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ORACLE INEQUALITIES FOR NEW INVERSE PROBLEMS AND MODEL
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Abstract. In this paper, we develop new algorithms for parameter estimation and model selection
in the case of models type Input/Output in order to represent and to characterize a phenomenon
Y . From experimental data Y1, ..., Yn supposed to be i.i.d from Y , we prove oracle inequalities
qualifying the proposed procedures in terms of the number of experimental data n, computing
budget m and model complexity. The methods we present are general enough which should cover
a wide range of applications.
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Introduction

As in many statistical problems, we are interested to investigate the stochastic behaviour of a random
variable Y . We have at disposal an i.i.d sample Y1, ..., Yn. These data come from experiments that could be
real or the result of a computer code. In an industrial context, it is not rare that the size of the available
set of data is small. This is due either to the cost of each real experiment or to the very long time needed
for each run of a simulation code. It is encountered in various �eld of industry: meteorology, oil extraction,
nuclear security, aeronautic, mechanical engineering etc ...
Besides these costly experiments or codes, various reduced models are available. Even if they still are
complicated, one can use them to simulate in a reasonable computing time and obtain large samples from
simulations. Of course, these reduced models depend on parameters that are not well known and need
to be estimated. So that the reduced models take the following form: (x,θ) ∈ X × Θ 7→ h(x,θ). It is
important to note that when the model h varies, the set of input variables X and parameters Θ may change
too. Moreover, theses variables are not directly related to the "conditions" leading to the "experimental"
data Y1, ..., Yn. Indeed, in our study, we don't suppose having the data (x1, Y1), ..., (xn, Yn) which di�ers
our framework from the classical regression one. That's why we assume that the available data reduced to
Y1, ..., Yn: this includes the cases where the experimental conditions are not available or where the input of
the complex code, modeling the phenomenon, are not clearly related to the input of the reduced models.
Let us take an example of particular interest coming from EADS 1 Research department: the e�ect of an
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electromagnetic �eld on the behaviour of an aircraft. When lightning or an electromagnetic �eld strike an
aircraft, sensors measure data corresponding to the intensity of such �eld in various part of the aircraft.
The data recorded are dispersed due to the intrinsic variability of the phenomenon. In our framework,
information of one sensor is represented by the sample Y1, ..., Yn. On another side, we dispose of several
computer codes h modeling the lightning phenomenon in function of input variables z. These input vari-
ables take the following form, z = (x,θ), where x represents variables not well controlled and θ a vector of
parameters to be estimated, corresponding to lightning properties (angles, atmospheric conditions etc...).
The uncontrolled variables x will be modeled by a random variable X.
In this case, the computer code are complex systems, i.e the result of interconnected disciplines providing
a granular modeling. Actually, one disposes of a set of models H covering all available models: from the
simplest to the most complicated. Hence, another important issue would be to "select" a model among the
set H for a speci�c use.

So, shortly speaking, our goal is to construct a Random Simulator, X 7→ ĥ(X, θ̂) with X some random vari-
able, predicting as well as possible the observed data Y1, ..., Yn. In this setting, it may be non-signi�cant to
talk about function approximation. For instance, suppose that Y ∼ U([0, 1]) (uniform distribution on [0, 1])
and consider the model h(X,θ) = θ1 + θ2 X where θ = (θ1, θ2) and X ∼ U([0, 1]). The cases θ1 = (0, 1)
and θ2 = (1,−1), corresponding to models h(x,θ1) = x and h(x,θ2) = 1 − x respectively, produce the

(same) Random Simulator h(X, θ̂) ∼ U([0, 1]) (θ̂ = θ1 or θ2). Hence, this Random Simulator predicts like
the variable of interest Y but with two di�erent models (the models or the parameters are not identi�able).
Thus, the function approximation approach can be meaningless without preliminary precautions.
This paper is the theoretical part of a work on industrial applications in the �eld of "Uncertainty Manage-
ment" [4]. We aim at constructing a data-dependent model which outputs are "close to" some observed data
(experimental data). The results we present are theoretical in that the estimation and selection algorithms
we propose don't include practical implementations. The same is true for the modeling aspect: we deal
with (input/output) models without specifying what can be done in practice. For instance, we do not deal
with the pertinence of the possible metamodels (see [14, 20, 21, 28]). Here, we don't talk about the impact
of modeling technics, this is let for a forthcoming paper where we will apply some results obtained in this
study in an industrial context.
The main tool of our development is the empirical processes theory. This theory constitutes the mathe-
matical toolbox of asymptotics statistics and was �rst explored in the 1950's by the work on Functional
Central Limit Theorem [6]. Along the years, the development of empirical processes theory increased suc-
cessfully thanks to work of many contributors, R.M. Dudley [8], D. Pollard [7], P. Gaenssler [10], Galen R.
Shorack and Jon A. Wellner [9] and others. More recently, many references give a general overview of this
theory with its applications to statistics, for example [16, 23, 25]. Empirical processes give power tools for
evaluating statistical estimation and inference problems. In particular, estimation based on minimizing a
function was introduced by Huber in 1964 [12] where he proposed generalizing maximum likelihood esti-
mation. The estimators resulting are called M-estimator ("M" for minimizing or maximizing ) [13]. The
class of M-estimators is a broad class because many estimation procedure can be viewed as M-estimation,
maximum likelihood and least-squares estimators are some of the most important examples. Asymptotic
properties of these estimators were widely studied in a general context, and many authors like [23] or [24]
used empirical processes theory which turn out to be a very valuable tool.
We present a general method where the criterion to minimize depends on both experimental an simulated
data. This paper is divided into �ve parts. In Section 1 we describe our general framework. In Section 2
we establish Theorem 2.1 providing an oracle inequality for inverse problems based on both experimental
and simulated data. In Section 3 we discuss about constants in Theorem 2.1. In Section 4 we tackle model
selection problem and we prove an oracle inequality. Section 5 is devoted to the proofs of the main results.
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1. General setting

1.1. The model

- Probabilistic modeling.
Let (Ω,A,P) be a probability space. We assume that all random variables are de�ned on this probability
space.
Let a complex phenomenon modeled by a random real valued variable Y ∈ Y, with distribution unknown
Q. Denote by f the associated (Lebesgue) density function. Let assume that Y ⊂ [−M,M ], M > 0.
Suppose that a n-sample Y1, ..., Yn is available: we call experimental data.
Next, we suppose that this complex phenomenon can be represented by the outputs h(x,θ) given by models
h which belong to a set H

h : Z = X ×Θ 7−→ Y
(x,θ) −→ h(x,θ)

where X ⊂ Rd (input space), Θ ⊂ Rk compact (parameters space).
We equip the input space X with a probability measure Px which forms a probability space (X ,B,Px).
The probability measure Px is not supposed to be known, we will only dispose of a sample drawn from this
distribution. In the case where Px is known, without loss of generality, one can simply consider the uniform
distribution on [0, 1] provided to apply a well known probabilistic transformation.
The input vector is a random vector X de�ned on this space, and so, the output vector h(X,θ) is a random
real valued variable, for each θ ∈ Θ.
The space Y is equipped with a σ-algebra E so as to ensure the measurability of the functions

h(·,θ) : (X ,B,Px) −→ (Y, E)
X 7−→ h(X,θ)

Moreover, we suppose given m realizations of the input random vector X,

X1, ...,Xm

which provides m output simulated data

h(X1,θ), ..., h(Xm,θ) for all θ ∈ Θ.

Remark 1.1. In practice, the data X1, ...,Xm may either arise from a data base (from experiments etc...)
or simply arise from simulations of the random variable X with known distribution Px.

In this paper, we develop a general method for estimating the parameter θ and/or selecting a model h
among the family H based on the training data

Y1, ..., Yn; X1, ...,Xm .

Owing to the a priori knowledge one can get, four scenarii are likely to appear, see Table 1, where

• "H" means that one dispose of more than one model
• "h" means that one dispose of a unique model only
• "Θ" means that at least one model is parametric
• "-" means non-parametric

In this general setting, we will keep the notations H and Θ even if H = {h} or Θ = {θ0}.
The method we propose is general enough to include some speci�c problems met in practice. Indeed, two
kinds of statistical analysis involving inverse problems can be considered: Identi�cation and Prediction.
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Figure 1. Example of model outputs with 2 di�erent parameters.

Model Parameter

Scenario 1. H Θ
Scenario 2. h Θ
Scenario 3. H -
Scenario 4. h -

Table 1. Example of current scenarios.

- Identi�cation.
This analysis consists in estimating the "true" parameter θ? and/or the "true" model h?. It aims at esti-
mating "physical" parameters having a real signi�cation like dimensions or material properties, for instance.
The Scenario 1 and Scenario 2 (see Table 1) could lead to such problems.

- Prediction.
In prediction, one wants to estimate a parameter θ? and/or a model h?, with θ? and h? not necessarily
unique, in order to predict the random phenomenon Y . Informally, one hopes that

h?(X,θ?) ≈ Y .
Here, the parameter θ? and the model h? may have no real signi�cation. It is the case in models calibration
for example.

It seems that prediction and identi�cation provide common techniques but with di�erent objectives. How-
ever, these two procedures can be in "con�ict" in some cases, see [29].
Roughly, we can think that prediction procedures generalize identi�cation ones, at the risk of restricting
the parameter space and the family of models. By this way, through this paper, we will adopt a prediction
strategy that includes both calibration and inverse problems.

