
Chapter 4

Compact operators, compact
resolvents

4.1 Compact operators
4.1.1 Definition and properties
Let E and F be two Banach spaces.

Definition 4.1. Let A be a linear map from E to F. We say that A is compact if one of the
following equivalent assertions is satisfied.

(i) For any bounded sequence pφnqnPN in E, the sequence pAφnqnPN has a convergent sub-
sequence in F.

(ii) ApBEq is compact in F (we have denoted by BE the unit ball in E).

(iii) ApBq is compact in F for any bounded subset B of E.

We denote by KpE, Fq the set of compact operators from E to F. We also write KpEq for
KpE, Eq.

For the proof of the equivalences we recall that a subset Ω of a metric space is compact
if and only if any sequence in Ω has a convergent subsequence in Ω.
Example 4.2. Finite rank operators are compact.
Example 4.3. The identity operator on E is compact if and only if E has finite dimension.

Proposition 4.4. Let E and F be two Banach spaces.

(i) A compact operator is a bounded operator (KpE, Fq Ă LpE, Fq)
(ii) KpE, Fq is a closed subspace of LpE, Fq.
(iii) For A P KpE, Fq, B1 P BpE1, Eq and B2 P BpF, F2q we have A ˝ B1 P KpE1, Fq and

B2 ˝ A P KpE, F2q.
(iv) For A P KpE, Fq we have A˚ P KpF˚, E˚q.
Proof. ‚ Let A P KpE, Fq and assume by contradiction that A is not bounded. Then there
exists a sequence pφnq in E such that }φn}E “ 1 for all n and }Aφn}F Ñ 8 as n Ñ 8. Then
pAφnq cannot have a convergent subsequence in F, which gives a contradiction.
‚ The fact that KpE, Fq is a subspace of LpE, Fq is clear. Let pAnq be a sequence in KpE, Fq
which converges to some A in LpE, Fq. Let pφnq be a bounded sequence in E. Let M ą 0
such that }φn} ď M for all n P N. There exists a subsequence pφnp1,kqqkPN such that
pA1φnp1,kqq is convergent in F. From this subsequence we can extract a subsequence pφnp2,kqq
such that pA2φnp2,kqq is convergent (and pA1φnp2,kqq is also convergent). By induction on m,
we construct a subsequence pφnpm,kqq of pφnpm´1,kqq such that pAmφnpm,kqqkPN is convergent.
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Then by the Cantor diagonal argument, if we set nk “ npk, kq for all k P N, then the sequence
pAjφnk

qkPN is convergent for all j P N.
Let ε ą 0. Let j P N such that }Aj ´ A}LpE,Fq ď ε

3M . Let N P N such that
››Ajpφnk1

´ φnk2
q››

F ď
ε
3 for all k1, k2 ě N . Then for k1, k2 ě N we have

››Aφnk1
´ Aφnk2

››
F ď ››pA ´ Ajqφnk1

››
F ` ››Ajpφnk1

´ φnk2
q››

F ` ››pAj ´ Aqφnk2

››
F ď ε.

This proves that pAφnpkqq is a Cauchy sequence, and hence convergent in F.
‚ The third statement is left as an exercice.
‚ Let pφnqnPN be a bounded sequence in F˚. Since A is compact, ApBEq is a compact
metric space, and the functions φn, n P N, are equicontinuous thereon. Then, by the Ascoli-
Arzelà Theorem, there exists a subsequence pφnk

qkPN convergent in C0pApBEqq. We denote
by φ P C0pApBEqq the limit. In particular we have

sup
}x}Eď1

|φnk
pApxqq ´ φpApxqq| ÝÝÝÝÑ

kÑ`8 0.

We deduce that pφnk
˝ Aq “ pA˚pφnk

qq is a Cauchy sequence in E˚. Since E˚ is a Banach
space, it has a limit in E˚. This proves that A˚ P KpF˚, E˚q.
Example 4.5. Let a “ panqnPN be a sequence which converges to 0. We consider on ℓ2pNq the
multiplication operator Ma by a (see Example 1.3). Then Ma is compact on ℓ2pNq. Indeed,
for N P N we denote by aN the sequence defined by

αN “
#

an if n ď N,

0 if n ą N.

