \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

Exercice 12. Calcul de l'intégrale de Gauss $\int_0^\infty e^{-t^2} dt$. On considère l'application $f(x) := \int_0^\infty \frac{e^{-xt^2}}{1+t^2} dt$.

- 1) Montrer que $f \in \mathcal{C}^1(\mathbb{R}_+^*) \cap \mathcal{C}^0(\mathbb{R}_+)$. 2) En déduire que f est solution d'une équation différentielle.
- 3) Montrer que $\int_0^\infty e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$ (on pourra introduire la fonction auxiliaire $g(t) = e^{-t} f(t) \dots$).

Exercise 13. \clubsuit Soit $f(x) = \int_0^{+\infty} e^{-t^2} \cos(2tx) dt$.

- 1) Montrer que $f \in \mathscr{C}^{\infty}(\mathbb{R})$
- 2) f est-elle développable en série entière sur \mathbb{R} ?

Exercice 14. Soit pour $n \in \mathbb{N}^*$, $x \in [0,1]$: $g_n(x) = \sin(nx)$. Montrer que la suite $(g_n)_n$ n'admet aucune sous-suite simplement convergente vers 0 sur [0,1].

Exercice 15. (Un lemme de Cantor) Soient $(\alpha_n)_n$, $(\beta_n)_n$ deux suites de nombres réels telles que la suite de fonctions $(\alpha_n \cos(nx) + \beta_n \sin(nx))_n$ converge simplement vers la fonction identiquement nulle sur \mathbb{R} .

- 1) Montrer que $\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 0$. (pour la seconde limite on pourra raisonner par l'absurde..)
- 2) Montrer que la conclusion subsiste si on a la convergence simple seulement sur [a,b], a < b. Pour cela en posant $f_n(x) = \frac{(\alpha_n \cos(nx) + \beta_n \sin(nx))^2}{\alpha_n^2 + \beta_n^2}$ et, raisonnant par l'absurde montrer que l'on peut extraire de $(f_n)_n$ une sous-suite simplement convergente vers zéro sur [a,b]...

Exercice 16. \clubsuit Pour $z \in \mathbb{C}$ de partie réelle σ vérifiant $|\sigma| < 1$.

- 1) Montrer que $f: t \in \mathbb{R}_+^* \mapsto f(t) = \frac{\sinh(zt)}{\sinh(t)}, \ f(0) = z, \ est \ intégrable \ sur \ \mathbb{R}_+ \ (et \ continue).$
- 2) Pour t>0 développer f en série d'exponentielles et appliquer la convergence dominée à la suite des sommes partielles pour établir

$$\int_{\mathbb{R}_{+}} \frac{\sinh(zt)}{\sinh(t)} dt = \sum_{n \ge 0} \frac{2z}{(2n+1)^2 - z^2}$$

3) Sachant (exercice classique des séries de Fourier...) que pour $z \in \mathbb{C} \setminus \mathbb{Z}$ on a $\pi \cot n(\pi z) = \frac{1}{z} + \sum_{i=1}^{\infty} \frac{2z}{z^2 - n^2}$ en déduire que pour $2z \in \mathbb{C} \setminus \mathbb{Z}$ on a

$$\int_{\mathbb{R}_+} \frac{\sinh(zt)}{\sinh(t)} dt \, = \, \frac{\pi}{2} \tan\left(\frac{\pi z}{2}\right).$$

4) On rappelle que (d.s.e.) pour |z| < 1 et t > 0: $f(t) = \sum_{n \ge 0} \frac{(zt)^{2n+1}}{(2n+1)! \sinh(t)}$, montrer que

$$\int_{\mathbb{R}_+} \frac{\sinh(zt)}{\sinh(t)} dt = 2 \sum_{n \ge 0} (1 - 2^{-2n-2}) \zeta(2n+2) z^{2n+1},$$

 $où \zeta(\alpha) = \sum_{n>0} \frac{1}{n^{\alpha}}$. En déduire que pour |z| < 1

$$\frac{\pi}{2}\tan\left(\frac{\pi z}{2}\right) = 2\sum_{n>0} (1 - 2^{-2n-2})\zeta(2n+2)z^{2n+1}.$$

Exercice 17. \clubsuit (la fonction Gamma) Soit $f:(x,t) \in \mathbb{R}_+^{\star} \times \mathbb{R}_+^{\star} \longmapsto f(x,t) := t^{x-1}e^{-t}$. Montrer que pour tout x > 0 la fonction $f(x,\cdot)$ est intégrable sur \mathbb{R}_+^{\star} . On définit alors la fonction Gamma par

