Chapter 3

Selfadjoint operators

Let H be a Hilbert space.

3.1 Selfadjoint operators

3.1.1 Symmetric operators

Definition 3.1. Let A be an operator on H. We say that A is symmetric if

Vi, € Dom(A), (Ap, ), = {p, At),, . & FEx. 5.1

Remark 3.2. If A is symmetric then (Ag, ),, € R for all ¢ € Dom(A). The converse is also
true, as can be seen from the polarization formula

Vo, € Dom(A), 4(Ap,¥) = (A(p +¥), ¢ + ) = (Alp —¥), ¢ —¥)
+i{A(p + i), o + i) — i (A(p — i), — i)

Definition 3.3. Let A be a symmetric operator on H.
(i) We say that A is non-negative (and we write A = 0) if (Ap, @), = 0 for all p € Dom(A).

(ii) We say that A is semi-bounded from below if there exists v € R such that A—~ > 0 (we
can write A = ). Equivalently, (Ap, ), = H(pH,QH for all ¢ € Dom(A). In this case
we say that 7y is a lower bound for A.

Proposition 3.4. Let A be a symmetric and densely defined operator on H . Then A* is a
closed extension of A.

Proof. Let ¢ € Dom(A). For all ¢ € Dom(A) we have (A, ¥y = {p, Ap) so 1) € Dom(A*) and
A*p = Ap. This proves that A* is an extension of A. Moreover A* is closed by Proposition
1.60. O

Proposition 3.5. Let A be a symmetric operator on H. The eigenvalues of A (if any) are
real, and two eigenvectors of A associated to different eigenvalues are orthogonal.

Proof. e« Let A € C and assume that for some ¢ € Dom(A)\ {0} we have Ay = Ap. Then
A H<p||,2H = (A, p),, € R. This implies that A € R.

e Now let A\, u be two distinct eigenvalues of A. Let ¢ € ker(A — A) and ) € ker(A — pu).
Then

(1= N, 00qy = (b, )3 — (b, Mgy = (AY, ) — W, Ap)y, = 0.
Since pt — A # 0, this implies that (1, ¢),, = 0. O

Proposition 3.6. Let A be a non-negative and densely defined operator. Let ¢ € Dom(A)
such that (Ap, @), = 0. Then Ap = 0.
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Proof. Since A is non-negative, we can apply the Cauchy-Schwarz inequality to the sesquilin-
ear form (¢, ) — (A(, 1), on Dom(A). Then for all v € Dom(A) we have

[CAp, ¥y | < [CAP, 9y | [CAY, 1)y | = 0.
Since Dom(A) is dense in H, this proves that Ay = 0. O

Proposition 3.7. Let A be a symmetric operator on H.

(i) For z € C\R and v € Dom(A) we have
[(A = 2)ll3 = [Tm(2)] o] 4, -

(ii) Assume moreover that A = v for some v € R. Then for A < v and ¢ € Dom(A4) we
have

[(A=2)ely = (v = A) el -

Proof. Let ¢ € Dom(A).
e Let ze C\R, A = Re(z) and € = Im(z). We have

[(A=2)|” = (A= Ne|* + & ol + 2Re (A = N)p, —ieg).
Since
(A= N)p, —iep) = ie (Ap, ) — ieX [ € iR,
this gives
I(A=2)0l* = [(A=Nol* + > ol” = € |o]* - O

e Similarly, if A —~ > 0 then for A €] — o0, v[ we have

[(A =Nl = 1(A =7l + (v = X2 el + 207 — ) Re (A — ), 9D
> (7= A2 el

and the second statement follows.

3.1.2 Selfadjoint operators

Definition 3.8. An operator A on H is said to be selfadjoint if it is densely defined and
A* = A.

Definition 3.9. An operator A on H is said to be skew-adjoint if it is densely defined and
A¥ = —A.

Remark 3.10. An operator A is skew-adjoint if and only if ¢A is selfadjoint. Thus we only
discuss the properties of selfadjoint operators, and we can deduce similar properties for skew-
adjoint operators.

Remark 3.11. A bounded and symmetric operator is selfadjoint.

Ezample 3.12. o The Laplacian H = —A on L%(R%) (with domain Dom(H) = H?(R%))
is selfadjoint. The Laplacian Hy = —A with domain C{°(R?) is symmetric but not self-
adjoint (in particular C§°(R?) ¢ H?(R?) = Dom(H{)). However, Hy has a selfadjoint
extension (H).

Ezample 3.13. The Dirichlet and Neumann Laplacians on ]0, 1[ (introduced in Section 1.3.3)
are selfadjoint.

Example 3.14. The harmonic oscillator introduced in Section 2.1.2 is selfadjoint.

Remark 3.15. A selfadjoint operator is closed by Proposition 1.59.

Proposition 3.16. Let A be a selfadjoint operator on H. Then

Ran(A) = ker(A)*.
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Definition 3.17. Let A be a selfadjoint operator on H. Let F be a subspace of H. We say
that F is reducing for the operator A (or that it reduces A) if it is closed and the orthogonal
projection 1 on F satisfies ITA < AIl.

Remark 3.18. If F reduces A, then so does F*.

Proposition 3.19. Let A be a selfadjoint operator on H. Let F be a reducing subspace for
A. Then the restriction Ar of A on F is a selfadjoint operator on F.

Proof. For all p, ¢ € Dom(Ag) = Dom(A) n F we have

<AF507 1l)> = <AS03 7/)> = <§03 A¢> = <90a AF¢>7

so Af is symmetric. Let 1) € Dom(Af) = F. Let ¢ € Dom(A). We write ¢ = ¢ + ¢ with
oF € Dom(A) N F = Dom(Af) and ¢+ € Dom(A) n Ft. Since Apt € F+ < (), we have

<A8077/)>H = <AF<PFa7//>F = <90F, 7—51/)>F = <<P7AF1/’>7-[ .

This proves that ¢» € Dom(A*) = Dom(A), so 1y € Dom(A) n F = Dom(Af), and Afy =
A*1p = Ay = Apyp. This proves that Af < Af, and finally Af is selfadjoint by Proposition
3.4. O

Proposition 3.20. Let A be a selfadjoint operator on H. Then ker(A) is reducing for A.

