
Chapter 3

Selfadjoint operators

Let H be a Hilbert space.

3.1 Selfadjoint operators
3.1.1 Symmetric operators
Definition 3.1. Let A be an operator on H. We say that A is symmetric if

@φ, ψ P DompAq, xAφ, ψyH “ xφ, AψyH . l Ex. 3.1

Remark 3.2. If A is symmetric then xAφ, φyH P R for all φ P DompAq. The converse is also
true, as can be seen from the polarization formula

@φ, ψ P DompAq, 4 xAφ, ψy “ xApφ ` ψq, φ ` ψy ´ xApφ ´ ψq, φ ´ ψy
` i xApφ ` iψq, φ ` iψy ´ i xApφ ´ iψq, φ ´ iψy .

Definition 3.3. Let A be a symmetric operator on H.

(i) We say that A is non-negative (and we write A ě 0) if xAφ, φyH ě 0 for all φ P DompAq.
(ii) We say that A is semi-bounded from below if there exists γ P R such that A ´ γ ě 0 (we

can write A ě γ). Equivalently, xAφ, φyH ě γ }φ}2
H for all φ P DompAq. In this case

we say that γ is a lower bound for A.

Proposition 3.4. Let A be a symmetric and densely defined operator on H . Then A˚ is a
closed extension of A.

Proof. Let ψ P DompAq. For all φ P DompAq we have xAφ, ψy “ xφ, Aψy so ψ P DompA˚q and
A˚φ “ Aφ. This proves that A˚ is an extension of A. Moreover A˚ is closed by Proposition
1.60.

Proposition 3.5. Let A be a symmetric operator on H. The eigenvalues of A (if any) are
real, and two eigenvectors of A associated to different eigenvalues are orthogonal.

Proof. ‚ Let λ P C and assume that for some φ P DompAqz t0u we have Aφ “ λφ. Then
λ }φ}2

H “ xAφ, φyH P R. This implies that λ P R.
‚ Now let λ, µ be two distinct eigenvalues of A. Let φ P kerpA ´ λq and ψ P kerpA ´ µq.
Then

pµ ´ λq xψ, φyH “ xµψ, φyH ´ xψ, λφyH “ xAψ, φyH ´ xψ, AφyH “ 0.

Since µ ´ λ ‰ 0, this implies that xψ, φyH “ 0.

Proposition 3.6. Let A be a non-negative and densely defined operator. Let φ P DompAq
such that xAφ, φyH “ 0. Then Aφ “ 0.
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Proof. Since A is non-negative, we can apply the Cauchy-Schwarz inequality to the sesquilin-
ear form pζ, ψq ÞÑ xAζ, ψyH on DompAq. Then for all ψ P DompAq we have

|xAφ, ψyH| ď |xAφ, φyH| |xAψ, ψyH| “ 0.

Since DompAq is dense in H, this proves that Aφ “ 0.

Proposition 3.7. Let A be a symmetric operator on H.

(i) For z P CzR and φ P DompAq we have

}pA ´ zqφ}H ě |Impzq| }φ}H .

(ii) Assume moreover that A ě γ for some γ P R. Then for λ ă γ and φ P DompAq we
have

}pA ´ zqφ}H ě pγ ´ λq }φ}H .

Proof. Let φ P DompAq.
‚ Let z P CzR, λ “ Repzq and ε “ Impzq. We have

}pA ´ zqφ}2 “ }pA ´ λqφ}2 ` ε2 }φ}2 ` 2 Re xpA ´ λqφ, ´iεφy .

Since
xpA ´ λqφ, ´iεφy “ iε xAφ, φy ´ iελ }φ}2 P iR,

this gives
}pA ´ zqφ}2 “ }pA ´ λqφ}2 ` ε2 }φ}2 ě ε2 }φ}2

.

‚ Similarly, if A ´ γ ě 0 then for λ Ps ´ 8, γr we have

}pA ´ λqφ}2
H “ }pA ´ γqφ}2

H ` pγ ´ λq2 }φ}2
H ` 2pγ ´ λq Re xpA ´ γqφ, φyH

ě pγ ´ λq2 }φ}2
H ,

and the second statement follows.

3.1.2 Selfadjoint operators
Definition 3.8. An operator A on H is said to be selfadjoint if it is densely defined and
A˚ “ A.l Ex. 3.2-3.3

Definition 3.9. An operator A on H is said to be skew-adjoint if it is densely defined and
A˚ “ ´A.

Remark 3.10. An operator A is skew-adjoint if and only if iA is selfadjoint. Thus we only
discuss the properties of selfadjoint operators, and we can deduce similar properties for skew-
adjoint operators.
Remark 3.11. A bounded and symmetric operator is selfadjoint.
Example 3.12. • The Laplacian H “ ´∆ on L2pRdq (with domain DompHq “ H2pRdq)

is selfadjoint. The Laplacian H0 “ ´∆ with domain C8
0 pRdq is symmetric but not self-

adjoint (in particular C8
0 pRdq Ĺ H2pRdq Ă DompH0̊ q). However, H0 has a selfadjoint

extension (H).
Example 3.13. The Dirichlet and Neumann Laplacians on s0, 1r (introduced in Section 1.3.3)
are selfadjoint.
Example 3.14. The harmonic oscillator introduced in Section 2.1.2 is selfadjoint.
Remark 3.15. A selfadjoint operator is closed by Proposition 1.59.

Proposition 3.16. Let A be a selfadjoint operator on H. Then

RanpAq “ kerpAqK.
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Definition 3.17. Let A be a selfadjoint operator on H. Let F be a subspace of H. We say
that F is reducing for the operator A (or that it reduces A) if it is closed and the orthogonal
projection Π on F satisfies ΠA Ă AΠ.

Remark 3.18. If F reduces A, then so does FK.

Proposition 3.19. Let A be a selfadjoint operator on H. Let F be a reducing subspace for
A. Then the restriction AF of A on F is a selfadjoint operator on F.

Proof. For all φ, ψ P DompAFq “ DompAq X F we have

xAFφ, ψy “ xAφ, ψy “ xφ, Aψy “ xφ, AFψy ,

so AF is symmetric. Let ψ P DompA˚
Fq Ă F. Let φ P DompAq. We write φ “ φF ` φK with

φF P DompAq X F “ DompAFq and φK P DompAq X FK. Since AφK P FK Ă xψyK, we have

xAφ, ψyH “ xAFφF, ψyF “ xφF , A˚
FψyF “ xφ, A˚

FψyH .

This proves that ψ P DompA˚q “ DompAq, so ψ P DompAq X F “ DompAFq, and A˚
Fψ “

A˚ψ “ Aψ “ AFψ. This proves that A˚
F Ă AF, and finally AF is selfadjoint by Proposition

3.4.

Proposition 3.20. Let A be a selfadjoint operator on H. Then kerpAq is reducing for A.

Proof. Since A is closed, kerpAq is closed in H. Let Π be the orthogonal projection on kerpAq.
For all φ P DompAq we have Aφ P RanpAq Ă kerpAqK, so ΠAφ “ 0. On the other hand we
have Πφ P kerpAq Ă DompAq and AΠφ “ 0. This proves that ΠA Ă AΠ.