1.2. Model performance

1.2.1. Motivation

In modeling, one can get a large degree of freedom concerning the models, the parameters, the a priori
knowledge etc..., and the aimed objective. By objective, we mean a speci�c feature of the unknown random
phenomenon Y : mean, exceeding probability, density function etc...
However, in many cases (EADS applications for example), only a few experimental data are available. But,
if a phenomenon is modeled by full parameterized models (cf. Scenario 1 in Table 1 for example), each
choice of models and/or parameters may lead to di�erent results, see Figure (1). So, a reasonable strategy
would be to �nd and to work with one model which "represents well" the phenomenon (for us Y ) for the



TITLE WILL BE SET BY THE PUBLISHER 5

aimed objective.
We propose to use experimental data in order to adjust a simulating model: we called it Random Simulator
in the introduction.

1.2.2. Tools for evaluating the model performance

Let introduce some tools to evaluate the quality of a model h ∈ H parameterized by θ ∈ Θ.

- Feature of probability measure, contrast and Risk function.

Let a random variable W with probability distribution µ. We de�ne a feature of the distribution µ as a
quantity ρ(µ) ∈ F (or simply ρ if there's no ambiguity), where F will be called the feature space.

Notice that the feature space F can be either a scalar space (mean, threshold probability, etc...) or a func-
tional space (density distribution, cumulative distribution function).
We equip the feature space F with the norm || · ||F which be either the absolute value norm | · | when F ⊂ R,
or a Lr-norm (r ≥ 1) when F is a functional space (with functions de�ne on Y).

In all what follows, we denote by

ρ(Ph,θ) := ρh(θ)

a feature of the random model output h(X,θ).

De�nition 1.1. Contrast function.

We de�ne any function

Ψ : F× Y −→ R (1)

(ρ, y) 7−→ Ψ(ρ, y)

as a contrast function.
For a random variable W , we use the notation EW for the expectation under the variable W .
We make the assumption:

Assumption 1.1. We assume that the contrast Ψ satis�es

- for all y ∈ Y, the function ρ 7→ Ψ(ρ, y) is convex ,

- for all y ∈ Y and ρ1, ρ2 ∈ F

|Ψ(ρ1, y)−Ψ(ρ2, y)| ≤ LΨ(y) ||ρ1 − ρ2||F
with LΨ : Y → R satisfying AΨ := EY LΨ(Y ) < ∞ .

The function LΨ (hence the constant AΨ) doesn't depend on ρ1 and ρ2.

Example 1.1. Some classical features and associated contrasts.

- F = R : we may consider ρ(µ) =
∫
uµ(du) = Eµ(W ) (mean), ρ(µ) =

∫
1 [s,+∞[(u)µ(du) = µ(W > s)

(exceeding probability), etc...

B Mean-Squared contrast

Ψ (ρ, y) = (y − ρ)2
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- F = {set of density functions}

B log-contrast
Ψ (ρ, y) = − log ρ(y)

B L2−contrast
Ψ (ρ, y) = ||ρ||22 − 2 ρ(y)

- etc...

See Table 2, page 11.
Now, we de�ne the risk function.

De�nition 1.2. Risk function.

Let ρh(θ) ∈ F a feature of the random model output h(X,θ), and let Ψ an associated contrast. The risk
function (relative to Ψ) of the couple (h,θ) is de�ned as

RΨ(h,θ) := EY Ψ (ρh(θ) , Y ) . (2)

Example 1.2. Some classical risk functions.

By elementary calculus, we see that

- the Mean-Squared contrast gives a distance between means (up to a constant term)

RΨ(h,θ) = (E(Y )− ρh(θ))2 + V ar(Y )
- the log-contrast gives the Kullbach-Leibler divergence (up to a constant term)

RΨ(h,θ) = KL(f, ρh(θ))− E(log(Y )) ,

where KL(g1, g2) =
∫

log( g1
g2

)(y) g1(y) dy,
- the L2−contrast gives a L2 distance between density functions (up to a constant term)

RΨ(h,θ) = ‖ρh(θ)− f‖22 − ‖f‖22 .

In view of that examples, it make sense to investigate models h or/and parameters θ providing small risk
values.

Let precise what we mean by complex models in view of statistical using.

- Complex models.

For θ ∈ Θ, let consider a feature ρh(θ) of the random model output h(X,θ).
We say that h is complex if the feature ρh(θ) is analytically unreachable in θ.
For instance, if ρh(θ) =

∫
X h(x,θ)Px(dx) , this integral is not necessarily tractable, even if the probability

measure Px is known.
Complex models can arise from several ways. For example, the function h(·,θ) can have a complicated form
due to the high complexity of the modeling, or the function can be a black box function input/output and
so, not an analytical form.
This situation is very common in engineering, where complex models exist and are only known through
simulations

(X1, h(X1,θ)) , ..., (Xm, h(Xm,θ)) for all θ ∈ Θ .

This aspect is the principal motivation of our work.
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2. Inverse Problem.

Now, let us �x a model h in the set H.
Our goal is to compute a parameter θ ∈ Θ, depending on h, making the risk function RΨ(h,θ) as small as
possible.

- Oracle.

We want to estimate a parameter θ? minimizing the risk (2), i.e

θ? ∈ Argmin
θ∈Θ

RΨ(h,θ) . (3)

In the literature, the parameter θ? is also called the oracle. This term was introduce by Donoho and John-
stone [5].
Notice that it may exist more than one parameter minimizing the risk RΨ(h,θ). The minimal risk we can
reach is RΨ(h,θ?), also called ideal risk.

However, the risk function RΨ(h,θ) is uncomputable (hence θ?) for two reasons. First, the measure Q is
unknown, and second, because we are dealing with complex models.

We aim at computing a parameter θ̂ that performs as well as the oracle θ?, that is

RΨ(h, θ̂) ≈ RΨ(h,θ?) .

In the next we establish an oracle inequality of the form

RΨ(h, θ̂) ≤ CRΨ(h,θ?) + ∆ .

We propose the following estimation procedure to built θ̂.

As Q is unknown, we replace it by its empirical version

Qn :=
1
n

n∑
i=1

δYi

based on Y1, ..., Yn. The approximation of the risk becomes

1
n

n∑
i=1

Ψ (ρh(θ) , Yi) .

Then, it remains the feature ρh(θ) which is supposed analytically intractable (for each θ). We propose to
estimate the feature as follows.

- Plug-in estimator.

We denote by ρmh (θ) a plug-in estimator of ρh(θ) based on h(X1,θ), ..., h(Xm,θ). We suppose that ρmh (θ)
takes the following form

ρmh (θ) :=
1
m

m∑
j=1

ρ̃(h(Xj ,θ)) (4)
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Figure 2. Example of weight function in the case of the mean (top) and the case of the
density (bottom).

where 1
m ρ̃ : Y → F is a weight function depending on the contrast Ψ considered.

For simplicity, we may also call ρ̃ weight function.

Example 2.1. Examples of weight functions.

- Mean-Squared contrast

1
m
ρ̃(y) =

y

m

- log-contrast or L2-contrast

1
m
ρ̃(y)(·) =

1
m
Kb( · − y)

where Kb( · − y) = 1
bK( · −yb ) for a kernel K() and a bandwidth b.

See Figure (2) for an illustration.

Remark 2.1. The weight function 1
m ρ̃(y) evaluated at y ∈ Y, can be either a scalar value ( 1

m for the
mean), or a function (a kernel for the density), see Figure (2).
without loss of generality, one can see the weight function 1

m ρ̃(y) at a point y ∈ Y as a function,

ρ̃(y) : λ ∈ Y 7−→ ρ̃(y)(λ) .

For instance, in the case where 1
m ρ̃(y) = y

m , the function ρ̃(y)(λ) is constant in λ.

For notation convenience, we may use the notation W1..l for a sample W1, ...,Wl of random variables, and
EW1..l will be the expectation under the joint law of (W1, ...,Wl).

De�nition 2.1. We denote by σmh (θ), called simulation error, the error committed estimating the feature
ρh(θ) by the estimator ρmh (θ),

σmh (θ) := ||ρmh (θ)− ρh(θ)||F .

By triangular inequality and the fact that EXρ̃(h(X,θ)) = EX1..mρ
m
h (θ) , it holds
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σmh (θ) = ||ρmh (θ)− ρh(θ)||F
= ||ρmh (θ)− EX1..mρ

m
h (θ) + EX1..mρ

m
h (θ)− ρh(θ)||F

= ||ρmh (θ)− EXρ̃(h(X,θ)) + EXρ̃(h(X,θ))− ρh(θ)||F
≤ ||ρmh (θ)− EXρ̃(h(X,θ))||F + ||EXρ̃(h(X,θ))− ρh(θ)||F

≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
F

+ bmh (θ) (5)

with

bmh (θ) := ||EXρ̃(h(X,θ))− ρh(θ)||F (6)

the bias error. For example, in the case where ρ̃(y)(·) = Kb( · − y), the bandwidth will depend on m (bm).

