
Chapter 2

Spectrum - Resolvent

2.1 Spectrum - Resolvent Set - Resolvent
Let E be a Banach space.

2.1.1 Definitions and first properties
Definition 2.1. Let A be an operator on E.

(i) The resolvent set ρpAq of A is the set of z P C such that pA ´ zq “ pA ´ z IdEq is
(boundedly) invertible (see Definition 1.23).

(ii) The spectrum σpAq of A is the complementery set of ρpAq in C.

Definition 2.2. Let A be an operator on E.

(i) We say that λ P C is an eigenvalue of A if there exists φ P DompAqz t0u such that
Aφ “ λφ (in other words, pA ´ λq is not injective).

(ii) Let λ P C be an eigenvalue of A. A vector φ P DompAqz t0u such that Aφ “ λφ is called
an eigenvector of A associated with λ, and kerpA ´ λq is the corresponding eigenspace.

(iii) The geometric multiplicity of λ is the dimension of kerpA ´ λq.

(iv) We denote by σppAq the set of eigenvalues of A.

Remark 2.3. We know that if E is of finite dimension then σpAq “ σppAq. However, in general
we always have σppAq Ă σpAq, but the inclusion can be strict.
Example 2.4. We consider the multiplication operator Mw defined in Example 1.12. Let
λ P C. Notice that Mw ´ λ “ Mw´λ. Then λ is an eigenvalue of Mw is and only if

Leb ptx P Ω : wpxq “ λuq ą 0,

and λ belongs to σpMwq if and only if for all ε ą 0 we have

Leb ptx P Ω : |wpxq ´ λ| ď εuq ą 0.

l Ex. 2.1-2.6

Remark 2.5. If A is not closed then pA ´ zq is never closed, and hence never boundedly
invertible (see Proposition 1.35). Then ρpAq “ H. This is why we are only interested
in closed operators. Notice however that a closed operator can have an empty resolvent
set (see Exercise 2.6). On the other hand, by Proposition 1.35 again, if A is closed and
A ´ z : DompAq Ñ E is bijective, then z P ρpAq.
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Example 2.6. ‚ Let E “ L2pRdq and A0 “ ´∆ with DompA0q “ C8
0 pRdq. Then for any

z P C we have RanpA0 ´ zq Ă C8
0 pRdq so A0 ´ z cannot be invertible. This proves that

σpA0q “ C. This is consistent with the fact that A0 is not closed.
‚ Now we consider A “ ´∆ with DompAq “ H2pRdq. Then σpAq “ R` and for z P CzR`
we have ››pA ´ zq´1››

LpL2pRdqq “ 1
distpz,R`q .

Indeed, if we denote by F the Fourier transform on L2pRdq, then F is a unitary operator.
Then p´∆´zq is invertible if and only if Fp´∆´zqF ´1 “ M´z is invertible on L2pRdq, where
M “ Fp´∆qF´1 is equal to the multiplication operator Mw for w : ξ ÞÑ |ξ|2. In particular,
we have Domp´∆q “ ␣

u P L2pRdq : Fu P DompMwq(
. Thus σpAq “ σpMwq “ R` and for

z P CzR` we have
››pA ´ zq´1››

LpL2pRdqq “ ››F´1pM ´ zq´1F
››

LpL2pRdqq “ ››pM ´ zq´1››
LpL2pRdqq

“ sup
ξPR

1
ξ2 ´ z

“ 1
distpz,R`q .l Ex. 2.7-2.8

Proposition 2.7. Let A be an operator on E and z P C. Assume that there exists a sequence
pφnq in DompAq such that }φn}E “ 1 for all n P N and

}pA ´ zqφn}E ÝÝÝÝÝÑ
nÑ`8 0.

Then z P σpAq.
Proof. Assume that z P ρpAq. Then

}φn}E ď ››pA ´ zq´1››
LpEq }pA ´ zqφn}E ÝÝÝÝÝÑ

nÑ`8 0.

This gives a contradiction.

Remark 2.8. The converse is not true in general. Consider for instance the shift operator Sr

(see Example 1.2). Then Sr is not surjective, so 0 P σpSrq, but }Srφ} “ }φ} for all φ P ℓ2pNq.
l Ex. 2.9

Proposition 2.9. Let A be an operator on E. Let z P C. Assume that there exists c0 ą 0
such that

@φ P DompAq, }pA ´ zqφ}E ě c0 }φ}E . (2.1)
We say that z is a regular point of A. Then

(i) pA ´ zq is injective ;

(ii) If pA ´ zq is invertible then
››pA ´ λq´1›› ď c´1

0 .

(iii) If moreover A is closed, then pA ´ zq has closed range.
This means that if z is a regular point of A, then z P ρpAq if and only if RanpA ´ zq is

dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We apply Proposition 1.36 to the operator pA ´ zq.
Proposition 2.10. Let A be a closed and densely defined operator on H. Then

σpA˚q “ tz, z P σpAqu .

Proof. Let λ P C. By Proposition 1.61 the operator pA ´ λq is bijective if and only if
pA ´ λq˚ “ pA˚ ´ λq is bijective.

Proposition 2.11. Let A be a boundedly invertible operator.
(i) A´1 has a bounded inverse if and only if A is bounded (and in this case we have

pA´1q´1 “ A).

(ii) For λ P C˚ we have λ P ρpAq if and only if λ´1 P ρpA´1q.
Proof. We prove the second statement. Let λ P C˚. Assume that A´1 ´ λ´1 has a bounded
inverse. Since pA´λq “ ´λpA´1 ´λ´1qA, the bounded operator ´λ´1A´1pA´1 ´λ´1q´1 is a
bounded inverse for pA´λq. Conversely, if pA´λq has a bounded inverse then pA´1 ´λ´1q “
´λ´1pA ´ λqA´1 has a bounded inverse given by ´λApA ´ λq´1 “ ´λp1 ` λpA ´ λq´1q.
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2.1.2 Example: the harmonic oscillator
We consider on L2pRq the operator H which acts as

H “ ´ d2

dx2 ` x2 (2.2)

on the domain
DompHq “ ␣

u P L2pRq : ´u2 ` x2u P L2pRq(
. (2.3)

Proposition 2.12. The spectrum of H consists of a sequence pλkqkPN of simple eigenvalues.
Moreover, for k P N˚ we have

λk “ p2k ` 1q
and a corresponding eigenfunction is given by

φkpxq “ hkpxqe´ x2
2 ,

where hkpxq “ is the k-th Hermite polynomial (in particular it has degree k).