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad \forall x \in \mathbb{R}_+^*.$$

1) Montrer que $f \in \mathcal{C}^{\infty}(\mathbb{R}_{+}^{\star})$ et, pour tout $k \in \mathbb{N}$

$$\Gamma^{(k)}(x) = \int_0^\infty \left(\log(t)\right)^k t^{x-1} e^{-t} dt.$$

2) Etablir successivement

$$\Gamma(x+1) = x \Gamma(x), \ \forall x > 0 \ ; \quad \Gamma(n+1) = n!, \ \forall n \in \mathbb{N} \quad \Gamma(x) \underset{0+}{\sim} \frac{1}{x}.$$

3) A l'aide de la formule $e^{-t} = \lim_{n \to \infty} \left(1 - \frac{t}{n}\right)^n$ et de la suite de fonctions de terme général $f_n(t) = \left(1 - \frac{t}{n}\right)^n \chi_{]0,n]}(t)$, $n \ge 1$, montrer que $\Gamma'(1) = -\gamma$ (γ est la constante d'Euler). Aprés avoir établi pour x > 0 : $\frac{\Gamma'(x+1)}{\Gamma(x+1)} = \frac{\Gamma'(x)}{\Gamma(x)} + \frac{1}{x}$ montrer que

$$\Gamma'(n+1) = n! \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \gamma\right), \ n \ge 1.$$

4) Au moyen du changement de variables $s=\frac{t-x}{\sqrt{x}},$ établir pour x>0 :

$$\Gamma(x+1) = \left(\frac{x}{e}\right)^x \sqrt{x} \int_{-\sqrt{x}}^{+\infty} e^{\varphi(x,s)} ds$$

 $où \varphi(x,s) := x \log \left(1 + \frac{s}{\sqrt{x}}\right) - s\sqrt{x}$

5) Montrer que

$$\forall s \in]-\sqrt{x},0] : \varphi(x,s) \leq -\frac{s^2}{2} \quad et \quad \forall s \geq 0, \ x \geq 1 : \varphi(x,s) \leq \varphi(1,s).$$

6) En déduire $\lim_{x \to +\infty} \int_{-\sqrt{x}}^{+\infty} e^{\varphi(x,s)} ds = \int_{-\infty}^{+\infty} e^{-\frac{s^2}{2}} ds$ puis la formule de Stirling

$$\Gamma(x+1) \underset{+\infty}{\sim} \left(\frac{x}{e}\right)^x \sqrt{2\pi x}.$$

7) Montrer que pour tout x > 0

$$\lim_{n\to +\infty} \int_0^n \left(1-\frac{t}{n}\right)^n t^{x-1} dt \, = \, \Gamma(x),$$

et en déduire la formule de Gauss

$$\forall x \in]0, +\infty[, \quad \Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{x(x+1)\dots(x+n)}.$$

Puis celle de Weierstrass

$$\forall \, x \in \,]0,+\infty[, \quad \Gamma(x) \, = \, x e^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^n \left(1+\frac{x}{k}\right) e^{-\frac{x}{k}}.$$

On note $\psi:]0, +\infty[\to \mathbb{R}, \ l'application \ définie \ pour \ x > 0 \ par \ \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}.$ Démontrer que pour tout $x > 0: \ \psi(x) = -\frac{1}{x} - \gamma + x \sum_{n \geq 1} \frac{1}{x(x+n)}, \ et \ en \ déduire \ que \ \Gamma'(1) = -\gamma = \int_0^{+\infty} e^{-x} \log(x) dx.$ 8) (Le théorème de Bohr-Mollerup) Montrer que $\log \Gamma$ est convexe $\sup \mathbb{R}_+^*$. Réciproquement, soit $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$

une application log-convexe vérifiant

$$f(1) = 1$$
 et $\forall x > 0$, $f(x+1) = xf(x)$.