Proof. Since A is closed, ker(A) is closed in #H. Let IT be the orthogonal projection on ker(A).
For all ¢ € Dom(A) we have Ap € Ran(A) < ker(A)*, so [TAp = 0. On the other hand we
have Il € ker(A) < Dom(A) and Allp = 0. This proves that ITA < ATI. O

Proposition 3.21. If A and B are two selfadjoint operators on H such that A B then
A=B.

Proof. We have Ac B=B* c A* =A,s0 A=B. O

3.1.3 A criterion for self-adjointness

Proposition 3.22. Let A be a symmetric and densely defined operator on H. Let z € C\R.
Then the following assertions are equivalent.

(i

) A is self-adjoint.

(ii) A is closed and z,Z € p(A).

(iii) A is closed and ker(A* — z) = ker(A* = {0}.
v)

(i

Proof. o (i) = (i#i). Assume that A is self-adjoint. In particular, A is closed. Moreover,
ker(A* — z) = ker(A — z) = {0} by Proposition 3.7. Similarly, ker(4* — z) = {0}.

e (i4i) = (iv). By Proposition 1.58 we have Ran(A — z) = ker(A* %)+ = {0}, so Ran(A—2)
is dense in H. On the other hand, (A — z) has closed range by Propositions 3.7 and 1.36, so
Ran(A — z) = H. Similarly, Ran(4 — z) = H.

e (i) = (i). We already know by Proposition 3.4 that A* is an extension of A. Let
» € Dom(A*). Since (A — 2) is surjective, there exists 1 € Dom(A) such that (A* — 2)p =
(A — 2)¢p = (A* — 2)3. By Proposition 1.58 we have ker(A* — z) = Ran(A — z)* = {0}, so
@ =1 € Dom(A). This proves that Dom(A4) = Dom(A*), and hence A = A*.

e (i1) = (iv) is clear.

o (7ii) — (iv) = (4i). A is closed by (4i7). By Proposition 3.7 we already know that A — z
is injective. It is surjective by (iv) so it is bijective and z € p(A). Similarly, Z € p(A). O

Ran(A — z) = Ran(A — z) = H.

The proof of the implication (iv) == (i) also holds if z € R. This gives the following
sufficient condition.

Corollary 3.23. Let A be a symmetric and densely defined operator on H. Assume that
there exists A € R such that Ran(A — X) = H. Then A is selfadjoint.
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3.1.4 Essentially selfadjoint operators

We have seen that if A is symmetric then A < A*. It may happen that A is not selfadjoint
because we have chosen the domain too small. Given a symmetric operator, the question is
then wether it has a selfadjoint extension.

We know from Proposition 3.4 that a densely defined and symmetric operator is always
closable, so the first try is to look at its closure.

Definition 3.24. Let A be a densely defined symmetric operator on H. We say that A is
essentially selfadjoint if its closure A is selfadjoint.

Proposition 3.25. Let A be a densely defined symmetric operator on H. Then A is essen-
tially selfadjoint if and only if A = A*.

Proof. ¢ By Proposition 1.60 we have A* = A* If Ais essentially selfadjoint, we also have
A = A, and hence A = A*,

e Conversely, assume that A = A*. By Proposition 1.60 again we have A** = A, so
A' = A=A O

We will see below that a symmetric operator may have many selfadjoint extensions.
However, when it is essentially selfadjoint, the extension is unique.

Proposition 3.26. Let A be a densely defined symmetric operator on H. If A is essentially
selfadjoint then A is the unique selfadjoint extension of A.

Proof. Let B be a selfadjoint extension of A. Since it is a closed extension of A, it is an
extension of A. Since B and A are selfadjoint, we have B = A by Proposition 3.21. O

Proposition 3.27. Let A be a densely defined symmetric operator on H. Let z € C\R. The
following assertions are equivalent.

(i) A is essentially selfadjoint ;
(ii) ker(A* — z) = ker(A* — %) = {0} ;

(iii) Ran(A —z) =Ran(A—2) =H.

Proof. e Assume that A is essentially selfadjoint. In particular, A is closable and A = Ax

by Proposition 1.60. By Proposition 3.22 applied to the selfadjoint operator A, we have
ker(A* — z) = ker(4* —z) = {0}.

e Conversely, assume that (ii) holds. Since A" < A* we have ker(z>i< —z) = ker(z* —Z) =
{0}. By Proposition 3.22, A is selfadjoint.

e Finally (ii) and (iii) are equivalent by Proposition 1.58. O

3.1.5 Examples of closed symmetric operators which are not essen-
tially selfadjoint

We consider on L?(0, 1) the operator A which acts as

d
A=i—
Zd:z:

on the domain
Dom(A) = H}(0,1).

Then A is closed (by Example 1.34) and symmetric: for u,v € HZ(0,1) we have by the
Green formula

(Au,v) 201y = ZJO o' (z)v(z) dz = i(u(1)v(1) — u(0)v(0)) — zJ w(z)v' (z) da

0
=u, AU>L2(0,1) ‘

Notice that for the boundary terms it was not necessary that both u and v vanish.
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Now we compute A*. Let v € Dom(A*). We have v € L?(0,1) and for all ¢ € C(]0, 1])
we have

J i¢’(m)@dx = (A9, U>L2(0,1) = (¢, A*U>L2(o,1) = f o(z)(A*v)(z) dz.
R R

This prove that in the sense of distributions we have v’ € L?(0,1) and
A%y =’
Conversely, if v € H'(0,1) then the same computation as above shows that

Vu € Dom(4), (i, U>L2(O,1) = {u, iv’>L2(071) ;

so v € Dom(A*) (and we recover A*v = 4v’). This proves that Dom(A*) = H(0,1) #
Dom(A). Thus A is not selfadjoint.

Notice that for z € C the function z — e~%* belongs to ker(A* — z). In particular,
ker(A* — z) # {0}. By Proposition 3.22, this confirms that A cannot be selfadjoint. It is not
even essentially selfadjoint. Moreover, for z € C we have by Proposition 1.58

Ran(A — 2) = ker(A* —2)* # H.

This proves that 0(A) = C.
Now the question is: does A have a selfadjoint extension ? The answer is: yes, many !
Assume that A is a selfadjoint extension of A. Then A = A* < A*. Let v € Dom(A)\Dom(A).