Proof. ‚ We recall that we have introduced the operators a and c is Section 1.2.4. We
observe that for u P SpRq we have

Hu “ 2cau ` u.

We also have ra, csu “ acu ´ cau “ u so, by induction on k,

acku “ kck´1u ` ckau. (2.4)

‚ We set φ0pxq “ e´ x2
2 . We have φ0 P SpRq and aφ0 “ 0, so Hφ0 “ φ0. For k P N˚ we set

φk “ ckφ0. We can check by induction on k P N that φk is of the form φk “ Pkφ0 where Pk

is a polynomial of degree k. In particular φk P SpRq. We have

Hφk “ 2cackφ0 ` φk “ 2kckφ0 ` 2ck`1aφ0 ` φk “ p2k ` 1qφk.

This proves that λk “ 2k ` 1 is an eigenvalue of H and φk is a corresponding eigenfunction.
‚ We prove by induction on j P N that for all k ą j we have xφj , φky “ 0. Since c˚ “ a, we
have

xφj , φky “ @
cjφ0, ckφ0

D “ @
akcjφ0, φ0

D
.

Since aφ0 “ 0 the conclusion follows if j “ 0. For j ě 1 we have by
@
akcjφ0, φ0

D “ j
@
ak´1cj´1φ0, φ0

D ` @
ak´1cjaφ0, φ0

D “ 0.

This proves that the family of eigenvectors pφkqkPN is orthogonal in L2pRq.
‚ Let us prove that the family pφkq is total in L2pRq. This means that spanppφkqkPNq “
L2pRq. Let u P L2pRq be such that xφk, uyL2pRq “ 0 for all k P N. Since Pk is of degree k for
all k, we deduce that for any polynomial q we have

ż

R
qpxqe´ x2

2 upxq dx “ 0.

For ξ P C we set
vpξq “

ż

R
e´ixξupxqe´ x2

2 dx.

By differentiation under the integral sign we see that v is holomorphic in C and for m P N
we have

vpmqp0q “
ż

R
p´ixqmupxqe´ x2

2 dx “ 0.

This implies that v “ 0 on C, and in particular in R. Thus the Fourier transform of x ÞÑ
upxqe´ x2

2 is 0, so u “ 0 almost everywhere.
For k P N we set

ψk “ φk

}φk} .

Then pψkq is a Hilbert basis of L2pRq, and Hψk “ λkψk for all k. Thus the spectrum of H
is exactly given by the sequence pλkqkPN of simple eigenvalues (see Exercise 2.2).
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2.1.3 Resolvent
Let A be an operator on E with non-empty resolvent set.

Definition 2.13. Let z P ρpAq. We say that pA ´ zq´1 is the resolvent of A at z.

Notice that the operator A is completely characterized by its resolvent. The interest of
considering this resolvent is that it is a bounded operator on E, even if A is not. Moreover,
the good properties of the resolvent will be useful to study the operator A.

Proposition 2.14. For z P ρpAq we have

pA ´ zq´1A Ă ApA ´ zq´1 “ Id `zpA ´ zq´1.

Proposition 2.15 (Resolvent Identity). For z1, z2 P ρpAq we have

pA ´ z1q´1 ´ pA ´ z2q´1 “ pz1 ´ z2qpA ´ z1q´1pA ´ z2q´1

“ pz1 ´ z2qpA ´ z2q´1pA ´ z1q´1.

Proof. On DompAq we have pA ´ z2q ´ pA ´ z1q “ z1 ´ z2. The first equality follows after
composition by pA ´ z1q´1 on the left and by pA ´ z2q´1 on the right and the second after
composition by pA ´ z1q´1 on the right and by pA ´ z2q´1 on the left.

Remark 2.16. The resolvent identity proves in particular that pA ´ z1q´1 and pA ´ z2q´1

commute.

Proposition 2.17. The resolvent set ρpAq of A is open (equivalently, its spectrum σpAq is
closed) and for all z0 P ρpAq we have

››pA ´ z0q´1››
LpEq ě 1

distpz0, σpAqq .

Moreover, the resolvent map z ÞÑ pA ´ zq´1 is analytic on ρpAq and

d
dz

pA ´ zq´1 “ pA ´ zq´2.

Proof. Let z0 P ρpAq. For z P D
`
z0,

››pA ´ z0q´1››´1
LpEq

˘
we have

A ´ z “ pA ´ z0q ´ pz ´ z0q “ `
1 ´ pz ´ z0qpA ´ z0q´1˘pA ´ z0q.

Since pz´z0qpA´z0q´1 has norm less that 1 we can apply Proposition 1.8. Then the operator
1 ´ pz ´ z0qpA ´ z0q´1 is invertible and

`
1 ´ pz ´ z0qpA ´ z0q´1˘´1 “

ÿ

nPN
pz ´ z0qnpA ´ z0q´n.

Then A ´ z is invertible and pA ´ zq´1 and

pA ´ zq´1 “
ÿ

nPN
pz ´ z0qnpA ´ z0q´pn`1q.

In particular
dist

`
z0, σpAq˘ ě ››pA ´ z0q´1››´1

LpEq .

Moreover, we have written pA ´ zq´1 as a power series around z0 from which we deduce the
last statement.l Ex. 2.10-2.11

Applying Proposition 1.45 to pA ´ zq, we get the following result for reducing subspaces.

Proposition 2.18. Let Π be a projection of E such that ΠA Ă AΠ, F “ RanpΠq and
G “ kerpΠq. Then we have σpAq “ σpAFq Y σpAGq and for z P ρpAq “ ρpAFq X ρpAGq we
have

pA ´ zq´1 “ pAF ´ zq´1 ‘ pAG ´ zq´1.
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2.2 Spectrum of bounded operators
2.2.1 General properties
Proposition 2.19. Let A P LpEq. Then σpAq is compact and included in Dp0, }A}LpEqq.
Proof. Let z P C such that |z| ą }A}. Then we have

A ´ z “ ´z

ˆ
Id ´A

z

˙
.