Proposition 3.21. If A and B are two selfadjoint operators on H such that A Ă B then
A “ B.

Proof. We have A Ă B “ B˚ Ă A˚ “ A, so A “ B.

3.1.3 A criterion for self-adjointness
Proposition 3.22. Let A be a symmetric and densely defined operator on H. Let z P CzR.
Then the following assertions are equivalent.

(i) A is self-adjoint.

(ii) A is closed and z, z P ρpAq.
(iii) A is closed and kerpA˚ ´ zq “ kerpA˚ ´ zq “ t0u.

(iv) RanpA ´ zq “ RanpA ´ zq “ H.

Proof. ‚ piq ñ piiiq. Assume that A is self-adjoint. In particular, A is closed. Moreover,
kerpA˚ ´ zq “ kerpA ´ zq “ t0u by Proposition 3.7. Similarly, kerpA˚ ´ zq “ t0u.
‚ piiiq ñ pivq. By Proposition 1.58 we have RanpA ´ zq “ kerpA˚´zqK “ t0u, so RanpA´zq
is dense in H. On the other hand, pA ´ zq has closed range by Propositions 3.7 and 1.36, so
RanpA ´ zq “ H. Similarly, RanpA ´ zq “ H.
‚ pivq ñ piq. We already know by Proposition 3.4 that A˚ is an extension of A. Let
φ P DompA˚q. Since pA ´ zq is surjective, there exists ψ P DompAq such that pA˚ ´ zqφ “
pA ´ zqψ “ pA˚ ´ zqψ. By Proposition 1.58 we have kerpA˚ ´ zq “ RanpA ´ zqK “ t0u, so
φ “ ψ P DompAq. This proves that DompAq “ DompA˚q, and hence A “ A˚.
‚ piiq ñ pivq is clear.
‚ piiiq ´ pivq ñ piiq. A is closed by piiiq. By Proposition 3.7 we already know that A ´ z
is injective. It is surjective by pivq so it is bijective and z P ρpAq. Similarly, z P ρpAq. l Ex. 3.4, 3.5

The proof of the implication pivq ùñ piq also holds if z P R. This gives the following
sufficient condition.

Corollary 3.23. Let A be a symmetric and densely defined operator on H. Assume that
there exists λ P R such that RanpA ´ λq “ H. Then A is selfadjoint.
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3.1.4 Essentially selfadjoint operators
We have seen that if A is symmetric then A Ă A˚. It may happen that A is not selfadjoint
because we have chosen the domain too small. Given a symmetric operator, the question is
then wether it has a selfadjoint extension.

We know from Proposition 3.4 that a densely defined and symmetric operator is always
closable, so the first try is to look at its closure.

Definition 3.24. Let A be a densely defined symmetric operator on H. We say that A is
essentially selfadjoint if its closure A is selfadjoint.

Proposition 3.25. Let A be a densely defined symmetric operator on H. Then A is essen-
tially selfadjoint if and only if A “ A˚.

Proof. ‚ By Proposition 1.60 we have A
˚ “ A˚. If A is essentially selfadjoint, we also have

A
˚ “ A, and hence A “ A˚.

‚ Conversely, assume that A “ A˚. By Proposition 1.60 again we have A˚˚ “ A, so
A

˚ “ A˚˚ “ A.

We will see below that a symmetric operator may have many selfadjoint extensions.
However, when it is essentially selfadjoint, the extension is unique.

Proposition 3.26. Let A be a densely defined symmetric operator on H. If A is essentially
selfadjoint then A is the unique selfadjoint extension of A.

Proof. Let B be a selfadjoint extension of A. Since it is a closed extension of A, it is an
extension of A. Since B and A are selfadjoint, we have B “ A by Proposition 3.21.

Proposition 3.27. Let A be a densely defined symmetric operator on H. Let z P CzR. The
following assertions are equivalent.

(i) A is essentially selfadjoint ;

(ii) kerpA˚ ´ zq “ kerpA˚ ´ zq “ t0u ;

(iii) RanpA ´ zq “ RanpA ´ zq “ H.

Proof. ‚ Assume that A is essentially selfadjoint. In particular, A is closable and A
˚ “ A˚

by Proposition 1.60. By Proposition 3.22 applied to the selfadjoint operator A, we have
kerpA˚ ´ zq “ kerpA˚ ´ zq “ t0u.
‚ Conversely, assume that (ii) holds. Since A

˚ Ă A˚ we have kerpA˚ ´ zq “ kerpA˚ ´ zq “
t0u. By Proposition 3.22, A is selfadjoint.
‚ Finally (ii) and (iii) are equivalent by Proposition 1.58.

3.1.5 Examples of closed symmetric operators which are not essen-
tially selfadjoint

We consider on L2p0, 1q the operator A which acts as

A “ i
d

dx

on the domain
DompAq “ H1

0 p0, 1q.
Then A is closed (by Example 1.34) and symmetric: for u, v P H1

0 p0, 1q we have by the
Green formula

xAu, vyL2p0,1q “ i

ż 1

0
u1pxqvpxq dx “ i

`
up1qvp1q ´ up0qvp0q˘ ´ i

ż 1

0
upxqv1pxq dx

“ xu, AvyL2p0,1q .

Notice that for the boundary terms it was not necessary that both u and v vanish.

40 J. Royer - Université Toulouse 3



Selfadjoint operators

Now we compute A˚. Let v P DompA˚q. We have v P L2p0, 1q and for all ϕ P C8
0 ps0, 1rq

we have
ż

R
iϕ1pxqvpxq dx “ xAϕ, vyL2p0,1q “ xϕ, A˚vyL2p0,1q “

ż

R
ϕpxqpA˚vqpxq dx.

This prove that in the sense of distributions we have v1 P L2p0, 1q and

A˚v “ iv1.

Conversely, if v P H1p0, 1q then the same computation as above shows that

@u P DompAq, @
iu1, v

D
L2p0,1q “ @

u, iv1D
L2p0,1q ,

so v P DompA˚q (and we recover A˚v “ iv1). This proves that DompA˚q “ H1p0, 1q ‰
DompAq. Thus A is not selfadjoint.

Notice that for z P C the function x ÞÑ e´izx belongs to kerpA˚ ´ zq. In particular,
kerpA˚ ´ zq ‰ t0u. By Proposition 3.22, this confirms that A cannot be selfadjoint. It is not
even essentially selfadjoint. Moreover, for z P C we have by Proposition 1.58

RanpA ´ zq “ kerpA˚ ´ zqK ‰ H.

This proves that σpAq “ C.
Now the question is: does A have a selfadjoint extension ? The answer is: yes, many !

Assume that Ã is a selfadjoint extension of A. Then Ã “ Ã˚ Ă A˚. Let v P DompÃqzDompAq.
For all u P DompÃq we have

0 “ @
Ãu, v

D ´ @
u, Ãv

D “ i
`
up1qvp1q ´ up0qvp0q˘

.

