Chapter 2

Spectrum - Resolvent

2.1 Spectrum - Resolvent Set - Resolvent

Let E be a Banach space.

2.1.1 Definitions and first properties

Definition 2.1. Let A be an operator on E.

(i) The resolvent set p(A) of A is the set of z € C such that (A —z) = (A — zIdg) is
(boundedly) invertible (see Definition 1.23).

(ii) The spectrum o(A) of A is the complementery set of p(A) in C.
Definition 2.2. Let A be an operator on E.

(i) We say that A\ € C is an eigenvalue of A if there exists ¢ € Dom(A)\ {0} such that
Ap = Ap (in other words, (A — X) is not injective).

(ii) Let A € C be an eigenvalue of A. A vector ¢ € Dom(A)\ {0} such that Ap = Ay is called
an eigenvector of A associated with A, and ker(A — \) is the corresponding eigenspace.

(iii) The geometric multiplicity of X is the dimension of ker(A — \).
(iv) We denote by op(A) the set of eigenvalues of A.

Remark 2.3. We know that if E is of finite dimension then o(A) = op(A). However, in general
we always have 0,(A) < 0(A), but the inclusion can be strict.

Ezxzample 2.4. We consider the multiplication operator M, defined in Example 1.12. Let
A € C. Notice that M,, — A = M,,_». Then X is an eigenvalue of M,, is and only if

Leb ({x € Q : w(z) = A}) >0,
and X belongs to o(M,,) if and only if for all € > 0 we have

Leb({z e Q : |w(z) — A\ <e}) > 0.

Remark 2.5. If A is not closed then (A — z) is never closed, and hence never boundedly
invertible (see Proposition 1.35). Then p(A) = . This is why we are only interested
in closed operators. Notice however that a closed operator can have an empty resolvent
set (see Exercise 2.6). On the other hand, by Proposition 1.35 again, if A is closed and
A — z: Dom(A) — E is bijective, then z € p(A).
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Ezample 2.6. o Let E = L?(R?) and Ay = —A with Dom(Ag) = CF(R?). Then for any
z € C we have Ran(4y — 2) € CF(R?) so Ay — z cannot be invertible. This proves that
0(Ap) = C. This is consistent with the fact that Ag is not closed.

e Now we consider A = —A with Dom(A4) = H?(R?). Then o(A) = R, and for z € C\R,

we have

1

1 =
I(A—2) H[:(L2(1Rd)) - dist(z,Ry)’

Indeed, if we denote by F the Fourier transform on L?(R?), then F is a unitary operator.
Then (—A—z) is invertible if and only if F(—A—z)F 1 = M—z is invertible on L?(R?), where
M = F(—A)F!is equal to the multiplication operator M, for w : £ — |£|*. In particular,
we have Dom(—A) = {u e L?*(R?) : Fue Dom(M,)}. Thus o(A) = ¢(M,) = R, and for
z € C\R, we have

(A - = |77 M = )7 F

1 1
T — 2 dist(z,Ry)

7 @) oy = 1 =27 | gy

Proposition 2.7. Let A be an operator on E and z € C. Assume that there exists a sequence
(¢n) in Dom(A) such that |@,|g =1 for allne N and

0.

[(A = 2)enle

n—+00

Then z € o(A).
Proof. Assume that z € p(A). Then

lenle < [[(A=2)7"" g 1A= 2)enle 0.

n——+0o0

This gives a contradiction. O

Remark 2.8. The converse is not true in general. Consider for instance the shift operator S,
(see Example 1.2). Then S, is not surjective, so 0 € o(S,.), but |S,p| = |l¢|| for all p € £2(N).

Proposition 2.9. Let A be an operator on E. Let z € C. Assume that there exists ¢y > 0
such that
Vip e Dom(4), (A= 2)ple = coele- (2.1)

We say that z is a regular point of A. Then
(i) (A= 2) is injective ;
(ii) If (A — z) is invertible then |[(A— X))~ < ot
(iii) If moreover A is closed, then (A — z) has closed range.