Since ››››
A

z

›››› “ }A}
|z| ă 1,

the operator Id ´ A
z is invertible with inverse given by the Neumann series

ř
kPNp A

z qk. This
proves that A ´ z is invertible with inverse

pA ´ zq´1 “ ´
ÿ

kPN

Ak

zk`1 . (2.5)

In particular, σpAq is included in Dp0, }A}LpEqq so it is bounded. Since it is closed by Propo-
sition 2.17, it is compact.

Proposition 2.20. Assume that E ‰ t0u. Let A P LpEq. Then σpAq ‰ H.

Proof. Assume by contradiction that ρpAq “ C. For z P C such that |z| ě 2 }A}LpEq we have
by (2.5)

››pA ´ zq´1››
LpEq ď 1

|z|
8ÿ

k“0

˜}A}LpEq
|z|

¸k

ď 2
|z| . (2.6)

Let φ P Ez t0u and ℓ P E1. The map z ÞÑ ℓppA ´ zq´1φq is holomorphic on C and bounded.
Thus it is constant by the Liouville Theorem. By the previous estimate, its value must be 0.
In particular, ℓpA´1φq “ 0 for all ℓ P E1. By the Hahn-Banach Theorem, we have A´1φ “ 0.
This gives a contradiction and proves that ρpAq ‰ C.

Remark 2.21. In the real case we know from the finite dimensional case that the spectrum
of a bounded operator can be empty.
Remark 2.22. An unbounded operator can have empty resolvent set (see Exercise 2.6) or an
empty spectrum (see Exercise 2.7).
Example 2.23. We consider on ℓ2pNq the shift operators of Example 1.2. We have

σppSrq “ H and σppSℓq “ Dp0, 1q.
By Proposition 2.19, σpSℓq is closed and contained in Dp0, 1q, so σpSℓq “ Dp0, 1q. Finally,
since Sr̊ “ Sℓ, we also have σpSrq “ Dp0, 1q by Proposition 2.10.

l Ex. 2.12

2.2.2 Spectral radius
Definition 2.24. Let A P LpEq. We define the spectral radius of A by

rpAq “ sup
λPσpAq

|λ| .

By Proposition 2.19 we already know that rpAq ď }A}LpEq. The equality is not true in
general. Consider for instance the matrix

Aα “
ˆ

1 α
0 1

˙

for α P C. We have σpAq “ t1u and }A}LpC2q Ñ `8 as |α| Ñ `8. In general we have at
least the following result.
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Proposition 2.25 (Gelfand’s Formula). Let A P LpEq. We have

rpAq “ inf
nPN˚

}An} 1
n

LpEq “ lim
nÑN˚

}An} 1
n

LpEq .

Example 2.26. Check that Aα satisfies the Gelfand Formula.

Proof. ‚ Assume that there exists N P N such that AN “ 0. Then An “ 0 for all n ě N .
Let z P Cz t0u. Then pz´1A ´ 1q is invertible with inverse

ˆ
A

z
´ 1

˙´1
“ ´

N´1ÿ

n“0

ˆ
A

z

˙n

.

This proves that A ´ z “ zpz´1A ´ 1q is invertible. Thus σpAq Ă t0u. Since σpAq ‰ H, we
have σpAq “ t0u and the proposition is proved in this case. Now we assume that An ‰ 0 for
all n P N.
‚ For n P N we set un “ lnp}An}q. For m, p P N˚ we have by (1.1)

um`p ď um ` up.

Let p P N˚. Let n P N˚ and pq, rq P N ˆ J0, p ´ 1K such that n “ qp ` r. Then we have

un

n
ď qup ` ur

qp ` r
ď up

p
` ur

n
,

so
lim sup

nÑ8
un

n
ď up

p
.

Then for all p P N˚ we have
lim sup

nÑ8
}An} 1

n ď }Ap} 1
p

Thus
lim sup

nP8
}An} 1

n ď inf
pPN˚

}Ap} 1
p .

This implies that
}An} 1

n ÝÝÝÑ
nÑ8 inf

pPN˚
}Ap} 1

p ,

which gives the second inequality of the proposition.
‚ We set r̃pAq “ lim }An} 1

n . For z P C we have kerpA ´ zq Ă kerpAn ´ znq and

An ´ zn “ pA ´ zq
n´1ÿ

k“0
zkAn´1´k,

so RanpAn ´ znq Ă RanpA ´ zq. Thus, if An ´ zn is bijective, then so is A ´ z. Now let
λ P σpAq. We have λn P σpAnq. By Proposition 2.19 we have |λ|n “ |λn| ď }An}, so
|λ| ď }An} 1

n for all n P N, and hence |λ| ď r̃pAq. This proves that rpAq ď r̃pAq.
‚ Let z P C with |z| ą r̃pAq. Then the power series

´
ÿ

nPN

An

zn`1

is convergent in LpEq and defines a bounded inverse for pA´zq. This proves that r̃pAq ď rpAq
and concludes the proof.

2.2.3 Normal bounded operators
Definition 2.27. We say that A P LpHq is normal if AA˚ “ A˚A.

Example 2.28. • The multiplication operator Mw (see Example 1.4) is normal.

• Since SrSℓ ‰ SℓSr, the shift operators Sℓ and Sr (see Example 1.2) are not normal.
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Remark 2.29. If A is normal and invertible, then A´1 is normal.

Proposition 2.30. Let A P LpHq be a normal operator.

(i) For φ P H we have }Aφ} “ }A˚φ}. In particular, kerpA˚q “ kerpAq.
(ii) If λ and µ are two distinct eigenvalues of A, then kerpA ´ λq and kerpA ´ µq are

orthogonal.