Then the multiplication MαN
by αN is of finite rank, hence compact, for all N P N. Moreover

}Ma ´ MαN
}Lpℓ2pNqq ď sup

nąN
|an| ÝÝÝÝÑ

NÑ8 0.

Since Kpℓ2pNqq is closed, this proves that Ma is compact.

Proposition 4.6. Let A P KpE, Fq and let pφnqnPN be a sequence in E which converges weakly
to some φ P E (i.e. for any ℓ P E˚ we have ℓpφnq Ñ ℓpφq). Then Aφn converges (in norm)
to Aφ.

Proof. Assume by contradiction that Aφn does not converges to Aφ. There exists ε ą 0
and a subsequence φnk

such that }Aφnk
´ Aφ}F ě ε for all k. The sequence pφkq has a

weak limit so it is bounded (see Proposition 3.5.(iii) in [Brézis]). Since A is compact, after
extracting another subsequence if necessary, we can assume that pAφnk

q has a limit w in F.
Since Aφnk

goes weakly to Aφ (if ℓ P F1 then ℓ ˝ A P E1), this implies that w “ Aφ and gives
a contradiction.

Proposition 4.7. Let H be a separable Hilbert space. Then any compact operator A is the
limit in LpHq of a sequence of operators of finite ranks.

Proof. Let pφnqnPN be a Hilbert basis of H. For n P N we set Fn “ spanpφ0, . . . , φnq and
we denote by Πn the orthogonal projection on Fn. Then we set An “ AΠn. Assume by
contradiction that

ρ “ lim inf }A ´ An}LpHq ą 0.

Then for all n P N large enough (in fact for all n since the sequence p}A ´ An}q is non-
increasing) there exists ψn P FK

n such that }ψn} “ 1 and }Aψn} “ }pA ´ Anqψn} ě ρ
2 . For

ψ P H we have

|xψ, ψny| ď }p1 ´ Πnqψ} ď
˜ 8ÿ

k“n`1
|xφk, ψy|2

¸ 1
2

ÝÝÝÑ
nÑ8 0.

This proves that the sequence pφnq goes weakly to 0. This gives a contradiction with Propo-
sition 4.6 since pAφnq does not go to 0.
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4.1.2 Examples of compact operators and compact embeddings
In this paragraph we give more examples of compact operators.

Let Ω be a bounded open subset of Rd and k P N. We recall that CkpΩq is the set of
restrictions to Ω of functions in CkpRdq. It is endowed with the norm defined by

}u}CkpΩq “
ÿ

|α|ďk

}Bαu}L8pΩq .

Proposition 4.8. Let Ω be a bounded open subset of Rd and k P N. Then Ck`1pΩq is
compactly embedded in CkpΩq.
Proof. Let punqnPN be a bounded sequence in Ck`1pΩq. Let M be such that }un}Ck`1pΩq ď M .

Let α P Nd with |α| ď k. Since }∇Bαun}L8pΩq is uniformly bounded, the sequence pBαunq
is uniformly Lipschitz (in particular equicontinuous) on Ω. By the Ascoli-Arzelà Theorem,
it has a subsequence which converges uniformly to some vα in C0pΩq. Then there exists an
increasing sequence pnkq such that Bαunk

goes to vα when n Ñ 8 for all |α| ď k.
Let α P Nd with |α| ď k and j P J1, dK. Let x P Ω. For t P R small enough we have

vαpx ` tejq ´ vαpxq “ lim
kÑ`8 Bαunk

px ` tejq ´ Bαunk
pxq

“ lim
kÑ`8

ż t

0
Bα`ej unk

px ` sejq ds.

Since the map s ÞÑ Bα`ej unk
px ` sejq converges uniformly to s ÞÑ vα`ej px ` sejq on r0, ts we

get

vαpx ` tejq ´ vαpxq “
ż t

0
vα`ej

px ` sejq ds.

This proves that Bjvα “ vα`ej . Finally for all |α| ď k we have Bαv0 “ vα, so

}unk
´ v0}CkpΩq ÝÝÝÝÑ

kÑ`8 0.

l Ex. 4.2
Example 4.9. Let K P C0pr0, 1s2q. For u P C0pr0, 1sq and x P r0, 1s we set

pAuqpxq “
ż 1

0
Kpx, yqupuq dy.

Let M ą 0 and let punqnPN be a sequence in C0pr0, 1sq such that }un}8 ď M for all n P N.
Let x P r0, 1s and ε ą 0. Since K is uniformly continuous there exists δ ą 0 such that for all
px1, y1q, px2, y2q P r0, 1s2 we have

|x1 ´ x2| ` |y1 ´ y2| ď δ ùñ |Kpx1, y1q ´ Kpx2, y2q| ď ε

M
.