This means that if z is a regular point of A, then z € p(A) if and only if Ran(A — z) is
dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We apply Proposition 1.36 to the operator (A — z). O

Proposition 2.10. Let A be a closed and densely defined operator on H. Then
o(A*) ={z,zea(A)}.

Proof. Let A € C. By Proposition 1.61 the operator (A — \) is bijective if and only if
(A —X)* = (A* — X) is bijective. O
Proposition 2.11. Let A be a boundedly invertible operator.

(i) A™! has a bounded inverse if and only if A is bounded (and in this case we have

(A—H)=t = A).
(i) For A € C* we have \ € p(A) if and only if \™* € p(A™1).

Proof. We prove the second statement. Let A € C*. Assume that A=! — A~! has a bounded
inverse. Since (A—\) = —A(A71—=X"1)A, the bounded operator —A"1A"} (A7t -A"1"lisa
bounded inverse for (A—\). Conversely, if (A—\) has a bounded inverse then (A=! —\71) =
~A"1(A —\)A~! has a bounded inverse given by —AA(A—\)"! = —A1+XA-))"1). O
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2.1.2 Example: the harmonic oscillator
We consider on L?(R) the operator H which acts as
2

on the domain
Dom(H) = {ue L*(R) : —u" + z°ue L*(R)}. (2.3)

Proposition 2.12. The spectrum of H consists of a sequence (Ar)ren of simple eigenvalues.

Moreover, for k € N* we have
A = (2]{5 + 1)

and a corresponding eigenfunction is given by

M)

"

or(r) = hy(x)e” 7,
where hy(x) = is the k-th Hermite polynomial (in particular it has degree k).

Proof. ¢ We recall that we have introduced the operators a and c is Section 1.2.4. We
observe that for u € S(R) we have

Hu = 2cau + .
We also have [a, c]u = acu — cau = u so, by induction on k,

achu = k" tu + Fau. (2.4)

22
2

o Weset po(x) =e 2. We have g € S(R) and apg = 0, so Hypg = . For k € N* we set
o = c*py. We can check by induction on k € N that ¢y, is of the form ¢ = Pypo where Py
is a polynomial of degree k. In particular ¢, € S(R). We have

k+1

Hoy, = 2cackpg + pr = 2kcFpg + 25 apg + @1, = (2k + 1)

This proves that Ay = 2k + 1 is an eigenvalue of H and ¢y, is a corresponding eigenfunction.
e We prove by induction on j € N that for all k& > j we have {g;, ¢x) = 0. Since c* = a, we
have

{pjrry = (o, o) = ("o, o) -
Since apy = 0 the conclusion follows if j = 0. For j > 1 we have by

(im0 = 3216, i0) + (&P, o) = 0.

This proves that the family of eigenvectors (¢ )gen is orthogonal in L2(R).

e Let us prove that the family () is total in L?(R). This means that span((¢x)ken) =
L?(R). Let u € L?(R) be such that (¢, Wr2ry = 0 for all k € N. Since P is of degree k for
all k, we deduce that for any polynomial q we have

For & € C we set
v(€) = J e_mgu(m)e_é dz.
R

By differentiation under the integral sign we see that v is holomorphic in C and for m € N
we have

0™ (0) = J-R(—ix)mu(m)e_% dz = 0.

This implies that v = 0 on C, and in particular in R. Thus the Fourier transform of x —

22 .
u(z)e”z is 0, so u = 0 almost everywhere.
For k € N we set

Py = ﬂ.
lpxll
Then (v,) is a Hilbert basis of L?(R), and Hvy = A1)y for all k. Thus the spectrum of H
is exactly given by the sequence (), oy of simple eigenvalues (see Exercise 2.2). O
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2.1.3 Resolvent
Let A be an operator on E with non-empty resolvent set.
Definition 2.13. Let z € p(A). We say that (A — 2)~1 is the resolvent of A at z.