For all u € Dom(A) we have
0= <flu, vy —{u, flv> = i(u(1)v(1) — u(0)v(0)).

Assume that v(1) = 0. Since v is not in Dom(A) we have v(0) # 0. Then for all u € Dom(A)
we have u(0) = 0. This gives a contradiction since v(0) % 0. This proves that v(1) # 0. We

set @ =0(0)/v(1). Then for all u € Dom(A) we have
u(1) = au(0).

In particular we have v(1) = av(0). Since by definition we have v(0) = @v(1), this proves
that |a| = 1. This proves that there exists a € U such that Dom(A) < D,, where we have
set

Do ={ue H"(0,1) : u(l) = au(0)}.

For a € U we denote by A, the operator defined by A,u = v’ for v in Dom(A,) = D,.
In particular, A, is an extension of A and A* is an extension of A, for all .
We check that A, is selfadjoint. For u,v € Dom(A,) we have

(Aqu, vy = z'fR o (z)v(z) dz
= du(1)v(1) — u(0)v(0) — zj u(z)?v'(z) dz

R
il = 1)u(0)5(0) — i fR w(@)¥ (z) dz
= (u, Aqv).

Then A, is symmetric, and hence A¥ is an extension of A,. Now let v € Dom(A¥*). The
same computation with u € CL(]0,1[) shows that v € H*(0,1) and A*v = 4v’. Then for all
u € Dom(A4,) we have

0 = (Agu, vy — (u, AXvy = —iu(0)(av(1) — v(0)).

This proves that v(1) = av(0), so v € Dom(A,), and finally A* = A,.
All this proves that the operators A, for a € U are the selfadjoint extensions of A.
Moreover we have seen that if A is a selfadjoint extension of A then we have A ¢ A,
for some a € U, and hence A = A,. So finally, the operators A, for o € U are exactly the
selfadjoint extensions of A.
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Example 3.28. We consider the previous example but on L?(0, +00):

a=il

e Dom(A) = H} (0, +0).

With the same proof we see that A is symmetric with Dom(A4*) = H'(0, +o0). The difference
is that in this case A has no selfadjoint extension. Indeed, assume by contradiction that A is a
selfadjoint extension of A. We can check by direct computation that Ran(A +i) = L?(0, +0)
(or equivalently, that Ker(A* — i) = {0}), so A has no selfadjoint extension by Exercise 3.4.

3.1.6 Friedrichs extension

We have seen in the previous paragraph that a symmetric operator which is not selfadjoint
can have many selfadjoint extensions, and it is also possible that it does not have any.

In this paragraph we consider the case of lower semibounded symmetric operators and
choose in an abstract setting a selfadjoint extension. This ensures in particular that such an
operator has at least one selfadjoint extension.

We begin with the case where the symmetric operator is lower bounded by a positive
constant.

Proposition-Definition 3.29. Let A be a densely defined symmetric operator on H. As-
sume that there exists o > 0 such that A = a. We consider the quadratic form qo 4 associated

to A, defined on Dom(A) by

Vo e Dom(A), qa(p) = {(Ap,©)y .

This defines a norm on Dom(A) by

Vo € Dom(4), [¢l,, = Vaale).

The form domain Vs of A is then the set of limits in H of Cauchy sequences in Dom(A)
(endowed with the norm ||, ). In other words, a vector ¢ € H belongs to Va4 if and only if
there exists a sequence (¢n), oy @ Dom(A) such that

>0 and  |on — ¢y — 0.

n,m—00

lon — SDMHA

Then qa extends to a continuous and coercive (in the sense of Remark 1.64) quadratic form
QA on Vya, and V4 is a Hilbert space for the corresponding norm.

Proof. e The sesquilinear form associated to q4 is given by

Vo, € Dom(A), qa(p, 1) = (Ap, 1)y, .

It is staightforward to check that this is an inner product on Dom(A), and then |-[,, is the
corresponding norm.
o Let (¢n),cy be a sequence in Dom(A) such that

aa(en — ©m) 0 and H‘PvzHH — 0.

n,m—0o0

In particular, |l¢n|,, is bounded. Let ¢ > 0 and N € N such that for n,m > N we have
aa(pn — pm) < €2 Let n > N. For m > N we have

qa(®n) = 94(Pn, Pn — ©m) + (APn, Om)
qA(<Pn)%qA(SO7L - @m)% + <A§0na (pm>
5qA(¢n)% + <A50n7 Spm> .

N

N

Letting m go to infinity gives q4(on) < eqa(@n)? for all n > N. This proves that

qa(pn) —— 0.

n—o0
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o The set V4 is a subspace of H. Let ¢,¢ € V4. Let (pp), oy in Dom(A) be a sequence
such that qa(¢n — ¢m) — 0 and |, — ¢[l;; — 0. We similarly consider a sequence (¢,)
corresponding to ¥. For n,m € N we have

neN

A(‘Pna Yn — ’(/}m) + qA(‘pn - @mawm)

— 0.
n,Mm—>00

<q

This proves that q4(@n,¥y) has a limit, which we denote by Q4 (p, ). This limit does not
depend on the choice of the sequence (), y. Indeed, if gn is another sequence such that
qa(Pn — @m) — 0 and [, — ¢|l;; — 0, then by the second step we have qa(¢n — @n) — 0.
Similarly, the definition of Q4 (¢, ) does not depend on the choice of the sequence (¢,,)

For p € V4 we set
lely, = VQalp).

e We can check that the map (p,9) — Qa(p, ) defines an inner product on V4. Let
@ € V4 and let (¢,,),y be a sequence in Dom(A) as above. Let ¢ > 0 and N € N such that
qa(pn —m) < e foralln,m > N. Let k = N. Then the sequence (¢x — ©n)nen is a Cauchy
sequence in (Dom(A), [-[,,) which goes to ¢y — ¢ in H, so

neN*

Qalpr — ) = Jim aaler — ¢n) <e.