The �rst term in the right hand side of inequality (5) is a variance (random) term, and the second is a bias
(deterministic) term.
For our statistical analysis, the variability term∣∣∣∣∣∣

∣∣∣∣∣∣ 1
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
F

will play a crucial rule whereas the bias term

||EXρ̃(h(X,θ))− ρh(θ)||F

behaves like a parasite term.

Assumption 2.1. We assume that the plug-in estimator ρmh (θ) (4) is uniformly asymptotically unbiased,
i.e it exists some constant bh(m) depending on h and m such that the bias error (6) satis�es

sup
θ∈Θ

bmh (θ) < bh(m) <∞ ,

and bh(m)→ 0 with m.

Finally, the criterion we propose to minimize has the form

1
n

n∑
i=1

Ψ

 1
m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 ,

which provides the estimator

θ̂ = Argmin
θ∈Θ

1
n

n∑
i=1

Ψ

 1
m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 , (7)

or



10 TITLE WILL BE SET BY THE PUBLISHER

θ̂ = Argmin
θ∈Θ

n∑
i=1

Ψ

 1
m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 .

We give some examples of estimators θ̂.

Example 2.2. Examples of estimators.

- Mean-Squared contrast

θ̂MS = Argmin
θ∈Θ

n∑
i=1

 m∑
j=1

(Yi − h(Xj ,θ))

2

- log-contrast

θ̂log = Argmin
θ∈Θ

−
n∑
i=1

log

 m∑
j=1

Kb(Yi − h(Xj ,θ))


- L2-contrast

θ̂L2 = Argmin
θ∈Θ


∥∥∥∥∥∥
m∑
j=1

Kb( · − h(Xj ,θ))

∥∥∥∥∥∥
2

2

− 2m
n

n∑
i=1

m∑
j=1

Kb(Yi − h(Xj ,θ))

 .

Remark 2.2. 1. The estimator θ̂ depends on the model h, the number of experimental data n and the
number of simulation data m .
2. The number of simulations m have to be thought greater than n (number of experimental data). It
appears natural to think that experimental data are di�cult to obtain whereas simulated data are more
reachable.

We recall that the issue is the statistical properties of this procedure taking into account the two kinds
of data: experimental and simulated data, which is non classical in statistics. Indeed, once we de�ne the

procedure for computing θ̂, we have to qualify the quality of this procedure.
It's the topic of the following section.

2.1. Main Result

In this section, we aim at establishing an oracle inequality which provides a quali�cation of the estimation
procedure previously de�ned.
We recall that

RΨ(h,θ) = EY Ψ (ρh(θ), Y ) ,

θ? ∈ Argmin
θ∈Θ

RΨ(h,θ) ,

and

θ̂ = Argmin
θ∈Θ

1
n

n∑
i=1

Ψ

 1
m

m∑
j=1

ρ̃(h(Xj ,θ)) , Yi

 .

Now, we give some de�nitions and notations useful for setting the Theorem 2.1.

Denote by
Gn =

√
n(Qn −Q)
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and

Kx
m =

√
m(Px

m − Px) ,

the Q-empirical process (based on Y1, ..., Yn) and Px-empirical process (based on X1, ...,Xm), respectively.
Let the classes of functions

W(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Y} , (8)

P(ρ̃,h) = {x ∈ X 7→ ρ̃(h(x,θ))(λ) , (θ, λ) ∈ Θ× Y} . (9)

W(ρ̃,Ψ) P(ρ̃,h) AΨ

M-S contrast y 7→ (y − λ)2, x 7→ h(x,θ), 4M
λ ∈ Y θ ∈ Θ

log-contrast y 7→ − log (Kb(y − λ)) , x 7→ Kb(λ− h(x,θ)), ‖f‖2/η
λ ∈ Y (λ,θ) ∈ Θ× Y

L2-contrast y 7→ ||Kb( · − λ)||2 − 2Kb(y − λ), idem 2 (‖f‖2 +B)
λ ∈ Y

Table 2. Example of classes of functions and constant AΨ (see section (3.1)).

Next, we use the following notation: let W be some measure and G a class of real valued functions. We
denote by

W g :=
∫
g(u)W(du) g ∈ G

and

‖W‖G := sup
g∈G
|W g| .

With this notation, for a class of functions GY , : Y → R we have

Gn g =
∫
Y
g(u)Gn(du)

=
√
n

∫
Y
g(u)(Qn −Q)(du)

=
1√
n

n∑
i=0

(g(Yi)− E(g(Y ))) .

Also, for a class of functions GX , g : X → R

Kx
m g =

1√
m

m∑
j=0

(g(Xj)− E(g(X))) .

Remark 2.3. The quantities ‖Gn‖GY and ‖Kx
m‖GX are nonnegative real valued random variables.

In our applications, the class of functions GY is W(ρ̃,Ψ) and GX is P(ρ̃,h), respectively de�ned in (8) and (9).
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De�nition 2.2. Tightness.

Let (Wl)l≥1 be a sequence of real value random variables de�ned on the probability space (Ω,A,P).
This sequence is tight if for all ε > 0, it exists some compact Kε ⊂ R such that

∀ l ≥ 1 , P (Wl ∈ Kε) ≥ 1− ε .

In particular, if the Wl are nonnegative, the sequence is tight if for all ε > 0 it exists some constant K̄ε ≥ 0
such that

∀ l ≥ 1 , P
(
Wl ≤ K̄ε

)
≥ 1− ε .

Remark 2.4. The constant K̄ε in this de�nition has to be uniform in l ≥ 1. However, if K̄ε is decreasing
with l, we will prefer this constant (which improves the uniform one).

Theorem 2.1. Oracle Inequality for Parameter Estimation.

Under the Assumptions (1.1) and (2.1), suppose that the sequences of random variables ||Gn||W(ρ̃,Ψ) and

||Kx
m||P(ρ̃,h) are tight. Denote by K̄ε

(ρ̃,Ψ) and K̄ε
(ρ̃,h) the associated constants, uniform (or decreasing) in n

and m, respectively.
Let the feature space F equipped with either the absolute value norm, or some Lr norm.
Then, for all ε > 0, with probability at least 1− 2ε it holds

RΨ(h, θ̂) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
Kε

(ρ̃,Ψ)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)

where the constants Kε
(ρ̃,Ψ), K

ε
(ρ̃,h) depend on K̄ε

(ρ̃,Ψ), K̄
ε
(ρ̃,h), AΨ, M and r. Bm is a bias factor depending

on bh(m).

Remark 2.5. For a �xed weight function ρ̃, notice that the constant Kε
(ρ̃,Ψ) depends on the regularity of the

contrast function y 7→ Ψ(ρ̃, y), and the constant Kε
(ρ̃,h) depends on the regularity of the maps x 7→ h(x,θ).

Hence, we distinguish the e�ect of the contrast with those of the model regularity. In Section 3 we provide
some examples of constants.

2.2. Some comments

It is of interest to compare the methodology we develop with the classical framework where the feature
ρh(θ) of the random model output h(X,θ) is analytically tractable. In this case, the estimation procedure
(7) is classically

θ̂n = Argmin
θ∈Θ

1
n

n∑
i=1

Ψ (ρh(θ) , Yi) ,

and we can derive immediately an oracle inequality.

Proposition 2.1. Basic Oracle Inequality.

It holds that

RΨ(h, θ̂n) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
‖Gn‖W̃Ψ

, (10)

where

W̃Ψ = {y ∈ Y 7→ Ψ(ρh(θ) , y) , θ ∈ Θ} .

Proof. The proof comes from a classical calculus in M-estimation, see for example [24] (p. 46) . �
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Most of statistical procedures, as likelihood, regression, classi�cation etc... can be written like (10). Such
procedures have been widely studied with a large literature available. Recently, authors use the Empirical
Processes theory (see [16,23�25] among others) to derive limit theorems. Indeed, the asymptotic (and non-

asymptotic) properties of the estimator θ̂n can be given from the behaviour of the residual term 2√
n
‖Gn‖W̃Ψ

.

In particular, for identi�cation problem (i.e θ? is unique), consistency and rate of convergence are derived
from the �uctuations of the random variable ‖Gn‖W̃Ψ

, see for example [23].

Suppose for a moment that it exists some constant (uniform in n) such that with high probability

‖Gn‖W̃Ψ
≤ K

2
,

then by inequality (10), with high probability

RΨ(h, θ̂n) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
K√
n
. (11)

Thus, depending on whether the constant K is sharp or not, one can bound properly the estimation error.
To compute such (sharp) constant K is di�cult in general, we can refer to [17,19,22,25].

Inequality (10) can not be applied to our framework because the induced procedure θ̂n involves the quantity
ρh(θ) intractable for complex models.
The result of Theorem (2.1) is non-asymptotic, i.e valid for all n ≥ 1 and m ≥ 1 under mentioned as-
sumptions. The fundamental point of this theorem is the "concentration of the measure phenomenon"
(Ledoux [17], Billingsley [3]) presents in the assumptions, more precisely, when we supposed the tightness
of the sequences of the random variables ‖Gn‖W(ρ̃,Ψ) (Y1..n-dependent) and ‖Kx

m‖P(ρ̃,h) (X1..m-dependent).

