Chapter 2

Spectrum - Resolvent

2.1 Spectrum - Resolvent Set - Resolvent

Let E be a Banach space.

2.1.1 Definitions and first properties

Definition 2.1. Let A be an operator on E.

- (i) The resolvent set $\rho(A)$ of A is the set of $z \in \mathbb{C}$ such that $(A z) = (A z \operatorname{Id}_{\mathsf{E}})$ is (boundedly) invertible (see Definition 1.23).
- (ii) The spectrum $\sigma(A)$ of A is the complementary set of $\rho(A)$ in \mathbb{C} .

Definition 2.2. Let A be an operator on E.

- (i) We say that λ ∈ C is an eigenvalue of A if there exists φ ∈ Dom(A)\{0} such that Aφ = λφ (in other words, (A − λ) is not injective).
- (ii) Let $\lambda \in \mathbb{C}$ be an eigenvalue of A. A vector $\varphi \in \text{Dom}(A) \setminus \{0\}$ such that $A\varphi = \lambda \varphi$ is called an eigenvector of A associated with λ , and ker $(A - \lambda)$ is the corresponding eigenspace.
- (iii) The geometric multiplicity of λ is the dimension of ker $(A \lambda)$.
- (iv) We denote by $\sigma_{p}(A)$ the set of eigenvalues of A.

Remark 2.3. We know that if E is of finite dimension then $\sigma(A) = \sigma_p(A)$. However, in general we always have $\sigma_p(A) \subset \sigma(A)$, but the inclusion can be strict.

Example 2.4. We consider the multiplication operator M_w defined in Example 1.12. Let $\lambda \in \mathbb{C}$. Notice that $M_w - \lambda = M_{w-\lambda}$. Then λ is an eigenvalue of M_w is and only if

$$\mathsf{Leb}\left(\{x \in \Omega : w(x) = \lambda\}\right) > 0,$$

and λ belongs to $\sigma(M_w)$ if and only if for all $\varepsilon > 0$ we have

$$\mathsf{Leb}\left(\{x\in\Omega\,:\,|w(x)-\lambda|\leqslant\varepsilon\}\right)>0.$$

Ø Ex. 2.1-2.6

Remark 2.5. If A is not closed then (A - z) is never closed, and hence never boundedly invertible (see Proposition 1.35). Then $\rho(A) = \emptyset$. This is why we are only interested in closed operators. Notice however that a closed operator can have an empty resolvent set (see Exercise 2.6). On the other hand, by Proposition 1.35 again, if A is closed and $A - z : \text{Dom}(A) \to \mathsf{E}$ is bijective, then $z \in \rho(A)$. *Example* 2.6. • Let $\mathsf{E} = L^2(\mathbb{R}^d)$ and $A_0 = -\Delta$ with $\mathsf{Dom}(A_0) = C_0^{\infty}(\mathbb{R}^d)$. Then for any $z \in \mathbb{C}$ we have $\mathsf{Ran}(A_0 - z) \subset C_0^{\infty}(\mathbb{R}^d)$ so $A_0 - z$ cannot be invertible. This proves that $\sigma(A_0) = \mathbb{C}$. This is consistent with the fact that A_0 is not closed.

• Now we consider $A = -\Delta$ with $\mathsf{Dom}(A) = H^2(\mathbb{R}^d)$. Then $\sigma(A) = \mathbb{R}_+$ and for $z \in \mathbb{C} \setminus \mathbb{R}_+$ we have

$$\|(A-z)^{-1}\|_{\mathcal{L}(L^2(\mathbb{R}^d))} = \frac{1}{\mathsf{dist}(z,\mathbb{R}_+)}.$$

Indeed, if we denote by \mathcal{F} the Fourier transform on $L^2(\mathbb{R}^d)$, then \mathcal{F} is a unitary operator. Then $(-\Delta - z)$ is invertible if and only if $\mathcal{F}(-\Delta - z)\mathcal{F}^{-1} = M - z$ is invertible on $L^2(\mathbb{R}^d)$, where $M = \mathcal{F}(-\Delta)\mathcal{F}^{-1}$ is equal to the multiplication operator M_w for $w : \xi \mapsto |\xi|^2$. In particular, we have $\mathsf{Dom}(-\Delta) = \{u \in L^2(\mathbb{R}^d) : \mathcal{F}u \in \mathsf{Dom}(M_w)\}$. Thus $\sigma(A) = \sigma(M_w) = \mathbb{R}_+$ and for $z \in \mathbb{C} \setminus \mathbb{R}_+$ we have

$$\begin{split} \|(A-z)^{-1}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{d}))} &= \|\mathcal{F}^{-1}(M-z)^{-1}\mathcal{F}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{d}))} = \|(M-z)^{-1}\|_{\mathcal{L}(L^{2}(\mathbb{R}^{d}))} \\ &= \sup_{\xi \in \mathbb{R}} \frac{1}{\xi^{2}-z} = \frac{1}{\mathsf{dist}(z,\mathbb{R}_{+})}. \end{split}$$

Proposition 2.7. Let A be an operator on E and $z \in \mathbb{C}$. Assume that there exists a sequence (φ_n) in $\mathsf{Dom}(A)$ such that $\|\varphi_n\|_{\mathsf{E}} = 1$ for all $n \in \mathbb{N}$ and

$$\|(A-z)\varphi_n\|_{\mathsf{E}} \xrightarrow[n \to +\infty]{} 0.$$

Then $z \in \sigma(A)$.

Proof. Assume that $z \in \rho(A)$. Then

$$\|\varphi_n\|_{\mathsf{E}} \leq \|(A-z)^{-1}\|_{\mathcal{L}(\mathsf{E})} \|(A-z)\varphi_n\|_{\mathsf{E}} \xrightarrow[n \to +\infty]{} 0$$

This gives a contradiction.

Remark 2.8. The converse is not true in general. Consider for instance the shift operator S_r (see Example 1.2). Then S_r is not surjective, so $0 \in \sigma(S_r)$, but $||S_r\varphi|| = ||\varphi||$ for all $\varphi \in \ell^2(\mathbb{N})$.

🖉 Ex. 2.9

Proposition 2.9. Let A be an operator on E . Let $z \in \mathbb{C}$. Assume that there exists $c_0 > 0$ such that

$$\forall \varphi \in \mathsf{Dom}(A), \quad \|(A-z)\varphi\|_{\mathsf{E}} \ge c_0 \, \|\varphi\|_{\mathsf{E}} \,. \tag{2.1}$$

We say that z is a regular point of A. Then

- (i) (A-z) is injective ;
- (ii) If (A-z) is invertible then $||(A-\lambda)^{-1}|| \leq c_0^{-1}$.
- (iii) If moreover A is closed, then (A z) has closed range.

This means that if z is a regular point of A, then $z \in \rho(A)$ if and only if Ran(A - z) is dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We apply Proposition 1.36 to the operator (A - z).

Proposition 2.10. Let A be a closed and densely defined operator on \mathcal{H} . Then

$$\sigma(A^*) = \{\overline{z}, z \in \sigma(A)\}.$$

Proof. Let $\lambda \in \mathbb{C}$. By Proposition 1.61 the operator $(A - \lambda)$ is bijective if and only if $(A - \lambda)^* = (A^* - \overline{\lambda})$ is bijective.

Proposition 2.11. Let A be a boundedly invertible operator.

- (i) A^{-1} has a bounded inverse if and only if A is bounded (and in this case we have $(A^{-1})^{-1} = A$).
- (ii) For $\lambda \in \mathbb{C}^*$ we have $\lambda \in \rho(A)$ if and only if $\lambda^{-1} \in \rho(A^{-1})$.

Proof. We prove the second statement. Let $\lambda \in \mathbb{C}^*$. Assume that $A^{-1} - \lambda^{-1}$ has a bounded inverse. Since $(A - \lambda) = -\lambda(A^{-1} - \lambda^{-1})A$, the bounded operator $-\lambda^{-1}A^{-1}(A^{-1} - \lambda^{-1})^{-1}$ is a bounded inverse for $(A - \lambda)$. Conversely, if $(A - \lambda)$ has a bounded inverse then $(A^{-1} - \lambda^{-1}) = -\lambda^{-1}(A - \lambda)A^{-1}$ has a bounded inverse given by $-\lambda A(A - \lambda)^{-1} = -\lambda(1 + \lambda(A - \lambda)^{-1})$.

ℤ Ex. 2.7-2.8

2.1.2 Example: the harmonic oscillator

We consider on $L^2(\mathbb{R})$ the operator H which acts as

$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + x^2 \tag{2.2}$$

on the domain

$$\mathsf{Dom}(H) = \left\{ u \in L^2(\mathbb{R}) : -u'' + x^2 u \in L^2(\mathbb{R}) \right\}.$$
 (2.3)

Proposition 2.12. The spectrum of H consists of a sequence $(\lambda_k)_{k \in \mathbb{N}}$ of simple eigenvalues. Moreover, for $k \in \mathbb{N}^*$ we have

$$\lambda_k = (2k+1)$$

and a corresponding eigenfunction is given by

$$\varphi_k(x) = h_k(x)e^{-\frac{x^2}{2}},$$

where $h_k(x) = is$ the k-th Hermite polynomial (in particular it has degree k).