Proof. ‚ Let φ P H. We have

}Aφ}2 “ xA˚Aφ, φy “ xAA˚φ, φy “ }A˚φ}2
,

which gives the first statement.
‚ Let φ P kerpA ´ λq and ψ P kerpA ´ µq. By the first statement we also have ψ P
kerppA ´ µq˚q “ kerpA˚ ´ µq. Then we have

pλ ´ µq xφ, ψy “ xλφ, ψy ´ xφ, µψy “ xAφ, ψy ´ xφ, A˚ψy “ 0.

Since λ ‰ µ, this proves that xφ, ψy “ 0, so kerpA ´ λq and kerpA ´ µq are orthogonal.

In Section 2.2.2 we have said that the spectral radius of a bounded operator can be smaller
that its norm. This is not the case for a normal operator.

Proposition 2.31. Let A P LpEq be normal. We have rpAq “ }A}LpHq.

Proof. ‚ Assume that A “ A˚ (A is selfadjoint). We always have
››A2›› ď }A}2. For φ P H

we have
}Aφ}2 “ xA˚Aφ, φy “ @

A2φ, φ
D ď ››A2›› }φ}2

.

This proves that }A}2 ď ››A2››, and hence }A}2 “ ››A2››. Since A2k is selfadjoint for all k P N,
we deduce by induction that

››A2k ›› “ }A}2k

for all k P N. Then, by the Gelfand Formula we
have

rpAq “ lim
kÑ8

››A2k ›› 1
2k “ }A} .

‚ Now we only assume that A is normal. We have }A˚A} “ }A}2 (exercise). On the other
hand, since A˚A is selfadjoint we have rpA˚Aq “ }A˚A}, so rpA˚Aq “ }A}2. On the other
hand, since A is normal,

rpA˚Aq “ lim
nÑ8 }pA˚Aqn} 1

n “ lim
nÑ8 }pAnq˚An} 1

n “ lim
nÑ8 }An} 2

n “ rpAq2.

This proves that rpAq “ }A}.

Remark 2.32. If A P LpHq is a normal operator such that σpAq “ t0u then A “ 0. This is
not the case in general, since every nilpotent operator has spectrum t0u.

Theorem 2.33. Let A P LpHq a normal operator. For z P ρpAq we have

››pA ´ zq´1››
LpHq “ 1

distpz, σpAqq .

Proof. Let z P ρpAq. By Proposition 2.11 we have

σppA ´ zq´1q “ ␣pζ ´ zq´1, ζ P σpAq(
.

Since pA ´ zq´1 is normal, we deduce by Proposition 2.31

››pA ´ zq´1›› “ rppA ´ zq´1q “ sup
λPσpAq

|λ ´ z|´1 “ 1
infλPσpAq |λ ´ z| “ 1

distpz, σpAqq .
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2.3 Riesz projections
2.3.1 Separation of the spectrum
The interest of the resolvent is that it is a bounded operator which completely characterize
the operator. Moreover, since it is analytic, we can use all the tools from complex analysis.
In the following section we give a first application of the resolvent for the analysis of an
operator.

Let E be a Banach space and let A be a closed operator on E.

Proposition 2.34. Let z0 P C and r0 ą 0. Assume that Cpz0, r0q Ă ρpAq. We define

Π “ ´ 1
2iπ

ż

Cpz0,r0q
pA ´ ζq´1 dζ “ ´ 1

2π

ż 2π

0

`
A ´ pz0 ` r0eiθq˘´1

r0eiθ dθ.

We also set F “ RanpΠq and G “ kerpΠq.
(i) Π is a (not necessarily orthogonal) projection of E.

(ii) F Ă DompAq.
(iii) ΠA Ă AΠ.

(iv) σpAFq “ σpAq X Dpz0, r0q and σpAGq “ σpAqzDpz0, r0q.
Remark 2.35. In Proposition 2.34 we consider for simplicity the case where Π is defined by
an integral on a circle. But we can similarly consider the integral on any rectifiable simple
closed curve in ρpAq (see [Kat80, § III.6.4]).
Remark 2.36. Π is defined by the integral on a line segment of a continuous function with
values in the Banach space LpEq. This can be understood in the sense of Riemann integrals
and this defines a bounded operator on E. In particular we have in LpEq

Π “ lim
nÑ`8 Πn, where Πn “ ´ 1

n

nÿ

k“1

`
A ´ pz0 ` r0eiθn,k q˘´1

r0eiθn,k , θn,k “ 2kπ

n
.

Then if T is a closed operator with DompAq Ă DompT q, we have

TΠ “ ´ 1
2iπ

ż

Cpz0,r0q
T pA ´ ζq´1 dζ.

Indeed, for φ P H and n P N˚ we have Πnφ P DompAq Ă DompT q, Πnφ Ñ Πφ and

TΠnφ “ ´ 1
n

nÿ

k“1
T

`
A ´ pz0 ` r0eiθn,k q˘´1

r0eiθn,k φ

Proof. ‚ For φ P E and ℓ P E1 we have

ℓpΠφq “ ´ 1
2iπ

ż

Cpz0,r0q
ℓ
`pA ´ zq´1φ

˘
dz.

Since ρpAq is open in C, there exists R1 Ps0, r0r and R2 ą r0 such that Dp0, R2qzDp0, R1q Ă
ρpAq. Let φ P E and ℓ P E˚. Since the map ζ ÞÑ ℓ

`pA ´ ζq´1φ
˘

is holomorphic on ρpAq, we
can replace r0 by any r PsR1, R2r in the expression of Π.
‚ Let r1, r2 PsR1, R2r with r1 ă r2. We can write

Π2 “ 1
p2iπq2

ż

ζ1PCpz0,r1q

ż

ζ2PCpz0,r2q
pA ´ ζ1q´1pA ´ ζ2q´1 dζ2 dζ1.

By the resolvent identity we have

Π2 “ 1
p2iπq2

ż

ζ1PCpz0,r1q

ż

ζ2PCpz0,r2q
pA ´ ζ1q´1 ´ pA ´ ζ2q´1

ζ1 ´ ζ2
dζ2 dζ1.