Then for n P N and x1 P r0, 1s such that |x ´ x1| ď δ we have

ˇ̌pAunqpxq ´ pAunqpx1qˇ̌ ď
ż 1

0

ˇ̌
Kpx, yq ´ Kpx1, yqˇ̌ |unpyq| dy ď ε.

This proves that the family pAunqnPN is equicontinuous on r0, 1s. By the Ascoli-Arzelà
Theorem it has a convergent subsequence in C0pr0, 1sq, which proves that A is compact on
C0pr0, 1sq.

It is not the purpose of this course to study Sobolev spaces in details. However the
following result is of great importance for applications.

Theorem 4.10 (Rellich). Let Ω be an open subset of Rd.

(i) H1
0 pΩq is compactly embedded in L2pΩq ;

(ii) if Ω is of class C1 then H1pΩq is compactly embedded in L2pΩq.
l Ex. 4.3
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4.1.3 Fredholm alternative
Let E and F be two Banach spaces. Let H be a Hilbert space.

We recall that if G is a subspace of F then the codimension codimpGq of G (in F) is
the dimension of the quotient F{G. It is the dimension of any subspace G̃ of F such that
F “ G ‘ G̃.

Definition 4.11. A bounded operator A P LpE, Fq is said to be Fredholm if dimpkerpAqq ă
`8, RanpAq is closed in F and codimpRanpAqq ă `8. In this case, we define the index of
A by

indpAq “ dimpkerpAqq ´ codimpRanpAqq P Z.

We denote by FredpE, Fq the set of Fredholm operators from E to F.

Remark 4.12. In fact it is not necessary to assume that RanpAq is closed since it can be
deduced from the other assumptions.
Remark 4.13. If F is a Hilbert space then codimpRanpAqq “ dimpRanpAqKq.
Example 4.14. A bijective bounded operator is Fredholm of index 0.
Example 4.15. If E and F have finite dimensions then any A P LpE, Fq is Fredholm with index
indpAq “ dimpEq ´ dimpFq.
Example 4.16. We consider the shift operators of Example 1.2. Then Sr is Fredholm of index
-1 and Sℓ is Fredholm of index 1.

Proposition 4.17. Let A P LpHq. Assume that kerpAq and kerpA˚q have finite dimensions
and that RanpAq is closed. Then A is a Fredholm operator.

Proof. By Proposition 1.58 we have

codimpRanpAqq “ dimpRanpAqKq “ dimpkerpA˚qq ă `8.

This proves that A is Fredholm.

Proposition 4.18. Let A P LpHq be a compact operator. Then Id ´A P FredpHq and
indpId ´Aq “ 0. In particular, pId ´Aq is invertible if and only if it is injective.

Proof. ‚ Since the restriction of A to kerpId ´Aq is compact and is equal to Id, kerpId ´Aq
has finite dimension.
‚ Since A˚ is also a compact operator, kerppId ´Aq˚q “ kerpId ´A˚q is also of finite dimen-
sion.
‚ We prove that RanpId ´Aq is closed. Let ψn be a sequence in RanpId ´Aq which has a
limit ψ in H. For n P N there exists φn P kerpId ´AqK such that φn ´ Aφn “ ψn.

Assume by contradiction that pφnq is not bounded. After extracting a subsequence if
necessary, we can assume that }φn}H Ñ `8. For n P N large enough we set φ̃n “ φn{ }φn}.
Then φ̃n ´ Aφ̃n Ñ 0. On the other hand the sequence pφ̃nq is bounded so, after extracting
a new subsequence, we can assume that Aφ̃n goes to some ζ in H. Then φ̃n Ñ ζ and

ζ ´ Aζ “ lim
nÑ8 φ̃n ´ Aφ̃n “ 0.

This proves that ζ P kerpId ´Aq. Since φ̃n P kerpId ´AqK for all n, we have ζ “ 0. Thus
φ̃n Ñ 0, which gives a contradiction, so pφnq is bounded.