Proof. • We recall that we have introduced the operators a and c is Section 1.2.4. We observe that for $u \in \mathcal{S}(\mathbb{R})$ we have

$$Hu = 2\mathsf{ca}u + u$$

We also have [a, c]u = acu - cau = u so, by induction on k,

$$\mathsf{a}\mathsf{c}^k u = k\mathsf{c}^{k-1}u + \mathsf{c}^k a u. \tag{2.4}$$

• We set $\varphi_0(x) = e^{-\frac{x^2}{2}}$. We have $\varphi_0 \in \mathcal{S}(\mathbb{R})$ and $\mathbf{a}\varphi_0 = 0$, so $H\varphi_0 = \varphi_0$. For $k \in \mathbb{N}^*$ we set $\varphi_k = \mathbf{c}^k \varphi_0$. We can check by induction on $k \in \mathbb{N}$ that φ_k is of the form $\varphi_k = P_k \varphi_0$ where P_k is a polynomial of degree k. In particular $\varphi_k \in \mathcal{S}(\mathbb{R})$. We have

$$H\varphi_k = 2\mathsf{cac}^k\varphi_0 + \varphi_k = 2k\mathsf{c}^k\varphi_0 + 2\mathsf{c}^{k+1}\mathsf{a}\varphi_0 + \varphi_k = (2k+1)\varphi_k.$$

This proves that $\lambda_k = 2k + 1$ is an eigenvalue of H and φ_k is a corresponding eigenfunction. • We prove by induction on $j \in \mathbb{N}$ that for all k > j we have $\langle \varphi_j, \varphi_k \rangle = 0$. Since $c^* = a$, we have

$$\langle \varphi_j, \varphi_k \rangle = \left\langle \mathsf{c}^j \varphi_0, \mathsf{c}^k \varphi_0 \right\rangle = \left\langle \mathsf{a}^k \mathsf{c}^j \varphi_0, \varphi_0 \right\rangle.$$

Since $a\varphi_0 = 0$ the conclusion follows if j = 0. For $j \ge 1$ we have by

$$\left\langle \mathsf{a}^{k}\mathsf{c}^{j}\varphi_{0},\varphi_{0}\right\rangle = j\left\langle \mathsf{a}^{k-1}\mathsf{c}^{j-1}\varphi_{0},\varphi_{0}\right\rangle + \left\langle \mathsf{a}^{k-1}\mathsf{c}^{j}\mathsf{a}\varphi_{0},\varphi_{0}\right\rangle = 0$$

This proves that the family of eigenvectors $(\varphi_k)_{k \in \mathbb{N}}$ is orthogonal in $L^2(\mathbb{R})$.

• Let us prove that the family (φ_k) is total in $L^2(\mathbb{R})$. This means that $\overline{\mathsf{span}}((\varphi_k)_{k\in\mathbb{N}}) = L^2(\mathbb{R})$. Let $u \in L^2(\mathbb{R})$ be such that $\langle \varphi_k, u \rangle_{L^2(\mathbb{R})} = 0$ for all $k \in \mathbb{N}$. Since P_k is of degree k for all k, we deduce that for any polynomial **q** we have

$$\int_{\mathbb{R}} \mathsf{q}(x) e^{-\frac{x^2}{2}} u(x) \,\mathrm{d}x = 0.$$

For $\xi \in \mathbb{C}$ we set

$$v(\xi) = \int_{\mathbb{R}} e^{-ix\xi} u(x) e^{-\frac{x^2}{2}} \,\mathrm{d}x.$$

By differentiation under the integral sign we see that v is holomorphic in \mathbb{C} and for $m \in \mathbb{N}$ we have

$$v^{(m)}(0) = \int_{\mathbb{R}} (-ix)^m u(x) e^{-\frac{x^2}{2}} \, \mathrm{d}x = 0.$$

This implies that v = 0 on \mathbb{C} , and in particular in \mathbb{R} . Thus the Fourier transform of $x \mapsto u(x)e^{-\frac{x^2}{2}}$ is 0, so u = 0 almost everywhere.

For $k \in \mathbb{N}$ we set

$$\psi_k = \frac{\varphi_k}{\|\varphi_k\|}.$$

Then (ψ_k) is a Hilbert basis of $L^2(\mathbb{R})$, and $H\psi_k = \lambda_k \psi_k$ for all k. Thus the spectrum of H is exactly given by the sequence $(\lambda_k)_{k \in \mathbb{N}}$ of simple eigenvalues (see Exercise 2.2).

2.1.3 Resolvent

Let A be an operator on E with non-empty resolvent set.

Definition 2.13. Let $z \in \rho(A)$. We say that $(A - z)^{-1}$ is the resolvent of A at z.

Notice that the operator A is completely characterized by its resolvent. The interest of considering this resolvent is that it is a bounded operator on E, even if A is not. Moreover, the good properties of the resolvent will be useful to study the operator A.

Proposition 2.14. For $z \in \rho(A)$ we have

$$(A-z)^{-1}A \subset A(A-z)^{-1} = \mathrm{Id} + z(A-z)^{-1}$$

Proposition 2.15 (Resolvent Identity). For $z_1, z_2 \in \rho(A)$ we have

$$(A - z_1)^{-1} - (A - z_2)^{-1} = (z_1 - z_2)(A - z_1)^{-1}(A - z_2)^{-1}$$
$$= (z_1 - z_2)(A - z_2)^{-1}(A - z_1)^{-1}.$$

Proof. On Dom(A) we have $(A - z_2) - (A - z_1) = z_1 - z_2$. The first equality follows after composition by $(A - z_1)^{-1}$ on the left and by $(A - z_2)^{-1}$ on the right and the second after composition by $(A - z_1)^{-1}$ on the right and by $(A - z_2)^{-1}$ on the left.

Remark 2.16. The resolvent identity proves in particular that $(A - z_1)^{-1}$ and $(A - z_2)^{-1}$ commute.

Proposition 2.17. The resolvent set $\rho(A)$ of A is open (equivalently, its spectrum $\sigma(A)$ is closed) and for all $z_0 \in \rho(A)$ we have

$$\|(A - z_0)^{-1}\|_{\mathcal{L}(\mathsf{E})} \ge \frac{1}{\mathsf{dist}(z_0, \sigma(A))}$$

Moreover, the resolvent map $z \mapsto (A-z)^{-1}$ is analytic on $\rho(A)$ and

$$\frac{d}{dz}(A-z)^{-1} = (A-z)^{-2}.$$

Proof. Let $z_0 \in \rho(A)$. For $z \in D(z_0, ||(A - z_0)^{-1}||_{\mathcal{L}(\mathsf{E})}^{-1})$ we have

$$A - z = (A - z_0) - (z - z_0) = (1 - (z - z_0)(A - z_0)^{-1})(A - z_0)$$

Since $(z-z_0)(A-z_0)^{-1}$ has norm less that 1 we can apply Proposition 1.8. Then the operator $1 - (z - z_0)(A - z_0)^{-1}$ is invertible and

$$(1 - (z - z_0)(A - z_0)^{-1})^{-1} = \sum_{n \in \mathbb{N}} (z - z_0)^n (A - z_0)^{-n}$$

Then A - z is invertible and $(A - z)^{-1}$ and

$$(A-z)^{-1} = \sum_{n \in \mathbb{N}} (z-z_0)^n (A-z_0)^{-(n+1)}$$

In particular

$${\rm dist}(z_0, \sigma(A)) \ge \|(A - z_0)^{-1}\|_{\mathcal{L}(\mathsf{E})}^{-1}$$

Moreover, we have written $(A - z)^{-1}$ as a power series around z_0 from which we deduce the \mathscr{B} Ex. 2.10-2.11 last statement.

Applying Proposition 1.45 to (A - z), we get the following result for reducing subspaces.

Proposition 2.18. Let Π be a projection of E such that $\Pi A \subset A\Pi$, $\mathsf{F} = \mathsf{Ran}(\Pi)$ and $\mathsf{G} = \ker(\Pi)$. Then we have $\sigma(A) = \sigma(A_{\mathsf{F}}) \cup \sigma(A_{\mathsf{G}})$ and for $z \in \rho(A) = \rho(A_{\mathsf{F}}) \cap \rho(A_{\mathsf{G}})$ we have

$$(A-z)^{-1} = (A_{\mathsf{F}}-z)^{-1} \oplus (A_{\mathsf{G}}-z)^{-1}$$

2.2 Spectrum of bounded operators

2.2.1 General properties

Proposition 2.19. Let $A \in \mathcal{L}(\mathsf{E})$. Then $\sigma(A)$ is compact and included in $D(0, ||A||_{\mathcal{L}(\mathsf{E})})$.