28 J. Royer - Université Toulouse 3



Spectrum - Resolvent

Then, by the Fubini Theorem,

Π2 “ ´ 1
p2iπq2

ż

ζ1PCpz0,r1q
pA ´ ζ1q´1

˜ż

ζ2PCpz0,r2q
1

ζ2 ´ ζ1
dζ2

¸
dζ1

´ 1
p2iπq2

ż

ζ2PCpz0,r2q
pA ´ ζ2q´1

˜ż

ζ1PCpz0,r1q
1

ζ1 ´ ζ2
dζ1

¸
dζ2.

We look at the integral in brackets for each term. For the second term, for any ζ2 P Cpz0, r2q
the map ζ1 ÞÑ 1{pζ1 ´ ζ2q is holomorphic on Dpz0, r2q, so the integral vanishes. For the first
term, we get by the Cauchy Theorem that the integral is equal to 2iπ for all ζ1 P Cpz0, r1q.
Then

Π2 “ ´ 1
2iπ

ż

ζ2PCpz0,r2q
pA ´ ζ2q´1 dζ2 “ Π.

This proves that Π is a projection of E.
‚ Let φ P F and ψ P E such that φ “ Πψ. For n P N˚ we set φn “ Πnψ P DompAq. Then
φn Ñ φ in E. Moreover,

Aφn “ ´ 1
n

nÿ

k“1
A

`
A ´ pz0 ` r0eiθn,k q˘´1

r0eiθn,k ψ

“ ´ 1
n

nÿ

k“1

`
Id `pz0 ` r0eiθn,k q`

A ´ pz0 ` r0eiθn,k q˘´1˘
r0eiθn,k ψ

ÝÝÝÑ
nÑ8 ´ 1

2iπ

ż

Cpz0,r0q

`
Id `ζpA ´ ζq´1˘

ψ dζ “ ´ 1
2iπ

ż

Cpz0,r0q
ζpA ´ ζq´1ψ dζ.

Since A is closed this proves that φ P DompAq (and Aφ “ ´ 1
2iπ

ş
Cpz0,r0q ζpA ´ ζq´1ψ dζ).

‚ Let φ P DompAq. Since A commutes with its resolvent, we have AΠnφ “ ΠnAφ for all
n P N˚. Since Πnφ Ñ Πφ and AΠN φ “ ΠN Aφ Ñ ΠAφ, we get by closedness of A that
Πφ P DompAq and AΠφ “ ΠAφ.
‚ Let z P ρpAFqzDpz0, r0q. Let r PsR1, r0r. We have on F

pAF ´ zq´1 “ pAF ´ zq´1Π

“ ´ 1
2iπ

ż

ζPCpz0,rq
pAF ´ zq´1pAF ´ ζq´1 dζ

“ ´ 1
2iπ

ż

ζPCpz0,rq
pAF ´ zq´1 ´ pAF ´ ζq´1

z ´ ζ
dζ

“ 1
2iπ

ż

ζPCpz0,rq
pAF ´ ζq´1

z ´ ζ
dζ.

The right-hand side is bounded uniformly in z P ρpAFqzDpz0, r0q. By Proposition 2.17 this
implies that

σpAFq Ă Dpz0, r0q. (2.7)
Now let z P ρpAGq X Dpz0, r0q and r Psr0, R2r. We have on G

pAG ´ zq´1 “ pAG ´ zq´1p1 ´ Πq
“ pAG ´ zq´1 ´ 1

2iπ

ż

ζPCpz0,rq
pAG ´ zq´1 ´ pAG ´ ζq´1

ζ ´ z
dζ

“ 1
2iπ

ż

ζPCpz0,rq
pAG ´ ζq´1

z ´ ζ
dζ.

This is bounded uniformly in z P ρpAGq X Dpz0, r0q, so

σpAGq Ă CzDp0, r0q. (2.8)

Finally, with Proposition 2.18 and (2.7)-(2.8) we deduce that σpAFq “ σpAq X Dp0, r0q and
σpAGq “ σpAqzDp0, r0q. l Ex. 2.13-2.14
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2.3.2 Isolated eigenvalues
Definition 2.37. We consider an operator A on E. Assume that λ P C is an isolated point
in the spectrum of A. Let r0 ą 0 such that σpAq X Dpλ, r0q “ tλu and r Ps0, r0r. Then the
Riesz projection of A at λ is

Πλ “ ´ 1
2iπ

ż

Cpλ,rq
pA ´ zq´1 dz (2.9)

Remark 2.38. The definition of Πλ does not depend on the choice of r Ps0, r0r. More generally,
we can replace Cpλ, rq any closed curve in Dpλr0qz tλu enclosing λ exactly once in the direct
sense.

Definition 2.39. Let λ be an isolated element of σpAq. The algebraic multiplicity of λ is
dimpRanpΠλqq, where Πλ is the Riesz projection at λ.

Example 2.40. Let α, β P C distinct and

M “

¨
˚̊
˚̊
˝

α 1 0 0 0
0 α 0 0 0
0 0 α 0 0
0 0 0 β 1
0 0 0 0 β

˛
‹‹‹‹‚

Then σpMq “ tα, βu and α is an eigenvalue of geometric multiplicity 2. For z P Cztα, βu we
have

pM ´ zq´1 “

¨
˚̊
˚̊
˝

pα ´ zq´1 ´pα ´ zq´2 0 0 0
0 pα ´ zq´1 0 0 0
0 0 pα ´ zq´1 0 0
0 0 0 pβ ´ zq´1 ´pβ ´ zq´2

0 0 0 0 pβ ´ zq´1

˛
‹‹‹‹‚

.

Then for r Ps0, |α ´ β| r we have

Πα “ ´ 1
2iπ

ż

Cpα,rq
pM ´ zq´1 dz “

¨
˚̊
˚̊
˝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

˛
‹‹‹‹‚

,

so α has algebraic multplicity 3 and Πα is the projection of C5 on kerppM ´ αq2q parallel to
kerppM ´ βq2q.
Proposition 2.41. We use the notation of Proposition 2.34.

(i) Let λ P Dpz0, r0q and m P N˚. Then kerppA ´ λqmq Ă F.

(ii) Let λ P CzDpz0, r0q and m P N˚. Then kerppA ´ λqmq Ă G.

