Chapter 4

Compact operators, compact resolvents

4.1 Compact operators

4.1.1 Definition and properties

Let E and F be two Banach spaces.

Definition 4.1. Let A be a linear map from E to F. We say that A is compact if one of the following equivalent assertions is satisfied.

- (i) For any bounded sequence (φ_n)_{n∈ℕ} in E, the sequence (Aφ_n)_{n∈ℕ} has a convergent subsequence in F.
- (ii) $A(B_{\mathsf{E}})$ is compact in F (we have denoted by B_{E} the unit ball in E).
- (iii) A(B) is compact in F for any bounded subset B of E.

We denote by $\mathcal{K}(\mathsf{E},\mathsf{F})$ the set of compact operators from E to F . We also write $\mathcal{K}(\mathsf{E})$ for $\mathcal{K}(\mathsf{E},\mathsf{E})$.

For the proof of the equivalences we recall that a subset Ω of a metric space is compact if and only if any sequence in Ω has a convergent subsequence in Ω .

Example 4.2. Finite rank operators are compact.

Example 4.3. The identity operator on E is compact if and only if E has finite dimension.

Proposition 4.4. Let E and F be two Banach spaces.

- (i) A compact operator is a bounded operator $(\mathcal{K}(\mathsf{E},\mathsf{F}) \subset \mathcal{L}(\mathsf{E},\mathsf{F}))$
- (ii) $\mathcal{K}(\mathsf{E},\mathsf{F})$ is a closed subspace of $\mathcal{L}(\mathsf{E},\mathsf{F})$.
- (iii) For $A \in \mathcal{K}(\mathsf{E},\mathsf{F})$, $B_1 \in \mathcal{B}(\mathsf{E}_1,\mathsf{E})$ and $B_2 \in \mathcal{B}(\mathsf{F},\mathsf{F}_2)$ we have $A \circ B_1 \in \mathcal{K}(\mathsf{E}_1,\mathsf{F})$ and $B_2 \circ A \in \mathcal{K}(\mathsf{E},\mathsf{F}_2)$.
- (iv) For $A \in \mathcal{K}(\mathsf{E},\mathsf{F})$ we have $A^* \in \mathcal{K}(\mathsf{F}^*,\mathsf{E}^*)$.

Proof. • Let $A \in \mathcal{K}(\mathsf{E},\mathsf{F})$ and assume by contradiction that A is not bounded. Then there exists a sequence (φ_n) in E such that $\|\varphi_n\|_{\mathsf{E}} = 1$ for all n and $\|A\varphi_n\|_{\mathsf{F}} \to \infty$ as $n \to \infty$. Then $(A\varphi_n)$ cannot have a convergent subsequence in F , which gives a contradiction.

• The fact that $\mathcal{K}(\mathsf{E},\mathsf{F})$ is a subspace of $\mathcal{L}(\mathsf{E},\mathsf{F})$ is clear. Let (A_n) be a sequence in $\mathcal{K}(\mathsf{E},\mathsf{F})$ which converges to some A in $\mathcal{L}(\mathsf{E},\mathsf{F})$. Let (φ_n) be a bounded sequence in E . Let M > 0 such that $\|\varphi_n\| \leq M$ for all $n \in \mathbb{N}$. There exists a subsequence $(\varphi_{n(1,k)})_{k\in\mathbb{N}}$ such that $(A_1\varphi_{n(1,k)})$ is convergent in F . From this subsequence we can extract a subsequence $(\varphi_{n(2,k)})$ such that $(A_2\varphi_{n(2,k)})$ is convergent (and $(A_1\varphi_{n(2,k)})$ is also convergent). By induction on m, we construct a subsequence $(\varphi_{n(m,k)})$ of $(\varphi_{n(m-1,k)})$ such that $(A_m\varphi_{n(m,k)})_{k\in\mathbb{N}}$ is convergent.

Then by the Cantor diagonal argument, if we set $n_k = n(k, k)$ for all $k \in \mathbb{N}$, then the sequence $(A_j \varphi_{n_k})_{k \in \mathbb{N}}$ is convergent for all $j \in \mathbb{N}$.

Let $\varepsilon > 0$. Let $j \in \mathbb{N}$ such that $||A_j - A||_{\mathcal{L}(\mathsf{E},\mathsf{F})} \leq \frac{\varepsilon}{3M}$. Let $N \in \mathbb{N}$ such that $||A_j(\varphi_{n_{k_1}} - \varphi_{n_{k_2}})||_{\mathsf{F}} \leq \frac{\varepsilon}{3}$ for all $k_1, k_2 \geq N$. Then for $k_1, k_2 \geq N$ we have

$$\|A\varphi_{n_{k_{1}}} - A\varphi_{n_{k_{2}}}\|_{\mathsf{F}} \leq \|(A - A_{j})\varphi_{n_{k_{1}}}\|_{\mathsf{F}} + \|A_{j}(\varphi_{n_{k_{1}}} - \varphi_{n_{k_{2}}})\|_{\mathsf{F}} + \|(A_{j} - A)\varphi_{n_{k_{2}}}\|_{\mathsf{F}} \leq \varepsilon.$$

This proves that $(A\varphi_{n(k)})$ is a Cauchy sequence, and hence convergent in F.

• The third statement is left as an exercice.

• Let $(\varphi_n)_{n\in\mathbb{N}}$ be a bounded sequence in F^* . Since A is compact, $\overline{A(B_{\mathsf{E}})}$ is a compact metric space, and the functions $\varphi_n, n \in \mathbb{N}$, are equicontinuous thereon. Then, by the Ascoli-Arzelà Theorem, there exists a subsequence $(\varphi_{n_k})_{k\in\mathbb{N}}$ convergent in $C^0(\overline{A(B_{\mathsf{E}})})$. We denote by $\varphi \in C^0(\overline{A(B_{\mathsf{E}})})$ the limit. In particular we have

$$\sup_{\|x\|_{\mathsf{E}} \le 1} |\varphi_{n_k}(A(x)) - \varphi(A(x))| \xrightarrow[k \to +\infty]{} 0.$$

We deduce that $(\varphi_{n_k} \circ A) = (A^*(\varphi_{n_k}))$ is a Cauchy sequence in E^* . Since E^* is a Banach space, it has a limit in E^* . This proves that $A^* \in \mathcal{K}(\mathsf{F}^*, \mathsf{E}^*)$.