Notice that the operator A is completely characterized by its resolvent. The interest of
considering this resolvent is that it is a bounded operator on E, even if A is not. Moreover,
the good properties of the resolvent will be useful to study the operator A.

Proposition 2.14. For z € p(A) we have
(A—2)TAc A(A—2) =Td+2(A—2)" L.
Proposition 2.15 (Resolvent Identity). For z1, 22 € p(A) we have
(A—z)) P —(A—2) = (21 — 22) (A — 21) 1A — 2) 7!
= (21 — 22)(A — 22) H(A —z)" .
Proof. On Dom(A) we have (A — z3) — (A — z1) = 21 — z2. The first equality follows after

composition by (A — z1)~! on the left and by (A — z3)~! on the right and the second after
composition by (A — z1)~! on the right and by (A — z2)~! on the left. O

Remark 2.16. The resolvent identity proves in particular that (A — z1)~! and (4 — 29)7!
commute.

Proposition 2.17. The resolvent set p(A) of A is open (equivalently, its spectrum o(A) is
closed) and for all zy € p(A) we have

1

. -1 dist(zn o A))
H(A 20) HL(E)>diSt(207U(A)).

Moreover, the resolvent map z — (A — 2)~! is analytic on p(A) and

d -1 _ —2

@(A—z) =(A—2z)""

Proof. Let z € p(A). For z € D(z, (A — zo)*luz(lE)) we have
A—z=(A-2)—(2—20) = (1— (2 — 20)(A—20)"") (4 — 2).

Since (2 —z0)(A—2p) ! has norm less that 1 we can apply Proposition 1.8. Then the operator
1— (2 — 20)(A — 20)~! is invertible and

(1—(z—20)(A—20)"1) " = Dl(z—20)"(A — 20) ™™

neN

Then A — z is invertible and (4 — z)~! and

(A—2)7" = > (2= 20)"(A — 29) "+

neN

In particular
_ _1p-1
dist (20, 0(4)) = | (4 = 20) | g, -

Moreover, we have written (A — z)~! as a power series around 2o from which we deduce the
last statement. O

Applying Proposition 1.45 to (A — z), we get the following result for reducing subspaces.

Proposition 2.18. Let II be a projection of E such that TA < AIll, F = Ran(Il) and
G = ker(Il). Then we have o(A) = o(Ag) U o(Ag) and for z € p(A) = p(Ag) N p(Ag) we
have

(A—2)"'=(Ar—2) '@ (Ac — 2) "
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2.2 Spectrum of bounded operators

2.2.1 General properties
Proposition 2.19. Let A€ L(E). Then o(A) is compact and included in D(0, | Az g))-

Proof. Let z € C such that |z| > |A|. Then we have

A—2=—2 <IdA>.
z

A

z

Since
_ 14

<1
|2

)

the operator Id —4 is invertible with inverse given by the Neumann series >, (2)*. This
proves that A — z is invertible with inverse

k
A-2)t==) zﬁﬁ' (2.5)
keN

In particular, o(A) is included in D(0, | A ) so it is bounded. Since it is closed by Propo-
sition 2.17, it is compact. O

Proposition 2.20. Assume that E # {0}. Let A€ L(E). Then o(A) # &.

Proof. Assume by contradiction that p(4) = C. For z € C such that [z| > 2[A] ;) we have
by (2.5)

1 & (Al Y
-1
”(A* 2) H[:(E) < I2| Z < |2 s l2l” (2.6)

Let p € E\ {0} and ¢ € E’. The map z — £((A — z)~!¢) is holomorphic on C and bounded.
Thus it is constant by the Liouville Theorem. By the previous estimate, its value must be 0.
In particular, /(A~1p) = 0 for all £ € E’. By the Hahn-Banach Theorem, we have A~ 1y = 0.
This gives a contradiction and proves that p(A) # C. O

Remark 2.21. In the real case we know from the finite dimensional case that the spectrum
of a bounded operator can be empty.