Moreover, we insist on the fact that the constants K̄ε
(ρ̃,Ψ) (that bounds ‖Gn‖W(ρ̃,Ψ)) and K̄

ε
(ρ̃,h) (that bounds

‖Kx
m‖P(ρ̃,h)) are uniform (or decreasing) in n and m, respectively. The advantage of this uniformity is the

explicit expression of the residual term

Kε
(ρ̃,Ψ)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)

(12)

depending on the data (n and m) on one hand, and on the constants K̄ε
(ρ̃,Ψ), K̄

ε
(ρ̃,h) and Bm on the other

hand. However, although the existence of such constants are proved or supposed, their computation is more
tedious. Indeed, we need results about tail bounds for Gaussian and Empirical Processes. We will discuss
in Section 3.3 how to compute properly such constants using concentration inequalities. Let assume for a
moment the existence of these constants.
We showed that the estimation procedure θ̂ de�ned in (7) "mimic" the ideal riskRΨ(h,θ?) = infθ∈Θ (RΨ(h,θ))
up to the residual term (12). Making m −→ +∞ , this residual becomes simply

Kε
(ρ̃,Ψ)√
n

which has the same

form as those found in classical cases (11). We �nd the usual rate of convergence
√
n.

In our purpose, the factor (
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)
> 1

we call simulation factor, is due to simulation used estimating the feature ρh(θ) of the random output
h(X,θ) by a plug-in estimator ρmh (θ) we de�ned in (4).

Example 2.3. For unbiased plug-in estimator ρmh (θ), Bm = 0, hence, the simulation factor is simply(
1 +

√
n

m
Kε

(ρ̃,h)

)
.
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It appears that for �xed n, one should have a number of simulation data m greater than n. For instance,
for some β > 1, if we have

m = nβ or n (log(n))β ,
we can make the simulation factor close to 1.

Remark 2.6. The term infθ∈Θ (RΨ(h,θ)) in Theorem (2.1) appears as the best (smaller) error one can
make. This kind of error is commonly called approximation error or systematic error. It can be understood
as the "distance" between the a priori knowledge one has, with the observed phenomenon.

By Examples (1.2) and (2.2), we can write the oracle inequality in Theorem (2.1) in speci�c cases as
follows.

Example 2.4. Oracle Inequalities in speci�c cases.

- Mean-squared contrast

(
E(Y )− ρh(θ̂MS)

)2

≤ inf
θ∈Θ

(
(E(Y )− ρh(θ))2

)
+
Kε

(ρ̃,MS)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)

In practice, Bm = 0.

- log-contrast

KL(ρh(θ̂log), f) ≤ inf
θ∈Θ

(KL(ρh(θ), f)) +
Kε

(ρ̃,log)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)

- L2-contrast

‖ρh(θ̂L2)− f‖22 ≤ inf
θ∈Θ

(
‖ρh(θ)− f‖22

)
+
Kε

(ρ̃,L2)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)
.

The terms infθ∈Θ

(
(E(Y )− ρh(θ))2

)
, infθ∈Θ (KL(ρh(θ), f)) and infθ∈Θ

(
‖ρh(θ)− f‖22

)
are the ideal risks

infθ∈Θ (RΨ(h,θ)) in di�erent situations. These examples show clearly that these terms represent a "dis-
tance" between the "target" and the "best" information available, see Remark 2.6. These terms can be
supposed equal to zero, in this case we obtain for example (L2-contrast)

‖ρh(θ̂L2)− f‖22 ≤
Kε

(ρ̃,L2)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)
.

However, such a priori has to be made with precautions.

3. About the constants in Theorem (2.1)

3.1. Constant AΨ

We will show how we obtain the constants AΨ in Table (2). Let recall that Y ∈ [−M,M ].

- Mean-squared contrast.
Let y ∈ Y, ρ1, ρ2 ∈ F ⊂ Y. We have

∣∣(y − ρ1)2 − (y − ρ2)2
∣∣ = |ρ1 − ρ2| |2y − (ρ1 − ρ2)|
≤ |ρ1 − ρ2| 4M .
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- log-contrast.
Let y ∈ Y, ρ1, ρ2 ∈ F , with F ⊂ F and F some set of density functions.
Moreover, suppose that it exists some η > 0 such that

∀ ρ ∈ F ρ > η

By Taylor Lagrange formula, it exists some τ ∈ (ρ1(y), ρ2(y)) such that

|log (ρ1(y))− log (ρ2(y))| =
1
τ
|ρ1(y)− ρ2(y)|

≤ 1
η
|ρ1(y)− ρ2(y)|

since ρ > η for all ρ ∈ F and τ > η.
Taking the expectation under the measure Q (with Lebesgue density f) involves the quantity EY (|ρ1(Y )−
ρ2(Y )|) in the right member. By Cauchy-Schwarz inequality

EY (|ρ1(Y )− ρ2(Y )|) ≤ ‖ρ1 − ρ2‖2 ‖f‖2 ,

so

EY |log (ρ1(Y ))− log (ρ2(Y ))| ≤ ‖f‖2
η
‖ρ1 − ρ2‖2 .

- L2-contrast.
Let y ∈ Y, ρ1, ρ2 ∈ F , with F ⊂ F and F some set of density functions.
Suppose that it exists some B > 0 such that

sup
ρ∈F
‖ρ‖2 < B .

By triangular inequality∣∣(‖ρ1‖22 − 2 ρ1(y))− (‖ρ2‖22 − 2 ρ2(y))
∣∣ ≤ ∣∣‖ρ1‖22 − ‖ρ2‖22

∣∣+ 2 |ρ2(y)− ρ2(y)|
≤ ‖ρ1 − ρ2‖22 + 2 |ρ2(y)− ρ2(y)| .

Taking the expectation under Q and by Cauchy-Schwarz inequality (as before) yields

EY
∣∣(‖ρ1‖22 − 2 ρ1(Y ))− (‖ρ2‖22 − 2 ρ2(Y ))

∣∣ ≤ ‖ρ1 − ρ2‖22 + 2 ‖ρ1 − ρ2‖2 ‖f‖2
≤ ‖ρ1 − ρ2‖2 (‖ρ1 − ρ2‖2 + 2 ‖f‖2)
≤ 2 (B + ‖f‖2) ‖ρ1 − ρ2‖2

3.2. Constant bh(m)

When the plug-in estimator ρmh (θ) is unbiased, the bias term bmh (θ) de�ned in (6) is zero for all θ ∈ Θ
and m > 0, hence bh(m) = 0 too.
We study the example of the kernel estimator (biased), i.e when the weight function ρ̃ is a function of the
form

ρ̃(y)(·) = Kb( · − y)
where Kb( · − y) = 1

bK( · −yb ) for a kernel K() and a bandwidth b.
Consider that ‖ · ‖F = ‖ · ‖2, for all θ ∈ Θ we have
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bmh (θ) = ‖EX(Kb( · − h(X,θ)))− ρh(θ)‖2

=

(∫
Y

(∫
X

(Kb( y − h(x,θ))− ρh(θ))Px(dx)
)2

dy

)1/2

.

Theorem (24.1) in [24] (p. 345) gives the following result.

Theorem 3.1. Let ξ1, ..., ξm ∈ Y an i.i.d sample drawn from a probability density function g and K : Y →
R+ some function (kernel). Denote by

ĝ(y) =
1
m

m∑
j=1

1
b
K

(
y − ξm
b

)
.

If the following assumptions are valid

• ‖g′′‖2 < +∞
•
∫
y K(y) dy = 0

• I =
∫
y2K(y) dy < +∞ ,

then there exists a constant Cg such that for all b > 0

Eξ1..m‖ĝ − g‖22 ≤ Cg
(

1
mb

+ b4
)
.

In particular, the bias term ‖Eξ1..m ĝ − g‖2 is bounded above by

I ‖g′′‖2√
3

b2 .

In our context, take g = ρh(θ) and suppose that the assumptions of this Theorem are satis�ed, then

bmh (θ) ≤ I ‖ρ′′h(θ)‖2√
3

b2 .

Moreover, if supθ∈Θ ‖ρ
′′

h(θ)‖2 is �nite, it justi�es the existence of bh(m) = supθ∈Θ b
m
h (θ) .

3.3. Constants K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h)

We detail the arguments for computing the constant K̄ε
(ρ̃,Ψ). The constant K̄

ε
(ρ̃,h) will be obtained in the

same way.
As de�ned in Theorem (2.1), these constants are related to the supremum of empirical processes.
We will use special cases of Theorem (1.1) in [15].

- Constant K̄ε
(ρ̃,Ψ).

We need to extend the Theorem (1.1) in [15] which deals with countable classes of functions. So, we
prove the following proposition.

Proposition 3.1. Let the empirical process Gn indexed by the class of functions W(ρ̃,Ψ) (de�ned in (8)).
Supposed that EY1..n(‖Gn‖W(ρ̃,Ψ)) <∞ , it holds that for all t ≥ 0

PY1..n

(
‖Gn‖W(ρ̃,Ψ) ≥ EY1...n(‖Gn‖W(ρ̃,Ψ)) + t

)
≤ exp

(
− t2

2 v + 3M t/
√
n

)
(13)
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with v = supw∈W(ρ̃,Ψ)
Var(w(Y )) .

Proof. Recall that

W(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Y}
and consider that Y = [−M,M ].
We de�ne the sets Ys = {ys1, ..., ysis} for s ≥ 1 recursively, as follows:

• Y1 = {−M, 0,M} .