Proof. Let $z \in \mathbb{C}$ such that |z| > ||A||. Then we have

$$A - z = -z \left(\operatorname{Id} - \frac{A}{z} \right).$$

Since

$$\left\|\frac{A}{z}\right\| = \frac{\|A\|}{|z|} < 1,$$

the operator $\operatorname{Id} - \frac{A}{z}$ is invertible with inverse given by the Neumann series $\sum_{k \in \mathbb{N}} (\frac{A}{z})^k$. This proves that A - z is invertible with inverse

$$(A-z)^{-1} = -\sum_{k \in \mathbb{N}} \frac{A^k}{z^{k+1}}.$$
(2.5)

In particular, $\sigma(A)$ is included in $D(0, ||A||_{\mathcal{L}(\mathsf{E})})$ so it is bounded. Since it is closed by Proposition 2.17, it is compact.

Proposition 2.20. Assume that $\mathsf{E} \neq \{0\}$. Let $A \in \mathcal{L}(\mathsf{E})$. Then $\sigma(A) \neq \emptyset$.

Proof. Assume by contradiction that $\rho(A) = \mathbb{C}$. For $z \in \mathbb{C}$ such that $|z| \ge 2 ||A||_{\mathcal{L}(\mathsf{E})}$ we have by (2.5)

$$\|(A-z)^{-1}\|_{\mathcal{L}(\mathsf{E})} \leq \frac{1}{|z|} \sum_{k=0}^{\infty} \left(\frac{\|A\|_{\mathcal{L}(\mathsf{E})}}{|z|}\right)^k \leq \frac{2}{|z|}.$$
(2.6)

Let $\varphi \in \mathsf{E} \setminus \{0\}$ and $\ell \in \mathsf{E}'$. The map $z \mapsto \ell((A-z)^{-1}\varphi)$ is holomorphic on \mathbb{C} and bounded. Thus it is constant by the Liouville Theorem. By the previous estimate, its value must be 0. In particular, $\ell(A^{-1}\varphi) = 0$ for all $\ell \in \mathsf{E}'$. By the Hahn-Banach Theorem, we have $A^{-1}\varphi = 0$. This gives a contradiction and proves that $\rho(A) \neq \mathbb{C}$.

Remark 2.21. In the real case we know from the finite dimensional case that the spectrum of a bounded operator can be empty.

Remark 2.22. An unbounded operator can have empty resolvent set (see Exercise 2.6) or an empty spectrum (see Exercise 2.7).

Example 2.23. We consider on $\ell^2(\mathbb{N})$ the shift operators of Example 1.2. We have

$$\sigma_{\mathsf{p}}(S_r) = \emptyset$$
 and $\sigma_{\mathsf{p}}(S_\ell) = D(0, 1).$

By Proposition 2.19, $\sigma(S_{\ell})$ is closed and contained in $\overline{D}(0,1)$, so $\sigma(S_{\ell}) = \overline{D}(0,1)$. Finally, since $S_r^* = S_{\ell}$, we also have $\sigma(S_r) = \overline{D}(0,1)$ by Proposition 2.10.

🖉 Ex. 2.12

2.2.2 Spectral radius

Definition 2.24. Let $A \in \mathcal{L}(\mathsf{E})$. We define the spectral radius of A by

$$r(A) = \sup_{\lambda \in \sigma(A)} |\lambda|.$$

By Proposition 2.19 we already know that $r(A) \leq ||A||_{\mathcal{L}(\mathsf{E})}$. The equality is not true in general. Consider for instance the matrix

$$A_{\alpha} = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}$$

for $\alpha \in \mathbb{C}$. We have $\sigma(A) = \{1\}$ and $||A||_{\mathcal{L}(\mathbb{C}^2)} \to +\infty$ as $|\alpha| \to +\infty$. In general we have at least the following result.

Proposition 2.25 (Gelfand's Formula). Let $A \in \mathcal{L}(\mathsf{E})$. We have

$$r(A) = \inf_{n \in \mathbb{N}^*} \|A^n\|_{\mathcal{L}(\mathsf{E})}^{\frac{1}{n}} = \lim_{n \to \mathbb{N}^*} \|A^n\|_{\mathcal{L}(\mathsf{E})}^{\frac{1}{n}}.$$

Example 2.26. Check that A_{α} satisfies the Gelfand Formula.

Proof. • Assume that there exists $N \in \mathbb{N}$ such that $A^N = 0$. Then $A^n = 0$ for all $n \ge N$. Let $z \in \mathbb{C} \setminus \{0\}$. Then $(z^{-1}A - 1)$ is invertible with inverse

$$\left(\frac{A}{z} - 1\right)^{-1} = -\sum_{n=0}^{N-1} \left(\frac{A}{z}\right)^n$$

This proves that $A - z = z(z^{-1}A - 1)$ is invertible. Thus $\sigma(A) \subset \{0\}$. Since $\sigma(A) \neq \emptyset$, we have $\sigma(A) = \{0\}$ and the proposition is proved in this case. Now we assume that $A^n \neq 0$ for all $n \in \mathbb{N}$.

• For $n \in \mathbb{N}$ we set $u_n = \ln(||A^n||)$. For $m, p \in \mathbb{N}^*$ we have by (1.1)

$$u_{m+p} \leqslant u_m + u_p$$

Let $p \in \mathbb{N}^*$. Let $n \in \mathbb{N}^*$ and $(q, r) \in \mathbb{N} \times [0, p-1]$ such that n = qp + r. Then we have

$$\frac{u_n}{n} \leqslant \frac{qu_p + u_r}{qp + r} \leqslant \frac{u_p}{p} + \frac{u_r}{n},$$

 \mathbf{so}

$$\limsup_{n \to \infty} \frac{u_n}{n} \leqslant \frac{u_p}{p}$$

Then for all $p \in \mathbb{N}^*$ we have

$$\limsup_{n \to \infty} \|A^n\|^{\frac{1}{n}} \le \|A^p\|^{\frac{1}{p}}$$

Thus

$$\limsup_{n \in \infty} \|A^n\|^{\frac{1}{n}} \leq \inf_{p \in \mathbb{N}^*} \|A^p\|^{\frac{1}{p}}.$$

This implies that

$$\|A^n\|^{\frac{1}{n}} \xrightarrow[n \to \infty]{} \inf_{p \in \mathbb{N}^*} \|A^p\|^{\frac{1}{p}},$$

which gives the second inequality of the proposition.

• We set $\tilde{r}(A) = \lim \|A^n\|^{\frac{1}{n}}$. For $z \in \mathbb{C}$ we have $\ker(A - z) \subset \ker(A^n - z^n)$ and

$$A^{n} - z^{n} = (A - z) \sum_{k=0}^{n-1} z^{k} A^{n-1-k}$$

so $\operatorname{Ran}(A^n - z^n) \subset \operatorname{Ran}(A - z)$. Thus, if $A^n - z^n$ is bijective, then so is A - z. Now let $\lambda \in \sigma(A)$. We have $\lambda^n \in \sigma(A^n)$. By Proposition 2.19 we have $|\lambda|^n = |\lambda^n| \leq ||A^n||$, so $|\lambda| \leq ||A^n||^{\frac{1}{n}}$ for all $n \in \mathbb{N}$, and hence $|\lambda| \leq \tilde{r}(A)$. This proves that $r(A) \leq \tilde{r}(A)$. • Let $z \in \mathbb{C}$ with $|z| > \tilde{r}(A)$. Then the power series

$$-\sum_{n\in\mathbb{N}}\frac{A^n}{z^{n+1}}$$

is convergent in $\mathcal{L}(\mathsf{E})$ and defines a bounded inverse for (A-z). This proves that $\tilde{r}(A) \leq r(A)$ and concludes the proof.

2.2.3 Normal bounded operators

Definition 2.27. We say that $A \in \mathcal{L}(\mathcal{H})$ is normal if $AA^* = A^*A$.

Example 2.28. • The multiplication operator M_w (see Example 1.4) is normal.

• Since $S_r S_\ell \neq S_\ell S_r$, the shift operators S_ℓ and S_r (see Example 1.2) are not normal.

Remark 2.29. If A is normal and invertible, then A^{-1} is normal.

Proposition 2.30. Let $A \in \mathcal{L}(\mathcal{H})$ be a normal operator.

- (i) For $\varphi \in \mathcal{H}$ we have $||A\varphi|| = ||A^*\varphi||$. In particular, $\ker(A^*) = \ker(A)$.
- (ii) If λ and μ are two distinct eigenvalues of A, then ker $(A \lambda)$ and ker $(A \mu)$ are orthogonal.