Example 4.5. Let $a = (a_n)_{n \in \mathbb{N}}$ be a sequence which converges to 0. We consider on $\ell^2(\mathbb{N})$ the multiplication operator M_a by a (see Example 1.3). Then M_a is compact on $\ell^2(\mathbb{N})$. Indeed, for $N \in \mathbb{N}$ we denote by a_N the sequence defined by

$$\alpha_N = \begin{cases} a_n & \text{if } n \leq N, \\ 0 & \text{if } n > N. \end{cases}$$

Then the multiplication M_{α_N} by α_N is of finite rank, hence compact, for all $N \in \mathbb{N}$. Moreover

$$\|M_a - M_{\alpha_N}\|_{\mathcal{L}(\ell^2(\mathbb{N}))} \leq \sup_{n > N} |a_n| \xrightarrow[N \to \infty]{} 0.$$

Since $\mathcal{K}(\ell^2(\mathbb{N}))$ is closed, this proves that M_a is compact.

Proposition 4.6. Let $A \in \mathcal{K}(\mathsf{E},\mathsf{F})$ and let $(\varphi_n)_{n\in\mathbb{N}}$ be a sequence in E which converges weakly to some $\varphi \in \mathsf{E}$ (i.e. for any $\ell \in \mathsf{E}^*$ we have $\ell(\varphi_n) \to \ell(\varphi)$). Then $A\varphi_n$ converges (in norm) to $A\varphi$.

Proof. Assume by contradiction that $A\varphi_n$ does not converges to $A\varphi$. There exists $\varepsilon > 0$ and a subsequence φ_{n_k} such that $||A\varphi_{n_k} - A\varphi||_{\mathsf{F}} \ge \varepsilon$ for all k. The sequence (φ_k) has a weak limit so it is bounded (see Proposition 3.5.(iii) in [Brézis]). Since A is compact, after extracting another subsequence if necessary, we can assume that $(A\varphi_{n_k})$ has a limit w in F . Since $A\varphi_{n_k}$ goes weakly to $A\varphi$ (if $\ell \in \mathsf{F}'$ then $\ell \circ A \in \mathsf{E}'$), this implies that $w = A\varphi$ and gives a contradiction.

Proposition 4.7. Let \mathcal{H} be a separable Hilbert space. Then any compact operator A is the limit in $\mathcal{L}(\mathcal{H})$ of a sequence of operators of finite ranks.

Proof. Let $(\varphi_n)_{n \in \mathbb{N}}$ be a Hilbert basis of \mathcal{H} . For $n \in \mathbb{N}$ we set $\mathsf{F}_n = \mathsf{span}(\varphi_0, \ldots, \varphi_n)$ and we denote by Π_n the orthogonal projection on F_n . Then we set $A_n = A\Pi_n$. Assume by contradiction that

$$\rho = \liminf \|A - A_n\|_{\mathcal{L}(\mathcal{H})} > 0.$$

Then for all $n \in \mathbb{N}$ large enough (in fact for all n since the sequence $(||A - A_n||)$ is nonincreasing) there exists $\psi_n \in \mathsf{F}_n^{\perp}$ such that $||\psi_n|| = 1$ and $||A\psi_n|| = ||(A - A_n)\psi_n|| \ge \frac{\rho}{2}$. For $\psi \in \mathcal{H}$ we have

$$\left|\langle\psi,\psi_{n}\rangle\right| \leq \left\|(1-\Pi_{n})\psi\right\| \leq \left(\sum_{k=n+1}^{\infty}\left|\langle\varphi_{k},\psi\rangle\right|^{2}\right)^{\frac{1}{2}} \xrightarrow[n \to \infty]{} 0$$

This proves that the sequence (φ_n) goes weakly to 0. This gives a contradiction with Proposition 4.6 since $(A\varphi_n)$ does not go to 0.

4.1.2 Examples of compact operators and compact embeddings

In this paragraph we give more examples of compact operators.

Let Ω be a bounded open subset of \mathbb{R}^d and $k \in \mathbb{N}$. We recall that $C^k(\overline{\Omega})$ is the set of restrictions to Ω of functions in $C^k(\mathbb{R}^d)$. It is endowed with the norm defined by

$$\|u\|_{C^k(\overline{\Omega})} = \sum_{|\alpha| \le k} \|\partial^{\alpha} u\|_{L^{\infty}(\Omega)}.$$

Proposition 4.8. Let Ω be a bounded open subset of \mathbb{R}^d and $k \in \mathbb{N}$. Then $C^{k+1}(\overline{\Omega})$ is compactly embedded in $C^k(\overline{\Omega})$.

Proof. Let $(u_n)_{n\in\mathbb{N}}$ be a bounded sequence in $C^{k+1}(\overline{\Omega})$. Let M be such that $||u_n||_{C^{k+1}(\overline{\Omega})} \leq M$.

Let $\alpha \in \mathbb{N}^d$ with $|\alpha| \leq k$. Since $\|\nabla \partial^{\alpha} u_n\|_{L^{\infty}(\Omega)}$ is uniformly bounded, the sequence $(\partial^{\alpha} u_n)$ is uniformly Lipschitz (in particular equicontinuous) on Ω . By the Ascoli-Arzelà Theorem, it has a subsequence which converges uniformly to some v_{α} in $C^0(\overline{\Omega})$. Then there exists an increasing sequence (n_k) such that $\partial^{\alpha} u_{n_k}$ goes to v_{α} when $n \to \infty$ for all $|\alpha| \leq k$.