• Assume that the set Ys = {ys1, ..., ysis} is construct, with increasing elements, i.e ys1 < ... < ysis .
For j = 1, ..., is − 1, let

ỹsj =
ysj + ysj+1

2
and

Ỹs = {ỹsj , i = 1, ..., is−1 − 1} .
• De�ne

Ys+1 = Ys ∪ Ỹs

with increasing elements.

Remark 3.1. One can verify that

Card(Ys) = 2s + 1 .

Now, de�ne the classes of functions

Ws
(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Ys}

and notice that for all s ≥ 1,

Ws−1
(ρ̃,Ψ)  W

s
(ρ̃,Ψ)  W(ρ̃,Ψ) . (14)

By this previous display and the fact that
⋃
s≥1

Ys is dense in [−M,M ], we have

lim
s→∞

Ws
(ρ̃,Ψ) =

⋃
s≥1

Ws
(ρ̃,Ψ) =W(ρ̃,Ψ). (15)

The classes of functions Ws
(ρ̃,Ψ), s ≥ 1, are countable (2s + 1 elements) with values in [−M,M ]. Finally,

we apply Theorem (1.1) in [15] to the classes 1
MW

s
(ρ̃,Ψ), we get for all t ≥ 0 and s ≥ 1

PY1..n

(
‖Gn‖Ws

(ρ̃,Ψ)
≥ EY1..n(‖Gn‖Ws

(ρ̃,Ψ)
) + t

)
≤ exp

(
− t2

2 vs + 3M t/
√
n

)
(16)

where vs = supw∈Ws
(ρ̃,Ψ)

Var(w(Y )) .
We wish to prove that the left and right member of this last inequality converge when s→∞.
Write the left member as follows
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PY1..n

(
‖Gn‖Ws

(ρ̃,Ψ)
≥ EY1..n(‖Gn‖Ws

(ρ̃,Ψ)
) + t

)
= EY1..n

(
1 ‖Gn‖Ws(ρ̃,Ψ)

≥EY1..n (‖Gn‖Ws(ρ̃,Ψ)
)+t

)
= EY1..n

(
1 ‖Gn‖Ws(ρ̃,Ψ)

−EY1..n (‖Gn‖Ws(ρ̃,Ψ)
)≥ t

)
(17)

The inclusions (14) yields

‖Gn‖Ws−1
(ρ̃,Ψ)

≤ ‖Gn‖Ws
(ρ̃,Ψ)

≤ ‖Gn‖W(ρ̃,Ψ) ∀s ≥ 1 ,

so the sequence
(
‖Gn‖Ws

(ρ̃,Ψ)

)
s≥1

is increasing and bounded, thus it converges. By monotone convergence,

we obtain that the sequence
(
EY1..n

(
‖Gn‖Ws

(ρ̃,Ψ)

))
s≥1

converges too provided that EY1..n(‖Gn‖W(ρ̃,Ψ)) <∞ .

Thus, the sequence
(
‖Gn‖Ws

(ρ̃,Ψ)
− EY1..n

(
‖Gn‖Ws

(ρ̃,Ψ)

))
s≥1

converges too, and by dominated convergence

the quantity (17) converges to the wanted limit

EY1..n

(
1 ‖Gn‖W(ρ̃,Ψ)−EY1..n (‖Gn‖W(ρ̃,Ψ) )≥ t

)
= PY1..n

(
‖Gn‖W(ρ̃,Ψ) ≥ EY1..n(‖Gn‖W(ρ̃,Ψ)) + t

)
.

For the right member of (16). By similar arguments, one can check that the sequence (vs)s≥1 is increasing
and bounded, thus it converges. The limit is v = supw∈W(ρ̃,Ψ)

Var(w(Y )) . That concludes the proof.
�

The function t 7→ exp
(
− t2

2 v+3M t/
√
n

)
is decreasing from R∗+ into ]0, 1[, hence it exists a unique function

κ : ]0, 1[→ R∗+ such that

∀ t ≥ 0 κ−1(t) = exp

(
− t2

2 v + 3M t/
√
n

)
. (18)

(Note that for all ε > 0, κ(ε) decreases with n).
Then, we can write (13) as follows, for all ε ∈]0, 1[

PY1..n

(
‖Gn‖W(ρ̃,Ψ) ≥ EY1..n(‖Gn‖W(ρ̃,Ψ)) + κ(ε)

)
≤ ε

or equivalently

PY1..n

(
‖Gn‖W(ρ̃,Ψ) ≤ EY1..n(‖Gn‖W(ρ̃,Ψ)) + κ(ε)

)
≥ 1− ε .

Thus, one could take the constant K̄ε
(ρ̃,Ψ) equal to

EY1..n(‖Gn‖W(ρ̃,Ψ)) + κ(ε) ,

but the quantity EY1..n(‖Gn‖W(ρ̃,Ψ)) seems to be not tractable. We propose to bound it.
Indeed, maximal inequalities allow to bound such quantities in terms of entropy integrals we will de�ne. Al-
though these methods are known to be not sharp, the bounds we will obtain are of interest for our purpose.
Before, let recall some useful de�nitions.

Let G be a class of functions and µ some probability measure.
An envelope function of the class G is a function G : y 7→ G(y) such that |g(y)| ≤ G(y), for all y and g ∈ G.
Denote by
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‖g‖2,µ =
(∫

g2(y)µ(dy)
)1/2

.

The three following de�nitions are from [25] (p. 83-85).

De�nition 3.1. L2(µ) Covering numbers and Entropy.

The covering number N(ε, G, L2(µ)) is the minimal number of balls {j , ‖j − g‖2,µ < ε} of radius ε needed
to cover the class G. The centers of the balls need not belong to G, but they should have �nite norm. The
entropy is the logarithm of the covering number.

De�nition 3.2. L2(µ) Bracketing numbers and Entropy with bracketing.

Given two functions l, u, the bracket [l, u] is the set of all functions g with l ≤ g ≤ u. An ε-bracket is
a bracket [l, u] with ||u − l||2,µ < ε. The bracketing number N[ ](ε, G, L2(µ)) is the minimum number of
ε-brackets needed to cover the class of functions G.
The entropy with bracketing is the logarithm of the bracketing number.

The bracketing numbers measure the "size", the complexity of a class of functions. We also dispose of a
de�nition providing at which "speed" the classes grow.

De�nition 3.3. L2(µ) Bracketing integral.

The bracketing integral is de�ned as

J[ ] (δ, G, L2(µ)) :=
∫ δ

0

√
log N[ ](ε, G, L2(µ))dε .

Now we apply Theorem (19.35) of [24] (p. 288), it holds that

EY1..n(‖Gn‖W(ρ̃,Ψ)) ≤ a1 J[ ]

(
‖W‖2,Q, W(ρ̃,Ψ), L2(Q)

)
, (19)

where

• a1 is some universal constant

• W : Y → R is an envelop function of W(ρ̃,Ψ) and

‖W‖2,Q =
(∫

W 2(y)Q(dy)
)1/2

.

Remark 3.2. The quantity J[ ]

(
‖W‖2,Q, W(ρ̃,Ψ), L2(Q)

)
is computable if one has the bracketing numbers

N[ ](ε, W(ρ̃,Ψ), L2(Q)) (∀ ε > 0), see examples in Section 3.4 below.

Finally, setting

K̄ε
(ρ̃,Ψ) = a1 J[ ]

(
‖W‖2,Q, W(ρ̃,Ψ), L2(Q)

)
+ κ(ε) (20)

provides the claimed constant.

Remark 3.3. Since the quantity κ(ε) decreases with n, K̄ε
(ρ̃,Ψ) too, and the assumptions of Theorem (2.1)

are satis�ed.

- Constant K̄ε
(ρ̃,h).

By the same argument, let consider the empirical process Kx
m and the class of functions P(ρ̃,h) (de�ned in
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(9)) with an envelop noted P : X → R.
We obtain

K̄ε
(ρ̃,h) = a2 J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
+ κ(ε) , (21)

where a2 is some universal constant and κ is de�ned in (18).

3.4. Constants K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h) in particular cases

3.4.1. K̄ε
(ρ̃,Ψ) for the Mean-squared contrast

Recall that in this case

W(ρ̃,Ψ) = {y 7→ (y − λ)2 , λ ∈ Y} .
This class is uniformly bounded by 4M2, we take the envelop function W = 4M2. Then, we have

|(y − λ1)2 − (y − λ2)2| ≤ |λ1 − λ2|F (y) ,

with F (y) = |2y + 2M |, and by Theorem (2.7.11) in [25] (p. 164) it holds that

N[ ](ε, W(ρ̃,Ψ), L2(Q)) ≤ N
(

ε

2 ‖F‖2,Q
,Y, | · |

)
Notice that ‖F‖2,Q ≤ 4M . Since Y ⊂ [−M,M ], we have

N

(
ε

2 ‖F‖2,Q
,Y, | · |

)
≤ N

( ε

8M
, [−M,M ], | · |

)
.

The covering number in the right member is bounded by 16M2/ε, so that we �nally get

N[ ](ε, W(ρ̃,Ψ), L2(Q)) ≤ 16M2

ε
.