Assume that vp1q “ 0. Since v is not in DompAq we have vp0q ‰ 0. Then for all u P DompÃq
we have up0q “ 0. This gives a contradiction since vp0q ‰ 0. This proves that vp1q ‰ 0. We
set α “ vp0q{vp1q. Then for all u P DompÃq we have

up1q “ αup0q.
In particular we have vp1q “ αvp0q. Since by definition we have vp0q “ αvp1q, this proves
that |α| “ 1. This proves that there exists α P U such that DompÃq Ă Dα, where we have
set

Dα “ ␣
u P H1p0, 1q : up1q “ αup0q(

.

For α P U we denote by Aα the operator defined by Aαu “ iu1 for u in DompAαq “ Dα.
In particular, Aα is an extension of A and A˚ is an extension of Aα for all α.

We check that Aα is selfadjoint. For u, v P DompAαq we have

xAαu, vy “ i

ż

R
u1pxqvpxq dx

“ iup1qvp1q ´ iup0qvp0q ´ i

ż

R
upxqv1pxq dx

“ ip|α|2 ´ 1qup0qvp0q ´ i

ż

R
upxqv1pxq dx

“ xu, Aαvy .

Then Aα is symmetric, and hence Aα̊ is an extension of Aα. Now let v P DompAα̊q. The
same computation with u P C8

0 ps0, 1rq shows that v P H1p0, 1q and Aα̊v “ iv1. Then for all
u P DompAαq we have

0 “ xAαu, vy ´ xu, Aα̊vy “ ´iup0qpαvp1q ´ vp0qq.
This proves that vp1q “ αvp0q, so v P DompAαq, and finally Aα̊ “ Aα.

All this proves that the operators Aα for α P U are the selfadjoint extensions of A.
Moreover we have seen that if Ã is a selfadjoint extension of A then we have Ã Ă Aα

for some α P U, and hence Ã “ Aα. So finally, the operators Aα for α P U are exactly the
selfadjoint extensions of A.
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Example 3.28. We consider the previous example but on L2p0, `8q:

A “ i
d

dx
, DompAq “ H1

0 p0, `8q.

With the same proof we see that A is symmetric with DompA˚q “ H1p0, `8q. The difference
is that in this case A has no selfadjoint extension. Indeed, assume by contradiction that Ã is a
selfadjoint extension of A. We can check by direct computation that RanpA` iq “ L2p0, `8q
(or equivalently, that KerpA˚ ´ iq “ t0u), so A has no selfadjoint extension by Exercise 3.4.

3.1.6 Friedrichs extension
We have seen in the previous paragraph that a symmetric operator which is not selfadjoint
can have many selfadjoint extensions, and it is also possible that it does not have any.

In this paragraph we consider the case of lower semibounded symmetric operators and
choose in an abstract setting a selfadjoint extension. This ensures in particular that such an
operator has at least one selfadjoint extension.

We begin with the case where the symmetric operator is lower bounded by a positive
constant.

Proposition-Definition 3.29. Let A be a densely defined symmetric operator on H. As-
sume that there exists α ą 0 such that A ě α. We consider the quadratic form q0,A associated
to A, defined on DompAq by

@φ P DompAq, qApφq “ xAφ, φyH .

This defines a norm on DompAq by

@φ P DompAq, }φ}qA
“ a

qApφq.
The form domain VA of A is then the set of limits in H of Cauchy sequences in DompAq
(endowed with the norm }¨}qA

). In other words, a vector φ P H belongs to VA if and only if
there exists a sequence pφnqnPN in DompAq such that

}φn ´ φm}A ÝÝÝÝÝÑ
n,mÑ8 0 and }φn ´ φ}H Ñ 0.

Then qA extends to a continuous and coercive (in the sense of Remark 1.64) quadratic form
QA on VA, and VA is a Hilbert space for the corresponding norm.

Proof. ‚ The sesquilinear form associated to qA is given by

@φ, ψ P DompAq, qApφ, ψq “ xAφ, ψyH .

It is staightforward to check that this is an inner product on DompAq, and then }¨}qA
is the

corresponding norm.
‚ Let pφnqnPN be a sequence in DompAq such that

qApφn ´ φmq ÝÝÝÝÝÑ
n,mÑ8 0 and }φn}H Ñ 0.

In particular, }φn}qA
is bounded. Let ε ą 0 and N P N such that for n, m ě N we have

qApφn ´ φmq ď ε2. Let n ě N . For m ě N we have

qApφnq “ qApφn, φn ´ φmq ` xAφn, φmy
ď qApφnq 1

2 qApφn ´ φmq 1
2 ` xAφn, φmy

ď εqApφnq 1
2 ` xAφn, φmy .

Letting m go to infinity gives qApφnq ď εqApφnq 1
2 for all n ě N . This proves that

qApφnq ÝÝÝÑ
nÑ8 0.
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‚ The set VA is a subspace of H. Let φ, ψ P VA. Let pφnqnPN in DompAq be a sequence
such that qApφn ´ φmq Ñ 0 and }φn ´ φ}H Ñ 0. We similarly consider a sequence pψnqnPN
corresponding to ψ. For n, m P N we have

|qApφn, ψnq ´ qApφm, ψmq| ď qApφn, ψn ´ ψmq ` qApφn ´ φm, ψmq
ď qApφnq 1

2 qApψn ´ ψmq 1
2 ` qApφn ´ φmq 1

2 qApψmq 1
2

ÝÝÝÝÝÑ
n,mÑ8 0.

This proves that qApφn, ψnq has a limit, which we denote by QApφ, ψq. This limit does not
depend on the choice of the sequence pφnqnPN. Indeed, if φ̃n is another sequence such that
qApφ̃n ´ φ̃mq Ñ 0 and }φn ´ φ}H Ñ 0, then by the second step we have qApφn ´ φ̃nq Ñ 0.
Similarly, the definition of QApφ, ψq does not depend on the choice of the sequence pψnqnPN.
For φ P VA we set

}φ}VA
“ a

QApφq.
‚ We can check that the map pφ, ψq ÞÑ QApφ, ψq defines an inner product on VA. Let
φ P VA and let pφnqnPN be a sequence in DompAq as above. Let ε ą 0 and N P N such that
qApφn ´ φmq ď ε for all n, m ě N . Let k ě N . Then the sequence pφk ´ φnqnPN is a Cauchy
sequence in pDompAq, }¨}qA

q which goes to φk ´ φ in H, so

QApφk ´ φq “ lim
nÑ8 qApφk ´ φnq ď ε.

This proves that
qApφk ´ φq ÝÝÝÑ

kÑ8 0.

In particular, DompAq is dense in pVA, }¨}VA
q.

‚ It remains to check that VA is complete. Let pφnqnPN be a Cauchy sequence in VA. It is
also a Cauchy sequence in H, so it has a limit φ P H. For all n P N there exists ψn P DompAq
such that }φn ´ ψn}VA

ď 2´n. Then pψnqnPN is a Cauchy sequence in pDompAq, }¨}qA
q. Thus,

by definition, φ P VA, and moreover we have }ψn ´ φ}VA
Ñ 0. This gives }φn ´ φ}VA

Ñ 0
and completes the proof.