Let $\alpha \in \mathbb{N}^d$ with $|\alpha| \leq k$ and $j \in [1, d]$. Let $x \in \Omega$. For $t \in \mathbb{R}$ small enough we have

$$v_{\alpha}(x+te_{j}) - v_{\alpha}(x) = \lim_{k \to +\infty} \partial^{\alpha} u_{n_{k}}(x+te_{j}) - \partial^{\alpha} u_{n_{k}}(x)$$
$$= \lim_{k \to +\infty} \int_{0}^{t} \partial^{\alpha+e_{j}} u_{n_{k}}(x+se_{j}) \, \mathrm{d}s.$$

Since the map $s \mapsto \partial^{\alpha+e_j} u_{n_k}(x+se_j)$ converges uniformly to $s \mapsto v_{\alpha+e_j}(x+se_j)$ on [0,t] we get

$$v_{\alpha}(x+te_j) - v_{\alpha}(x) = \int_0^t v_{\alpha+e_j}(x+se_j) \,\mathrm{d}s.$$

This proves that $\partial_j v_\alpha = v_{\alpha+e_j}$. Finally for all $|\alpha| \leq k$ we have $\partial^\alpha v_0 = v_\alpha$, so

$$\|u_{n_k} - v_0\|_{C^k(\overline{\Omega})} \xrightarrow[k \to +\infty]{} 0.$$

Example 4.9. Let $K \in C^{0}([0,1]^{2})$. For $u \in C^{0}([0,1])$ and $x \in [0,1]$ we set

$$(Au)(x) = \int_0^1 K(x, y)u(u) \,\mathrm{d}y.$$

Let M > 0 and let $(u_n)_{n \in \mathbb{N}}$ be a sequence in $C^0([0,1])$ such that $||u_n||_{\infty} \leq M$ for all $n \in \mathbb{N}$. Let $x \in [0,1]$ and $\varepsilon > 0$. Since K is uniformly continuous there exists $\delta > 0$ such that for all $(x_1, y_1), (x_2, y_2) \in [0,1]^2$ we have

$$|x_1 - x_2| + |y_1 - y_2| \leq \delta \quad \Longrightarrow \quad |K(x_1, y_1) - K(x_2, y_2)| \leq \frac{\varepsilon}{M}.$$

Then for $n \in \mathbb{N}$ and $x' \in [0, 1]$ such that $|x - x'| \leq \delta$ we have

$$\left| (Au_n)(x) - (Au_n)(x') \right| \leq \int_0^1 \left| K(x,y) - K(x',y) \right| \left| u_n(y) \right| \, \mathrm{d}y \leq \varepsilon.$$

This proves that the family $(Au_n)_{n\in\mathbb{N}}$ is equicontinuous on [0, 1]. By the Ascoli-Arzelà Theorem it has a convergent subsequence in $C^0([0, 1])$, which proves that A is compact on $C^0([0, 1])$.

It is not the purpose of this course to study Sobolev spaces in details. However the following result is of great importance for applications.

Theorem 4.10 (Rellich). Let Ω be an open subset of \mathbb{R}^d .

- (i) $H_0^1(\Omega)$ is compactly embedded in $L^2(\Omega)$;
- (ii) if Ω is of class C^1 then $H^1(\Omega)$ is compactly embedded in $L^2(\Omega)$.

4.1.3 Fredholm alternative

Let E and F be two Banach spaces. Let \mathcal{H} be a Hilbert space.

We recall that if G is a subspace of F then the codimension $\operatorname{codim}(G)$ of G (in F) is the dimension of the quotient F/G. It is the dimension of any subspace \tilde{G} of F such that $F = G \oplus \tilde{G}$.

Definition 4.11. A bounded operator $A \in \mathcal{L}(\mathsf{E},\mathsf{F})$ is said to be Fredholm if dim $(\ker(A)) < +\infty$, Ran(A) is closed in F and codim $(\operatorname{Ran}(A)) < +\infty$. In this case, we define the index of A by

$$\operatorname{ind}(A) = \operatorname{dim}(\ker(A)) - \operatorname{codim}(\operatorname{Ran}(A)) \in \mathbb{Z}.$$

We denote by Fred(E, F) the set of Fredholm operators from E to F.

Remark 4.12. In fact it is not necessary to assume that Ran(A) is closed since it can be deduced from the other assumptions.

Remark 4.13. If F is a Hilbert space then $\operatorname{codim}(\operatorname{Ran}(A)) = \dim(\operatorname{Ran}(A)^{\perp})$.

Example 4.14. A bijective bounded operator is Fredholm of index 0.

Example 4.15. If E and F have finite dimensions then any $A \in \mathcal{L}(\mathsf{E},\mathsf{F})$ is Fredholm with index $\operatorname{ind}(A) = \dim(\mathsf{E}) - \dim(\mathsf{F})$.

Example 4.16. We consider the shift operators of Example 1.2. Then S_r is Fredholm of index -1 and S_ℓ is Fredholm of index 1.

Proposition 4.17. Let $A \in \mathcal{L}(\mathcal{H})$. Assume that ker(A) and ker(A^{*}) have finite dimensions and that Ran(A) is closed. Then A is a Fredholm operator.

Proof. By Proposition 1.58 we have

$$\operatorname{codim}(\operatorname{Ran}(A)) = \operatorname{dim}(\operatorname{Ran}(A)^{\perp}) = \operatorname{dim}(\ker(A^*)) < +\infty.$$

This proves that A is Fredholm.

Proposition 4.18. Let $A \in \mathcal{L}(\mathcal{H})$ be a compact operator. Then $\mathrm{Id} - A \in \mathrm{Fred}(\mathcal{H})$ and $\mathrm{ind}(\mathrm{Id} - A) = 0$. In particular, $(\mathrm{Id} - A)$ is invertible if and only if it is injective.

Proof. • Since the restriction of A to $\ker(\operatorname{Id} - A)$ is compact and is equal to Id, $\ker(\operatorname{Id} - A)$ has finite dimension.

• Since A^* is also a compact operator, $ker((Id - A)^*) = ker(Id - A^*)$ is also of finite dimension.

• We prove that $\operatorname{Ran}(\operatorname{Id} - A)$ is closed. Let ψ_n be a sequence in $\operatorname{Ran}(\operatorname{Id} - A)$ which has a limit ψ in \mathcal{H} . For $n \in \mathbb{N}$ there exists $\varphi_n \in \ker(\operatorname{Id} - A)^{\perp}$ such that $\varphi_n - A\varphi_n = \psi_n$.