After extracting a subsequence if necessary, we can assume that Aφn goes to some θ in
H. Then φn Ñ ψ ` θ and

ψ “ lim
nÑ8

`
φn ´ Aφnq “ pψ ` θq ´ Apψ ` θq P RanpId ´Aq.

This proves that RanpId ´Aq is closed.
‚ Now assume that pId ´Aq is injective, and assume by contradiction that H1 “ pId ´AqpHq
is not equal to H. Since H1 is closed, it is a Hilbert space with the structure inherited from
H, and by restriction, A defines a compact operator on H1. We set H2 “ pId ´AqpH1q. Then
H2 is closed, and since pId ´Aq is injective, we have H2 Ł H1 (take φ P HzH1, then pId ´Aqu
belongs to H1zH2). By induction we set Hk “ pId ´AqpHk´1q for all k ě 2. Then Hk is
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closed and Hk`1 Ł Hk for all k P N˚. In particular, for all k P N˚ we can find φk P Hk such
that }φk}H “ 1 and φk P HK

k`1. Then for k P N˚ and j ą k we have

Aφj ´ Aφk “ ´pφj ´ Aφjq ` pφk ´ Aφkq ` φj ´ φk.

Since ´pφj ´ Aφjq ` pφk ´ Aφkq ` φj P Hk`1 this yields

}Aφj ´ Aφk} ě 1.

This gives a contradiction since A is compact. Thus, if pId ´Aq is injective, then it is also
surjective.
‚ It remains to prove that KerpId ´Aq and KerpId ´A˚q have the same dimension. Assume
by contradiction that dimpKerpId ´Aqq ă dimpRanpId ´AqKq. There exists a bounded op-
erator T : KerpId ´Aq Ñ RanpId ´AqK injective but not surjective. We extend T by 0 on
KerpId ´AqK. This defines an operator T on H which has a finite dimensional range included
in RanpId ´AqK. In particular it is compact, and so is Ã “ A ` T . Let φ P KerpId ´Ãq.
We have φ ´ Aφ “ Tφ. Since φ ´ Aφ P RanpId ´Aq and Tφ P RanpId ´AqK, we have
φ ´ Aφ “ Tφ “ 0. Therefore φ “ 0 since T is injective on KerpId ´Aq. Then pId ´Ãq is
injective, and hence surjective. However for ψ P RanpId ´AqKzRanpT q the equation

φ ´ pAφ ` Tφq “ ψ

cannot have a solution. This gives a contradiction and proves that

dimpKerpId ´Aqq ě dimpRanpId ´AqKq “ dimpKerpId ´A˚qq.
We get the opposite inequality by interchanging the roles of A and A˚, and the proof is
complete.

4.2 Spectrum of compact operators
4.2.1 General properties
Theorem 4.19. Let H be a separable Hilbert space of infinite dimension. Let A be a compact
operator on H. Then σpAqzσdiscpAq “ t0u.

Remark 4.20. • 0 always belongs to the spectrum of A. With examples of the form given
in Example 1.3 (see Example 4.5), we see that 0 is not necessarily an eigenvalue, it can
be an eigenvalue of infinite multiplicity or an eigenvalue of finite multiplicity.

• A non-zero element of the spectrum is necessarily an isolated eigenvalue of finite alge-
braic multiplicity. The non-zero spectrum if finite or is given by a sequence going to
0.

Proof. ‚ Assume that 0 belongs to the resolvent set of A. Then IdH is the composition
of the compact operator A with the bounded operator A´1, so IdH is a compact operator,
which gives a contradiction since dimpHq “ `8.
‚ Let λ P Cz t0u. Then we have A´λ “ λpλ´1A´ Idq. Since λ´1A is compact, Proposition
4.18 shows that pA´λq is invertible if and only if it is injective, so λ P σpAq if and only if it is
an eigenvalue. Moreover, in this case we have dimpKerpA´λqq “ dimpKerpλ´1A´Idqq ă `8.
‚ Since A is a bounded operator, the set of eigenvalues of A is bounded in C. Assume that
pλnqnPN is a sequence of distinct non-zero eigenvalues of A converging to some λ P C. We
prove that λ “ 0. For n P N we consider wn P kerpA ´ λnqz t0u. Then for n P N we set
Hn “ spanpw0, . . . , wn´1q and we consider un P Hn such that }un} “ 1 and un P HK