Alternatively, we can define VA as the completion of pDompAq, }¨}qA
q and observe that

VA can be identified with a subspace of H.
Example 3.30. We consider on L2p0, 1q the operator A “ ´B2 ` 1 with domain DompAq “
C8

0 ps0, 1rq. For all u P C8
0 ps0, 1rq we have

qApu, uq “ @´u2, u
D

L2p0,1q ` }u}2
L2p0,1q “ }u}2

H1p0,1q .

A function u in L2p0, 1q is the limit in L2 of a Cauchy sequence in C8
0 ps0, 1rq for the H1-norm

if and only if u belongs to H1p0, 1q. Then the form domain of A is H1
0 p0, 1q.

Proposition 3.31. Let V be a Hilbert space densely and continuously embedded in H. Let q
be a continuous sesquilinear form on V such that, for some α ą 0,

@φ P V, qpφ, φq ě α }φ}2
V (3.1)

(q is coercive in the usual sense, see Remark 1.64). Let A be the operator given by the
representation theorem (Theorem 1.71). Then A is selfadjoint on H, A ě α and V is the
form domain of A.

Proof. For all φ P DompAq we have xAφ, φy “ qpφ, φq by definition of A. By continuity of q
and (3.1), the norm φ ÞÑ a

qpφ, φq is equivalent to the norm }¨}V . Since DompAq is dense in
V by Theorem 1.71, the closure of DompAq for }¨}V is V. Finally, as for Remark 3.2, since
the quadratic form takes real values it is symmetric. Then we deduce that A is selfajdjoint
by Theorem 1.71.

Definition 3.32. Let A be a densely defined symmetric operator. Assume that A is lower
bounded by a positive constant and let VA be the form domain of A. Then the Friedrichs
extension AF of A is the operator associated to the quadratic form QA by the representation
theorem (Theorem 1.71).
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Example 3.33. Let A be the operator of Example 3.30. Its Friedrichs extension is the operator
AF “ ´B2 ` 1 with domain DompAF q “ H2p0, 1q X H1

0 p0, 1q.
Remark 3.34. We use the notation of Definition 3.32. Let T be a selfadjoint extension of A.
Then the form domain VT of T contains the form domain VA of AF (which is also the form
domain of A). Then, amongst all the selfadjoint extensions of A, AF has the smallest form
domain.

Now we can define the Friedrichs extension of a general lower bounded operator.

Proposition-Definition 3.35. Let A be a densely defined and lower bounded symmetric
operator. Let β P R such that Aβ “ A ` β (with domain DompAβq “ DompAq) is lower
bounded by a positive constant.

(i) The form domain of A is defined as the form domain of Aβ.

(ii) The Friedrichs extension of A is AF “ Aβ,F ´β, where Aβ,F is the Friedrichs extension
of Aβ.

These definitions do not depend on the choice of β.

Remark 3.36. If A is selfadjoint then AF “ A.
Example 3.37. The form domain of the Dirichlet Laplacian on s0, 1r (see Example 1.76) is
H1

0 p0, 1q and the form domain of the Neumann Laplacian (see Example 1.75) is H1p0, 1q.
Example 3.38. We consider on L2p0, 1q the operator A “ ´B2 with domain DompAq “
C8

0 ps0, 1rq. Then the form domain of A is H1
0 p0, 1q and its Friedrichs extension is the Dirichlet

Laplacian on s0, 1r.

3.1.7 Relatively bounded perturbations of self-adjoint operators
Definition 3.39. Let A and T be operators on E. We say that T is A-bounded if DompAq Ă
DompT q and there exist a, b ě 0 such that

@φ P DompAq, }Tφ}E ď a }Aφ}E ` b }φ}E . (3.2)

The A-bound of T is the infimum of all a ě 0 for which there exists b such that (3.2) holds.

Remark 3.40. T is A-bounded if and only if DompAq Ă DompT q and T is a continuous map
from pDompAq, }¨}DompAqq to E.

Remark 3.41. If T is bounded then it is A bounded with A-bound 0 (we can take α “ 0 and
b “ }T }LpEq in (3.2)).

Remark 3.42. The A-bound of T is defined as the infimum of all possible a in (3.2). This
infinimum is not necessarily atteined. In particular, T can be unbounded but A-bounded
with A-bound 0. For example, if T is a symmetric operator on H then T is T 2-bounded with
bound 0. Indeed,

DompT 2q “ tφ P DompT q : Tφ P DompT qu Ă DompT q
and for ε ą 0 and φ P DompT 2q we have

0 ď ››pε2T 2 ´ 1qφ››2 “ ε4 ››T 2φ
››2 ` }φ}2 ´ 2ε2 }Tφ}2

,

so
}Tφ}2 ď ε2

2
››T 2φ

››2 ` ε´2

2 }φ}2 ď 1
4

`
ε

››T 2φ
›› ` ε´1 }φ}˘2

.

Thus (3.2) holds with a “ ε{4 and b “ 1{p4εq for all ε ą 0 and T is T 2-bounded with
T 2-bound 0 (but (3.2) cannot hold with a “ 0 if T is not bounded).

We give examples of operators which are relatively bounded with respect to the usual
Laplacian on Rd. We denote by H0 the Laplacian ´∆ on L2pRdq, with domain H2pRdq.
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Example 3.43. Let β, V P L8pRdq and j P J1, dK. Then βpxqBj and V are H0-bounded with
H0-bound equal to 0. Indeed for u P H2pRdq,

}Bju}2 “ xBju, Bjuy “ @´B2
j u, u

D ď x´∆u, uy ď }H0u} }u} ď ε }H0u}2 ` }u}2

4ε
.

Theorem 3.44 (Kato-Rellich). Let A be a selfadjoint operator on the Hilbert space H. Let
T be a symmetric operator on H. Assume that T is A-bounded with bound smaller than 1.

(i) The operator A ` T , defined on the domain DompA ` T q “ DompAq, is selfadjoint.

(ii) Let D Ă DompAq. If A is essentially selfadjoint on D, then so is A ` T .

Proof. The operator A ` T is symmetric as the sum of two symmetric operators. There exist
a P r0, 1r and b ě 0 such that (3.2) holds. Let β ą 0. We recall that for φ P DompAq we have

}pA ´ iβqφ}2 “ }Aφ}2 ` β2 }φ}2
,

so
}Tφ} ď a }Aφ} ` b }φ} ď pa ` bβ´1q }pA ´ iβqφ} .

Let ψ P H. Applied with φ “ pA ´ iβq´1ψ P DompAq, this inequality gives
››T pA ´ iβq´1ψ

›› ď pa ` bβ´1q }ψ} .

Assume that |β| ą b
1´a . Then S “ T pA ´ iβq´1 is bounded with bound smaller than 1, so

p1 ` Sq has a bounded inverse on H. We deduce that

RanpA ` T ´ iβq “ Ran
`p1 ` SqpA ´ iβq˘ “ H.

We similarly prove that RanpA ` T ` iβq “ H. By Proposition 3.22, this proves that A ` T
is selfadjoint.