Assume by contradiction that (φ_n) is not bounded. After extracting a subsequence if necessary, we can assume that $\|\varphi_n\|_{\mathcal{H}} \to +\infty$. For $n \in \mathbb{N}$ large enough we set $\tilde{\varphi}_n = \varphi_n / \|\varphi_n\|$. Then $\tilde{\varphi}_n - A\tilde{\varphi}_n \to 0$. On the other hand the sequence $(\tilde{\varphi}_n)$ is bounded so, after extracting a new subsequence, we can assume that $A\tilde{\varphi}_n$ goes to some ζ in \mathcal{H} . Then $\tilde{\varphi}_n \to \zeta$ and

$$\zeta - A\zeta = \lim_{n \to \infty} \tilde{\varphi}_n - A\tilde{\varphi}_n = 0.$$

This proves that $\zeta \in \ker(\operatorname{Id} - A)$. Since $\tilde{\varphi}_n \in \ker(\operatorname{Id} - A)^{\perp}$ for all n, we have $\zeta = 0$. Thus $\tilde{\varphi}_n \to 0$, which gives a contradiction, so (φ_n) is bounded.

After extracting a subsequence if necessary, we can assume that $A\varphi_n$ goes to some θ in \mathcal{H} . Then $\varphi_n \to \psi + \theta$ and

$$\psi = \lim_{n \to \infty} \left(\varphi_n - A \varphi_n \right) = (\psi + \theta) - A(\psi + \theta) \in \mathsf{Ran}(\mathrm{Id} - A).$$

This proves that $\operatorname{Ran}(\operatorname{Id} - A)$ is closed.

• Now assume that $(\operatorname{Id} - A)$ is injective, and assume by contradiction that $\mathcal{H}_1 = (\operatorname{Id} - A)(\mathcal{H})$ is not equal to \mathcal{H} . Since \mathcal{H}_1 is closed, it is a Hilbert space with the structure inherited from \mathcal{H} , and by restriction, A defines a compact operator on \mathcal{H}_1 . We set $\mathcal{H}_2 = (\operatorname{Id} - A)(\mathcal{H}_1)$. Then \mathcal{H}_2 is closed, and since $(\operatorname{Id} - A)$ is injective, we have $\mathcal{H}_2 \subsetneq \mathcal{H}_1$ (take $\varphi \in \mathcal{H} \setminus \mathcal{H}_1$, then $(\operatorname{Id} - A)u$ belongs to $\mathcal{H}_1 \setminus \mathcal{H}_2$). By induction we set $\mathcal{H}_k = (\operatorname{Id} - A)(\mathcal{H}_{k-1})$ for all $k \ge 2$. Then \mathcal{H}_k is

closed and $\mathcal{H}_{k+1} \subsetneq \mathcal{H}_k$ for all $k \in \mathbb{N}^*$. In particular, for all $k \in \mathbb{N}^*$ we can find $\varphi_k \in \mathcal{H}_k$ such that $\|\varphi_k\|_{\mathcal{H}} = 1$ and $\varphi_k \in \mathcal{H}_{k+1}^{\perp}$. Then for $k \in \mathbb{N}^*$ and j > k we have

$$A\varphi_j - A\varphi_k = -(\varphi_j - A\varphi_j) + (\varphi_k - A\varphi_k) + \varphi_j - \varphi_k.$$

Since $-(\varphi_j - A\varphi_j) + (\varphi_k - A\varphi_k) + \varphi_j \in \mathcal{H}_{k+1}$ this yields

$$\|A\varphi_j - A\varphi_k\| \ge 1.$$

This gives a contradiction since A is compact. Thus, if (Id - A) is injective, then it is also surjective.

• It remains to prove that $\operatorname{Ker}(\operatorname{Id} - A)$ and $\operatorname{Ker}(\operatorname{Id} - A^*)$ have the same dimension. Assume by contradiction that $\dim(\operatorname{Ker}(\operatorname{Id} - A)) < \dim(\operatorname{Ran}(\operatorname{Id} - A)^{\perp})$. There exists a bounded operator $T : \operatorname{Ker}(\operatorname{Id} - A) \to \operatorname{Ran}(\operatorname{Id} - A)^{\perp}$ injective but not surjective. We extend T by 0 on $\operatorname{Ker}(\operatorname{Id} - A)^{\perp}$. This defines an operator T on \mathcal{H} which has a finite dimensional range included in $\operatorname{Ran}(\operatorname{Id} - A)^{\perp}$. In particular it is compact, and so is $\tilde{A} = A + T$. Let $\varphi \in \operatorname{Ker}(\operatorname{Id} - \tilde{A})$. We have $\varphi - A\varphi = T\varphi$. Since $\varphi - A\varphi \in \operatorname{Ran}(\operatorname{Id} - A)$ and $T\varphi \in \operatorname{Ran}(\operatorname{Id} - A)^{\perp}$, we have $\varphi - A\varphi = T\varphi = 0$. Therefore $\varphi = 0$ since T is injective on $\operatorname{Ker}(\operatorname{Id} - A)$. Then $(\operatorname{Id} - \tilde{A})$ is injective, and hence surjective. However for $\psi \in \operatorname{Ran}(\operatorname{Id} - A)^{\perp} \setminus \operatorname{Ran}(T)$ the equation

$$\varphi - (A\varphi + T\varphi) = \psi$$

cannot have a solution. This gives a contradiction and proves that

$$\dim(\operatorname{Ker}(\operatorname{Id} - A)) \ge \dim(\operatorname{Ran}(\operatorname{Id} - A)^{\perp}) = \dim(\operatorname{Ker}(\operatorname{Id} - A^*)).$$

We get the opposite inequality by interchanging the roles of A and A^* , and the proof is complete.

4.2 Spectrum of compact operators

4.2.1 General properties

Theorem 4.19. Let \mathcal{H} be a separable Hilbert space of infinite dimension. Let A be a compact operator on \mathcal{H} . Then $\sigma(A)\setminus\sigma_{\mathsf{disc}}(A) = \{0\}$.

- Remark 4.20. 0 always belongs to the spectrum of A. With examples of the form given in Example 1.3 (see Example 4.5), we see that 0 is not necessarily an eigenvalue, it can be an eigenvalue of infinite multiplicity or an eigenvalue of finite multiplicity.
 - A non-zero element of the spectrum is necessarily an isolated eigenvalue of finite algebraic multiplicity. The non-zero spectrum if finite or is given by a sequence going to 0.