This proves that
qaler — ) —— 0.

k—00
In particular, Dom(A4) is dense in (Va, [-[y,,)-
e It remains to check that V4 is complete. Let (y,), oy be a Cauchy sequence in V4. It is
also a Cauchy sequence in #, so it has a limit ¢ € H. For all n € N there exists 1,, € Dom(A)
such that |¢n — ¥ny,, < 27" Then (¢n),y is a Cauchy sequence in (Dom(A), |-[,, ). Thus,
by definition, ¢ € V4, and moreover we have ||[¢, — |, — 0. This gives |, — ¢, — 0
and completes the proof.

Alternatively, we can define V4 as the completion of (Dom(A), ||-|,,) and observe that
V4 can be identified with a subspace of H.

Ezample 3.30. We consider on L?(0,1) the operator A = —02? + 1 with domain Dom(A) =
C§(]0,1[). For all uw e CF(]0, 1[) we have

2 2
qA(ua U) = <—’U//,U/>L2(O71) + ||uHL2(O,1) = HUHHl(O,l) .

A function w in L?(0, 1) is the limit in L? of a Cauchy sequence in C§°(]0, 1[) for the H!-norm
if and only if u belongs to H'(0,1). Then the form domain of A is H}(0,1).

Proposition 3.31. Let V be a Hilbert space densely and continuously embedded in H. Let q
be a continuous sesquilinear form on V such that, for some o > 0,

VoeV, a(p,) = alel} (3.1)

(q is coercive in the usual sense, see Remark 1.64). Let A be the operator given by the
representation theorem (Theorem 1.71). Then A is selfadjoint on H, A = «a and V is the
form domain of A.

Proof. For all ¢ € Dom(A) we have (Ag, ) = q(p, ¢) by definition of A. By continuity of q
and (3.1), the norm ¢ — +/q(¢, ¢) is equivalent to the norm |-|,,. Since Dom(A) is dense in
V by Theorem 1.71, the closure of Dom(A) for |-|,, is V. Finally, as for Remark 3.2, since
the quadratic form takes real values it is symmetric. Then we deduce that A is selfajdjoint
by Theorem 1.71. O

Definition 3.32. Let A be a densely defined symmetric operator. Assume that A is lower
bounded by a positive constant and let V4 be the form domain of A. Then the Friedrichs
extension Ap of A is the operator associated to the quadratic form Qa4 by the representation
theorem (Theorem 1.71).
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Ezxample 3.33. Let A be the operator of Example 3.30. Its Friedrichs extension is the operator
Ap = —0? + 1 with domain Dom(Ar) = H%(0,1) n H(0,1).

Remark 3.34. We use the notation of Definition 3.32. Let T" be a selfadjoint extension of A.
Then the form domain Vr of T' contains the form domain V4 of Ap (which is also the form
domain of A). Then, amongst all the selfadjoint extensions of A, A has the smallest form
domain.

Now we can define the Friedrichs extension of a general lower bounded operator.

Proposition-Definition 3.35. Let A be a densely defined and lower bounded symmetric
operator. Let § € R such that Ag = A+ S (with domain Dom(Ag) = Dom(A)) is lower
bounded by a positive constant.

(i) The form domain of A is defined as the form domain of Ag.

(ii) The Friedrichs extension of A is Ap = Ag p— 3, where Ag g is the Friedrichs extension
Of A@.

These definitions do not depend on the choice of 3.

Remark 3.36. If A is selfadjoint then Ap = A.

Ezample 3.37. The form domain of the Dirichlet Laplacian on ]0,1[ (see Example 1.76) is
H}(0,1) and the form domain of the Neumann Laplacian (see Example 1.75) is H'(0,1).

Ezample 3.38. We consider on L?(0,1) the operator A = —0? with domain Dom(A) =
C§(]0,1[). Then the form domain of A is H}(0,1) and its Friedrichs extension is the Dirichlet
Laplacian on |0, 1.

3.1.7 Relatively bounded perturbations of self-adjoint operators
Definition 3.39. Let A and T be operators on E. We say that T is A-bounded if Dom(A) c
Dom(T') and there exist a,b = 0 such that

Vi e Dom(4), |Tele < alAple +blele- (3.2)
The A-bound of T is the infimum of all a = 0 for which there exists b such that (3.2) holds.

Remark 3.40. T is A-bounded if and only if Dom(A) € Dom(T) and T is a continuous map
from (Dom(A), |[pom(a4)) to E.

Remark 3.41. If T is bounded then it is A bounded with A-bound 0 (we can take o = 0 and
b= HTH£(E) in (3.2)).

Remark 3.42. The A-bound of T is defined as the infimum of all possible a in (3.2). This
infinimum is not necessarily atteined. In particular, T' can be unbounded but A-bounded
with A-bound 0. For example, if T is a symmetric operator on H then T is T>-bounded with
bound 0. Indeed,

Dom(T?) = {p € Dom(T) : T € Dom(T)} = Dom(T)
and for ¢ > 0 and ¢ € Dom(7?) we have
0 <72 - )| = &* |[T2%|" + i) — 26 | Tl
SO 9 9
- 1
ITel® < 5 7% + S llel® < 7 (| 7%0] + 7 el)”.

Thus (3.2) holds with a = ¢/4 and b = 1/(4e) for all ¢ > 0 and T is T?-bounded with
T?-bound 0 (but (3.2) cannot hold with a = 0 if T" is not bounded).

We give examples of operators which are relatively bounded with respect to the usual
Laplacian on R%. We denote by Hy the Laplacian —A on L?(R9), with domain H?(R?).
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Ezample 3.43. Let 8,V € L*(RY) and j € [1,d]. Then 8(z)d; and V are Ho-bounded with
Hy-bound equal to 0. Indeed for u € H?%(R?),

Jou1? = @y 2y = =,y < (= < gl ] < < Houl? + L2
Theorem 3.44 (Kato-Rellich). Let A be a selfadjoint operator on the Hilbert space H. Let
T be a symmetric operator on H. Assume that T is A-bounded with bound smaller than 1.

(i) The operator A+ T, defined on the domain Dom(A + T') = Dom(A), is selfadjoint.
(ii) Let D < Dom(A). If A is essentially selfadjoint on D, then so is A+ T.