Proof. • Let $\varphi \in \mathcal{H}$. We have

$$\left\|A\varphi\right\|^{2} = \left\langle A^{*}A\varphi,\varphi\right\rangle = \left\langle AA^{*}\varphi,\varphi\right\rangle = \left\|A^{*}\varphi\right\|^{2},$$

which gives the first statement.

• Let $\varphi \in \ker(A - \lambda)$ and $\psi \in \ker(A - \mu)$. By the first statement we also have $\psi \in \ker((A - \mu)^*) = \ker(A^* - \overline{\mu})$. Then we have

$$(\lambda - \mu) \langle \varphi, \psi \rangle = \langle \lambda \varphi, \psi \rangle - \langle \varphi, \overline{\mu} \psi \rangle = \langle A \varphi, \psi \rangle - \langle \varphi, A^* \psi \rangle = 0.$$

Since $\lambda \neq \mu$, this proves that $\langle \varphi, \psi \rangle = 0$, so ker $(A - \lambda)$ and ker $(A - \mu)$ are orthogonal. \Box

In Section 2.2.2 we have said that the spectral radius of a bounded operator can be smaller that its norm. This is not the case for a normal operator.

Proposition 2.31. Let $A \in \mathcal{L}(\mathsf{E})$ be normal. We have $r(A) = ||A||_{\mathcal{L}(\mathcal{H})}$.

Proof. • Assume that $A = A^*$ (A is selfadjoint). We always have $||A^2|| \le ||A||^2$. For $\varphi \in \mathcal{H}$ we have

$$\|A\varphi\|^{2} = \langle A^{*}A\varphi, \varphi \rangle = \langle A^{2}\varphi, \varphi \rangle \leq \|A^{2}\| \|\varphi\|^{2}.$$

This proves that $||A||^2 \leq ||A^2||$, and hence $||A||^2 = ||A^2||$. Since A^{2^k} is selfadjoint for all $k \in \mathbb{N}$, we deduce by induction that $||A^{2^k}|| = ||A||^{2^k}$ for all $k \in \mathbb{N}$. Then, by the Gelfand Formula we have

$$r(A) = \lim_{k \to \infty} \|A^{2^k}\|^{\frac{1}{2^k}} = \|A\|$$

• Now we only assume that A is normal. We have $||A^*A|| = ||A||^2$ (exercise). On the other hand, since A^*A is selfadjoint we have $r(A^*A) = ||A^*A||$, so $r(A^*A) = ||A||^2$. On the other hand, since A is normal,

$$r(A^*A) = \lim_{n \to \infty} \|(A^*A)^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \|(A^n)^*A^n\|^{\frac{1}{n}} = \lim_{n \to \infty} \|A^n\|^{\frac{2}{n}} = r(A)^2.$$

This proves that r(A) = ||A||.

Remark 2.32. If $A \in \mathcal{L}(\mathcal{H})$ is a normal operator such that $\sigma(A) = \{0\}$ then A = 0. This is not the case in general, since every nilpotent operator has spectrum $\{0\}$.

Theorem 2.33. Let $A \in \mathcal{L}(\mathcal{H})$ a normal operator. For $z \in \rho(A)$ we have

$$\left\| (A-z)^{-1} \right\|_{\mathcal{L}(\mathcal{H})} = \frac{1}{\operatorname{dist}(z,\sigma(A))}.$$

Proof. Let $z \in \rho(A)$. By Proposition 2.11 we have

$$\sigma((A-z)^{-1}) = \left\{ (\zeta - z)^{-1}, \zeta \in \sigma(A) \right\}.$$

Since $(A - z)^{-1}$ is normal, we deduce by Proposition 2.31

$$\|(A-z)^{-1}\| = r((A-z)^{-1}) = \sup_{\lambda \in \sigma(A)} |\lambda - z|^{-1} = \frac{1}{\inf_{\lambda \in \sigma(A)} |\lambda - z|} = \frac{1}{\mathsf{dist}(z, \sigma(A))}.$$

2.3 Riesz projections

2.3.1 Separation of the spectrum

The interest of the resolvent is that it is a bounded operator which completely characterize the operator. Moreover, since it is analytic, we can use all the tools from complex analysis. In the following section we give a first application of the resolvent for the analysis of an operator.

Let E be a Banach space and let A be a closed operator on $\mathsf{E}.$

Proposition 2.34. Let $z_0 \in \mathbb{C}$ and $r_0 > 0$. Assume that $\mathcal{C}(z_0, r_0) \subset \rho(A)$. We define

$$\Pi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} (A - \zeta)^{-1} \,\mathrm{d}\zeta = -\frac{1}{2\pi} \int_0^{2\pi} \left(A - (z_0 + r_0 e^{i\theta}) \right)^{-1} r_0 e^{i\theta} \,\mathrm{d}\theta$$

We also set $F = Ran(\Pi)$ and $G = ker(\Pi)$.

- (i) Π is a (not necessarily orthogonal) projection of E.
- (*ii*) $\mathsf{F} \subset \mathsf{Dom}(A)$.
- (*iii*) $\Pi A \subset A \Pi$.
- (iv) $\sigma(A_{\mathsf{F}}) = \sigma(A) \cap D(z_0, r_0)$ and $\sigma(A_{\mathsf{G}}) = \sigma(A) \setminus \overline{D}(z_0, r_0)$.

Remark 2.35. In Proposition 2.34 we consider for simplicity the case where Π is defined by an integral on a circle. But we can similarly consider the integral on any rectifiable simple closed curve in $\rho(A)$ (see [Kat80, § III.6.4]).

Remark 2.36. Π is defined by the integral on a line segment of a continuous function with values in the Banach space $\mathcal{L}(\mathsf{E})$. This can be understood in the sense of Riemann integrals and this defines a bounded operator on E . In particular we have in $\mathcal{L}(\mathsf{E})$

$$\Pi = \lim_{n \to +\infty} \Pi_n, \quad \text{where} \quad \Pi_n = -\frac{1}{n} \sum_{k=1}^n \left(A - (z_0 + r_0 e^{i\theta_{n,k}}) \right)^{-1} r_0 e^{i\theta_{n,k}}, \quad \theta_{n,k} = \frac{2k\pi}{n}.$$

Then if T is a closed operator with $\mathsf{Dom}(A) \subset \mathsf{Dom}(T)$, we have

$$T\Pi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} T(A - \zeta)^{-1} \,\mathrm{d}\zeta.$$

Indeed, for $\varphi \in \mathcal{H}$ and $n \in \mathbb{N}^*$ we have $\Pi_n \varphi \in \mathsf{Dom}(A) \subset \mathsf{Dom}(T), \Pi_n \varphi \to \Pi \varphi$ and

$$T\Pi_{n}\varphi = -\frac{1}{n}\sum_{k=1}^{n} T\left(A - (z_{0} + r_{0}e^{i\theta_{n,k}})\right)^{-1} r_{0}e^{i\theta_{n,k}}\varphi$$

Proof. • For $\varphi \in \mathsf{E}$ and $\ell \in \mathsf{E}'$ we have

$$\ell(\Pi\varphi) = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} \ell((A-z)^{-1}\varphi) \,\mathrm{d}z.$$

Since $\rho(A)$ is open in \mathbb{C} , there exists $R_1 \in]0, r_0[$ and $R_2 > r_0$ such that $D(0, R_2) \setminus \overline{D}(0, R_1) \subset \rho(A)$. Let $\varphi \in \mathsf{E}$ and $\ell \in \mathsf{E}^*$. Since the map $\zeta \mapsto \ell((A - \zeta)^{-1}\varphi)$ is holomorphic on $\rho(A)$, we can replace r_0 by any $r \in]R_1, R_2[$ in the expression of Π .

• Let $r_1, r_2 \in]R_1, R_2[$ with $r_1 < r_2$. We can write

$$\Pi^{2} = \frac{1}{(2i\pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} (A - \zeta_{1})^{-1} (A - \zeta_{2})^{-1} \,\mathrm{d}\zeta_{2} \,\mathrm{d}\zeta_{1}.$$

By the resolvent identity we have

$$\Pi^{2} = \frac{1}{(2i\pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} \frac{(A - \zeta_{1})^{-1} - (A - \zeta_{2})^{-1}}{\zeta_{1} - \zeta_{2}} \,\mathrm{d}\zeta_{2} \,\mathrm{d}\zeta_{1}.$$

Then, by the Fubini Theorem,

$$\Pi^{2} = -\frac{1}{(2i\pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} (A - \zeta_{1})^{-1} \left(\int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} \frac{1}{\zeta_{2} - \zeta_{1}} \, \mathrm{d}\zeta_{2} \right) \, \mathrm{d}\zeta_{1}$$
$$- \frac{1}{(2i\pi)^{2}} \int_{\zeta_{2} \in \mathcal{C}(z_{0}, r_{2})} (A - \zeta_{2})^{-1} \left(\int_{\zeta_{1} \in \mathcal{C}(z_{0}, r_{1})} \frac{1}{\zeta_{1} - \zeta_{2}} \, \mathrm{d}\zeta_{1} \right) \, \mathrm{d}\zeta_{2}.$$

We look at the integral in brackets for each term. For the second term, for any $\zeta_2 \in \mathcal{C}(z_0, r_2)$ the map $\zeta_1 \mapsto 1/(\zeta_1 - \zeta_2)$ is holomorphic on $D(z_0, r_2)$, so the integral vanishes. For the first term, we get by the Cauchy Theorem that the integral is equal to $2i\pi$ for all $\zeta_1 \in \mathcal{C}(z_0, r_1)$. Then

$$\Pi^2 = -\frac{1}{2i\pi} \int_{\zeta_2 \in \mathcal{C}(z_0, r_2)} (A - \zeta_2)^{-1} \,\mathrm{d}\zeta_2 = \Pi.$$

This proves that Π is a projection of E .