Proof. • Assume that 0 belongs to the resolvent set of A. Then $\mathrm{Id}_{\mathcal{H}}$ is the composition of the compact operator A with the bounded operator A^{-1} , so $\mathrm{Id}_{\mathcal{H}}$ is a compact operator, which gives a contradiction since $\dim(\mathcal{H}) = +\infty$.

Let λ ∈ C\{0}. Then we have A − λ = λ(λ⁻¹A − Id). Since λ⁻¹A is compact, Proposition 4.18 shows that (A − λ) is invertible if and only if it is injective, so λ ∈ σ(A) if and only if it is an eigenvalue. Moreover, in this case we have dim(Ker(A−λ)) = dim(Ker(λ⁻¹A−Id)) < +∞.
Since A is a bounded operator, the set of eigenvalues of A is bounded in C. Assume that (λ_n)_{n∈N} is a sequence of distinct non-zero eigenvalues of A converging to some λ ∈ C. We prove that λ = 0. For n ∈ N we consider w_n ∈ ker(A − λ_n)\{0}. Then for n ∈ N we set H_n = span(w₀,..., w_{n-1}) and we consider u_n ∈ H_n such that ||u_n|| = 1 and u_n ∈ H[⊥]_{n-1} if n ≥ 1. Then for j ∈ N and k > j we have

$$\left\|\frac{Au_k}{\lambda_k} - \frac{Au_j}{\lambda_j}\right\|_{\mathcal{H}} = \left\|\frac{Au_k - \lambda_k u_k}{\lambda_k} - \frac{Au_j - \lambda_j u_j}{\lambda_j} + u_k - u_j\right\|_{\mathcal{H}} \ge 1,$$

since $Au_k - \lambda_k u_k, Au_j - \lambda_j u_j, u_j \in \mathcal{H}_{k-1}$. If $\lambda \neq 0$ we obtain a contradiction with the compactness of A.

• Assume that $\lambda \in \mathbb{C} \setminus \{0\}$ is an eigenvalue of A. Let $r \in]0, 1[$ such that $D(\lambda, 2r) \setminus \{\lambda\} \subset \rho(A)$. Let

$$M = 1 + \sup_{|z-\lambda|=r} \left\| (A-z)^{-1} \right\|.$$

By Proposition 4.7 there exists a finite rank operator T such that $||A - T||_{\mathcal{L}(\mathcal{H})} \leq \frac{1}{2M^2}$. Then for $z \in \mathcal{C}(\lambda, r)$ we have

$$T - z = (A - z) \left(1 - (A - z)^{-1} (A - T) \right),$$

so $z \in \rho(T)$ and

$$\begin{split} \|(A-z)^{-1} - (T-z)^{-1}\|_{\mathcal{L}(\mathcal{H})} &\leq \sum_{j=1}^{\infty} \left\| \left((A-z)^{-1} (A-T) \right)^j (A-z)^{-1} \right\| \leq M \sum_{j=1}^{\infty} (2M)^{-j} \\ &\leq \frac{M}{2M-1} < 1. \end{split}$$

We set

$$\Pi_A = -\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} (A-\zeta)^{-1} \,\mathrm{d}\zeta \quad \text{and} \quad \Pi_T = -\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} (T-\zeta)^{-1} \,\mathrm{d}\zeta.$$

Then we have

$$\|\Pi_A(\lambda) - \Pi_T(\lambda)\| < r < 1.$$

This implies that

$$\ker(\Pi_T) \cap \mathsf{Ran}(\Pi_A) = \ker(\Pi_T) \cap \ker(\mathrm{Id} - \Pi_A) = \{0\}$$

so the restriction of Π_T to $\mathsf{Ran}(\Pi_A)$ defines an injective map from $\mathsf{Ran}(\Pi_A)$ to $\mathsf{Ran}(\Pi_T)$.

On the other hand, by Proposition 2.41 we have $\operatorname{\mathsf{Ran}}(\Pi_T) \cap \ker(T) = \{0\}$, so T defines by restriction an injective map on $\operatorname{\mathsf{Ran}}(\Pi_T)$ and hence Π_T has finite rank.

This proves that Π_A has finite rank, then λ has finite algebraic multiplicity, so $\lambda \in \sigma_{\text{disc}}(A)$. • Finally, assume by contradiction that $0 \in \sigma_{\text{disc}}(A)$. Then the spectrum of A consists of a finite number of eigenvalues, all of finite multiplicities. If we denote by Π_1, \ldots, Π_k the corresponding Riesz projections, then we have $\mathrm{Id}_{\mathcal{H}} = \sum_{j=1}^k \Pi_j$. This is a contradiction since the projections Π_j all have finite ranks.

4.2.2 Spectral theorem for compact normal operators

Theorem 4.21. Assume that dim $(\mathcal{H}) = \infty$. Let A be a compact and normal operator on \mathcal{H} . Let $(\lambda_k)_{1 \leq k \leq N, k \in \mathbb{N}^*}$ with $N \in \mathbb{N} \cup \{\infty\}$ be the sequence (finite or infinite) of non-zero eigenvalues of A. We set $\lambda_0 = 0$. Then we have

$$\mathcal{H} = \bigoplus_{k=0}^{N} \ker(A - \lambda_k)$$

and

$$A = \sum_{k=1}^{N} \lambda_k \Pi_k,$$

where Π_k is the orthogonal projection on ker $(A - \lambda_k)$. If moreover \mathcal{H} is separable, then there exists a Hilbert basis of eigenvectors of A.

Notice that the sum for A is convergent in $\mathcal{L}(\mathcal{H})$ if $N = \infty$. Indeed, we set $A_n = \sum_{k=1}^n \lambda_k \prod_k$ then

$$|A - A_n|| = r(A - A_n) = \sup_{k > n} |\lambda_k| \xrightarrow[n \to \infty]{} 0.$$

In particular the sum does not depend on the order of summation.

Proof. We set $F = \bigoplus_{k=1}^{N} \ker(A - \lambda_k)$. By Proposition 2.30, we have $F = \bigoplus_{k=1}^{N} \ker(A^* - \overline{\lambda_k})$. We have $A^*(F) \subset F$, so $A(F^{\perp}) \subset F^{\perp}$. The restriction A_0 of A to F^{\perp} is a compact normal operator without non-zero eigenvalues, so $A_0 = 0$. Thus $F^{\perp} \subset \ker(A)$. Since $\ker(A) \subset \mathsf{F}^{\perp}$ by Proposition 2.30, we have $F^{\perp} = \ker(A)$ and the conclusion follows.