Proof. ‚ Let φ P DompAq such that pA ´ λqφ P F. For ζ P Cpz0, r0q we have

pA ´ ζq´1φ “ pλ ´ ζq´1φ ´ pλ ´ ζq´1pA ´ ζq´1pA ´ λqφ,

Then

Πφ “ ´ 1
2iπ

ż

Cpz0,rq

`pλ ´ ζq´1φ ´ pλ ´ ζq´1pA ´ ζq´1pA ´ λqφ˘
dζ

“ φ ` 1
2iπ

ż

Cpz0,rq
pλ ´ ζq´1pA ´ ζq´1pA ´ λqφ dζ.

Since

@ζ P Cpz0, rq, pA ´ ζq´1pA ´ λqp1 ´ Πqφ “ pA ´ ζq´1p1 ´ ΠqpA ´ λqφ “ 0,
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we deduce

p1 ´ Πqφ “ p1 ´ Πq2φ “ ´ 1
2iπ

ż

Cpz0,rq
pλ ´ ζq´1pA ´ ζq´1p1 ´ ΠqpA ´ λqφ dζ “ 0.

This proves that φ P F. Then we can prove by induction on m P N˚ that kerppA ´ λqmq Ă F.
The second statement is similar.

Remark 2.42. Let λ be an isolated element of σpAq. Since kerpA ´ λq Ă RanpΠApλqq the
geometric multiplicity of λ (which can be 0 if λ is not an eigenvalue) is not greater than its
algebraic multiplicity.

Proposition 2.43. Assume that λ is an isolated point of σpAq such that RanpΠλq is of finite
dimension m P N˚. Then λ is an eigenvalue and

RanpΠλq “ kerppA ´ λqmq.
Proof. The restriction AF of A to F “ RanpΠλq is an operator on the finite dimensional space
F, with σpAFq “ tλu. Then the result follows from the finite dimensional case.

Remark 2.44. Notice that (see Exercise 2.14)

• an isolated point λ of σpAq is not necessarily an eigenvalue (in this case we have
dimpRanpΠλqq “ `8 by Proposition 2.43);

• as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multi-
plicity.

Definition 2.45. Let A be a closed operator on E. Let λ P C. We say that λ belongs to
the discrete spectrum σdiscpAq of A and λ is an isolated eigenvalue of A with finite algebraic
multiplicity.

Example 2.46. • Assume that E has infinite dimension. Then σdiscpIdEq “ H (the spec-
trum is given by the eigenvalue 1, but it has infinite dimension.

• The harmonic oscillator (see Section 2.1.2) has purely discrete spectrum: σdiscpHq “
σpHq.

• The usual Laplacian on Rd (see Example 2.6) has empty discrete spectrum: σp´∆q “
H.

l Ex. 2.15

2.3.3 Additional topic: regularity of the spectrum with respect to
a parameter

Lemma 2.47. Let Π1 and Π2 be two projections on E. Assume that }Π2 ´ Π1}LpEq ă 1.
Then

dimpRanpΠ1qq “ dimpRanpΠ2qq.
Proof. Let π : RanpΠ2q Ñ RanpΠ1q be the restriction of Π1 to RanpΠ2q. This is a continuous
linear map. For φ P kerpπq we have Π2pφq “ φ and Π1pφq “ 0 so

}φ} “ }Π2pφq ´ Π1pφq} ď }Π2 ´ Π2} }φ} ,

so φ “ 0. This implies that dimpRanpΠ1qq ě dimpRanpΠ1qq. Interverting the roles of Π1 and
Π2 gives the reverse inequality and concludes the proof.

Proposition 2.48. Let ω be a connected subset of C. Let pAαqαPC be a family of linear
operators on E. Assume that there exists λ0 P C and r0 ą 0 such that Cpλ0, r0q Ă ρpAαq for
all α P ω. Assume that the map

"
ω ˆ Cpλ0, r0q Ñ LpEq

pα, zq ÞÑ pAα ´ zq´1

is continuous. We denote by Πα the Riesz projection of Aα on Cpλ0, rq.
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(i) dimpRanpΠαqq does not depend on α P ω.

(ii) Assume that dimpRanpΠαqq “ 1. Then for all α P ω the operator Aα has a unique simple
eigenvalue λα in Dpλ0, rq. Moreover the maps α ÞÑ λα and α ÞÑ Πα are continuous on
ω. If moreover α ÞÑ pAα ´ zq´1 is holomorphic on ω for all z P Cpλ0, r0q, then α ÞÑ Πα

and α ÞÑ λα are holomorphic.

Proof. ‚ Let α0 P ω. Since Cpλ0, rq is compact, there exists a neighborhood V of α0 in ω
such that for all α P V and ζ P Cpλ0, rq we have

››pAα ´ ζq´1 ´ pAα0 ´ ζq´1›› ď 1
2r0

.

Then we have
}Πα ´ Πα0 } ď 1

2 ,

and, by Lemma 2.47, RanpΠαq “ RanpΠα0 q for all α P V. Then RanpΠαq is locally constant,
so it is constant on the connected set ω.
‚ By continuity under the integral sign, we see that Πα is continuous with respect to α. If
pAα ´ ζq´1 is holomorphic with respect to α for all ζ P Cpl0, rq, then Πα is holomorphic by
complex differentiation under the integral sign.
‚ Now assume that RanpΠαq “ 1 for all α P ω. Let α0 P ω and ψ P RanpΠα0 q with }ψ} “ 1.
Then ψ is an eigenvector corresponding to an eigenvalue λα0 P Dpλ0, rq. For α P ω we set
ψα “ Παψ. For α close to α0 we have ψα ‰ 0. Then ψα is an eigenvector of Aα corresponding
to an eigenvalue λα, and it is continuous (holomorphic if the resolvent is holomorphic) with
respect to α. Finally we have pAα ´ zq´1ψα “ pλα ´ zq´1ψα. Taking the inner product with
ψ gives @

ψ, pAα ´ zq´1ψα

D “ pλα ´ zq´1 xψ, ψαy .

We have xψ, ψαy “ 1 when α “ α0, so this does not vanish on a neighborhood of α0. This
gives

pλα ´ zq´1 “
@
ψ, pAα ´ zq´1ψα

D

xψ, ψαy .