• Let $\varphi \in \mathsf{F}$ and $\psi \in \mathsf{E}$ such that $\varphi = \Pi \psi$. For $n \in \mathbb{N}^*$ we set $\varphi_n = \Pi_n \psi \in \mathsf{Dom}(A)$. Then $\varphi_n \to \varphi$ in E . Moreover,

$$\begin{aligned} A\varphi_n &= -\frac{1}{n} \sum_{k=1}^n A \left(A - (z_0 + r_0 e^{i\theta_{n,k}}) \right)^{-1} r_0 e^{i\theta_{n,k}} \psi \\ &= -\frac{1}{n} \sum_{k=1}^n \left(\operatorname{Id} + (z_0 + r_0 e^{i\theta_{n,k}}) \left(A - (z_0 + r_0 e^{i\theta_{n,k}}) \right)^{-1} \right) r_0 e^{i\theta_{n,k}} \psi \\ &\xrightarrow[n \to \infty]{} - \frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} \left(\operatorname{Id} + \zeta (A - \zeta)^{-1} \right) \psi \, \mathrm{d}\zeta = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} \zeta (A - \zeta)^{-1} \psi \, \mathrm{d}\zeta \end{aligned}$$

Since A is closed this proves that $\varphi \in \mathsf{Dom}(A)$ (and $A\varphi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0, r_0)} \zeta(A - \zeta)^{-1} \psi \, \mathrm{d}\zeta$).

• Let $\varphi \in \text{Dom}(A)$. Since A commutes with its resolvent, we have $A\Pi_n \varphi = \Pi_n A \varphi$ for all $n \in \mathbb{N}^*$. Since $\Pi_n \varphi \to \Pi \varphi$ and $A\Pi_N \varphi = \Pi_N A \varphi \to \Pi A \varphi$, we get by closedness of A that $\Pi \varphi \in \text{Dom}(A)$ and $A\Pi \varphi = \Pi A \varphi$.

• Let $z \in \rho(A_{\mathsf{F}}) \setminus D(z_0, r_0)$. Let $r \in]R_1, r_0[$. We have on F

$$(A_{\mathsf{F}} - z)^{-1} = (A_{\mathsf{F}} - z)^{-1} \Pi$$

= $-\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} (A_{\mathsf{F}} - z)^{-1} (A_{\mathsf{F}} - \zeta)^{-1} d\zeta$
= $-\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{F}} - z)^{-1} - (A_{\mathsf{F}} - \zeta)^{-1}}{z - \zeta} d\zeta$
= $\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{F}} - \zeta)^{-1}}{z - \zeta} d\zeta.$

The right-hand side is bounded uniformly in $z \in \rho(A_{\mathsf{F}}) \setminus D(z_0, r_0)$. By Proposition 2.17 this implies that

$$\sigma(A_{\mathsf{F}}) \subset D(z_0, r_0). \tag{2.7}$$

Now let $z \in \rho(A_{\mathsf{G}}) \cap D(z_0, r_0)$ and $r \in]r_0, R_2[$. We have on G

$$(A_{\mathsf{G}} - z)^{-1} = (A_{\mathsf{G}} - z)^{-1} (1 - \Pi)$$

= $(A_{\mathsf{G}} - z)^{-1} - \frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{G}} - z)^{-1} - (A_{\mathsf{G}} - \zeta)^{-1}}{\zeta - z} \,\mathrm{d}\zeta$
= $\frac{1}{2i\pi} \int_{\zeta \in \mathcal{C}(z_0, r)} \frac{(A_{\mathsf{G}} - \zeta)^{-1}}{z - \zeta} \,\mathrm{d}\zeta.$

This is bounded uniformly in $z \in \rho(A_{\mathsf{G}}) \cap D(z_0, r_0)$, so

$$\sigma(A_{\mathsf{G}}) \subset \mathbb{C} \setminus \overline{D}(0, r_0). \tag{2.8}$$

Finally, with Proposition 2.18 and (2.7)-(2.8) we deduce that $\sigma(A_{\mathsf{F}}) = \sigma(A) \cap D(0, r_0)$ and $\sigma(A_{\mathsf{G}}) = \sigma(A) \setminus \overline{D}(0, r_0)$.

🖉 Ex. 2.13-2.14

2.3.2 Isolated eigenvalues

Definition 2.37. We consider an operator A on E . Assume that $\lambda \in \mathbb{C}$ is an isolated point in the spectrum of A. Let $r_0 > 0$ such that $\sigma(A) \cap D(\lambda, r_0) = \{\lambda\}$ and $r \in]0, r_0[$. Then the Riesz projection of A at λ is

$$\Pi_{\lambda} = -\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} (A-z)^{-1} \,\mathrm{d}z \tag{2.9}$$

Remark 2.38. The definition of Π_{λ} does not depend on the choice of $r \in]0, r_0[$. More generally, we can replace $\mathcal{C}(\lambda, r)$ any closed curve in $D(\lambda_r 0) \setminus \{\lambda\}$ enclosing λ exactly once in the direct sense.

Definition 2.39. Let λ be an isolated element of $\sigma(A)$. The algebraic multiplicity of λ is $\dim(\operatorname{Ran}(\Pi_{\lambda}))$, where Π_{λ} is the Riesz projection at λ .

Example 2.40. Let $\alpha, \beta \in \mathbb{C}$ distinct and

$$M = \begin{pmatrix} \alpha & 1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & \beta & 1 \\ 0 & 0 & 0 & 0 & \beta \end{pmatrix}$$

Then $\sigma(M) = \{\alpha, \beta\}$ and α is an eigenvalue of geometric multiplicity 2. For $z \in \mathbb{C} \setminus \{\alpha, \beta\}$ we have

$$(M-z)^{-1} = \begin{pmatrix} (\alpha-z)^{-1} & -(\alpha-z)^{-2} & 0 & 0 & 0\\ 0 & (\alpha-z)^{-1} & 0 & 0 & 0\\ 0 & 0 & (\alpha-z)^{-1} & 0 & 0\\ 0 & 0 & 0 & (\beta-z)^{-1} & -(\beta-z)^{-2}\\ 0 & 0 & 0 & 0 & (\beta-z)^{-1} \end{pmatrix}$$

Then for $r \in]0, |\alpha - \beta|$ [we have

so α has algebraic multiplicity 3 and Π_{α} is the projection of \mathbb{C}^5 on ker $((M - \alpha)^2)$ parallel to ker $((M - \beta)^2)$.

Proposition 2.41. We use the notation of Proposition 2.34.

- (i) Let $\lambda \in D(z_0, r_0)$ and $m \in \mathbb{N}^*$. Then $\ker((A \lambda)^m) \subset \mathsf{F}$.
- (ii) Let $\lambda \in \mathbb{C} \setminus \overline{D}(z_0, r_0)$ and $m \in \mathbb{N}^*$. Then $\ker((A \lambda)^m) \subset \mathsf{G}$.

Proof. • Let $\varphi \in \mathsf{Dom}(A)$ such that $(A - \lambda)\varphi \in \mathsf{F}$. For $\zeta \in \mathcal{C}(z_0, r_0)$ we have

$$(A-\zeta)^{-1}\varphi = (\lambda-\zeta)^{-1}\varphi - (\lambda-\zeta)^{-1}(A-\zeta)^{-1}(A-\lambda)\varphi,$$

Then

$$\Pi \varphi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r)} \left((\lambda - \zeta)^{-1} \varphi - (\lambda - \zeta)^{-1} (A - \zeta)^{-1} (A - \lambda) \varphi \right) \mathrm{d}\zeta$$
$$= \varphi + \frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r)} (\lambda - \zeta)^{-1} (A - \zeta)^{-1} (A - \lambda) \varphi \, \mathrm{d}\zeta.$$

Since

$$\forall \zeta \in \mathcal{C}(z_0, r), \quad (A - \zeta)^{-1} (A - \lambda) (1 - \Pi) \varphi = (A - \zeta)^{-1} (1 - \Pi) (A - \lambda) \varphi = 0,$$

we deduce

$$(1-\Pi)\varphi = (1-\Pi)^2\varphi = -\frac{1}{2i\pi} \int_{\mathcal{C}(z_0,r)} (\lambda-\zeta)^{-1} (A-\zeta)^{-1} (1-\Pi) (A-\lambda)\varphi \,\mathrm{d}\zeta = 0.$$

This proves that $\varphi \in \mathsf{F}$. Then we can prove by induction on $m \in \mathbb{N}^*$ that $\ker((A - \lambda)^m) \subset \mathsf{F}$. The second statement is similar.