Proposition 3.45. Assume that d ď 3. Let V be a potential (Borel function) on Rd. We
assume that we can write V “ V2 ` V8 where V2 P L2pRdq and V8 P L8pRdq. Then
the Schrödinger operator H “ H0 ` V is selfadjoint on L2pRdq with domain DompHq “
DompH0q “ H2pRdq.
Proof. Let u P H2pRdq. For ε ą 0 we have

}u}L8pRdq ď }û}L1pRdq ď
›››p1 ` ε2 |ξ|2q´1

›››
L2pRdq

›››p1 ` ε2 |ξ|2qû
›››

L2pRdq
ď Cε

`
ε2 }∆u}L2pRdq ` }u}L2pRdq

˘
,

where

Cε “
dż

Rd

`
1 ` ε2 |ξ|2 ˘´2 dξ.

We have Cε “ ε´ d
2 C1, so

}V u}L2 ď }V2}L2 }u}L8 ` }V8}L8 }u}L2

ď ε2´ d
2 C1 }V2} }∆u}L2 ` `

ε´ d
2 C1 }V2}L2 ` }V8}L8

˘ }u}L2 .

Applied with ε ą 0 small enough this proves that V is H0-bounded with H0-bound smaller
than 1. We conclude with Theorem 3.44.

Remark 3.46. We can prove that the same conclusion holds for V P LppRdq ` L8pRdq for
p ě 2 if d “ 4 and p P “

2, 2d
d´4

“
if d ě 5.

Example 3.47. Let d ď 3 and α P “
0, d

2
“
. Then for any c P R the operator

H “ H0 ` c

|x|α

is well-defined and selfadjoint on the domain DompHq “ H2pRdq.
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3.2 Spectrum of selfadjoint operators
3.2.1 Basic properties
Proposition 3.48. Let A be a selfadjoint operator on H. Then σpAq Ă R, σpAq ‰ H and
for z P ρpAq we have

››pA ´ zq´1››
LpHq “ 1

distpz, σpAqq . (3.3)

Proof. The first statement follows from Proposition 3.22. Let z P ρpAq. By Proposition 1.61
we have

ppA ´ zq´1q˚ “ pA˚ ´ zq´1 “ pA ´ zq´1.

Since pA ´ zq´1 and pA ´ zq´1 commute, pA ´ zq´1 is a bounded normal operator on H.
Then, by Propositions 2.31 and 2.11,

››pA ´ zq´1››
LpHq “ sup

µPσppA´zq´1q
|µ| “ sup

λPσpAq
|λ ´ z|´1 “ 1

infλPσpAq |λ ´ z| .

The proposition follows.

Proposition 3.49. Let A be a selfadjoint operator on H and λ P R.

(i) Let ε ą 0. If there exists φ P DompAqz t0u such that }pA ´ λqφ}H ď ε }φ}H then
σpAq X rλ ´ ε, λ ` εs ‰ H.

(ii) λ P σpAq if and only if there exists a sequence pφnqnPN in DompAq such that }φn}H “ 1
for all n P N and

}pA ´ λqφn}H ÝÝÝÝÝÑ
nÑ`8 0.

Such a sequence is called a Weyl sequence.

Proof. ‚ Assume that rρ ´ ε, ρ ` εs Ă ρpAq. Since ρpAq is open there exists ε1 ą ε such
that rρ ´ ε1, ρ ` ε1s Ă ρpAq. By Proposition 3.48 we have

››pA ´ λq´1››
LpHq ď ε´1

1 . Then for
φ P DompAqz t0u we have

}φ} ď ››pA ´ λq´1›› }pA ´ λqφ} ď }pA ´ λqφ}
ε1

,

so }pA ´ λqφ} ě ε1 }φ} ą ε }φ}. This prove the first statement by contraposition.
‚ If a Weyl sequence exists then λ P σpAq by Proposition 2.7 (we can also use the first
statement). Now assume that there exists c ą 0 such that

@φ P DompAq, }pA ´ λqφ}H ě c }φ}H .

Then A ´ λ is injective with closed range by Proposition 2.9. On the other hand, by Propo-
sition 1.58,

RanpA ´ λq “ kerppA ´ λq˚qK “ kerpA ´ λqK “ H.

This proves that λ P ρpAq.l Ex. 3.7

3.2.2 Discrete and essential spectra
We recall that for a general operator we have defined the discrete spectrum as the set of
isolated eigenvalues with finite (algebraic) multiplicities (see Definition 2.45).

Definition 3.50. Let A be a selfadjoint operator. We define the essential spectrum by

σesspAq “ CzσdiscpAq.
Proposition 3.51. Let A be a selfadjoint operator on H. Assume that λ is an isolated
element of σpAq. Let Πλ be the corresponding Riesz projection. Then Πλ is the orthogonal
projection on kerpA ´ λq. In particular, λ is an eigenvalue of A and if dimpkerpA ´ λqq ă 8,
then its geometric and algebraic multiplicities coincide.
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Proof. Let r ą 0 be so small that σpAq X Dpλ, 2rq “ tλu. We have

Πλ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ.

Then
Π˚

λ “ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1 dζ “ Πλ,

so Πλ is an orthogonal projection. By Proposition 2.41 we have kerpA ´ λq Ă RanpΠλq.
For φ P H we have

pA ´ λqΠφ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ λqpA ´ ζq´1φ dζ

“ ´ 1
2iπ

ż

Cpλ,rq

`
φ ` pζ ´ λqpA ´ ζq´1φ

˘
dζ.

(3.4)

The map ζ ÞÑ pζ ´ λqpA ´ ζq´1 is analytic in Dpλ, rqz tλu. By (3.3) it is also bounded.
Thus it extends to an analytic function on Dpλ, rq and (3.4) vanishes. This proves that
RanpΠq Ă kerpA ´ λq, so RanpΠq “ kerpA ´ λq. Finally, RanpΠq cannot be t0u (since λ
belongs to the spectrum of the restriction of A to RanpΠq), so λ is an eigenvalue of A.

Corollary 3.52. Let A be a selfadjoint operator on H and let λ be an isolated element
of σpAq. Let G be a reducing subspace for A and let AG be the restriction of A to G. If
G Ă kerpA ´ λqK then σpAGq Ă σpAqz tλu.

Proof. By Proposition 2.18 we have σpAGq Ă σpAq. Moreover, AG is a selfadjoint operator by
Proposition 3.19 and λ is not an eigenvalue of AG since kerpAG ´ λq “ kerpA ´ λq X G “ t0u.
By Proposition 3.51, λ P ρpAGq.
Lemma 3.53. Let A be a selfadjoint operator on H. Let λ P σpAq. Assume that kerpA ´ λq
has finite dimension and that there exists c ą 0 such that

@φ P kerpA ´ λqK, }pA ´ λqφ} ě c }φ} . (3.5)

Then λ is isolated in σpAq.
Proof. Let F “ kerpA ´ λq and G “ FK. Then F and G are closed. Let Π be the orthogonal
projection on F. Let AF and AG be the restrictions of A to F and G. We have σpAFq “ tλu.
On the other hand, AG is a selfadjoint operator on G such that kerpAG ´ λq “ t0u. Then
RanpAG ´ λq “ kerpAG ´ λqK “ G. By (3.5) and Proposition 1.36, RanpAG ´ λq is closed so
λ P ρpAGq. Since ρpAGq is open, there exists ε ą 0 such that sλ ´ ε, λ ` εrĂ ρpAGq. Then,
by Proposition 2.18, sλ ´ ε, λ ` εrz tλu Ă ρpAFq X ρpAGq “ ρpAq.
Proposition 3.54 (Weyl Criterion). Let A be a selfadjoint operator on H and λ P R. The
following assertions are equivalent.