n´1 if
n ě 1. Then for j P N and k ą j we have

››››
Auk

λk
´ Auj

λj

››››
H

“
››››
Auk ´ λkuk

λk
´ Auj ´ λjuj

λj
` uk ´ uj

››››
H

ě 1,

since Auk ´ λkuk, Auj ´ λjuj , uj P Hk´1. If λ ‰ 0 we obtain a contradiction with the
compactness of A.
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‚ Assume that λ P Cz t0u is an eigenvalue of A. Let r Ps0, 1r such that Dpλ, 2rqz tλu Ă ρpAq.
Let

M “ 1 ` sup
|z´λ|“r

››pA ´ zq´1›› .

By Proposition 4.7 there exists a finite rank operator T such that }A ´ T }LpHq ď 1
2M2 . Then

for z P Cpλ, rq we have

T ´ z “ pA ´ zq`
1 ´ pA ´ zq´1pA ´ T q˘

,

so z P ρpT q and

››pA ´ zq´1 ´ pT ´ zq´1››
LpHq ď

8ÿ

j“1

›››
`pA ´ zq´1pA ´ T q˘jpA ´ zq´1

››› ď M
8ÿ

j“1
p2Mq´j

ď M

2M ´ 1 ă 1.

We set

ΠA “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ and ΠT “ ´ 1

2iπ

ż

Cpλ,rq
pT ´ ζq´1 dζ.

Then we have
}ΠApλq ´ ΠT pλq} ă r ă 1.

This implies that

kerpΠT q X RanpΠAq “ kerpΠT q X kerpId ´ΠAq “ t0u ,

so the restriction of ΠT to RanpΠAq defines an injective map from RanpΠAq to RanpΠT q.
On the other hand, by Proposition 2.41 we have RanpΠT q X kerpT q “ t0u, so T defines

by restriction an injective map on RanpΠT q and hence ΠT has finite rank.
This proves that ΠA has finite rank, then λ has finite algebraic multiplicity, so λ P σdiscpAq.

‚ Finally, assume by contradiction that 0 P σdiscpAq. Then the spectrum of A consists of
a finite number of eigenvalues, all of finite multiplicities. If we denote by Π1, . . . , Πk the
corresponding Riesz projections, then we have IdH “ řk

j“1 Πj . This is a contradiction since
the projections Πj all have finite ranks.

4.2.2 Spectral theorem for compact normal operators
Theorem 4.21. Assume that dimpHq “ 8. Let A be a compact and normal operator on
H. Let pλkq1ďkďN,kPN˚ with N P N Y t8u be the sequence (finite or infinite) of non-zero
eigenvalues of A. We set λ0 “ 0. Then we have

H “
Nà

k“0
kerpA ´ λkq

and

A “
Nÿ

k“1
λkΠk,

where Πk is the orthogonal projection on kerpA ´ λkq. If moreover H is separable, then there
exists a Hilbert basis of eigenvectors of A.

Notice that the sum for A is convergent in LpHq if N “ 8. Indeed, we set An “řn
k“1 λkΠk then

}A ´ An} “ rpA ´ Anq “ sup
kąn

|λk| ÝÝÝÑ
nÑ8 0.

In particular the sum does not depend on the order of summation.

Proof. We set F “ ÀN
k“1 kerpA ´ λkq. By Proposition 2.30, we have F “ ÀN

k“1 kerpA˚ ´ λkq.
We have A˚pF q Ă F , so ApF Kq Ă F K. The restriction A0 of A to F K is a compact normal
operator without non-zero eigenvalues, so A0 “ 0. Thus F K Ă kerpAq. Since kerpAq Ă FK
by Proposition 2.30, we have F K “ kerpAq and the conclusion follows.
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4.3 Operators with compact resolvents
Definition 4.22. Let A be an operator on E. We say that A has compact resolvent if
ρpAq ‰ H and for some (hence any) z P ρpAq the resolvent pA ´ zq´1 is a compact operator
on E.