Now, we compute the bracketing integral

J[ ]

(
‖W‖2,Q, W(ρ̃,Ψ), L2(Q)

)
=

∫ ‖W‖2,Q
0

√
log
(
N[ ](ε, W(ρ̃,Ψ), L2(Q))

)
dε

≤
∫ 4M2

0

√
log
(

16M2

ε

)
dε ,

and with the variable substitution u = 2 log(16M2/ε), this integral becomes

4
√

2M2

∫ +∞

log(16)

√
u e−u/2 du .

Moreover, since
∫ +∞

0

√
u e−u/2 du =

√
2π, the bracketing integral is bounded by

J[ ]

(
‖W‖2,Q, W(ρ̃,Ψ), L2(Q)

)
≤ 8
√
πM2 .

Finally, we obtain the following constant

K̄ε
(ρ̃,Ψ) = 8 a1

√
πM2 + κ(ε) . (22)
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3.4.2. K̄ε
(ρ̃,h) with the weight function ρ̃(y) = y

In this case, the class of functions P(ρ̃,h) is

P(ρ̃,h) = {x ∈ X 7→ h(x,θ) , θ ∈ Θ} (X ⊂ Rd) .

We assumed in the introduction that the models x 7→ h(x,θ), θ ∈ Θ are uniformly bounded by M , thus
denoted by P an envelop of P(ρ̃,h), take P = M .
Moreover, let suppose that the models x 7→ h(x,θ), θ ∈ Θ, belong to the Hölder space H(X , α, L) (α,L > 0)
de�ned as

H(X , α, L) = {g : X → R continuous, ‖g‖α ≤ L}
where

‖g‖α = max
|ν|≤bαc

sup
x∈X
|Dνg(x)|+ max

ν:|ν|=bαc
sup

x,x′∈X

|Dνg(x)−Dνg(x
′
)|

‖x− x′‖α−bαc

with bαc the largest integer smaller than α, and the di�erential operator Dν is de�ned as,
for ν = (ν1, ..., νd) ∈ Nd

Dν =
∂|ν|

∂νν1
1 ...∂ννdd

, and |ν| =
d∑
i=1

νi .

We aim at computing the entropy integral J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
by integrating the entropy log N[ ](ε, P(ρ̃,h), L2(Q)).

Corollary (2.7.2) in [25] (p. 157) gives an entropy bound for the Hölder space H(X , α, 1):

log N[ ](ε, H(X , α, 1), L2(Q)) ≤ K
(

1
ε

)d/α
∀ ε > 0 , (23)

where K depends on α, diam(X ) and d.
We supposed that P(ρ̃,h) ⊂ H(X , α, L), and one can easily check that H(X , α, L) = L ·H(X , α, 1), where

L ·H(X , α, 1) = {Lg : g ∈ H(X , α, 1)} . (24)

Remark 3.4. If P(ρ̃,h) ⊂ H(X , α, L), then necessarily L ≥ M . It comes from the fact that ‖g‖α ≥ ‖g‖∞
for all α > 0.

Next, we will use the following lemma.

Lemma 3.1.

N[ ](ε, H(X , α, L), L2(Q)) = N[ ](ε, L ·H(X , α, 1), L2(Q))
= N[ ](ε/L, H(X , α, 1), L2(Q)) .

Proof. The �rst equality is clear by (24). Let ([li, ui])i=1...N be a set of ε-brackets covering H(X , α, 1). Then
the brackets ([L li, L ui])i=1...N cover L ·H(X , α, 1) since for g ∈ H(X , α, 1)

l ≤ g ≤ u =⇒ L l ≤ Lg ≤ Lu .

Finally, the brackets [L li, L ui] are of size L ε, and the result follows. �

Using (23), Lemma 3.1 and the inequality

J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
≤ J[ ] (‖P‖2,Q, H(X , α, L), L2(Q)) ,

it holds for d < 2α
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J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
≤
√
K

∫ M

0

(
L

ε

)d/2α
dε ,

hence

J[ ]

(
‖P‖2,Q, P(ρ̃,h), L2(Q)

)
≤M

√
K

(
L

M

)d/2α 1
1− d/2α

.

Finally, under the condition d < 2α, we get the constant

K̄ε
(ρ̃,h) = a2M

√
K

(
L

M

)d/2α 1
1− d/2α

+ κ(ε) .

Remark 3.5. The condition d < 2α above, means that the dimension of the random input X (equal to
d) is limited by the "smoothness" of the models x 7→ h(x,θ), θ ∈ Θ. The smoother the models are (i.e α
large), the larger the dimension d can be.

Remark 3.6. The computation of the constants K̄ε
(ρ̃,Ψ) and K̄ε

(ρ̃,h) are di�cult enough to obtain, as we

saw. However, we adopt a nonasymptotic point of view and so such computations are crucial in order to
give sense to the risk bounds.

4. Model selection

4.1. Results

In the previous section, for each �xed model h in H, we computed a parameter θ̂h := θ̂ depending on
the model h. Thus we have constructed a family of models

{h( · , θ̂h) , h ∈ H} ,

with

h( · , θ̂h) : (X ,B,Px) −→ (Y, E)

X 7−→ h(X, θ̂h) .

where we recall that H is a set of functions Z −→ Y, with Z ⊂ Rd+k.

In this section, we establish an oracle inequality qualifying the model selection procedure we propose. Some
results of this section are inspired from the previous section.
Recall that the risk function is de�ned as it follows

RΨ(h,θ) = EY Ψ (ρh(θ), Y ) for all (h,θ) ∈ H ×Θ .

Here, θ = θ̂h, and the risk is simply function of h: RΨ(h, θ̂h).

An ideal selection procedure would be to choose the oracle

h? = Argmin
h∈H

RΨ(h, θ̂h) .

Recall that

W(ρ̃,Ψ) = {y ∈ Y 7→ Ψ(ρ̃(λ) , y) , λ ∈ Y} .
- First approach.
In the same spirit of the section 2, it seems natural to propose the following selection procedure inspired
from (7)
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ĥ = Argmin
h∈H

1
n

n∑
i=1

Ψ
(
ρmh (θ̂h) , Yi

)
. (25)

Let introduce the quantities

D(h) = 2AΨ c

sup
λ∈Y

∣∣∣∣∣∣ 1
m

m∑
j=1

[
ρ̃(h(Xj , θ̂h))(λ)− EXρ̃(h(X, θ̂h))(λ)

] ∣∣∣∣∣∣+
bh(m)
c

 (26)

and

D(H) = sup
h∈H

D(h) . (27)

Lemma 4.1. Under the Assumptions (1.1) and (2.1), suppose that the sequence of random variables
‖Gn‖W(ρ̃,Ψ) is tight and let the constant Kε

(ρ̃,Ψ) de�ned in Theorem 2.1.

Let the feature space F equipped with either the absolute value norm or some Lr norm.
Then, with probability at least 1− ε

RΨ(ĥ, θ̂ĥ) ≤ inf
h∈H

(
RΨ(h, θ̂h)

)
+D(H) +

Kε
(ρ̃,Ψ)√
n

,

where the constants AΨ and c are those of Theorem (2.1).

Remark 4.1. 1. The term
Kε

(ρ̃,Ψ)√
n

depends only on the number of experimental data Y1, ..., Yn (through n),

on the contrast Ψ and the weight function ρ̃ considered (through Kε
(ρ̃,Ψ)). Thus, it doesn't depend on the

models h ∈ H, and roughly speaking, it appears that it can't be reduced.
2. The term D(H) depends on the "richness" of the class H. This term acts as a penalization term.

Finally, the selection procedure (25) provides an oracle inequality with a residual term

D(H) +
Kε

(ρ̃,Ψ)√
n

,

where D(H) can be non-negligible.

Can we perform the selection procedure (25) ?

The problem we meet here can be understood following the so-called structural risk minimization, see [27]
or [26] for instance. Indeed, the quantity

1
n

n∑
i=1

Ψ
(
ρmh (θ̂h) , Yi

)
estimates the risk RΨ(h, θ̂h) up to a complexity term. We will see that if we take into account the complexity
of the models h ∈ H in the procedure (25), we can improve it.

- Penalized selection.
The penalization in model selection has been �rst proposed by Akaike [1] and Mallows [18] in speci�c cases.
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Since, many authors have contributed to remarkable developments in the area of Model selection and pe-
nalization, we cite [19] with the associated references. We recall here that our goal is not to improve some
well established results in model selection, but to link the model selection theory to our framework. For
this, we adopt the philosophy of [19] without getting into deep details, which would lead to considerations
far from our topic.

Let some penalty function pen : H −→ R+ and consider the following selection procedure

ĥ = Argmin
h∈H

1
n

n∑
i=1

Ψ
(
ρmh (θ̂h) , Yi

)
+ pen(h) , (28)

where we simply add the penalty function pen to the procedure (25).

Theorem 4.1. Oracle Inequality for Model Selection.