Thus pλα ´ zq´1 is continuous (holomorphic if the resolvent is holomorphic) for α an a
neighborhood of α0, and so is λα.

Proposition 2.49 (Analytic family of type A). Let ω be an open subset of C. Let pAαqαPω

be a family of closed operators on E. We assume that

(i) the operators Aα, α P ω, have the same domain D ;

(ii) for all ψ P D the map α ÞÑ Aαψ P H is holomorphic on ω.

Let α0 P ω and z0 P ρpAα0 q. Then there exists r ą 0 such that z P ρpAαq for all α P Dpα0, rq
and z P Dpz0, rq and the map

pα, zq ÞÑ pAα ´ zq´1

is continuous on Dpα0, rq ˆ Dpz0, rq and analytic in Dpα0, rq for all z P Dpz0, rq.
Proof. For α P ω and z P C we have

pAα ´ zq “
´

1 ` `pAα ´ Aα0 q ´ pz ´ z0q˘pAα0 ´ z0q´1
¯

pAα0 ´ z0q.
Since pAα0 ´z0q´1 maps H to D, the operators AαpAα0 ´z0q´1 and Aα0 pAα0 ´z0q´1 are well
defined on H. Since they are closed, they are bounded by the closed graph theorem. Then the
function α ÞÑ AαpAα0 ´ zq´1 is weakly holomorphic, and hence holomorphic by Proposition
A.7. In particular it is continuous, so there exists r ą 0 so small that

››pAα0 ´ z0q´1›› ă 1{p4rq,
Dpα0, rq Ă ω and for all α P Dpα0, rq we have

››pAα ´ Aα0 qpAα0 ´ z0q´1››
LpHq ď 1

4 .

Then the map pα, zq ÞÑ `
1 ` `

Aα ´ Aα0 q ´ pz ´ z0q˘pAα0 ´ z0q´1˘´1 is well defined and
continuous on Dpα0, rq ˆ Dpz0, rq, and analytic with respect to α for all z P Dpz0, rq. We
deduce that the same holds for α ÞÑ pAα ´ zq´1.
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Proposition 2.50 (Analytic family of type B). Let V be a Hilbert space continuously and
densely embedded in H. Let ω be an open subset of C. Let pqαqαPω be a family of continuous
forms on V such that φ ÞÑ qαpφq P C is analytic for all φ P V. Assume that there exist α0 P ω
and z0 P C such that qα0 ´ z0 is coercive. Then there exists r ą 0 such that qα ´ z is coercive
for all α P Dpα0, rq and z P Dpz0, rq. For α P Dpα0, rq we denote by Aα the operator on H
given by the representation theorem (see Theorem 1.71 and Remark 1.72). Then the map

pα, zq ÞÑ pAα ´ zq´1

is continuous on Dpα0, rq ˆ Dpz0, rq and holomorphic with respect to α P Dpα0, rq for all
z P Dpz0, rq.
Proof. We denote by Qα the operator in LpV, V 1q associated with qα (see (1.12)). For α P ω
we have in LpV, V 1q

pQα ´ zq “
´

1 ` `pQα ´ Qα0 q ´ pz ´ z0q˘pQα0 ´ zq´1
¯

pQα0 ´ zq

Since pQα0 ´ zq´1 maps V 1 to V, the operators QαpQα0 ´ zq´1 and Qα0 pQα0 ´ zq´1 are
bounded on V 1. Then the function α ÞÑ QαpQα0 ´ zq´1 is weakly holomorphic, and hence
holomorphic by Proposition A.7. In particular it is continuous, so there exists r ą 0 such
that

››pQα0 ´ z0q´1››
LpV 1,Vq ď 1{p4rq, Dpα0, rq Ă ω and for all α P Dpα0, rq we have

››pQα ´ Qα0 qpQα0 ´ zq´1››
LpV 1q ď 1

4 .

Then the map pα, zq ÞÑ `
1``pQα ´Qα0 q´pz´z0q˘pQα0 ´zq´1˘´1 P LpV 1q is well defined and

continuous on Dpα0, rq ˆ Dpz0, rq, and analytic on Dpα0, rq for all z P Dpz0, rq. We deduce
that the same holds for α ÞÑ pQα ´ zq´1 in LpV 1, Vq. Since pQα ´ zq´1 and pAα ´ zq´1

coincide on H, the conclusion follows.

For the perturbation of a double eigenvalue, we refer to Exemple II.1.1 (page 64) in
[Kat80]

2.4 Exercises
Exercise 2.1. Let a “ panqnPN P ℓ8pNq. We consider the operator Ma given in Example
1.3. Prove that

σppMaq “ tan, n P Nu and σpMaq “ σppMaq.
Exercise 2.2. Let H be a Hilbert space. Let A be a closed operator on H. Assume that
there exist a Hilbert basis pβnqnPN of H and a complex sequence pλnqnPN such that

DompAq “
#

φ “
8ÿ

n“0
φnβn :

8ÿ

n“0
|λnφn|2 ă 8

+
,

and Aβn “ λnβn for all n P N. Prove that

σpAq “ tλn, n P Nu.

Exercise 2.3. We define on R the function w defined by

wpxq “
#

1
x`1 if x ą 0,

0 if x ď 0

Then we consider on L2pRq the operator Mw of multiplication by w.
1. What is σpMwq ?
2. What is σppMwq ? For each eigenvalue λ of Mw, give a corresponding eigenvector.

Exercise 2.4. Let A P LpHq. Let U P LpHq be unitary. Prove that

σpU˚AUq “ σpAq and σppU˚AUq “ σpAq.
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Exercise 2.5. We consider on ℓ2pZq the operator H0 which maps the sequence u “ punqnPZ
to the sequence H0u defined by

@n P Z, pH0uqn “ un`1 ` un´1 ´ 2un.

1. Prove that H0 P Lpℓ2pZqq.
2. We denote by L2pS1q the set of L2-functions on the torus S1 “ R{2πZ. Functions on S1

can also be seen as 2π-periodic functions on R. For v P L2pS1q we have

}v}2
L2pS1q “ 1

2π

ż π

´π

|vpsq|2 ds.