We have to check that the compactness of pA ´ zq´1 does not depend on z P ρpAq.
Proof. Assume that there exists z0 P ρpAq such that pA ´ z0q´1 is compact. Let z P ρpAq.
By the resolvent identity we have

pA ´ zq´1 “ pA ´ z0q´1 ´ pz ´ z0qpA ´ z0q´1pA ´ zq´1.

Both terms of the right-hand side are compact, so pA ´ zq´1 is compact.

Example 4.23. Let Ω be an open bounded subset of Rd of class C2. Then the Dirichlet
Laplacian on Ω (A “ ´∆, DompAq “ H2pΩq X H1

0 pΩq) has compact resolvent. Indeed, it
is a selfadjoint operator so its resolvent set is not empty. Then for z P ρpAq the resolvent
pA ´ zq´1 defines a bounded operator from L2pΩq to H2pΩq. Since H2pΩq is compactly
embedded in L2pΩq, then pA ´ zq´1 is a compact operator on L2pΩq.
Example 4.24. We can prove that the domain of the harmonic oscillator on R (see (2.2)-(2.3))
is given by

DompHq “ ␣
u P H2pRq : x2u P L2(

. (4.1)

Note that it is not clear that this is equal to (2.3). From this we can deduce that DompHq is
compactly embedded in L2pRq (see Exercise 4.4) and hence that H has a compact resolvent.

l Ex. 4.4

If A has compact resolvent, we can deduce good spectral properties from the good spectral
properties of its resolvent.

Proposition 4.25. Let A be a closed operator with non-empty resolvent set. Let z0 P ρpAq.
Let R “ pA ´ z0q´1 P LpEq. Let z P Cz t0u. Then z belongs to σpRq (σppAq, σdiscpRq,
respectively) if and only if z0 ` 1

z belongs to σpAq (σppAq, σdiscpAq, respectively).

Proof. ‚ It is clear that the map z ÞÑ z ´ z0 is a bijection between σpAq and σpA ´ z0q
which preserves the discrete spectrum. Thus we can assume without loss of generality that
z0 “ 0.
‚ We have

A´1 ´ z´1 “ ´z´1pA ´ zqA´1.

Then z´1 P σpA´1q if and only if pA ´ zq : DompAq Ñ E is invertible, hence if and only if
z P σpAq. Moreover, if z P ρpAq then

pA´1 ´ z´1q´1 “ ´zApA ´ zq´1 “ ´z ´ z2pA ´ zq´1.

We also see that z´1 is an eigenvalue of A´1 if and only if z is an eigenvalue of A.
‚ It remains to prove that λ P σdiscpAq if and only if λ´1 P σdiscpA´1q. The map z ÞÑ z´1

maps isolated points of σpAq to isolated points of σpA´1q. Let λ be an isolated point in σpAq.
Let r Ps0, |λ| r be such that Dpλ, 2rq X σpAq “ tλu. We have

Πλ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ

“ 1
2iπ

ż

Cpλ,rq
1
ζ2 pA´1 ´ ζ´1q´1 dζ

“ ´ 1
2iπ

ż

tζ´1,ζPCpλ,rqu
pA´1 ´ zq dz.

For r ą 0 small, Cpλ, rq is close to Cpλ´1, r{ ˇ̌
λ2 ˇ̌q and is also oriented in the direct sense.

Thus (see Remark 2.38) the Riesz projections of λ for the operator A and of λ´1 for A´1

coincide. In particular, λ P σdiscpAq if and only if λ´1 P σdiscpA´1q.
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Theorem 4.26. Let A be an operator on H with compact resolvent. Then A has purely
discrete spectrum: σpAq “ σdiscpAq.
Proof. Let z0 P ρpAq. Since pA ´ z0q´1 is compact, we have σppA ´ z0q´1qz t0u “ σdiscppA ´
z0q´1q by Theorem 4.19. Since 0 P ρpA ´ z0q, we see with Proposition 4.25 that σpA ´ z0q “
σdiscpA ´ z0q, and the conclusion follows.

Remark 4.27. An operator with compact resolvent can have empty spectrum (consider for
instance the operator of Exercise 2.7).

Theorem 4.28. Let A be a selfadjoint operator with compact resolvent on H. Assume that A
is bounded from below. Then the spectrum of A consists of a sequence pλkqkPN˚ of eigenvalues
with finite multiplicities and such that λk Ñ `8, and there is a Hilbert basis of H made with
eigenvectors of A.