Let the penalty function

p̃en(h) = EY
(

Ψ
(
ρh(θ̂h), Y

)
−Ψ

(
ρmh (θ̂h), Y

))
for all h ∈ H ,

and assume that

∀h ∈ H pen(h) ≥ p̃en(h) .
Moreover, we suppose that the sequence of random variables ||Gn||W(ρ̃,Ψ) is tight. Let the constant Kε

(ρ̃,Ψ)

de�ned in Theorem 2.1.
Then, it holds with probability at least 1− ε

RΨ(ĥ, θ̂ĥ) ≤ inf
h∈H

(
RΨ(h, θ̂h) + (pen− p̃en)(h)

)
+
Kε

(ρ̃,Ψ)√
n

.

Remark 4.2. 1. Suppose that pen ' p̃en, then the penalized selection would have good performance

since the residual term would be close to
Kε

(ρ̃,Ψ)√
n

. This is better than D(H) +
Kε

(ρ̃,Ψ)√
n

obtained using the

(unpenalized) procedure (25).

2. For given experimental data Y1, ..., Yn, the term
Kε

(ρ̃,Ψ)√
n

can't be reduced (see Remark (4.1)), hence if the

penalty function pen is well chosen, the procedure (28) certainly improves (25).
3. It could seem surprising that the Theorem (4.1) doesn't need Assumptions (1.1) and (2.1) like the Lemma
(4.1) previously set. In fact, the assumption on the penalty function pen in this proposition is strong enough.
The whole problem will be to evaluate the penalty function p̃en which depends on the probability measure

Q unknown, and on the feature ρh(θ̂h) uncomputable.

The main di�culty is to �nd a "good" penalty function pen, i.e satisfying
- ∀h ∈ H pen(h) ≥ p̃en(h)
- pen ' p̃en .

These conditions on the penalty function are roughly those in [19]. Recent developments deal with the
penalization choice (data-driven construction), in the case of least-squares regression, [2]. We won't carry
on the penalization calibration aspect here, it will be considered in a further work.
Using Assumptions (1.1) and (2.1), one can easily check that,

p̃en(h) ≤ D(h)
2

, for all h ∈ H , (29)

where D(h) is de�ned in (26).
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Notice that suph∈H D(h) = D(H) where D(H) is de�ned in Lemma (4.1).
Then, a possible candidate for pen would be

pen(h) =
D(h)

2
,

which satis�es pen(h) ≥ p̃en(h) according (29).
Finally, we propose the following selection procedure

ĥ = Argmin
h∈H

1
n

n∑
i=1

Ψ
(
ρmh (θ̂h) , Yi

)
+
D(h)

2
. (30)

Example 4.1. For the weight ρ̃(y) = y in the Mean Squared framework.

In this case, AΨ = 4M , c = 1 and bh(m) = 0. We obtain the following penalty function

pen(h) = 4M

∣∣∣∣∣∣ 1
m

m∑
j=1

(
h(Xj , θ̂h)− EX h(X, θ̂h)

)∣∣∣∣∣∣
= 4M |(Px

m − Px)(hX )| ,

where hX (x) = h(x, θ̂h) .

5. Proofs

In order to to prove the oracle inequality of Theorem (2.1), we need the following lemmas.

5.1. Preliminary lemmas

Lemma 5.1. Consider the random functions

y 7→ Ψ(ρ̃(h(X,θ)) , y) , θ ∈ Θ .

We have (a.s.)
sup
θ∈Θ
|Gn (Ψ (ρ̃(h(X,θ))))| ≤ ||Gn||W(ρ̃,Ψ) ,

where W(ρ̃,Ψ) is de�ned in (8).

Proof. The key ingredient is re-parametrization.
Since for all x ∈ X and θ ∈ Θ, h(x,θ) ∈ Y, conditionally to X = x0

sup
θ∈Θ
|Gn (Ψ (ρ̃(h(x0,θ))))| ≤ sup

λ∈Y
|Gn (Ψ (ρ̃(λ)))|

= ||Gn||W(ρ̃,Ψ) .

The right member does not depend on x0, and the result follows. �

Remark 5.1. The left member of the inequality in the lemma (5.1) depends on the model h, contrary to
the right member. Indeed, this last term depends only on the weight function with the associated contrast,
and on n.
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Lemma 5.2. Consider the Px-empirical process Kx
m and let ‖ · ‖F = | · | or ‖ · ‖r and de�ne

c =
{

1 if ρ̃(y) is constant, ∀y ∈ Y ,
(2M)1/r else

.

We have

sup
θ∈Θ
||Kx

m ρ̃(h(·,θ))||F ≤ c ||Kx
m‖|P(ρ̃,h) ,

where P(ρ̃,h) is de�ned in (9).

Proof. Let notice that the quantity

Kx
m ρ̃(h(·,θ)) =

1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

can be (up to a factor) either a sum of independent random real variables or a sum of independent random
functions.

- If ρ̃(y) ∈ R for all y ∈ Y (we have a sum of random variables).

Taking ‖ · ‖F = | · | the absolute value norm, it comes directly that

sup
θ∈Θ
||Kx

m ρ̃(h(·,θ))||F = sup
θ∈Θ

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
= ‖Kx

m‖P(ρ̃,h)

Remark 5.2. In this case, ρ̃(y)(λ) = ρ̃(y) for all y and λ in Y.
- If, for all y ∈ Y, ρ̃(y) is a real valued function de�ned on Y.

Take ‖ · ‖F = ‖ · ‖r, r ≥ 1, the Lr norm. By integration properties and the fact that

sup
z≥0

zr = (sup
z≥0

z)r ,
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we have

sup
θ∈Θ
||Kx

m ρ̃(h(·,θ))||r = sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
r

= sup
θ∈Θ

∫
Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣
r

dλ

1/r

≤ sup
θ∈Θ

∫
Y

sup
λ∈Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣
r

dλ

1/r

= sup
θ∈Θ

sup
λ∈Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣
(∫
Y
dλ

)1/r

= (2M)1/r sup
(θ,λ)∈Θ×Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(λ)− EXρ̃(h(X,θ))(λ)]

∣∣∣∣∣∣ .
Finally, notice that

sup
(θ,y)∈Θ×Y

∣∣∣∣∣∣ 1√
m

m∑
j=1

[ρ̃(h(Xj ,θ))(y)− EXρ̃(h(X,θ))(y)]

∣∣∣∣∣∣ = ||Kx
m‖|P(ρ̃,h)

and the result follows. �

Remark 5.3. In the case where the weight function is a kernel Kb(· − ·), the quantity

Kx
mρ̃(h(·,θ)) =

1√
m

m∑
j=1

[Kb( · − h(Xj ,θ))− EXKb( · − h(X,θ))]

is treated as a sum of independent random functions in the recent work of A. Goldenshluger and O. Lepski
[11]. Here we have made the restrictive assumption that Y ⊂ [−M,M ]. A valuable challenge would be to
extend our results to the unbounded case using [11].

5.2. Proof of Theorem (2.1)

Proof. We denote by

- M(h,θ) = RΨ(h,θ) = EY Ψ (ρh(θ), Y )

- Mn,(h,θ) =
1
n

n∑
i=1

Ψ (ρh(θ), Yi)

- M,m(h,θ) = EY Ψ (ρmh (θ), Y )

- Mn,m(h,θ) =
1
n

n∑
i=1

Ψ (ρmh (θ), Yi)

- GnΨ (ρmh (θ)) =
√
n (Mn,m(h,θ)−Mm(h,θ))

where ρmh (θ) =
1
m

m∑
j=1

ρ̃(h(Xj ,θ)) and recall that

θ̂ = Argmin
θ∈Θ

Mn,m(h,θ) (31)
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We have,

RΨ(h, θ̂)

= M(h, θ̂)−Mm(h, θ̂) +Mm(h, θ̂)−Mn,m(h, θ̂) +Mn,m(h, θ̂)

= −
(
Mm(h, θ̂)−M(h, θ̂)

)
− 1√

n
GnΨ

(
ρmh (θ̂n,m)

)
+Mn,m(h, θ̂)−Mn,m(h,θ?)︸ ︷︷ ︸

≤0 (31)

+Mn,m(h,θ?)

≤ −
(
Mm(h, θ̂)−M(h, θ̂)

)
− 1√

n
GnΨ

(
ρmh (θ̂)

)
+Mn,m(h,θ?)−Mm(h,θ?) +Mm(h,θ?)

≤ −
(
Mm(h, θ̂)−M(h, θ̂)

)
− 1√

n
GnΨ

(
ρmh (θ̂)

)
+

1√
n
GnΨ (ρmh (θ?)) +Mm(h,θ?)

≤ −
(
Mm(h, θ̂)−M(h, θ̂)

)
+

1√
n
Gn
(

Ψ (ρmh (θ?))−Ψ
(
ρmh (θ̂)

))
+Mm(h,θ?)−M(h,θ?) +M(h,θ?)

≤ 1√
n
Gn
(

Ψ (ρmh (θ?))−Ψ
(
ρmh (θ̂)

))
+
(
Mm(h,θ?)−M(h,θ?)

)
−
(
Mm(h, θ̂)−M(h, θ̂)

)
+M(h,θ?)

≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n

sup
θ∈Θ
|Gn (Ψ (ρmh (θ)))|+ 2 sup

θ∈Θ
|Mm(h,θ)−M(h,θ)|

since M(h,θ?) = RΨ(h,θ?) = infθ∈Θ (RΨ(h,θ)).

Now, we want to bound the second and third terms in the right member of the last inequality.