Remark 2.42. Let λ be an isolated element of $\sigma(A)$. Since ker $(A - \lambda) \subset \mathsf{Ran}(\Pi_A(\lambda))$ the geometric multiplicity of λ (which can be 0 if λ is not an eigenvalue) is not greater than its algebraic multiplicity.

Proposition 2.43. Assume that λ is an isolated point of $\sigma(A)$ such that $\mathsf{Ran}(\Pi_{\lambda})$ is of finite dimension $m \in \mathbb{N}^*$. Then λ is an eigenvalue and

$$\mathsf{Ran}(\Pi_{\lambda}) = \ker((A - \lambda)^m).$$

Proof. The restriction A_{F} of A to $\mathsf{F} = \mathsf{Ran}(\Pi_{\lambda})$ is an operator on the finite dimensional space F , with $\sigma(A_{\mathsf{F}}) = \{\lambda\}$. Then the result follows from the finite dimensional case. \Box

Remark 2.44. Notice that (see Exercise 2.14)

- an isolated point λ of σ(A) is not necessarily an eigenvalue (in this case we have dim(Ran(Π_λ)) = +∞ by Proposition 2.43);
- as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multiplicity.

Definition 2.45. Let A be a closed operator on E. Let $\lambda \in \mathbb{C}$. We say that λ belongs to the discrete spectrum $\sigma_{disc}(A)$ of A and λ is an isolated eigenvalue of A with finite algebraic multiplicity.

Example 2.46. • Assume that E has infinite dimension. Then $\sigma_{disc}(Id_E) = \emptyset$ (the spectrum is given by the eigenvalue 1, but it has infinite dimension.

- The harmonic oscillator (see Section 2.1.2) has purely discrete spectrum: $\sigma_{\mathsf{disc}}(H) = \sigma(H)$.
- The usual Laplacian on \mathbb{R}^d (see Example 2.6) has empty discrete spectrum: $\sigma(-\Delta) = \emptyset$.

2.3.3 Additional topic: regularity of the spectrum with respect to a parameter

Lemma 2.47. Let Π_1 and Π_2 be two projections on E . Assume that $\|\Pi_2 - \Pi_1\|_{\mathcal{L}(\mathsf{E})} < 1$. Then

$$\dim(\mathsf{Ran}(\Pi_1)) = \dim(\mathsf{Ran}(\Pi_2)).$$

Proof. Let $\pi : \mathsf{Ran}(\Pi_2) \to \mathsf{Ran}(\Pi_1)$ be the restriction of Π_1 to $\mathsf{Ran}(\Pi_2)$. This is a continuous linear map. For $\varphi \in \ker(\pi)$ we have $\Pi_2(\varphi) = \varphi$ and $\Pi_1(\varphi) = 0$ so

$$\|\varphi\| = \|\Pi_2(\varphi) - \Pi_1(\varphi)\| \le \|\Pi_2 - \Pi_2\| \|\varphi\|,$$

so $\varphi = 0$. This implies that $\dim(\operatorname{Ran}(\Pi_1)) \ge \dim(\operatorname{Ran}(\Pi_1))$. Interverting the roles of Π_1 and Π_2 gives the reverse inequality and concludes the proof.

Proposition 2.48. Let ω be a connected subset of \mathbb{C} . Let $(A_{\alpha})_{\alpha \in \mathbb{C}}$ be a family of linear operators on E . Assume that there exists $\lambda_0 \in \mathbb{C}$ and $r_0 > 0$ such that $\mathcal{C}(\lambda_0, r_0) \subset \rho(A_{\alpha})$ for all $\alpha \in \omega$. Assume that the map

$$\begin{cases} \omega \times \mathcal{C}(\lambda_0, r_0) & \to & \mathcal{L}(\mathsf{E}) \\ (\alpha, z) & \mapsto & (A_\alpha - z)^{-1} \end{cases}$$

is continuous. We denote by Π_{α} the Riesz projection of A_{α} on $\mathcal{C}(\lambda_0, r)$.

- (i) dim(Ran(Π_{α})) does not depend on $\alpha \in \omega$.
- (ii) Assume that dim(Ran(Π_{α})) = 1. Then for all $\alpha \in \omega$ the operator A_{α} has a unique simple eigenvalue λ_{α} in $D(\lambda_0, r)$. Moreover the maps $\alpha \mapsto \lambda_{\alpha}$ and $\alpha \mapsto \Pi_{\alpha}$ are continuous on ω . If moreover $\alpha \mapsto (A_{\alpha} z)^{-1}$ is holomorphic on ω for all $z \in C(\lambda_0, r_0)$, then $\alpha \mapsto \Pi_{\alpha}$ and $\alpha \mapsto \lambda_{\alpha}$ are holomorphic.

Proof. • Let $\alpha_0 \in \omega$. Since $\mathcal{C}(\lambda_0, r)$ is compact, there exists a neighborhood \mathcal{V} of α_0 in ω such that for all $\alpha \in \mathcal{V}$ and $\zeta \in \mathcal{C}(\lambda_0, r)$ we have

$$\|(A_{\alpha} - \zeta)^{-1} - (A_{\alpha_0} - \zeta)^{-1}\| \leq \frac{1}{2r_0}$$

Then we have

$$\|\Pi_{\alpha} - \Pi_{\alpha_0}\| \leqslant \frac{1}{2},$$

and, by Lemma 2.47, $\mathsf{Ran}(\Pi_{\alpha}) = \mathsf{Ran}(\Pi_{\alpha_0})$ for all $\alpha \in \mathcal{V}$. Then $\mathsf{Ran}(\Pi_{\alpha})$ is locally constant, so it is constant on the connected set ω .

• By continuity under the integral sign, we see that Π_{α} is continuous with respect to α . If $(A_{\alpha} - \zeta)^{-1}$ is holomorphic with respect to α for all $\zeta \in C(l_0, r)$, then Π_{α} is holomorphic by complex differentiation under the integral sign.

• Now assume that $\operatorname{\mathsf{Ran}}(\Pi_{\alpha}) = 1$ for all $\alpha \in \omega$. Let $\alpha_0 \in \omega$ and $\psi \in \operatorname{\mathsf{Ran}}(\Pi_{\alpha_0})$ with $\|\psi\| = 1$. Then ψ is an eigenvector corresponding to an eigenvalue $\lambda_{\alpha_0} \in D(\lambda_0, r)$. For $\alpha \in \omega$ we set $\psi_{\alpha} = \Pi_{\alpha}\psi$. For α close to α_0 we have $\psi_{\alpha} \neq 0$. Then ψ_{α} is an eigenvector of A_{α} corresponding to an eigenvalue λ_{α} , and it is continuous (holomorphic if the resolvent is holomorphic) with respect to α . Finally we have $(A_{\alpha} - z)^{-1}\psi_{\alpha} = (\lambda_{\alpha} - z)^{-1}\psi_{\alpha}$. Taking the inner product with ψ gives

$$\langle \psi, (A_{\alpha} - z)^{-1} \psi_{\alpha} \rangle = (\lambda_{\alpha} - z)^{-1} \langle \psi, \psi_{\alpha} \rangle.$$

We have $\langle \psi, \psi_{\alpha} \rangle = 1$ when $\alpha = \alpha_0$, so this does not vanish on a neighborhood of α_0 . This gives

$$(\lambda_{\alpha} - z)^{-1} = \frac{\left\langle \psi, (A_{\alpha} - z)^{-1} \psi_{\alpha} \right\rangle}{\left\langle \psi, \psi_{\alpha} \right\rangle}$$

Thus $(\lambda_{\alpha} - z)^{-1}$ is continuous (holomorphic if the resolvent is holomorphic) for α and a neighborhood of α_0 , and so is λ_{α} .

Proposition 2.49 (Analytic family of type A). Let ω be an open subset of \mathbb{C} . Let $(A_{\alpha})_{\alpha \in \omega}$ be a family of closed operators on E . We assume that

- (i) the operators $A_{\alpha}, \alpha \in \omega$, have the same domain \mathcal{D} ;
- (ii) for all $\psi \in \mathcal{D}$ the map $\alpha \mapsto A_{\alpha} \psi \in \mathcal{H}$ is holomorphic on ω .