4.4 Relatively compact perturbations - Weyl’s Theorem
Definition 4.29. Let A be a closed operator on E with non-empty resolvent set. Let T be
an operator on E. We say that T is A-compact (or relatively compact with respect to A) if
DompAq Ă DompT q and one of the following equivalent assertions is satisfied.

(i) There exists z0 P ρpAq such that T pA ´ z0q´1 is compact.

(ii) For all z P ρpAq, the operator T pA ´ zq´1 is compact.

(iii) For any sequence pφnq bounded in DompAq (i.e. pφnq and pAφnq are bounded in E) then
pTφnq has a convergent subsequence.

Proof. ‚ We prove that (iii) implies (ii). Let z P ρpAq. Let pψnq be a bounded sequence in
E. Then ppA ´ zq´1ψnq is bounded in DompAq, and hence pT pA ´ z0q´1ψnq has a convergent
subsequence in E. This proves that T pA ´ z0q´1 is compact.
‚ Conversely, assume that T pA ´ z0q´1 is compact for some z0 P ρpAq and consider pψnq
bounded in DompAq. Then pA ´ z0qψn is bounded in E. Then pTψnq “ pT pA ´ z0q´1pA ´
z0qψnq has a convergent subsequence in E. This proves (iii).

Proposition 4.30. Let A be a closed operator on E with non-empty resolvent set. Let T be
a closed and A-compact operator on E. Then T is relatively bounded with A-bound 0.

Proof. Assume by contradiction that there exists ε ą 0 and a sequence pφnq in DompAq Ă
DompT q such that

@n P N, }Tφn} ą ε }Aφn} ` n }φn} .

After extracting a subsequence if necessary, we can assume that }Aφn} ą }φn} for all n, or
that }Aφn} ď }φn} for all n. In the first case we set ψn “ φn{ }Aφn}, so that

}Tψn} ą ε ` n }ψn} , }ψn} ď 1.

After extracting a subsequence, Tψn has a limit. In particular p}Tφn}q is bounded, so
ψn Ñ 0. Since T is closed, we have Tψn Ñ 0, which gives a contradiction. In the second
case we similarly get a contradiction by setting ψn “ φn{ }φn}.

Lemma 4.31. Let A0 and A1 be two operators such that ρpA0q X ρpA1q ‰ H. Let T “
A1 ´ A0. Then T is A0-compact if and only if it is A1-compact.

Proof. Let z0 P ρpA0q X ρpA1q. Assume that T is A0-compact. We have

pA1 ´ z0q´1 “ pA0 ´ z0q´1 ´ pA1 ´ z0q´1T pA0 ´ z0q´1

so
pA1 ´ z0q´1`

1 ` T pA0 ´ z0q´1˘ “ pA0 ´ z0q´1.

Let φ P E such that φ ` T pA0 ´ z0q´1φ “ 0. Then ψ “ pA0 ´ z0q´1φ satisfies

pA1 ´ z0qψ “ pA0 ´ z0qψ ` Tψ “ 0.
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This implies that ψ “ 0 and then φ “ 0, so 1 ` T pA0 ´ z0q´1 is injective. Since T pA0 ´ z0q´1

is compact, we deduce by the Fredholm alternative that 1 ` T pA0 ´ z0q´1 is invertible. Then

T pA1 ´ z0q´1 “ T pA0 ´ z0q´1`
1 ` T pA0 ´ z0q´1˘´1

is the composition of a compact and a bounded opertor, so it is compact. This proves that
T is A1-compact. We prove the converse by changing the roles of A0 and A1.

Theorem 4.32 (Weyl’s Theorem for selfadjoint operators). Let A0 and A1 be two selfadjoint
operators. Assume that T “ A1 ´ A0 is A0-compact. Then

σesspA1q “ σesspA0q.

Proof. Let λ P σesspA0q. Let pφnqnPN be a sequence in DompA0q such that }φn} “ 1 for all
n P N, φn goes weakly to 0 and }pA0 ´ λqφn} Ñ 0 as n Ñ 8 (see Proposition 3.54). Then

pA0 ´ iqφn “ pA0 ´ λqφn ` pλ ´ iqφn á 0.

We have
pA1 ´ λqφn “ pA0 ´ λqφn ` T pA0 ´ iq´1pA0 ´ iqφn.