Proof. The operator A+ T is symmetric as the sum of two symmetric operators. There exist
€ [0,1[ and b = 0 such that (3.2) holds. Let 5 > 0. We recall that for ¢ € Dom(A) we have

I(A=iB)el” = |Ae|® + 82 ¢,

S0
ITel < alAp| +blel < (a+b87") [(A—iB)e].
Let ¢ € H. Applied with ¢ = (A — i)~ 19 € Dom(A), this inequality gives

|T(A—ip) g < (a+b871) o]

Assume that |8] > t2-. Then S = T(A — i)' is bounded with bound smaller than 1, so

(1 +5) has a bounded inverse on H. We deduce that
Ran(A + T — i) = Ran((1 + S)(A —if)) =

We similarly prove that Ran(A + T + i8) = H. By Proposition 3.22, this proves that A + T
is selfadjoint. O

Proposition 3.45. Assume that d < 3. Let V be a potential (Borel function) on R?. We
assume that we can write V.= Vi + Vi, where Vo € L*(R?) and Vo, € L(RY). Then
the Schrédinger operator H = Hy + V is selfadjoint on L*(R?) with domain Dom(H) =
Dom(Hy) = H?(R?).

Proof. Let u e H?(R?). For ¢ > 0 we have

~ 2 2\—1 ~
[l ey < Vil y < 142167, 0422 1ePya

< Ce(&® [ Aull o gay + [l 2 ray )

—¢kJLWHﬁ)

[Vul Lz < V2l [wl o + Vool Lo 0l 2

_d _d
<eTECLVal [Aul e + (720 Vel o + [Vicl oo ) Jul 2 -

L2(R4)

where

da
We have C, =7 2(", so

Applied with € > 0 small enough this proves that V is Hgo-bounded with Hy-bound smaller
than 1. We conclude with Theorem 3.44. O

Remark 3.46. We can prove that the same conclusion holds for V e LP(R?) + L*®(R?) for
p>2ifd=4andpe[ [1fd>5

Ezxample 3.47. Let d <3 and a € [ [ Then for any c € R the operator

’d4

H=Hy+ La
||
is well-defined and selfadjoint on the domain Dom(H) = H?(R?).
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3.2 Spectrum of selfadjoint operators

3.2.1 Basic properties

Proposition 3.48. Let A be a selfadjoint operator on H. Then o(A) c R, 0(A) # & and

for z € p(A) we have
1

[(A=2)" p 5 = dist(z,0(A))’

(3.3)
Proof. The first statement follows from Proposition 3.22. Let z € p(A). By Proposition 1.61
we have

(A=97) = (A" =27 = (4-2)7"

Since (A — 2)7! and (A — 2)~! commute, (A — 2)~! is a bounded normal operator on H.
Then, by Propositions 2.31 and 2.11,
= 1

= sup |u[= sup [A-2z

A—z . —
I peo((A—z)-1) Aeo(A) infye,(a) |X— 2|

)71H£(H)

The proposition follows. O
Proposition 3.49. Let A be a selfadjoint operator on H and X\ € R.

(i) Let € > 0. If there exists ¢ € Dom(A)\{0} such that [(A— N[y < €|ply then
og(A)n[A—e,X+e] # .

(ii) X € o(A) if and only if there exists a sequence (¢n)nen in Dom(A) such that |, |,, = 1
for allm e N and
(A= XNenlzy ——0.

n——+0o0

Such a sequence is called a Weyl sequence.

Proof. e Assume that [p —e,p + €] < p(A). Since p(A) is open there exists £; > € such
that [p —e1,p + €1] < p(A4). By Proposition 3.48 we have H(A - A < &7t Then for

© € Dom(A)\ {0} we have

)_1H£(’H)

ol < 1 = 2 lea - Vel < LAZ2EL

50 |(A = XNg| = e1 |l > €|e|. This prove the first statement by contraposition.
o If a Weyl sequence exists then A\ € o(A) by Proposition 2.7 (we can also use the first
statement). Now assume that there exists ¢ > 0 such that

Vo e Dom(A), (A= Ngly = cloly, -

Then A — ) is injective with closed range by Proposition 2.9. On the other hand, by Propo-
sition 1.58,
Ran(A — \) = ker((A — \)*)* = ker(A — \)' = H.

This proves that A € p(4). O

3.2.2 Discrete and essential spectra

We recall that for a general operator we have defined the discrete spectrum as the set of
isolated eigenvalues with finite (algebraic) multiplicities (see Definition 2.45).

Definition 3.50. Let A be a selfadjoint operator. We define the essential spectrum by
Uess(A) = C\Crdisc(A)~

Proposition 3.51. Let A be a selfadjoint operator on H. Assume that X\ is an isolated
element of o(A). Let Iy be the corresponding Riesz projection. Then IIy is the orthogonal
projection on ker(A — X). In particular, A is an eigenvalue of A and if dim(ker(A —)\)) < oo,
then its geometric and algebraic multiplicities coincide.
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Proof. Let r > 0 be so small that o(A) n D(X,2r) = {\}. We have

1
Iy = —— A—¢)7hdc.
2im cw)( )
Then )
I = — A= td¢=1

so IT, is an orthogonal projection. By Proposition 2.41 we have ker(A — \) < Ran(IL}).
For ¢ € H we have

(A—)\)Hga:—% o )(A—A)(A—C)’lwdé
} : . (3.4)
= (p+(C=NA=0)"p)dc.
27 Jear

The map ¢ — (¢ — A)(A — ¢)7! is analytic in D(\,7)\{\}. By (3.3) it is also bounded.
Thus it extends to an analytic function on D(A,r) and (3.4) vanishes. This proves that
Ran(II) < ker(A — A), so Ran(Il) = ker(A — A). Finally, Ran(II) cannot be {0} (since A
belongs to the spectrum of the restriction of A to Ran(II)), so A is an eigenvalue of A. [

Corollary 3.52. Let A be a selfadjoint operator on H and let A be an isolated element
of 0(A). Let G be a reducing subspace for A and let Ag be the restriction of A to G. If
G < ker(A — \)* then o(Ag) < o(A)\ {\}.

Proof. By Proposition 2.18 we have 0(Ag) < o(A). Moreover, Ag is a selfadjoint operator by
Proposition 3.19 and A is not an eigenvalue of Ag since ker(Ag — A) = ker(A — \) n G = {0}.
By Proposition 3.51, A € p(Ag). O

Lemma 3.53. Let A be a selfadjoint operator on H. Let A € o(A). Assume that ker(A — \)
has finite dimension and that there exists ¢ > 0 such that

Yo eker(A— )%, (A= Vel =cl] - (3.5)
Then A is isolated in o(A).