(i) λ P σesspAq.
(ii) There exists a sequence pφnqnPN in DompAq such that }φn}H “ 1 for all n P N, φn goes

weakly to 0 and }pA ´ λqφn}H Ñ 0 as n Ñ 8.

(iii) There exists a sequence pφnqnPN in DompAq such that }φn}H “ 1 for all n P N, pφnqnPN
has no convergent subsequence in H and }pA ´ λqφn}H Ñ 0 as n Ñ 8.

l Ex. 3.8

Proof. We set F “ kerpA ´ λq and G “ kerpA ´ λqK. We denote by AG the restriction of A
to G.
‚ Assume that λ P σesspAq. If dimpFq “ 8 then we can construct an orthonormal sequence
pφnqnPN in F, and (ii) is satisfied. Now assume that dimpFq ă 8. By Lemma 3.53, (3.5)
cannot hold, so there exists a normalized sequence pφnqnPN in G such that }pA ´ λqφn} Ñ 0
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as n Ñ 8. For ψ P F we have xψ, φny “ 0 for all n P N. It remains to prove that xψ, φny Ñ 0
for all ψ P G. It is enough to prove this for ψ in a dense subset of G. We have

RanpAG ´ λqK “ kerpAG ´ λq “ t0u ,

so it is enough to consider ψ P RanpAG ´ λq. In this case we consider ζ P DompAGq such that
ψ “ pAG ´ λqζ and write

xψ, φny “ xpAG ´ λqζ, φny “ xζ, pAG ´ λqφny ÝÝÝÝÝÑ
nÑ`8 0.

This proves that φn á 0 as n Ñ 8. Thus (i) implies (ii).
‚ A normalized sequence which goes weakly to 0 cannot have a convergent subsequence, so
(ii) ùñ (iii).
‚ Assume that there exists a sequence pφnqnPN as in (iii). By Proposition 3.49 we have
λ P σpAq. Assume by contradiction that λ P σdiscpAq. For n P N we write φn “ ψn ` ψK

n

where ψn P F and ψK
n P G X DompAq. We have

pAG ´ λqψK
n “ pA ´ λqψK

n “ pA ´ λqφn ÝÝÝÑ
nÑ8 0.

Since λ P ρpAGq by Corollary 3.52, we deduce that ψK
n Ñ 0 as n Ñ 8. In particular,

}φn ´ ψn}H Ñ 0. But the sequence pψnqnPN is in F which has finite dimension, so it has a
convergent subsequence. This gives a contradiction and proves that λ P σesspAq. Then (iii)
implies (i), and the proof is complete.

Proposition 3.55. Let A be a selfadjoint operator on H and λ P σesspAq. Let N P N˚ and
ε ą 0. There exists an orthonormal family pφnq1ďnďN such that

@n P J1, NK, }pA ´ λqφn}H ď ε.

Proof. ‚ If λ is isolated, it is an eigenvalue of infinite multiplicity, so we can consider an
orthonormal family pφnq1ďnďN in kerpA ´ λq.
‚ Now assume that λ is not isolated. We fix distinct elements λ1, . . . , λN of σpAq such that,
for all n P J1, NK,

|λn ´ λ| ď ε

2 . (3.6)

Let η Ps0, 1s. Let n P J1, NK. By Proposition 3.54 we can consider ψn P DompAq such that
}ψn}H “ 1 and

}pA ´ λnqψn}H ď η.

We set φ̃1 “ ψ1 and for n P J2, NK we define by induction

φ̃n “ ψn ´
n´1ÿ

k“1
xφ̃k, ψnyH φ̃k.

‚ We prove by induction on n P J1, NK that there exists a constant Cn ą 0 independant of
η Ps0, 1s such that

}pA ´ λnqφ̃n} ď Cnη and |}φ̃n} ´ 1| ď Cnη. (3.7)

This is clear for n “ 1. Now assume that this holds up to order n ´ 1 for some n P J2, NK.
For k P J1, n ´ 1K we have

pλn ´ λkq xφ̃k, ψny “ xpA ´ λkqφ̃k, ψny ´ xφ̃k, pA ´ λnqψny ,

so, for some C̃k,n ą 0,

|xφ̃k, ψny| ď Ckη ` p1 ` Ckηqη
|λk ´ λn| ď C̃k,nη.

Then

|}φ̃n} ´ 1| ď }φ̃n ´ ψn} ď
n´1ÿ

k“1
|xφ̃k, ψny| }φ̃k}
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and

}pA ´ λnqφ̃n} ď }pA ´ λnqψn} `
n´1ÿ

k“1
|xφ̃k, ψny| ` }pA ´ λkqφ̃k} ` |λk ´ λn| }φ̃k} ˘

.

We deduce (3.7). If η is chosen small enough then for n P J1, NK we can set

φn “ φ̃n

}φ̃n} .

Then there exists C ą 0 such that for n P J1, NK and η Ps0, 1s we have

}pA ´ λnqφn} ď Cη.

It remains to chose η smaller that ε{p2Cq and conclude with (3.6).

3.2.3 Min-max principle
We consider on H a self-adjoint operator A bounded from below.

Proposition 3.56. We have

minpσpAqq “ inf
φPDompAqzt0u

xAφ, φyH
}φ}2

H
. (3.8)

Proof. We denote by µ1 the right-hand side of (3.8).
‚ Let λ P σpAq. By the Weyl criterion (Proposition 3.54) there exists a sequence pφnq such
that }φn} “ 1 for all n and }pA ´ λqφn} Ñ 0. This implies in particular

µ1 ď xAφn, φny ÝÝÝÑ
nÑ8 λ,

so µ1 ď minpσpAqq.
‚ Now assume by contradiction that µ1 P ρpAq. We set R “ pA ´ µ1q´1. For η, ψ P H we
set

qpη, ψq “ xRη, ψyH .

This defines a continuous sesquilinear form q on H. For η P H and ψ “ Rη P DompAq we
have

qpη, ηq “ xψ, pA ´ µ1qψy ě 0,

so q is a non-negative. Let pψnq be a sequence in DompAq such that }ψn}H “ 1 for all n P N
and

xAψn, ψny ÝÝÝÝÝÑ
nÑ`8 µ1.

For n P N we set ηn “ pA ´ µ1qψn. Then by the Cauchy-Schwarz inequality we have

1 “ }ψn}2
H “ qpηn, ψnq

ď qpηn, ηnq 1
2 qpψn, ψnq 1

2

“ xψn, pA ´ µ1qψny 1
2 xRψn, ψny 1

2

ÝÝÝÝÝÑ
nÑ`8 0.