4.3 Operators with compact resolvents

Definition 4.22. Let A be an operator on E. We say that A has compact resolvent if $\rho(A) \neq \emptyset$ and for some (hence any) $z \in \rho(A)$ the resolvent $(A - z)^{-1}$ is a compact operator on E.

We have to check that the compactness of $(A - z)^{-1}$ does not depend on $z \in \rho(A)$.

Proof. Assume that there exists $z_0 \in \rho(A)$ such that $(A - z_0)^{-1}$ is compact. Let $z \in \rho(A)$. By the resolvent identity we have

$$(A-z)^{-1} = (A-z_0)^{-1} - (z-z_0)(A-z_0)^{-1}(A-z)^{-1}.$$

Both terms of the right-hand side are compact, so $(A - z)^{-1}$ is compact.

Example 4.23. Let Ω be an open bounded subset of \mathbb{R}^d of class C^2 . Then the Dirichlet Laplacian on Ω $(A = -\Delta, \mathsf{Dom}(A) = H^2(\Omega) \cap H^1_0(\Omega))$ has compact resolvent. Indeed, it is a selfadjoint operator so its resolvent set is not empty. Then for $z \in \rho(A)$ the resolvent $(A - z)^{-1}$ defines a bounded operator from $L^2(\Omega)$ to $H^2(\Omega)$. Since $H^2(\Omega)$ is compactly embedded in $L^2(\Omega)$, then $(A - z)^{-1}$ is a compact operator on $L^2(\Omega)$.

Example 4.24. We can prove that the domain of the harmonic oscillator on \mathbb{R} (see (2.2)-(2.3)) is given by

$$\mathsf{Dom}(H) = \left\{ u \in H^2(\mathbb{R}) \, : \, x^2 u \in L^2 \right\}.$$
(4.1)

Note that it is not clear that this is equal to (2.3). From this we can deduce that $\mathsf{Dom}(H)$ is compactly embedded in $L^2(\mathbb{R})$ (see Exercise 4.4) and hence that H has a compact resolvent.

Ø Ex. 4.4

If A has compact resolvent, we can deduce good spectral properties from the good spectral properties of its resolvent.

Proposition 4.25. Let A be a closed operator with non-empty resolvent set. Let $z_0 \in \rho(A)$. Let $R = (A - z_0)^{-1} \in \mathcal{L}(\mathsf{E})$. Let $z \in \mathbb{C} \setminus \{0\}$. Then z belongs to $\sigma(R)$ ($\sigma_{\mathsf{p}}(A)$, $\sigma_{\mathsf{disc}}(R)$, respectively) if and only if $z_0 + \frac{1}{z}$ belongs to $\sigma(A)$ ($\sigma_{\mathsf{p}}(A)$, $\sigma_{\mathsf{disc}}(A)$, respectively).

Proof. • It is clear that the map $z \mapsto z - z_0$ is a bijection between $\sigma(A)$ and $\sigma(A - z_0)$ which preserves the discrete spectrum. Thus we can assume without loss of generality that $z_0 = 0$.

• We have

$$A^{-1} - z^{-1} = -z^{-1}(A - z)A^{-1}.$$

Then $z^{-1} \in \sigma(A^{-1})$ if and only if $(A - z) : \text{Dom}(A) \to \mathsf{E}$ is invertible, hence if and only if $z \in \sigma(A)$. Moreover, if $z \in \rho(A)$ then

$$(A^{-1} - z^{-1})^{-1} = -zA(A - z)^{-1} = -z - z^2(A - z)^{-1}$$

We also see that z^{-1} is an eigenvalue of A^{-1} if and only if z is an eigenvalue of A.

• It remains to prove that $\lambda \in \sigma_{\mathsf{disc}}(A)$ if and only if $\lambda^{-1} \in \sigma_{\mathsf{disc}}(A^{-1})$. The map $z \mapsto z^{-1}$ maps isolated points of $\sigma(A)$ to isolated points of $\sigma(A^{-1})$. Let λ be an isolated point in $\sigma(A)$. Let $r \in]0, |\lambda| [$ be such that $D(\lambda, 2r) \cap \sigma(A) = \{\lambda\}$. We have

$$\Pi_{\lambda} = -\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} (A-\zeta)^{-1} \,\mathrm{d}\zeta$$

= $\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} \frac{1}{\zeta^2} (A^{-1}-\zeta^{-1})^{-1} \,\mathrm{d}\zeta$
= $-\frac{1}{2i\pi} \int_{\{\zeta^{-1},\zeta\in\mathcal{C}(\lambda,r)\}} (A^{-1}-z) \,\mathrm{d}z.$

For r > 0 small, $\mathcal{C}(\lambda, r)$ is close to $\mathcal{C}(\lambda^{-1}, r/|\lambda^2|)$ and is also oriented in the direct sense. Thus (see Remark 2.38) the Riesz projections of λ for the operator A and of λ^{-1} for A^{-1} coincide. In particular, $\lambda \in \sigma_{\mathsf{disc}}(A)$ if and only if $\lambda^{-1} \in \sigma_{\mathsf{disc}}(A^{-1})$. **Theorem 4.26.** Let A be an operator on \mathcal{H} with compact resolvent. Then A has purely discrete spectrum: $\sigma(A) = \sigma_{\text{disc}}(A)$.

Proof. Let $z_0 \in \rho(A)$. Since $(A - z_0)^{-1}$ is compact, we have $\sigma((A - z_0)^{-1}) \setminus \{0\} = \sigma_{\mathsf{disc}}((A - z_0)^{-1})$ by Theorem 4.19. Since $0 \in \rho(A - z_0)$, we see with Proposition 4.25 that $\sigma(A - z_0) = \sigma_{\mathsf{disc}}(A - z_0)$, and the conclusion follows.

Remark 4.27. An operator with compact resolvent can have empty spectrum (consider for instance the operator of Exercise 2.7).