Remark 2.22. An unbounded operator can have empty resolvent set (see Exercise 2.6) or an
empty spectrum (see Exercise 2.7).

Ezample 2.23. We consider on £2(N) the shift operators of Example 1.2. We have
0p(Sr) = and o0,(Se) = D(0,1).

By Proposition 2.19, o(S;) is closed and contained in D(0,1), so o(S;) = D(0,1). Finally,

since S* = Sy, we also have o(S,) = D(0,1) by Proposition 2.10.

2.2.2 Spectral radius
Definition 2.24. Let A€ L(E). We define the spectral radius of A by

r(A) = sup |A|.
Xeo(A)

By Proposition 2.19 we already know that r(A) < [A] . The equality is not true in
general. Consider for instance the matrix

1 o
1= (o )

for « € C. We have 0(A) = {1} and |A| 2y — +0 as [a] — +00. In general we have at
least the following result.
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Proposition 2.25 (Gelfand’s Formula). Let A € L(E). We have

r(4) = inf A" = T A7) F,

Example 2.26. Check that A, satisfies the Gelfand Formula.

Proof. e Assume that there exists N € N such that AN = 0. Then A" = 0 for all n > N.
Let z € C\{0}. Then (27'A4 — 1) is invertible with inverse

A —1 N-—1 A n
B
z = \z
This proves that A — z = z(z71A4 — 1) is invertible. Thus o(A4) < {0}. Since o0(A) # &, we
have o(A) = {0} and the proposition is proved in this case. Now we assume that A™ # 0 for

all n e N.
e For ne N we set u,, = In(|A™||). For m,p € N* we have by (1.1)

Umtp S Um + Up.
Let p e N*. Let n € N* and (¢,7) € N x [0,p — 1] such that n = gp + r. Then we have

Un _ QUptlr Up | Ur
n gp +r P n

3

SO u u
limsup — < —£.
n—soo N p
Then for all p € N* we have
1 1
limsup A" < [AP[#
n—0o0
Thus ) )
limsup [|A"|™ < inf |AP|?.
new peN®
This implies that
1 1
|A™[* —— inf [AP|?,
n—o0 peN*

which gives the second inequality of the proposition.
1
e Weset 7(A) =lim |A™|™. For z € C we have ker(A — z) < ker(A™ — 2™) and

n—1
A" — 5" = (A _ Z) Z ZkAn_l_k,
k=0

so Ran(A™ — 2") < Ran(A — z). Thus, if A™ — 2™ is bijective, then so is A — z. Now let
A € o(A). We have \" € d(A™). By Proposition 2.19 we have |A|" = |A\"| < [|[A"], so
[A] < HA"H% for all n € N, and hence |A| < #(A). This proves that r(A4) < 7(A).

e Let z € C with |z| > #(A). Then the power series

-y A
n+1
neN 2t
is convergent in £(E) and defines a bounded inverse for (A —z). This proves that 7#(A4) < r(A)

and concludes the proof. O

2.2.3 Normal bounded operators
Definition 2.27. We say that A € L(H) is normal if AA* = A*A.

Ezample 2.28. o The multiplication operator M, (see Example 1.4) is normal.

e Since S,.S; # S¢Sy, the shift operators Sy and S, (see Example 1.2) are not normal.
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Remark 2.29. If A is normal and invertible, then A~! is normal.
Proposition 2.30. Let A€ L(H) be a normal operator.
(i) For ¢ € H we have |Ap| = |A*p|. In particular, ker(A*) = ker(A).

(ii) If A and p are two distinct eigenvalues of A, then ker(A — A) and ker(A — p) are
orthogonal.

Proof. e Let ¢ € H. We have

|Ap|® = (A* Ap, p) = (AA*p, 0y = |A* 9| ?,

which gives the first statement.
o Let ¢ € ker(A — \) and ¢ € ker(A — ). By the first statement we also have ¢ €
ker((A — pu)*) = ker(A* — ). Then we have

(A =) <p, ) = e, ¥y — o, by = (A, by — {p, A*Y) = 0.