Since pA0 ´ iqφn goes weakly to 0 and T pA0 ´ iq´1 is compact, the second term in the right-
hand side goes strongly to 0 by Proposition 4.6. Then pA1 ´ λqφn goes to 0 and λ P σesspA1q
by Proposition 3.54. This proves that σesspA0q Ă σesspA1q. Since T is also A1-compact by
Proposition 4.31, we can prove the reverse inclusion by changing the roles of A0 and A1.

Example 4.33. Let V P L8pRd,Rq such that V pxq Ñ 0 as |x| Ñ 0. We set H0 “ ´∆ and
H1 “ ´∆ ` V , with DompH0q “ DompH1q “ H2pRdq. Then we have

σesspH1q “ σesspH0q “ r0, `8r.

For this we prove that the multiplication by V is H0-compact.

4.5 Additional topic: the case of non-selfadjoint opera-
tors

For non-selfadjoint operator, it is not necessarily true that if A1 ´ A0 is A0-compact then
σpA1qzσdiscpA1q “ σpA0qzσdiscpA0q. A counterexample is given by the following example.
Example 4.34. We consider on ℓ2pZq the operators A and T defined by

Ap. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, u0, u1, u2, u3, . . . q

and
T p. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, 0, u1, u2, u3, . . . q,

so that
pA ´ T qp. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , 0, u0, 0, 0, 0, . . . q.

Then A ´ T is compact (it is of rank 1) but the spectrum of A is the unit circle Cp0, 1q (see
Exercise 2.9) while the spectrum of T is the full disk Dp0, 1q (see Exercise 2.12).

In Example 4.34, we see that σpA1qzσdiscpA1q is the union of σpA0qzσdiscpA0q and one of
the connected component of its complementary set. In general, we have the following result.

Theorem 4.35. Let A0 and A1 be closed operators such that pA1 ´ A0q is A0-compact. Let
U be a connected component of pρpA0q Y σdiscpA0qq. Then U X pρpA1q Y σdiscpA1qq is equal to
H or U . In particular, if U X ρpA1q ‰ H then A1 has only discrete spectrum in U .
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4.6 Exercises
Exercise 4.1. Let pαnq be a sequence in R˚̀ such that αn Ñ `8 as n Ñ `8. We set

V “
#

punqnPN :
ÿ

nPN
αn |un|2 ă `8

+
Ă ℓ2pNq.

V is a Hilbert space for the inner product defined by

xu, vyV “
ÿ

nPN
αnunvn, u “ punq, v “ pvnq.

Prove that V is compactly embedded in ℓ2pNq.
Exercise 4.2. Let Ω be a bounded open subset of Rd. Let k P N and θ Ps0, 1r. We recall that
Ck,θpΩq is the set of functions u P CkpΩq whose derivatives of order k are Hölder-continuous
of exponent θ. It is endowed with the norm defined by

}u}Ck,θpΩq “
ÿ

αďk

}Bαu}L8pΩq `
ÿ

|α|“k

sup
x,yPΩ
x‰y

|Bαupxq ´ Bαupyq|
|x ´ y|θ .

Prove that Ck,θpΩq is compactly embedded in Ck
b pΩq.

Exercise 4.3. Let V P L8pRq. We assume that V pxq ÝÝÝÝÝÑ
|x|Ñ`8

0. Prove that the map

"
H1pRq Ñ L2pRq

u ÞÑ V u

is compact.

Exercise 4.4. 1. Give an exemple of sequence punq bounded in H2pRq which has no limit
in L2pRq.
2. We consider a sequence punq in H2pRq such that x2un belongs to L2pRq for all n P N. We
assume that there exists M ě 0 such that

@n P N, }un}H2pRq ` ››x2un

››
L2pRq ď M.

3. Prove that we can construct for all m P N˚ an extraction pnkpmqq and vm P L2pr´m, msq
such that

•
››unkpmq ´ vm

››
L2pr´m,msq Ñ 0,

• vm and vν coincide on r´m, ms whenever ν ě m.

4. Prove that there exists a subsequence punj
q and v P L2

locpRq such that
››unj

´ v
››

L2pr´R,Rsq Ñ
0 for all R ą 0.
5. Prove that unj

goes to v in L2pRq.
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