Proof. Let F = ker(A — \) and G = F-. Then F and G are closed. Let IT be the orthogonal
projection on F. Let Ar and Ag be the restrictions of A to F and G. We have o(Ar) = {A}.
On the other hand, Ag is a selfadjoint operator on G such that ker(Ag — A) = {0}. Then
Ran(Ag — \) = ker(Ag — A\)* = G. By (3.5) and Proposition 1.36, Ran(Ag — \) is closed so
X € p(Ag). Since p(Ag) is open, there exists € > 0 such that |\ — e, A + ¢[c p(Ag). Then,
by Proposition 2.18, | — e, A + e[\ {A} < p(AF) N p(Ac) = p(A4). O

Proposition 3.54 (Weyl Criterion). Let A be a selfadjoint operator on H and A € R. The
following assertions are equivalent.

(i) A€ 0ess(4).

(ii) There exists a sequence (©n), oy @ Dom(A) such that [pn|,, =1 for alln e N, @, goes
weakly to 0 and ||(A — N)¢n|4 — 0 as n — 0.

(ili) There exists a sequence (¢n), oy @ Dom(A) such that |@nll,, =1 for alln e N, (,)
has no convergent subsequence in H and |[(A — X)¢n|s — 0 as n — 0.

neN

Proof. We set F = ker(A — \) and G = ker(A — \)~. We denote by Ag the restriction of A
to G.

e Assume that A € gess(A). If dim(F) = oo then we can construct an orthonormal sequence
(¢n)pey in F, and (ii) is satisfied. Now assume that dim(F) < oo. By Lemma 3.53, (3.5)

cannot hold, so there exists a normalized sequence (¢n,),,cy in G such that [|(A — )¢, — 0
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as n — . For ¢ € F we have (¢, p,,» = 0 for all n € N. It remains to prove that {1, v,> — 0
for all ¢ € G. It is enough to prove this for ¢ in a dense subset of G. We have

Ran(Ag — ) = ker(Ag — A) = {0},

so it is enough to consider ¢ € Ran(Ag — A). In this case we consider ¢ € Dom(Ag) such that
= (Ag — A)¢ and write

W, on) = (A = A)C on) = (C, (A6 = A)pn) ———0.
This proves that ¢, — 0 as n — 0. Thus (i) implies (ii).
e A normalized sequence which goes weakly to 0 cannot have a convergent subsequence, so
(i) = (iii).
e Assume that there exists a sequence (¢y),oy as in (ili). By Proposition 3.49 we have
A € o(A). Assume by contradiction that A € ogisc(A). For n € N we write ¢, = b, + ¥;-
where ¢, € F and ¢;- € G n Dom(A). We have

(Ae = Nt = (A= Ny = (A= N —— 0.
Since A € p(Ag) by Corollary 3.52, we deduce that 1 — 0 as n — oo. In particular,
[n —¥nly — 0. But the sequence (¢,),,oy is in F which has finite dimension, so it has a

convergent subsequence. This gives a contradiction and proves that A € gess(A4). Then (iii)
implies (i), and the proof is complete. O

Proposition 3.55. Let A be a selfadjoint operator on H and A € oess(A). Let N € N* and
€ > 0. There exists an orthonormal family (pn)1<n<n Such that

Vne[1,N], [(A—=Nenly <e.

Proof. o If X is isolated, it is an eigenvalue of infinite multiplicity, so we can consider an
orthonormal family (¢,)1<n<n in ker(A — X).

e Now assume that A is not isolated. We fix distinct elements A1, ..., Ay of o(A) such that,
for all n € [1, N,

Mo — A < = (3.6)

N ™

Let n €]0,1]. Let n € [1, N]. By Proposition 3.54 we can consider ¢, € Dom(A) such that
[4nl3, = 1 and
H (A - )‘n)d}nH’H <7

We set @1 = 1 and for n € [2, N] we define by induction
n—1
On = n — Z <<ﬁk,d)n>;{ Pk
k=1
e We prove by induction on n € [1, N] that there exists a constant C,, > 0 independant of
n €]0,1] such that

[(A=An)@nl < Cnn and  [|gn] — 1] < Cun. 3.7)

This is clear for n = 1. Now assume that this holds up to order n — 1 for some n € [2, N].
For k € [1,n — 1] we have

(/\n - )\k) <§5k7 wn> = <(A - /\k)¢ka ¢n> - <¢k7 (A - )\n)wn>7
so, for some ékm > 0,

Crn + (14 Cyn)n
|)‘k - )‘n|

< C’k,nn-

Krs )l <

Then
n—1
Bl = 1 < [@n = ¢all < D Kk, ¥n)l @5
k=1
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and

n—1

1A = An)@nll < 1A = Xa)tnll + D KBk ¥l (1A = )@l + M = Anl |&])-

k=1

We deduce (3.7). If n is chosen small enough then for n € [1, N] we can set

= (pn
|l

Pn

Then there exists C' > 0 such that for n € [1, N] and 7 €]0, 1] we have

It remains to chose n smaller that £/(2C') and conclude with (3.6). O

3.2.3 Min-max principle
We consider on H a self-adjoint operator A bounded from below.

Proposition 3.56. We have

A
mino(A) = i AeDn (3.8)
peDom(AN0} ]2,

Proof. We denote by py the right-hand side of (3.8).
e Let A€ o(A). By the Weyl criterion (Proposition 3.54) there exists a sequence (,,) such
that ||¢n|| =1 for all n and [[(A — X)¢,| — 0. This implies in particular

w1 < {Apn, o) N

so p1 < min(o(A)).
e Now assume by contradiction that u; € p(A). We set R = (A — u1)~t. For 0,1 € H we
set

This defines a continuous sesquilinear form q on H. For n € H and ¢ = Rn € Dom(A) we
have

Q(Ua 77) = <77[}a (A - ﬂ1)1/1> = 07

so q is a non-negative. Let (¢,,) be a sequence in Dom(A) such that [¢,[,, =1 for all n e N
and