Second term. Since ρmh (θ) =
1
m

m∑
j=1

ρ̃(h(Xj ,θ)) and ρ 7−→ Ψ(ρ, y) is convex by Assumption (1.1), we have

the inequality
for all y ∈ Y,

Ψ (ρmh (θ) , y) = Ψ

 1
m

m∑
j=1

ρ̃(h(Xj ,θ)) , y


≤ 1

m

m∑
j=1

Ψ (ρ̃(h(Xj ,θ)) , y) .

Then, by the linearity of the measure Gn, it comes

Gn (Ψ (ρmh (θ))) ≤ 1
m

m∑
j=1

GnΨ (ρ̃(h(Xj ,θ))) . (32)

By Lemma (5.1) we have (a.s)

sup
θ∈Θ
|Gn (Ψ (ρ̃(h(Xj ,θ))))| ≤ ||Gn||W(ρ̃,Ψ)

where W(ρ̃,Ψ) = {Ψ(ρ̃(λ) , ·) , λ ∈ Y} , then (a.s)

sup
θ∈Θ
|Gn (Ψ (ρmh (θ)))| ≤ ||Gn||W(ρ̃,Ψ) .
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Third term. We have

|Mm(h,θ)−M(h,θ)| = |EY (Ψ (ρmh (θ), Y )−Ψ (ρh(θ), Y ))|
≤ EY |Ψ (ρmh (θ), Y )−Ψ (ρh(θ), Y )| .

By Assumption (1.1)

|Ψ (ρmh (θ), Y )−Ψ (ρh(θ), Y )| ≤ LΨ(Y ) ||ρmh (θ)− ρh(θ)||F ,

then

|Mm(h,θ)−M(h,θ)| ≤ ||ρmh (θ)− ρh(θ)||F EY LΨ(Y ) . (33)

Let AΨ = EY LΨ(Y ) .
Moreover, the inequality (5) yields

||ρmh (θ)− ρh(θ)||F ≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
m

m∑
j=1

[ρ̃(h(Xj ,θ))− EXρ̃(h(X,θ))]

∣∣∣∣∣∣
∣∣∣∣∣∣
F

+ bmh (θ) . (34)

Equivalently, by considering the empirical process Kx
m =

√
m(Px

m − Px), we obtain

||ρmh (θ)− ρh(θ)||F ≤ 1√
m
||Kx

m ρ̃(h(·,θ))||F + bmh (θ) (35)

≤ 1√
m

(
||Kx

m ρ̃(h(·,θ))||F +
√
mbmh (θ)

)
. (36)

Taking the supremum over Θ and combining the Lemma (5.2) and the Assumption (2.1) gives

sup
θ∈Θ
||ρmh (θ)− ρh(θ)||F ≤

1√
m

(
c ‖Kx

m‖P(ρ̃,h) +
√
mbh(m)

)
.

Hence, in (33) we obtain

sup
θ∈Θ
|Mm(h,θ)−M(h,θ)| ≤ AΨ√

m

(
c ‖Kx

m‖P(ρ̃,h) +
√
mbh(m)

)
.

Finally, the following bound holds for the procedure risk

RΨ(h, θ̂) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
||Gn||W(ρ̃,Ψ) + 2

AΨ√
m

(
c ‖Kx

m‖P(ρ̃,h) +
√
mbh(m)

)
.

Now, let notice that for any 3 events E1, E2, E3 we have by elementary probability calculus

P(E1) ≤ P(E1 ∩ E2 ∩ E3) + P(Ec2) + P(Ec3) . (37)

Take the following events

E1 =
{
RΨ(h, θ̂) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
‖Gn‖W(ρ̃,Ψ) + 2

AΨ√
m

(
c ‖Kx

m‖P(ρ̃,h) +
√
mbh(m)

)}
E2 =

{
inf
θ∈Θ

(RΨ(h,θ)) +
2√
n
‖Gn‖W(ρ̃,Ψ) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
K̄ε

(ρ̃,Ψ)

}
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and

E3 =
{

2
AΨ√
m

(
c ‖Kx

m‖P(ρ̃,h) +
√
mbh(m)

)
≤ 2

AΨ√
m

(
c K̄ε

(ρ̃,h) +
√
mbh(m)

)}
,

where K̄ε
(ρ̃,Ψ) and K̄

ε
(ρ̃,h) are such that

PY1...n(‖Gn‖W(ρ̃,Ψ) ≤ K̄
ε
(ρ̃,Ψ)) ≥ 1− ε

and

PX1...m(‖Kx
m‖P(ρ̃,h) ≤ K̄

ε
(ρ̃,h)) ≥ 1− ε

respectively (for all ε > 0).
Using the inequality (37) with the fact that P(E2) = PY1...n(‖Gn‖W(ρ̃,Ψ) ≤ K̄ε

(ρ̃,Ψ)) and P(E3) = PX1...m(‖Kx
m‖P(ρ̃,h) ≤

K̄ε
(ρ̃,h)) , we obtain

P(E1) ≤ PY1...n,X1,...,m

(
RΨ(h, θ̂) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
K̄ε

(ρ̃,Ψ) + 2
AΨ√
m

(
c K̄ε

(ρ̃,h) +
√
mbh(m)

))
+ 2 ε .

But note that P(E1) = 1, so

PY1...n,X1,...,m

(
RΨ(h, θ̂) ≤ inf

θ∈Θ
(RΨ(h,θ)) +

2√
n
K̄ε

(ρ̃,Ψ) + 2
AΨ√
m

(
c K̄ε

(ρ̃,h) +
√
mbh(m)

))
≥ 1− 2 ε .

Equivalently, we have with probability at least 1− 2 ε

RΨ(h, θ̂) ≤ inf
θ∈Θ

(RΨ(h,θ)) +
Kε

(ρ̃,Ψ)√
n

(
1 +

√
n

m
(Kε

(ρ̃,h) +Bm)
)

where

Kε
(ρ̃,Ψ) = 2 K̄ε

(ρ̃,Ψ) ,

Kε
(ρ̃,h) = AΨ c

K̄ε
(ρ̃,h)

K̄ε
(ρ̃,Ψ)

and

Bm =
√
m

AΨ

K̄ε
(ρ̃,Ψ)

bh(m) .

That concludes the proof. �

5.3. Proofs of Theorem 4.1

Proof. (Lemma (4.1)). For this proof, consider the notations in the proof of Theorem (4.1) and develop
the same calculus than in the proof of Theorem (2.1). �

Proof. (Theorem (4.1)). This proof is similar to the beginning of the proof of Theorem 2.1.

- M(h) = RΨ(h, θ̂h) = EY Ψ
(
ρh(θ̂h), Y

)
- Mn,(h) =

1
n

n∑
i=1

Ψ
(
ρh(θ̂h), Yi

)
- M,m(h) = EY Ψ

(
ρmh (θ̂h), Y

)
- Mn,m(h) =

1
n

n∑
i=1

Ψ
(
ρmh (θ̂h), Yi

)
- GnΨ

(
ρmh (θ̂h)

)
=
√
n (Mn,m(h)−Mm(h))
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where ρmh (θ̂h) =
1
m

m∑
j=1

ρ̃(h(Xj , θ̂h)) and recall that

ĥ = Argmin
θ∈Θ

Mn,m(h) + pen(h) (38)

and

h∗ = Argmin
θ∈Θ

M(h) . (39)

We have,

RΨ(ĥ, θ̂h)

= M(ĥ)−Mm(ĥ) +Mm(ĥ)−Mn,m(ĥ) +Mn,m(ĥ)

= −
(
Mm(ĥ)−M(ĥ)

)
− 1√

n
GnΨ

(
ρm
ĥ

(θ̂h)
)

+Mn,m(ĥ) + pen(ĥ)−Mn,m(h?)− pen(h?)︸ ︷︷ ︸
≤0 (38)

+pen(h?)− pen(ĥ) +Mn,m(h?)

≤ 1√
n
Gn
(

Ψ
(
ρmh?(θ̂h)

)
−Ψ

(
ρm
ĥ

(θ̂h)
))
−
(

pen(ĥ)−
(
M(ĥ)−Mm(ĥ)

))
+
(
pen(h?)− (M(h?)−Mm(h?))

)
+M(h?)

Let p̃en(h) = M(h)−Mm(h) = EY
(

Ψ
(
ρh(θ̂h), Y

)
−Ψ

(
ρmh (θ̂h), Y

))
, by the assumption

∀h ∈ H pen(h) ≥ p̃en(h) .

We have

−
(

pen(ĥ)−
(
M(ĥ)−Mm(ĥ)

))
≤ 0 .

Thus, writing(
pen(h?)− (M(h?)−Mm(h?))

)
+M(h?) = inf

h∈H

(
RΨ(h, θ̂h) + (pen− p̃en)(h)

)
,

we obtain

RΨ(ĥ, θ̂ĥ) ≤ inf
h∈H

(
RΨ(h, θ̂h) + (pen− p̃en)(h)

)
+

2√
n
||Gn||W(ρ̃,Ψ) ,

and with probability at least 1− ε

RΨ(ĥ, θ̂ĥ) ≤ inf
h∈H

(
RΨ(h, θ̂h) + (pen− p̃en)(h)

)
+
Kε

(ρ̃,Ψ)√
n

,

that concludes the proof. �
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