Since A # p, this proves that {p, %) = 0, so ker(4 — \) and ker(A — p) are orthogonal. [

In Section 2.2.2 we have said that the spectral radius of a bounded operator can be smaller
that its norm. This is not the case for a normal operator.

Proposition 2.31. Let A€ L(E) be normal. We have r(A) = ||Al|z3,)-

Proof. e Assume that A = A* (A is selfadjoint). We always have |A?| < |A|?. For ¢ € H

we have
| 4] = (A* Ap, 0y = (A%, ) < | 42| o]
This proves that | A|* < |A42], and hence |A[* = |A2|. Since A?" s selfadjoint for all k € N,

we deduce by induction that HAQk | = HAHQk for all k € N. Then, by the Gelfand Formula we
have

r(4) = lim A7 = |4].

e Now we only assume that A is normal. We have |A*A| = |A|® (exercise). On the other
hand, since A*A is selfadjoint we have r(A*A) = |A*A|, so r(A*A) = |A|*>. On the other

hand, since A is normal,

P(AA) = lim [(A®A)"7 = lim |(A")*A"[7 = T [A"[* = r(4)"

n—0o0

This proves that r(A) = |A]|. O

Remark 2.32. If A € L(H) is a normal operator such that o(A) = {0} then A = 0. This is
not the case in general, since every nilpotent operator has spectrum {0}.

Theorem 2.33. Let A€ L(H) a normal operator. For z € p(A) we have

1

[(A=2)" ) = dist(z,0(A))’

Proof. Let z € p(A). By Proposition 2.11 we have

o((A—2)) = {(C—2) 1, Ce o ()}
Since (A — z)~! is normal, we deduce by Proposition 2.31

1 1
A—2)"Y =r((A=2)"YH = sup /\—z_lz, = — . O
I 7= ™) Aeo(A) | | infaeqr(ay [A— 2| dist(z,0(A))
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2.3 Riesz projections

2.3.1 Separation of the spectrum

The interest of the resolvent is that it is a bounded operator which completely characterize
the operator. Moreover, since it is analytic, we can use all the tools from complex analysis.
In the following section we give a first application of the resolvent for the analysis of an
operator.

Let E be a Banach space and let A be a closed operator on E.

Proposition 2.34. Let zg € C and rg > 0. Assume that C(zo,70) < p(A). We define

1 1 (% o _
) —— (A=) td¢ = —— (A— (20+T0619)) 17“0620(19.
2 C(z0,r0) 2m 0

We also set F = Ran(II) and G = ker(II).
(i) II is a (not necessarily orthogonal) projection of E.
(ii) F < Dom(A).
(iii) TIA < AT
(iv) o(AF) = 0(A) N D(20,79) and o(Ag) = o(A)\D(20,70)-

Remark 2.35. In Proposition 2.34 we consider for simplicity the case where II is defined by
an integral on a circle. But we can similarly consider the integral on any rectifiable simple
closed curve in p(A) (see [Kat80, § I111.6.4]).

Remark 2.36. 11 is defined by the integral on a line segment of a continuous function with
values in the Banach space £(E). This can be understood in the sense of Riemann integrals
and this defines a bounded operator on E. In particular we have in L£(E)

n . _ . 2k
II= lim II,, where II,=— Z (A — (20 + roem”’ﬂ)) 17‘0616””“, On.i = il
k=1

n—+00

S

Then if T is a closed operator with Dom(A) € Dom(T'), we have
1 —1
T = —— T(A- () d¢.
227’(’ C(ZO,TO)

Indeed, for ¢ € H and n € N* we have II,,¢o € Dom(A) < Dom(T), I1,,p — Ilp and

T, = — Z T(A — (20 + roeie"-r’“))flroeie"”“go
k=1

3=

Proof. @ For ¢ € E and £ € E' we have
1

IIy) = —— A—2)t .
) = [ A=)