(Atpy, ) o M

For n € N we set 0, = (A — u1)¥,. Then by the Cauchy-Schwarz inequality we have

1= vl = (. ¥n)
< (s ) 2Q(Vn, ) 2
= <1/}n, (A - N1)¢n>% <R¢n, wn>%

—> 0.

n—+00
This gives a contradiction and proves that p; € o(A4), and in particular p; > min(o(A4)).
The conclusion follows. O

Theorem 3.57 (Min-max Theorem). Let A be a lower-bounded self-adjoint operator on H.
We denote by (Ap)gen k< with N € N U {0} the non-decreasing sequence of eigenvalues
(counted with multiplicities) smaller than inf oess(A). For n € N* (with n < dim(H) if H is
of finite dimension) we have

in
Febom(4) ko) el inf oess(4) if n > N.
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Proof. For n € N* we set
A
= < so,f%,l.

cbom

e ) er\(0} el
e Weset NN =[1,N]if Ne Nand N = Nif N = +o0. We consider an orthonormal
family (ok)ken such that ¢, € Dom(A) and Ap, = Ay for all k € N. For n € N we set
F,. = span(¢1,...,0n). We also set n = inf oess(A).
e Let n € N. Let ¢ € F, such that [|¢] = 1. We can write ¢ = >_, appr with
3%, lewl’ = 1. Then we have

(Ap ) = D7 lowl* M < A,y
k=1

SO Ln < Ap.

e By Corollary 3.52, the restriction of A to F- , is selfadjoint and its spectrum is included
in [A,, +o0[. Let F be a subspace of Dom(A) of dimension n. There exists ¢ € FnF:_| with
[l = 1. For such a ¢ we have (A, ¢) = A, by Proposition 3.56. This proves that g, = A,.
Then p, = A\, and the infimum is a minimum.

e Now assume that N is finite and consider n > N. As in the previous step, we see that
tn = 1. Then let € > 0. Since 1) € gess(A) there exists by Proposition 3.55 an orthonormal
family (¢r)1<k<n of vectors in Dom(A) such that

£

N

Let 1 € F = span(41, ..., ;) such that || = 1. We write ¢ = >;'_, axty, with X))/, lag|® =
1. Then we have

Vke[Ln], |kl =1 and (A —=n)¢rlsy <

(A, )y <+ [(A=n)y|

<0+ ) lanl (A =)l
k=1

2

<n+<i|m—mmﬁ>
k=1

<n+e.

This proves that
pn < sup (Ap @)y <n+e.
YeF
kuﬂzl
Finally u,, = 7. O

Remark 3.58. o Let F be a finite dimensional subspace of Dom(A). Since the unit sphere
Sk of F is compact and the map ¢ — (A, p) is continuous on Sg, we have

(Ap, p (Ap,p
72%{ = sup (Ap, p);, = max{Ap, p), = max 72%{
per\{0}  [elln peSe eSE P00} 3,

o Let n e N. We have seen that
Ap, @ Ap, o
su 7< ’ >” =\, = su 7< ! >H

inf 5 n 2
FeDom(4) ger\fo} o], G B
dim(F)=n

so the infinimum is a minimum.

e When n > N, the infimum is not necessarily reached. Consider for instance the usual
Laplacian Hy on R%. We have min o(Hy) = 0ess(Ho) = 0 and there is no ¢ € H?(R?)
such that (Hop, p) = 0.

This Min-max Theorem has an equivalent Max-min version. See Exercise 3.9.
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Corollary 3.59. Let a < inf oess(A). Assume that there exists a subspace V' of Dom(A) of
dimension n € N* such that

2
VoeV, (Ap )y <alely-
Then A has at least n eigenvalues (counted with multiplicities) not greater that a.

Proposition 3.60. Let A be a lower bounded selfadjoint operator A on H. Let q4 be the
corresponding quadratic form and let Va be the form domain of A (see Definition 3.29).

(i) We have
qa(p)
peVa\(0} |3,

(3.9)

mino(A) =

(ii) The right-hand side of (3.9) is a minimum if and only if mino(A) is an eigenvalue,
and in this case the minimizers are the eigenvectors corresponding to the eigenvalue
mino(A).

Proof. ¢ We set

qa(p)

A
1 =mino(A) = A0 5.
PeVa\{o} [lul3,

 eeDom(AN (0} |

and fi; =

Since Dom(A4) < V4 and qa(p) = (Ap,p) for ¢ € Dom(A), we have i1 < py. After
translation we can assume that gy > 0. Then by definition of the form domain, Dom(A)
is dense in V4 for the norm defined by q4, so we also have p; < fi;. This gives the first
statement.

e Now assume that p; is an eigenvalue of A. Then for a corresponding eigenvector ¢ we
have

aale) _ Ape)
Il el

so fi1 is a minimum and ¢ is a minimizer. Conversely, assume that ¢ is a minimizer for fi;

with |¢| = 1. Let ¢ € Dom(A). The map
¢, daly +10)
I + 113

is well defined for |¢| small enough, it is smooth and it reaches its minimum at ¢ = 0. Thus
®’(0) = 0, which implies that

Reqa(p,v) = i1 Re{p,¢).

Since we can replace ¥ by i, this gives

Vi) € Dom(A), qalp, ) = (e, ).

This proves that ¢ € Dom(A) and Ap = fi;p. Then ji; is an eigenvalue of A and ¢ is a
corresponding eigenvector. O

Example 3.61. Let Q be a bounded open set of R?. We denote by Hy the Dirichlet Laplacian
on Q (Hy = —A, Dom(Hy) = H?(2) n H}(2)). The form domain of Hy is H}(£2) and the
corresponding quadratic form is qg, : u — HVuH%Z(Q). We will see in Chapter 4 that Hy has
no essential spectrum. Then by Proposition 3.60 the first eigenvalue of Hy is given by

Vul?
) IVl o)

in oz
uweHY @\ [u72 (0

By the Poincaré inequality we have A\;(Hy) > 0.
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3.3 Additional topic: polar decomposition

Proposition 3.62 (Square root of a bounded non-negative operator). Let A € L(H) be
non-negative. There exists a unique non-negative bounded operator S such that S? = A.
Moreover, S commutes with A, and any operator which commutes with A also commutes
with S. We can write S = +/A.