Given a sequence u “ punqnPZ we define Θu P L2pS1q by

pΘuqpsq “
ÿ

nPZ
uneins.

Prove that Θ is a unitary operator from ℓ2pZq to L2pS1q.
3. Prove that ΘH0Θ´1 is a multiplication operator on S1.
4. Compute the spectrum of ΘH0Θ´1 and deduce the spectrum of H0 (use Exercise 2.4).

Exercise 2.6. We consider on L2pCq (C is endowed with its usual Lebesgue measure) the
operator A defined by pAuqpyq “ yupyq on the domain

DompAq “ ␣
u P L2pCq : yu P L2pCq(

.

1. Prove that A is closed.
2. Prove that σpAq “ C.

Exercise 2.7. We consider on L2p0, 1q the operator

A “ Bx

defined on the domain
DompAq “ ␣

u P H1p0, 1q : up0q “ 0
(

.

1. Prove that A is closed.
2. Prove that σpAq “ H.

Exercise 2.8. We set
H “ ␣

u P L2pRq : u is even
(

.

1. Prove that H is a Hilbert space.
2. We want to consider on H the operator defined by Au “ ´u2. What is the natural domain
for A (in particular, we want A to be closed) ?
3. Then what is the spectrum of A ?

Exercise 2.9. For u “ punqnPZ P ℓ2pZq we set

Up. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, u0, u1, u2, u3, . . . q.
1. Prove that }U}Lpℓ2pZqq “ 1.
2. Prove that U is invertible and U ´1 “ U˚ (U is a unitary operator).
3. Prove that σpUq Ă U “ tz P C : |z| ‰ 1u.
4. Let λ P U. For k P N we consider

upkq “ p. . . , 0, 0, 1, λ, λ2, . . . , λk, 0, 0, . . . q.
Compute

››upkq››
ℓ2pZq and

››pU ´ λqupkq››
ℓ2pZq. Prove that λ P σpSq.

Exercise 2.10. Compute, for all n P N and z P ρpAq,
dn

dzn
pA ´ zq´1.
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Exercise 2.11. Using the resolvent identity, give another proof of the facts that the resolvent
map RA : z ÞÑ pA ´ zq´1 is continuous and then holomorphic on ρpAq with R1

A “ R2
A.

Exercise 2.12. We consider on ℓ2pZq the operator A defined by

Ap. . . , u´2, u´1, u0, u1, u2, . . . q “ p. . . , u´1, 0, u1, u2, u3, . . . q
(replace u0 by 0 and then shift to the left). What is the spectrum of A ?

Exercise 2.13. Let A be a closed and densely defined operator on E. Let λ0 P C and r0 ą 0
such that Dpλ0, r0q X σpAq ‰ 0. Let

Π “ ´ 1
2iπ

ż

Cpλ0,r0q
pA ´ ζq´1 dζ.

Prove that 1 P σpΠq.
Exercise 2.14. We consider on ℓ2pN˚q the operator A defined by

Apu1, u2, u3, . . . , uk, . . . q “
´

0,
u1
2 ,

u2
4 ,

u3
8 , . . . ,

uk

2k
, . . .

¯
.

1. Prove that A P Lpℓ2pN˚qq and compute }A}Lpℓ2pN˚qq.
2. Compute σpAq.
3. Compute σppAq.
4. Let z P Cz t0u and f “ pfkqkPN˚ P ℓ2pN˚q. Compute pA ´ zq´1f .
5. Compute the Riesz projection of A at point 0.

Exercise 2.15. Let E1 and E2 be two Banach spaces and E “ E1 ‘E2. Let A1 and A2 be two
closed operators, on E1 and E2 respectively. For φ “ φ1 ` φ2 P E we set A “ A1φ1 ` A2φ2.
1. Prove that this defines a closed operator A on E.
2. Prove that σpAq “ σpA1q Y σpA2q.
3. Prove that σppAq “ σppA1q Y σppA2q.
4. Assume that λ is an isolated eigenvalue of A. Prove that the geometric (algebraic) multi-
plicity of λ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of λ
as an eigenvalue of A1 and A2.

Exercise 2.16. Let A P LpEq. Let P P CrXs. Prove that

σpP pAqq “ tP pλq, λ P σpAqu .

Exercise 2.17 (Regular points). Let A be an operator on the Hilbert space H. Let z be a
regular point of A (see Proposition 2.9). We denote by dApzq “ dimpRanpA ´ zqKq the defect
number of A. We also denote by πpAq the set of regular points of A.
1. Prove that πpAq is open (more precisely, if z0 P πpAq and c0 ą 0 is the constant given by
(2.1), show that Dpz0, cz0 q Ă πpAq).
2. Assume that A is closable.

a. Let z0 P πpAq. Assume that z P πpAq is such that dApzq ‰ dApz0q. Prove that there
exists φ P DompAqz t0u such that

xpA ´ zqφ, pA ´ z0qφy “ 0.

b. Let c0 ą 0 is the constant given by (2.1) for z0 and assume that |z ´ z0| ă c0. Prove
that dApzq “ dApz0q.

c. Prove that the defect number is constant on each connected component of πpAq.
Exercise 2.18. Let A be a closed operator on E. Let λ P σdiscpAq. Let r0 ą 0 be such that
Dpλ, r0q X σpAq “ tλu. For r Ps0, r0r and n P Z we set

Rn “ 1
2iπ

ż

Cpλ,rq
pA ´ ζq´1

pζ ´ λqn`1 dζ.

1. Prove that for n1, n2 P Zz t0u we have Rn1Rn2 “ ´Rn1`n2`1.
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2. We set N “ ´R´2. Prove that for all n ě 2 we have R´n “ ´Nn´1.
3. We denote by Π the Riesz projection at λ. Prove that NΠ “ ΠN “ N . Deduce that N
has finite rank.
4. Prove that for z P Dpλ, r0qz tλu we can write pA ´ zq´1 as the Laurent series

pA ´ zq´1 “
ÿ

nPZ
pz ´ λqnRn,

and in particular that the power series
ř

mě0 ρnR´m is convergent for any ρ P C.
5. Prove that N is nilpotent and that R´n “ 0 for n large enough.
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