Theorem 4.28. Let A be a selfadjoint operator with compact resolvent on \mathcal{H} . Assume that A is bounded from below. Then the spectrum of A consists of a sequence $(\lambda_k)_{k \in \mathbb{N}}$ of eigenvalues with finite multiplicities and such that $\lambda_k \to +\infty$, and there is a Hilbert basis of \mathcal{H} made with eigenvectors of A.

4.4 Relatively compact perturbations - Weyl's Theorem

Definition 4.29. Let A be a closed operator on E with non-empty resolvent set. Let T be an operator on E. We say that T is A-compact (or relatively compact with respect to A) if $\mathsf{Dom}(A) \subset \mathsf{Dom}(T)$ and one of the following equivalent assertions is satisfied.

- (i) There exists $z_0 \in \rho(A)$ such that $T(A z_0)^{-1}$ is compact.
- (ii) For all $z \in \rho(A)$, the operator $T(A-z)^{-1}$ is compact.
- (iii) For any sequence (φ_n) bounded in Dom(A) (i.e. (φ_n) and $(A\varphi_n)$ are bounded in E) then $(T\varphi_n)$ has a convergent subsequence.

Proof. • We prove that (iii) implies (ii). Let $z \in \rho(A)$. Let (ψ_n) be a bounded sequence in E. Then $((A-z)^{-1}\psi_n)$ is bounded in $\mathsf{Dom}(A)$, and hence $(T(A-z_0)^{-1}\psi_n)$ has a convergent subsequence in E. This proves that $T(A-z_0)^{-1}$ is compact.

• Conversely, assume that $T(A - z_0)^{-1}$ is compact for some $z_0 \in \rho(A)$ and consider (ψ_n) bounded in Dom(A). Then $(A - z_0)\psi_n$ is bounded in E. Then $(T\psi_n) = (T(A - z_0)^{-1}(A - z_0)\psi_n)$ has a convergent subsequence in E. This proves (iii).

Proposition 4.30. Let A be a closed operator on E with non-empty resolvent set. Let T be a closed and A-compact operator on E . Then T is relatively bounded with A-bound 0.

Proof. Assume by contradiction that there exists $\varepsilon > 0$ and a sequence (φ_n) in $\mathsf{Dom}(A) \subset \mathsf{Dom}(T)$ such that

$$\forall n \in \mathbb{N}, \quad \|T\varphi_n\| > \varepsilon \, \|A\varphi_n\| + n \, \|\varphi_n\| \, .$$

After extracting a subsequence if necessary, we can assume that $||A\varphi_n|| > ||\varphi_n||$ for all n, or that $||A\varphi_n|| \le ||\varphi_n||$ for all n. In the first case we set $\psi_n = \varphi_n / ||A\varphi_n||$, so that

$$\|T\psi_n\| > \varepsilon + n \|\psi_n\|, \quad \|\psi_n\| \le 1.$$

After extracting a subsequence, $T\psi_n$ has a limit. In particular $(||T\varphi_n||)$ is bounded, so $\psi_n \to 0$. Since T is closed, we have $T\psi_n \to 0$, which gives a contradiction. In the second case we similarly get a contradiction by setting $\psi_n = \varphi_n / ||\varphi_n||$.

Lemma 4.31. Let A_0 and A_1 be two operators such that $\rho(A_0) \cap \rho(A_1) \neq \emptyset$. Let $T = A_1 - A_0$. Then T is A_0 -compact if and only if it is A_1 -compact.

Proof. Let $z_0 \in \rho(A_0) \cap \rho(A_1)$. Assume that T is A_0 -compact. We have

$$(A_1 - z_0)^{-1} = (A_0 - z_0)^{-1} - (A_1 - z_0)^{-1}T(A_0 - z_0)^{-1}$$

 \mathbf{so}

$$(A_1 - z_0)^{-1} (1 + T(A_0 - z_0)^{-1}) = (A_0 - z_0)^{-1}.$$

Let $\varphi \in \mathsf{E}$ such that $\varphi + T(A_0 - z_0)^{-1}\varphi = 0$. Then $\psi = (A_0 - z_0)^{-1}\varphi$ satisfies

$$(A_1 - z_0)\psi = (A_0 - z_0)\psi + T\psi = 0.$$

This implies that $\psi = 0$ and then $\varphi = 0$, so $1 + T(A_0 - z_0)^{-1}$ is injective. Since $T(A_0 - z_0)^{-1}$ is compact, we deduce by the Fredholm alternative that $1 + T(A_0 - z_0)^{-1}$ is invertible. Then

$$T(A_1 - z_0)^{-1} = T(A_0 - z_0)^{-1} (1 + T(A_0 - z_0)^{-1})^{-1}$$

is the composition of a compact and a bounded opertor, so it is compact. This proves that T is A_1 -compact. We prove the converse by changing the roles of A_0 and A_1 .

Theorem 4.32 (Weyl's Theorem for selfadjoint operators). Let A_0 and A_1 be two selfadjoint operators. Assume that $T = A_1 - A_0$ is A_0 -compact. Then

$$\sigma_{\mathsf{ess}}(A_1) = \sigma_{\mathsf{ess}}(A_0).$$

Proof. Let $\lambda \in \sigma_{\text{ess}}(A_0)$. Let $(\varphi_n)_{n \in \mathbb{N}}$ be a sequence in $\text{Dom}(A_0)$ such that $\|\varphi_n\| = 1$ for all $n \in \mathbb{N}, \varphi_n$ goes weakly to 0 and $\|(A_0 - \lambda)\varphi_n\| \to 0$ as $n \to \infty$ (see Proposition 3.54). Then

$$(A_0 - i)\varphi_n = (A_0 - \lambda)\varphi_n + (\lambda - i)\varphi_n \to 0.$$

We have

$$(A_1 - \lambda)\varphi_n = (A_0 - \lambda)\varphi_n + T(A_0 - i)^{-1}(A_0 - i)\varphi_n$$

Since $(A_0 - i)\varphi_n$ goes weakly to 0 and $T(A_0 - i)^{-1}$ is compact, the second term in the righthand side goes strongly to 0 by Proposition 4.6. Then $(A_1 - \lambda)\varphi_n$ goes to 0 and $\lambda \in \sigma_{\mathsf{ess}}(A_1)$ by Proposition 3.54. This proves that $\sigma_{\mathsf{ess}}(A_0) \subset \sigma_{\mathsf{ess}}(A_1)$. Since T is also A_1 -compact by Proposition 4.31, we can prove the reverse inclusion by changing the roles of A_0 and A_1 . \Box

Example 4.33. Let $V \in L^{\infty}(\mathbb{R}^d, \mathbb{R})$ such that $V(x) \to 0$ as $|x| \to 0$. We set $H_0 = -\Delta$ and $H_1 = -\Delta + V$, with $\mathsf{Dom}(H_0) = \mathsf{Dom}(H_1) = H^2(\mathbb{R}^d)$. Then we have

$$\sigma_{\rm ess}(H_1) = \sigma_{\rm ess}(H_0) = [0, +\infty[.$$

For this we prove that the multiplication by V is H_0 -compact.