This gives a contradiction and proves that µ1 P σpAq, and in particular µ1 ě minpσpAqq.
The conclusion follows.

Theorem 3.57 (Min-max Theorem). Let A be a lower-bounded self-adjoint operator on H.
We denote by pλkqkPN˚,kďN with N P N Y t8u the non-decreasing sequence of eigenvalues
(counted with multiplicities) smaller than inf σesspAq. For n P N˚ (with n ď dimpHq if H is
of finite dimension) we have

inf
FĂDompAq
dimpFq“n

sup
φPFzt0u

xAφ, φyH
}φ}2

H
“

#
λn if n ď N,

inf σesspAq if n ą N.
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Proof. For n P N˚ we set
µn “ inf

FĂDompAq
dimpFq“n

sup
φPFzt0u

xAφ, φyH
}φ}2

H
.

‚ We set N “ J1, NK if N P N and N “ N if N “ `8. We consider an orthonormal
family pφkqkPN such that φk P DompAq and Aφk “ λkφk for all k P N . For n P N we set
Fn “ spanpφ1, . . . , φnq. We also set η “ inf σesspAq.
‚ Let n P N . Let φ P Fn such that }φ} “ 1. We can write φ “ řn

k“1 αkφk withřn
k“1 |αk|2 “ 1. Then we have

xAφ, φy “
nÿ

k“1
|αk|2 λk ď λn,

so µn ď λn.
‚ By Corollary 3.52, the restriction of A to F K

n´1 is selfadjoint and its spectrum is included
in rλn, `8r. Let F be a subspace of DompAq of dimension n. There exists φ P F X FK

n´1 with
}φ} “ 1. For such a φ we have xAφ, φy ě λn by Proposition 3.56. This proves that µn ě λn.
Then µn “ λn and the infimum is a minimum.
‚ Now assume that N is finite and consider n ą N . As in the previous step, we see that
µn ě η. Then let ε ą 0. Since η P σesspAq there exists by Proposition 3.55 an orthonormal
family pψkq1ďkďn of vectors in DompAq such that

@k P J1, nK, }ψk}H “ 1 and }pA ´ ηqψk}H ď ε?
n

.

Let ψ P F “ spanpψ1, . . . , ψnq such that }ψ} “ 1. We write ψ “ řn
k“1 αkψk with

řn
k“1 |αk|2 “

1. Then we have

xAψ, ψy ď η ` }pA ´ ηqψ}

ď η `
nÿ

k“1
|αk| }pA ´ ηqψk}H

ď η `
˜

nÿ

k“1
}pA ´ ηqψk}2

¸ 1
2

ď η ` ε.

This proves that
µn ď sup

ψPF
}ψ}H“1

xAφ, φyH ď η ` ε.

Finally µn “ η.

Remark 3.58. • Let F be a finite dimensional subspace of DompAq. Since the unit sphere
SF of F is compact and the map φ ÞÑ xAφ, φy is continuous on SF, we have

sup
φPFzt0u

xAφ, φyH
}φ}2

H
“ sup

φPSF

xAφ, φyH “ max
φPSF

xAφ, φyH “ max
φPFzt0u

xAφ, φyH
}φ}2

H
.

• Let n P N . We have seen that

inf
FĂDompAq
dimpFq“n

sup
φPFzt0u

xAφ, φyH
}φ}2

H
“ λn “ sup

φPFnzt0u
xAφ, φyH

}φ}2
H

,

so the infinimum is a minimum.

• When n ą N , the infimum is not necessarily reached. Consider for instance the usual
Laplacian H0 on Rd. We have min σpH0q “ σesspH0q “ 0 and there is no φ P H2pRdq
such that xH0φ, φy “ 0.

This Min-max Theorem has an equivalent Max-min version. See Exercise 3.9.l Ex. 3.9
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Corollary 3.59. Let a ă inf σesspAq. Assume that there exists a subspace V of DompAq of
dimension n P N˚ such that

@φ P V, xAφ, φyH ď a }φ}2
H .

Then A has at least n eigenvalues (counted with multiplicities) not greater that a.

Proposition 3.60. Let A be a lower bounded selfadjoint operator A on H. Let qA be the
corresponding quadratic form and let VA be the form domain of A (see Definition 3.29).

(i) We have

min σpAq “ inf
φPVAzt0u

qApφq
}φ}2

H
. (3.9)

(ii) The right-hand side of (3.9) is a minimum if and only if min σpAq is an eigenvalue,
and in this case the minimizers are the eigenvectors corresponding to the eigenvalue
min σpAq.

Proof. ‚ We set

µ1 “ min σpAq “ inf
φPDompAqzt0u

xAφ, φy
}φ}2 and µ̃1 “ inf

φPVAzt0u
qApφq
}u}2

H
.

Since DompAq Ă VA and qApφq “ xAφ, φy for φ P DompAq, we have µ̃1 ď µ1. After
translation we can assume that µ1 ą 0. Then by definition of the form domain, DompAq
is dense in VA for the norm defined by qA, so we also have µ1 ď µ̃1. This gives the first
statement.
‚ Now assume that µ1 is an eigenvalue of A. Then for a corresponding eigenvector φ we
have

qApφq
}φ}2 “ xAφ, φy

}φ}2 “ µ1,

so µ̃1 is a minimum and φ is a minimizer. Conversely, assume that φ is a minimizer for µ̃1
with }φ} “ 1. Let ψ P DompAq. The map

Φ : t ÞÑ qApφ ` tψq
}φ ` tψ}2

H

is well defined for |t| small enough, it is smooth and it reaches its minimum at t “ 0. Thus
Φ1p0q “ 0, which implies that

Re qApφ, ψq “ µ̃1 Re xφ, ψy .

Since we can replace ψ by iψ, this gives

@ψ P DompAq, qApφ, ψq “ xµ̃1φ, ψy .

This proves that φ P DompAq and Aφ “ µ̃1φ. Then µ̃1 is an eigenvalue of A and φ is a
corresponding eigenvector.

Example 3.61. Let Ω be a bounded open set of Rd. We denote by H0 the Dirichlet Laplacian
on Ω (H0 “ ´∆, DompH0q “ H2pΩq X H1

0 pΩq). The form domain of H0 is H1
0 pΩq and the

corresponding quadratic form is qH0 : u ÞÑ }∇u}2
L2pΩq. We will see in Chapter 4 that H0 has

no essential spectrum. Then by Proposition 3.60 the first eigenvalue of H0 is given by

λ1pH0q “ inf
uPH1

0 pΩqzt0u
}∇u}2

L2pΩq
}u}2

L2pΩq
.

By the Poincaré inequality we have λ1pH0q ą 0.
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3.3 Additional topic: polar decomposition
Proposition 3.62 (Square root of a bounded non-negative operator). Let A P LpHq be
non-negative. There exists a unique non-negative bounded operator S such that S2 “ A.
Moreover, S commutes with A, and any operator which commutes with A also commutes
with S. We can write S “ ?

A.