Let $\alpha_0 \in \omega$ and $z_0 \in \rho(A_{\alpha_0})$. Then there exists r > 0 such that $z \in \rho(A_\alpha)$ for all $\alpha \in D(\alpha_0, r)$ and $z \in D(z_0, r)$ and the map

$$(\alpha, z) \mapsto (A_{\alpha} - z)^{-1}$$

is continuous on $D(\alpha_0, r) \times D(z_0, r)$ and analytic in $D(\alpha_0, r)$ for all $z \in D(z_0, r)$.

Proof. For $\alpha \in \omega$ and $z \in \mathbb{C}$ we have

$$(A_{\alpha} - z) = \left(1 + \left((A_{\alpha} - A_{\alpha_0}) - (z - z_0)\right)(A_{\alpha_0} - z_0)^{-1}\right)(A_{\alpha_0} - z_0).$$

Since $(A_{\alpha_0} - z_0)^{-1}$ maps \mathcal{H} to \mathcal{D} , the operators $A_{\alpha}(A_{\alpha_0} - z_0)^{-1}$ and $A_{\alpha_0}(A_{\alpha_0} - z_0)^{-1}$ are well defined on \mathcal{H} . Since they are closed, they are bounded by the closed graph theorem. Then the function $\alpha \mapsto A_{\alpha}(A_{\alpha_0} - z)^{-1}$ is weakly holomorphic, and hence holomorphic by Proposition A.7. In particular it is continuous, so there exists r > 0 so small that $||(A_{\alpha_0} - z_0)^{-1}|| < 1/(4r)$, $D(\alpha_0, r) \subset \omega$ and for all $\alpha \in D(\alpha_0, r)$ we have

$$\|(A_{\alpha} - A_{\alpha_0})(A_{\alpha_0} - z_0)^{-1}\|_{\mathcal{L}(\mathcal{H})} \leq \frac{1}{4}.$$

Then the map $(\alpha, z) \mapsto (1 + (A_{\alpha} - A_{\alpha_0}) - (z - z_0))(A_{\alpha_0} - z_0)^{-1})^{-1}$ is well defined and continuous on $D(\alpha_0, r) \times D(z_0, r)$, and analytic with respect to α for all $z \in D(z_0, r)$. We deduce that the same holds for $\alpha \mapsto (A_{\alpha} - z)^{-1}$.

Proposition 2.50 (Analytic family of type B). Let \mathcal{V} be a Hilbert space continuously and densely embedded in \mathcal{H} . Let ω be an open subset of \mathbb{C} . Let $(q_{\alpha})_{\alpha \in \omega}$ be a family of continuous forms on \mathcal{V} such that $\varphi \mapsto q_{\alpha}(\varphi) \in \mathbb{C}$ is analytic for all $\varphi \in \mathcal{V}$. Assume that there exist $\alpha_0 \in \omega$ and $z_0 \in \mathbb{C}$ such that $q_{\alpha_0} - z_0$ is coercive. Then there exists r > 0 such that $q_{\alpha} - z$ is coercive for all $\alpha \in D(\alpha_0, r)$ and $z \in D(z_0, r)$. For $\alpha \in D(\alpha_0, r)$ we denote by A_{α} the operator on \mathcal{H} given by the representation theorem (see Theorem 1.71 and Remark 1.72). Then the map

$$(\alpha, z) \mapsto (A_{\alpha} - z)^{-1}$$

is continuous on $D(\alpha_0, r) \times D(z_0, r)$ and holomorphic with respect to $\alpha \in D(\alpha_0, r)$ for all $z \in D(z_0, r)$.

Proof. We denote by Q_{α} the operator in $\mathcal{L}(\mathcal{V}, \mathcal{V}')$ associated with q_{α} (see (1.12)). For $\alpha \in \omega$ we have in $\mathcal{L}(\mathcal{V}, \mathcal{V}')$

$$(Q_{\alpha} - z) = \left(1 + \left((Q_{\alpha} - Q_{\alpha_0}) - (z - z_0)\right)(Q_{\alpha_0} - z)^{-1}\right)(Q_{\alpha_0} - z)$$

Since $(Q_{\alpha_0} - z)^{-1}$ maps \mathcal{V}' to \mathcal{V} , the operators $Q_{\alpha}(Q_{\alpha_0} - z)^{-1}$ and $Q_{\alpha_0}(Q_{\alpha_0} - z)^{-1}$ are bounded on \mathcal{V}' . Then the function $\alpha \mapsto Q_{\alpha}(Q_{\alpha_0} - z)^{-1}$ is weakly holomorphic, and hence holomorphic by Proposition A.7. In particular it is continuous, so there exists r > 0 such that $\|(Q_{\alpha_0} - z_0)^{-1}\|_{\mathcal{L}(\mathcal{V}',\mathcal{V})} \leq 1/(4r), D(\alpha_0, r) \subset \omega$ and for all $\alpha \in D(\alpha_0, r)$ we have

$$\left\| (Q_{\alpha} - Q_{\alpha_0})(Q_{\alpha_0} - z)^{-1} \right\|_{\mathcal{L}(\mathcal{V}')} \leqslant \frac{1}{4}.$$

Then the map $(\alpha, z) \mapsto (1 + ((Q_{\alpha} - Q_{\alpha_0}) - (z - z_0))(Q_{\alpha_0} - z)^{-1})^{-1} \in \mathcal{L}(\mathcal{V}')$ is well defined and continuous on $D(\alpha_0, r) \times D(z_0, r)$, and analytic on $D(\alpha_0, r)$ for all $z \in D(z_0, r)$. We deduce that the same holds for $\alpha \mapsto (Q_{\alpha} - z)^{-1}$ in $\mathcal{L}(\mathcal{V}', \mathcal{V})$. Since $(Q_{\alpha} - z)^{-1}$ and $(A_{\alpha} - z)^{-1}$ coincide on \mathcal{H} , the conclusion follows.

For the perturbation of a double eigenvalue, we refer to Exemple II.1.1 (page 64) in $[{\rm Kat80}]$

2.4 Exercises

Exercise 2.1. Let $a = (a_n)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$. We consider the operator M_a given in Example 1.3. Prove that

$$\sigma_{\mathsf{p}}(M_a) = \{a_n, n \in \mathbb{N}\}$$
 and $\sigma(M_a) = \sigma_{\mathsf{p}}(M_a).$

Exercise 2.2. Let \mathcal{H} be a Hilbert space. Let A be a closed operator on \mathcal{H} . Assume that there exist a Hilbert basis $(\beta_n)_{n\in\mathbb{N}}$ of \mathcal{H} and a complex sequence $(\lambda_n)_{n\in\mathbb{N}}$ such that

$$\mathsf{Dom}(A) = \left\{ \varphi = \sum_{n=0}^{\infty} \varphi_n \beta_n : \sum_{n=0}^{\infty} |\lambda_n \varphi_n|^2 < \infty \right\},\,$$

and $A\beta_n = \lambda_n \beta_n$ for all $n \in \mathbb{N}$. Prove that

$$\sigma(A) = \{\lambda_n, n \in \mathbb{N}\}.$$

Exercise 2.3. We define on \mathbb{R} the function w defined by

$$w(x) = \begin{cases} \frac{1}{x+1} & \text{if } x > 0, \\ 0 & \text{if } x \leqslant 0 \end{cases}$$

Then we consider on $L^2(\mathbb{R})$ the operator M_w of multiplication by w.

1. What is $\sigma(M_w)$?

2. What is $\sigma_{p}(M_{w})$? For each eigenvalue λ of M_{w} , give a corresponding eigenvector.

Exercise 2.4. Let $A \in \mathcal{L}(\mathcal{H})$. Let $U \in \mathcal{L}(\mathcal{H})$ be unitary. Prove that

$$\sigma(U^*AU) = \sigma(A)$$
 and $\sigma_p(U^*AU) = \sigma(A)$.

Exercise 2.5. We consider on $\ell^2(\mathbb{Z})$ the operator H_0 which maps the sequence $u = (u_n)_{n \in \mathbb{Z}}$ to the sequence $H_0 u$ defined by

$$\forall n \in \mathbb{Z}, \quad (H_0 u)_n = u_{n+1} + u_{n-1} - 2u_n$$

1. Prove that $H_0 \in \mathcal{L}(\ell^2(\mathbb{Z}))$.

2. We denote by $L^2(\mathbb{S}^1)$ the set of L^2 -functions on the torus $\mathbb{S}^1 = \mathbb{R}/2\pi\mathbb{Z}$. Functions on \mathbb{S}^1 can also be seen as 2π -periodic functions on \mathbb{R} . For $v \in L^2(\mathbb{S}^1)$ we have

$$\|v\|_{L^2(S^1)}^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |v(s)|^2 \, \mathrm{d}s.$$

Given a sequence $u = (u_n)_{n \in \mathbb{Z}}$ we define $\Theta u \in L^2(\mathbb{S}^1)$ by

$$(\Theta u)(s) = \sum_{n \in \mathbb{Z}} u_n e^{ins}.$$

Prove that Θ is a unitary operator from $\ell^2(\mathbb{Z})$ to $L^2(\mathbb{S}^1)$.