Montrer (à l'aide de la formule de Gauss) que $f = \Gamma$

PETIT RESUMÉ DU COURS

Dans tout ce qui suit I désignera toujours un intervalle de \mathbb{R} , $\mathcal{C}_m(I)$ l'ensemble des fonctions continues par morceaux sur I (à valeurs réelles et complexes), enfin les fonctions de module intégrable sur I est noté $L^1(\mathbb{R})$ et si $f \in L^1(\mathbb{R})$ on dira que « f est intégrable 1 sur I »

3. Théorème de la convergence dominée

Soit $(f_n)_n$ une suite de fonction dans $C_m(I)$ vérifiant :

- 1) Il existe $g \in L^1(\mathbb{R}) \cap \mathcal{C}_m(I)$ telle que
 - $|f_n(x)| \le g(x), \quad \forall n \in \mathbb{N}, \ x \in I \quad \text{``alpha hypothèse de domination''}$
- 2) La suite $(f_n)_n$ est simplement convergente sur I vers une fonction $f \in \mathcal{C}_m(I)$.

Alors les fonctions f_n et f sont intégrables sur I et

$$\lim_{n} \int_{I} f_n(t)dt = \int_{I} \lim_{n} f_n(t)dt = \int_{I} f(t)dt.$$

4. Théorème de la convergence monotone

Soit $(f_n)_n \subset \mathcal{C}_m(I) \cap L^1(\mathbb{R})$ une suite croissante simplement convergente vers une fonction $f \in$ $\mathcal{C}_m(I)$. Alors f est intégrable sur I si, et seulement si la suite $(\int_I f_n(t)dt)_n$ est majorée. Dans ce

$$\lim_{n} \int_{I} f_n(t)dt = \int_{I} \lim_{n} f_n(t)dt = \sup_{n} \int_{I} f_n(t)dt = \int_{I} f(t)dt.$$

remarque: en d'autre termes, pourvu que la suite soit monotone et simplement convergente sur l'intervalle d'intégration, la limite « rentre » dans l'intégrale en admettant les valeurs $\pm \infty$ si jamais la fonction limite f n'est pas intégrable. Ce théorème est bien utile lorsqu'il est délicat voire impossible de vérifier l'hypothèse de domination dans le théorème de la convergence dominée.

5. Inversion des symboles \sum et \int

Soit $(f_n)_n$ une suite dans $\mathcal{C}_m(I) \cap L^1(\mathbb{R})$ telle que

- 1) La série de fonction $\sum_n f_n(t)$ est simplement convergente sur I vers $f \in \mathcal{C}_m(I)$. 2) La série numérique $\sum_n \int_I |f_n(t)| dt$ converge.

- $\leadsto f$ est intégrable sur I

$$\sum_{n} \int_{I} f_n(t)dt = \int_{I} \sum_{n} f_n(t)dt = \int_{I} f(t)dt.$$

remarque : c'est seulement une condition suffisante : la série $\sum_n \int_I |f_n(t)| dt$ peut três bien diverger, à ce moment pour justifier un éventuel échange $\sum \int = \int \sum$ ce théorème est inutilisable; on peut parfois s'en sortir en essayant d'appliquer le théorème de la convergence dominée à la suite $(g_n)_n$ des sommes partielles $(g_n = \sum_{1 \le k \le n} f_k)$

^{1.} Attention! $\int_0^\infty \frac{\sin(t)}{t} dt = \frac{\pi}{2} \text{ mais } t \mapsto \frac{\sin(t)}{t} \notin L^1(\mathbb{R}_+)...$

6. Intégrales dépendant d'un paramètre

6.1. continuité.

Soit $f \Omega \times I \longrightarrow \mathbb{R}$ où \mathbb{C} (où Ω est un intervalle de \mathbb{R}) vérifiant les propriétés

- 1) f est continue sur $\Omega \times I$.
- 2) Il existe une fonction g intégrable sur I telle que

$$|f(x,t)| \le g(t), \quad \forall (x,t) \in \Omega \times I.$$

Alors $F(x) = \int_I f(x,t) dt$ est continue sur Ω

remarque : encore une fois, une domination globale est souvent impossible à obtenir; mais il est bien sûr suffisant de travailler localement i.e. de dominer localement au voisinage de tout point $a \in \Omega$.

6.2. dérivation.

Soit f $\Omega \times I \longrightarrow \mathbb{R}$ où \mathbb{C} (où Ω est un intervalle de \mathbb{R}) vérifiant les mêmes hypothèses que dans le théorème précédent. Si de plus f admet sur $\Omega \times I$ une dérivée partielle $\frac{\partial f}{\partial x}$ vérifiant elle aussi les hypothèses précédentes, alors $F(x) = \int_I f(x,t) dt$ est de classe \mathcal{C}^1 sur Ω et

$$F'(x) = \int_I \frac{\partial f}{\partial x}(x,t) dt, \quad \forall \, x \in I.$$