Proof. ‚ Assume that the existence is proved when }A} ď 1. Then in general we can
multiply A by ε “ }A}´1, so that }εA} ď 1. Then we set S “ ε´ 1

2 Sε, where Sε is the square
root of εA. Then S2 “ ε´1εA “ A and, since Sε commutes with εA, S commutes with A.
‚ Now assume that }A} ď 1. We set B “ Id ´A. For φ P H we have

xBφ, φy “ }φ}2 ´ xAφ, φy ď }φ}2
.

We also have
xBφ, φy “ }φ}2 ´ xAφ, φy ě }φ}2 ´ }A} }u}2 ě 0.

Then by the Cauchy-Schwarz inequality we have for φ, ψ P H,

|xBφ, ψy| ď xBφ, φy 1
2 xBψ, ψy 1

2 ď }φ} }ψ} .

This proves that }B} ď 1. Now we use the power series for the function z ÞÑ ?
1 ´ z,

absolutely convergent 1 on Dp0, 1q:

@z P Dp0, 1q, ?
1 ´ z “ 1 ´

8ÿ

n“1
anzn, an “ p2nq!

p2n ´ 1qpn!q24n
.

Then we set
S “ 1 ´

8ÿ

n“1
anBn.

Then by Cauchy product for a power series we have S2 “ Id ´B “ A. Moreover S commute
with B and hence with A. Similarly, any operator which commutes with A commutes with
B and hence with S.
‚ Now we prove uniqueness. Assume that S 1 is another solution. In particular S and S 1
commute. If we set

T “ pS ´ S1qSpS ´ S1q and T 1 “ pS ´ S1qS1pS ´ S1q
We observe that

T ` T 1 “ pS ´ S1qpS ` S1qpS ´ S´q “ pS ´ S1qpS2 ´ S12q “ 0.

Since T and T 1 are non-negative, they are both 0 by Proposition ??. Then

pS ´ S1q4 “ pS ´ S1qpT ´ T 1q “ 0.

This implies that pS ´ S 1q2 “ 0 and finally S ´ S1 “ 0.

Definition 3.63. For A P LpHq we set |A| “ ?
A˚A.

This definition makes sense since A˚A is always a non-negative operator.

Definition 3.64. We say that U P LpHq is a partial isometry if for all φ P kerpUqK we have
}Uφ} “ }φ}.

1For x P r0, 1r we have
?

1 ´ x “ 1 ´
8ÿ

n“1
anxn.

Since all the coefficients are positive we have
8ÿ

n“1
an “ lim

xÑ1

8ÿ

n“1
anxn “ 1 ´ ?

1 ´ 1 “ 1 ă `8.

This proves that
ř8

n“1 an ă `8.
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Proposition 3.65. Let A P LpHq. There exists a unique partial isometry U such that
kerpUq “ kerpAq and

A “ U |A| .

Proof. ‚ Assume that U1 and U2 are solutions. We have U1 |A| “ U2 |A| so U1 “ U2 on
Ranp|A|q, and then on Ranp|A|q by continuity. On the other hand, on Ranp|A|qK “ kerp|A|q “
kerpAq (see Proposition 1.58) we have U1 “ U2 “ 0 so, finally, U1 “ U2.
‚ For φ P H we have }|A| φ} “ }Aφ}. Then if φ1, φ2 P H are such that |A| φ1 “ |A| φ2, we
also have Aφ1 “ Aφ2. Thus we can define U on Ranp|A|q by

U |A| φ “ Aφ.

This is a linear isometry from Ranp|A|q to RanpAq. It can be extended to a linear isometry
from Ranp|A|q to RanpAq. Then we extend U by 0 on Ranp|A|qK “ kerpAq. In particular,
kerpAq Ă kerpUq. On the other hand, since U is an isometry on kerpAqK, we can check that
kerpUq “ kerpAq. Then U is an isometry on kerpUqK, so this is a partial isometry.

3.4 Exercises
Exercise 3.1. Let Ω be an open subset of Rd. We consider on L2pΩq the operators H0 and
H which act as ´∆ on the domains DompH0q “ C8

0 pΩq and DompHq “ H2pΩq. Are H0 and
H symmetric operators ?

Exercise 3.2. Let Π P LpHq be a projection of H (Π2 “ Π). Prove that Π is an orthogonal
projection if and only if it is selfadjoint.

Exercise 3.3. Let H1 and H2 be two Hilbert spaces. Let U : H1 Ñ H2 be a unitary
operator. Let A1 be an operator on H1 and A2 an operator on H2. Assume that DompA2q “
UDompA1q and A2 “ UA1U˚. Prove that A1 is selfadjoint on H1 if and only if A2 is
selfadjoint on H2.

Exercise 3.4. Let A be a symmetric operator on the Hilbert space H. Assume that A is
not selfadjoint but RanpA ´ iq “ H or RanpA ` iq “ H. Prove that A has no selfadjoint
extension.

Exercise 3.5. Let m ą 0. We consider the Hilbert space H “ H1pRdq ˆ L2pRdq the
operator

W “
ˆ

0 1
∆ ´ m 0

˙

defined on the domain DompWq “ H2pRdq ˆ H1pRdq. Prove that W is skew-adjoint if H is
endowed with the Hilbert structure corresponding to the norm defined by

}pu, vq}2
H “ }∇u}2

L2pRdq ` m }u}2
L2pRdq ` }v}2

L2pRdq .

Exercise 3.6. Let A0 be the operator of Example 3.38.
1. What is the adjoint of A0 ?
2. Compute kerpA0̊ ´ zq for z P CzR.
3. For u P H2p0, 1q we set

Bu “

¨
˚̊
˝

up0q
u1p0q
up1q
u1p1q

˛
‹‹‚.

Prove that there exists a matrix M P M4pCq (to be explicited) such that an operator A is a
selfadjoint extension of A0 if and only if there exists a subspace F of C4 such that MF “ F K
and

A “ ´ d2

dx2 , DompAq “ ␣
u P H2p0, 1q : Bu P F

(
.

4. Give some examples of selfadjoint extensions of A0.
5. What is the Friedrichs extension AF of A0 ?
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Exercise 3.7. Give an example of an operator A and λ P C such that λ P σpAq but there is
no corresponding Weyl sequence.

Exercise 3.8. We consider the Laplacian H “ ´∆ on L2pRq, with domain H2pRq. Let
λ ą 0. Construct a sequence pφnq in H2pRq such that }φn} “ 1, }pH ´ λqφn} Ñ 0 and φn

goes weakly to 0 in L2pRq.
Exercise 3.9. Prove the following version of the Min-Max Theorem. Let A be a self-adjoint
operator on H. Assume that A is semi-bounded from below. For n P N˚ (with n ď dimpHq
if H is of finite dimension) we set

µnpAq “ sup
φ1,...,φn´1PH

inf
φPspanpφ1,...,φn´1qK

φPDompAqzt0u

xAφ, φyH
}φ}2

H
.

The sequence pµnqnPN˚ is non-decreasing and for n P N˚ one of the following statements
hold.

(i) µnpAq ă inf σesspAq and µn is the n-th eigenvalue of A counted with multiplicities,

(ii) µnpAq “ inf σesspAq.
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