3. Prove that $\Theta H_0 \Theta^{-1}$ is a multiplication operator on \mathbb{S}^1 .

4. Compute the spectrum of $\Theta H_0 \Theta^{-1}$ and deduce the spectrum of H_0 (use Exercise 2.4).

Exercise 2.6. We consider on $L^2(\mathbb{C})$ (\mathbb{C} is endowed with its usual Lebesgue measure) the operator A defined by (Au)(y) = yu(y) on the domain

$$\mathsf{Dom}(A) = \left\{ u \in L^2(\mathbb{C}) : yu \in L^2(\mathbb{C}) \right\}.$$

1. Prove that A is closed.

2. Prove that $\sigma(A) = \mathbb{C}$.

Exercise 2.7. We consider on $L^2(0,1)$ the operator

$$A = \partial_x$$

defined on the domain

$$\mathsf{Dom}(A) = \left\{ u \in H^1(0,1) : u(0) = 0 \right\}.$$

1. Prove that A is closed. **2.** Prove that $\sigma(A) = \emptyset$.

Exercise 2.8. We set

$$\mathcal{H} = \left\{ u \in L^2(\mathbb{R}) : u \text{ is even} \right\}.$$

1. Prove that \mathcal{H} is a Hilbert space.

2. We want to consider on \mathcal{H} the operator defined by Au = -u''. What is the natural domain for A (in particular, we want A to be closed) ? **3.** Then what is the spectrum of A ?

Exercise 2.9. For $u = (u_n)_{n \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ we set

$$U(\ldots, u_{-2}, u_{-1}, u_0, u_1, u_2, \ldots) = (\ldots, u_{-1}, u_0, u_1, u_2, u_3, \ldots).$$

1. Prove that $||U||_{\mathcal{L}(\ell^2(\mathbb{Z}))} = 1.$

2. Prove that U is invertible and $U^{-1} = U^*$ (U is a unitary operator).

- **3.** Prove that $\sigma(U) \subset \mathbb{U} = \{z \in \mathbb{C} : |z| \neq 1\}.$
- **4.** Let $\lambda \in \mathbb{U}$. For $k \in \mathbb{N}$ we consider

$$u^{(k)} = (\dots, 0, 0, 1, \lambda, \lambda^2, \dots, \lambda^k, 0, 0, \dots).$$

Compute $\|u^{(k)}\|_{\ell^2(\mathbb{Z})}$ and $\|(U-\lambda)u^{(k)}\|_{\ell^2(\mathbb{Z})}$. Prove that $\lambda \in \sigma(S)$.

Exercise 2.10. Compute, for all $n \in \mathbb{N}$ and $z \in \rho(A)$,

$$\frac{\mathrm{d}^n}{\mathrm{d}z^n}(A-z)^{-1}.$$

Exercise 2.11. Using the resolvent identity, give another proof of the facts that the resolvent map $R_A : z \mapsto (A - z)^{-1}$ is continuous and then holomorphic on $\rho(A)$ with $R'_A = R^2_A$.

Exercise 2.12. We consider on $\ell^2(\mathbb{Z})$ the operator A defined by

$$A(\ldots, u_{-2}, u_{-1}, u_0, u_1, u_2, \ldots) = (\ldots, u_{-1}, 0, u_1, u_2, u_3, \ldots)$$

(replace u_0 by 0 and then shift to the left). What is the spectrum of A?

Exercise 2.13. Let A be a closed and densely defined operator on E. Let $\lambda_0 \in \mathbb{C}$ and $r_0 > 0$ such that $D(\lambda_0, r_0) \cap \sigma(A) \neq 0$. Let

$$\Pi = -\frac{1}{2i\pi} \int_{\mathcal{C}(\lambda_0, r_0)} (A - \zeta)^{-1} \,\mathrm{d}\zeta$$

Prove that $1 \in \sigma(\Pi)$.

Exercise 2.14. We consider on $\ell^2(\mathbb{N}^*)$ the operator A defined by

$$A(u_1, u_2, u_3, \dots, u_k, \dots) = \left(0, \frac{u_1}{2}, \frac{u_2}{4}, \frac{u_3}{8}, \dots, \frac{u_k}{2^k}, \dots\right).$$

1. Prove that $A \in \mathcal{L}(\ell^2(\mathbb{N}^*))$ and compute $||A||_{\mathcal{L}(\ell^2(\mathbb{N}^*))}$.

2. Compute $\sigma(A)$.

3. Compute $\sigma_{p}(A)$.

4. Let $z \in \mathbb{C} \setminus \{0\}$ and $f = (f_k)_{k \in \mathbb{N}^*} \in \ell^2(\mathbb{N}^*)$. Compute $(A - z)^{-1}f$.

5. Compute the Riesz projection of A at point 0.

Exercise 2.15. Let E_1 and E_2 be two Banach spaces and $E = E_1 \oplus E_2$. Let A_1 and A_2 be two closed operators, on E_1 and E_2 respectively. For $\varphi = \varphi_1 + \varphi_2 \in E$ we set $A = A_1\varphi_1 + A_2\varphi_2$. 1. Prove that this defines a closed operator A on E.

2. Prove that $\sigma(A) = \sigma(A_1) \cup \sigma(A_2)$.

3. Prove that $\sigma_{p}(A) = \sigma_{p}(A_{1}) \cup \sigma_{p}(A_{2})$.

4. Assume that λ is an isolated eigenvalue of A. Prove that the geometric (algebraic) multiplicity of λ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of λ as an eigenvalue of A_1 and A_2 .

Exercise 2.16. Let $A \in \mathcal{L}(\mathsf{E})$. Let $P \in \mathbb{C}[X]$. Prove that

$$\sigma(P(A)) = \{P(\lambda), \lambda \in \sigma(A)\}.$$

Exercise 2.17 (Regular points). Let A be an operator on the Hilbert space \mathcal{H} . Let z be a regular point of A (see Proposition 2.9). We denote by $d_A(z) = \dim(\operatorname{Ran}(A-z)^{\perp})$ the defect number of A. We also denote by $\pi(A)$ the set of regular points of A.

1. Prove that $\pi(A)$ is open (more precisely, if $z_0 \in \pi(A)$ and $c_0 > 0$ is the constant given by (2.1), show that $D(z_0, c_{z_0}) \subset \pi(A)$).

2. Assume that *A* is closable.

a. Let $z_0 \in \pi(A)$. Assume that $z \in \pi(A)$ is such that $d_A(z) \neq d_A(z_0)$. Prove that there exists $\varphi \in \text{Dom}(A) \setminus \{0\}$ such that

$$\langle (A-z)\varphi, (A-z_0)\varphi \rangle = 0.$$

b. Let $c_0 > 0$ is the constant given by (2.1) for z_0 and assume that $|z - z_0| < c_0$. Prove that $d_A(z) = d_A(z_0)$.

c. Prove that the defect number is constant on each connected component of $\pi(A)$.

Exercise 2.18. Let A be a closed operator on E. Let $\lambda \in \sigma_{\mathsf{disc}}(A)$. Let $r_0 > 0$ be such that $D(\lambda, r_0) \cap \sigma(A) = \{\lambda\}$. For $r \in]0, r_0[$ and $n \in \mathbb{Z}$ we set

$$R_n = \frac{1}{2i\pi} \int_{\mathcal{C}(\lambda,r)} \frac{(A-\zeta)^{-1}}{(\zeta-\lambda)^{n+1}} \,\mathrm{d}\zeta.$$

1. Prove that for $n_1, n_2 \in \mathbb{Z} \setminus \{0\}$ we have $R_{n_1}R_{n_2} = -R_{n_1+n_2+1}$.

2. We set $N = -R_{-2}$. Prove that for all $n \ge 2$ we have $R_{-n} = -N^{n-1}$. **3.** We denote by Π the Riesz projection at λ . Prove that $N\Pi = \Pi N = N$. Deduce that N has finite rank.

4. Prove that for $z \in D(\lambda, r_0) \setminus \{\lambda\}$ we can write $(A - z)^{-1}$ as the Laurent series

$$(A-z)^{-1} = \sum_{n \in \mathbb{Z}} (z-\lambda)^n R_n,$$

and in particular that the power series $\sum_{m \ge 0} \rho^n R_{-m}$ is convergent for any $\rho \in \mathbb{C}$. **5.** Prove that N is nilpotent and that $R_{-n} = 0$ for n large enough.