4.5 Additional topic: the case of non-selfadjoint operators

For non-selfadjoint operator, it is not necessarily true that if $A_1 - A_0$ is A_0 -compact then $\sigma(A_1) \setminus \sigma_{\mathsf{disc}}(A_1) = \sigma(A_0) \setminus \sigma_{\mathsf{disc}}(A_0)$. A counterexample is given by the following example.

Example 4.34. We consider on $\ell^2(\mathbb{Z})$ the operators A and T defined by

$$A(\ldots, u_{-2}, u_{-1}, u_0, u_1, u_2, \ldots) = (\ldots, u_{-1}, u_0, u_1, u_2, u_3, \ldots)$$

and

$$T(\ldots, u_{-2}, u_{-1}, u_0, u_1, u_2, \ldots) = (\ldots, u_{-1}, 0, u_1, u_2, u_3, \ldots),$$

so that

$$(A - T)(\dots, u_{-2}, u_{-1}, u_0, u_1, u_2, \dots) = (\dots, 0, u_0, 0, 0, 0, \dots)$$

Then A - T is compact (it is of rank 1) but the spectrum of A is the unit circle C(0, 1) (see Exercise 2.9) while the spectrum of T is the full disk $\overline{D}(0, 1)$ (see Exercise 2.12).

In Example 4.34, we see that $\sigma(A_1) \setminus \sigma_{\mathsf{disc}}(A_1)$ is the union of $\sigma(A_0) \setminus \sigma_{\mathsf{disc}}(A_0)$ and one of the connected component of its complementary set. In general, we have the following result.

Theorem 4.35. Let A_0 and A_1 be closed operators such that $(A_1 - A_0)$ is A_0 -compact. Let \mathcal{U} be a connected component of $(\rho(A_0) \cup \sigma_{\mathsf{disc}}(A_0))$. Then $\mathcal{U} \cap (\rho(A_1) \cup \sigma_{\mathsf{disc}}(A_1))$ is equal to \emptyset or \mathcal{U} . In particular, if $\mathcal{U} \cap \rho(A_1) \neq \emptyset$ then A_1 has only discrete spectrum in \mathcal{U} .

4.6 Exercises

Exercise 4.1. Let (α_n) be a sequence in \mathbb{R}^*_+ such that $\alpha_n \to +\infty$ as $n \to +\infty$. We set

$$\mathcal{V} = \left\{ (u_n)_{n \in \mathbb{N}} : \sum_{n \in \mathbb{N}} \alpha_n |u_n|^2 < +\infty \right\} \subset \ell^2(\mathbb{N}).$$

 \mathcal{V} is a Hilbert space for the inner product defined by

$$\langle u, v \rangle_{\mathcal{V}} = \sum_{n \in \mathbb{N}} \alpha_n u_n \overline{v_n}, \quad u = (u_n), v = (v_n).$$

Prove that \mathcal{V} is compactly embedded in $\ell^2(\mathbb{N})$.

Exercise 4.2. Let Ω be a bounded open subset of \mathbb{R}^d . Let $k \in \mathbb{N}$ and $\theta \in]0, 1[$. We recall that $C^{k,\theta}(\Omega)$ is the set of functions $u \in C^k(\overline{\Omega})$ whose derivatives of order k are Hölder-continuous of exponent θ . It is endowed with the norm defined by

$$\|u\|_{C^{k,\theta}(\Omega)} = \sum_{\alpha \leqslant k} \|\partial^{\alpha} u\|_{L^{\infty}(\Omega)} + \sum_{\substack{|\alpha|=k \\ x \neq y}} \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|\partial^{\alpha} u(x) - \partial^{\alpha} u(y)|}{|x-y|^{\theta}}.$$

Prove that $C^{k,\theta}(\Omega)$ is compactly embedded in $C_b^k(\Omega)$.

Exercise 4.3. Let $V \in L^{\infty}(\mathbb{R})$. We assume that $V(x) \xrightarrow[|x| \to +\infty]{} 0$. Prove that the map

$$\left\{ \begin{array}{ccc} H^1(\mathbb{R}) & \to & L^2(\mathbb{R}) \\ u & \mapsto & Vu \end{array} \right.$$

is compact.

Exercise 4.4. 1. Give an exemple of sequence (u_n) bounded in $H^2(\mathbb{R})$ which has no limit in $L^2(\mathbb{R})$.

2. We consider a sequence (u_n) in $H^2(\mathbb{R})$ such that x^2u_n belongs to $L^2(\mathbb{R})$ for all $n \in \mathbb{N}$. We assume that there exists $M \ge 0$ such that

$$\forall n \in \mathbb{N}, \quad \|u_n\|_{H^2(\mathbb{R})} + \|x^2 u_n\|_{L^2(\mathbb{R})} \leq M.$$

3. Prove that we can construct for all $m \in \mathbb{N}^*$ an extraction $(n_k(m))$ and $v_m \in L^2([-m,m])$ such that

- $||u_{n_k(m)} v_m||_{L^2([-m,m])} \to 0,$
- v_m and v_ν coincide on [-m, m] whenever $\nu \ge m$.

4. Prove that there exists a subsequence (u_{n_j}) and $v \in L^2_{loc}(\mathbb{R})$ such that $||u_{n_j} - v||_{L^2([-R,R])} \to 0$ for all R > 0.

5. Prove that u_{n_j} goes to v in $L^2(\mathbb{R})$.