Proof. e Assume that the existence is proved when |A| < 1. Then in general we can
multiply A by ¢ = |A| ™", so that |eA| < 1. Then we set S = e~25,, where S. is the square
root of eA. Then S? = e 'eA = A and, since S, commutes with ¢4, S commutes with A.

e Now assume that |A| < 1. We set B =Id —A. For ¢ € H we have

(Be, 9y = llol” — (Ap, o) < |ol”.
We also have , , ,
(B, ) = llol” —CAp, ) = llol™ — | Al [ul” = 0.
Then by the Cauchy-Schwarz inequality we have for ¢, € H,
1 1
KB, )| < (Byp,p)* (B, ¥)* <] ]

This proves that ||B|| < 1. Now we use the power series for the function z +— /1 -z,
absolutely convergent ' on D(0,1):

o0
V2eD(0,1), VI-z=1-=) an2", an= i
n=1

Then we set

o0
S=1-— Z anB™.
n=1

Then by Cauchy product for a power series we have S? = Id —B = A. Moreover S commute
with B and hence with A. Similarly, any operator which commutes with A commutes with
B and hence with S.

e Now we prove uniqueness. Assume that S’ is another solution. In particular S and S’
commute. If we set

T=(S-95)5(S—-95") and T =(S-95)5(S-9")
We observe that
T+T =(S—8)(S+85)S~5-)=(S—9)(5*—- 8% =0.
Since T and T” are non-negative, they are both 0 by Proposition ??. Then
(S-S =(S—-8)NT-T)=0.
This implies that (S — S”)? = 0 and finally S — S" = 0. O
Definition 3.63. For A € L(H) we set |A] = VA*A.

This definition makes sense since A* A is always a non-negative operator.

Definition 3.64. We say that U € L(H) is a partial isometry if for all ¢ € ker(U)* we have
1Tl = llel.-

IFor x € [0, 1[ we have

o0
Vi—-z=1-— Z anz™.
n=1

Since all the coefficients are positive we have

0
Z an = lim

1 rz—1

o0
Zanz":17«/171:1<+oo.
=1

This proves that Zle an < +00.
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Proposition 3.65. Let A € L(H). There exists a unique partial isometry U such that
ker(U) = ker(A) and
A=U|Al.

Proof. e Assume that U; and Us are solutions. We have Uy |A| = Uy |A| so Uy = Uy on

Ran(]A4]), and then on Ran(]A|) by continuity. On the other hand, on Ran(|A|)l = ker(|A]) =
ker(A) (see Proposition 1.58) we have Uy = Us = 0 so, finally, Uy = Us.

e For ¢ € H we have |||A]| ¢| = |Ap|l. Then if @1, p2 € H are such that |A| p1 = |A| @2, we
also have Ap; = Aps. Thus we can define U on Ran(]A]) by

U|Alp = Agp.

This is a linear isometry from Ran(|A|) to Ran(A). It can be extended to a linear isometry
—
from Ran(]A]) to Ran(A). Then we extend U by 0 on Ran(|A|)” = ker(A). In particular,

ker(A) < ker(U). On the other hand, since U is an isometry on ker(A)L, we can check that
ker(U) = ker(A). Then U is an isometry on ker(U)*, so this is a partial isometry. O

3.4 Exercises

Ezercise 3.1. Let Q be an open subset of R?. We consider on L2((2) the operators Hy and
H which act as —A on the domains Dom(Hy) = C(Q2) and Dom(H) = H%(Q). Are Hy and
H symmetric operators ?

Ezercise 3.2. Let Il € L(H) be a projection of H (II? = II). Prove that I is an orthogonal
projection if and only if it is selfadjoint.

Ezxercise 3.3. Let H; and H, be two Hilbert spaces. Let U : Hi — Hz be a unitary
operator. Let A; be an operator on H; and As an operator on Ha. Assume that Dom(A4y) =
UDom(A;) and Ay = UA;U*. Prove that A; is selfadjoint on H; if and only if A, is
selfadjoint on Hs.

Ezxercise 3.4. Let A be a symmetric operator on the Hilbert space H. Assume that A is
not selfadjoint but Ran(A — i) = H or Ran(A + i) = H. Prove that A has no selfadjoint
extension.

Ezercise 3.5. Let m > 0. We consider the Hilbert space /# = H'(R?) x L%(R%) the

operator
0 1
W= <A —m 0)

defined on the domain Dom(W) = H?(R?) x H'(R?). Prove that W is skew-adjoint if . is
endowed with the Hilbert structure corresponding to the norm defined by

2 2 2 2
I(w, )5 = IVulp2ay + mlulp2gay + [0z gay -

Ezxercise 3.6. Let Ay be the operator of Example 3.38.
1. What is the adjoint of Ag ?

2. Compute ker(A§ — z) for z € C\R.

3.For ue H?(0,1) we set

Bu =

Prove that there exists a matrix M € M4(C) (to be explicited) such that an operator A is a
selfadjoint extension of Ay if and only if there exists a subspace F' of C* such that M F = F*
and
A @ Dom(A 2 :
= om(A) = {ue H*(0,1) : Bue F}.
4. Give some examples of selfadjoint extensions of Ajg.
5. What is the Friedrichs extension Ap of Ag 7
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Ezxercise 3.7. Give an example of an operator A and A € C such that A € 0(A) but there is
no corresponding Weyl sequence.

Ezercise 3.8. We consider the Laplacian H = —A on L*(R), with domain H?(R). Let
A > 0. Construct a sequence (p,) in H2(R) such that |¢,| = 1, |(H — A)¢,| — 0 and ¢,
goes weakly to 0 in L?(R).

Ezxercise 3.9. Prove the following version of the Min-Max Theorem. Let A be a self-adjoint
operator on H. Assume that A is semi-bounded from below. For n € N* (with n < dim(H)
if H is of finite dimension) we set

A
wn(A) = sup inf %
P11 pr—1EH pESPAN(P1 ... on_1)" H‘PHH
peDom(A)\{0}

The sequence (n)nen+ is non-decreasing and for n € N* one of the following statements
hold.

(i) pn(A) < infoes(A) and py, is the n-th eigenvalue of A counted with multiplicities,
(i) pn(A) = inf oess(A).
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