Since p(A) is open in C, there exists Ry €]0,7[ and Ry > 79 such that D(0, R2)\D(0, Ry)
p(A). Let ¢ € E and £ € E*. Since the map ¢ — ¢((A — {)~'¢) is holomorphic on p(A), we
can replace 7o by any r €] Ry, Ra[ in the expression of II.

o Let 11,79 €]Ry, R with 1 < 3. We can write

1
- | | (A— ) N(A - ) dGadéy.
(2im)2 Jeieczo,m) Jese(zo,ma)

By the resolvent identity we have

2 1 (A-G) ' -(A-¢)!
= (27;7T)2 J;1GC(ZO,T1) JCQEC(ZU,TQ) Cl - CQ dCQ dgl

28 J. Royer - Université Toulouse 3
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Then, by the Fubini Theorem,

1 1
m=—-—— A—¢) dé | d
(2i71’)2 Llec(zoﬂ'l)( Cl) (JCQEC(ZO,TQ) G2 — G C2> G

1 1
- A—()t d¢; | déa.
(2i7T)2 LzEC(Zo,TQ)( <2) (J;“lEC(zo,rl) 1 — ¢ <l> CQ

We look at the integral in brackets for each term. For the second term, for any (s € C(20,72)
the map (3 — 1/({; — ¢2) is holomorphic on D(zg,r2), so the integral vanishes. For the first
term, we get by the Cauchy Theorem that the integral is equal to 2imw for all ¢; € C(zo,71).
Then

1
H2 = — - (A*<2)71 d<2 :H
2Z7T CQGC(Z(],’I”Q)
This proves that II is a projection of E.
e Let ¢ € F and ¢ € E such that ¢ = IItp. For n € N* we set ¢, = II,9) € Dom(A). Then

¢n — @ in E. Moreover,

App = 1L Z A(A—= (20 + roew"”‘"))flroewmkw
n
k=1

1« , , _ ,
=—— Z (Id +(z0 + roe™*) (A — (20 + roe?»*)) 1)7"06“9"”“1/1

"o

1 1 .

T i S gy ATSATO T = g | A= QTG

Since A is closed this proves that ¢ € Dom(A) (and Ap = — 5 SC(Z()M) C(A—¢)~1pdo).

e Let ¢ € Dom(A). Since A commutes with its resolvent, we have AlIl,p = II,, Ay for all
n € N*. Since I, — Ilp and Allyp = lIyAp — ITAp, we get by closedness of A that
IIy € Dom(A) and Allp = ITAp.

o Let z € p(Ar)\D(20,70). Let r €]Ry,7ro[. We have on F

(AF — Z)_l = (AF — Z)_IH

_ _i _ —1 _ —1
= "9 CeC(zo,r)(AF 2) (A —¢) T d¢
1 (A —2) ' = (A =)'
- d
2im ¢eC(zo,T) 2 C C
1 (A4r — Q)"

= S V1S

2im ¢eC(zo,r) z = C

The right-hand side is bounded uniformly in z € p(Ag)\D(z0,70). By Proposition 2.17 this
implies that
o(Ar) = D(z0,70). (2.7)

Now let z € p(Ag) N D(z0,70) and r €]rg, Re[. We have on G

(Ag —2) ' = (Ag —2)"'(1 -1
1 (Ag —2)' = (Ac — Q)"

= A —Z -1 _— dC
(A ) 24T CeClz0,7) (—=z
1 Ag— Ot
_ 7‘[ (Ag — ¢) dc.
2im ¢eC(zo,r) z = C

This is bounded uniformly in z € p(Ag) N D(20,70), SO
a(Ag) = C\D(0,79). (2.8)

Finally, with Proposition 2.18 and (2.7)-(2.8) we deduce that o(Af) = o(A) N D(0,7¢) and
o(Ag) = a(AN\D(0, ro). O & Ex. 2.13-2.14
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2.3.2 Isolated eigenvalues

Definition 2.37. We consider an operator A on E. Assume that A € C is an isolated point
in the spectrum of A. Let ro > 0 such that o(A) n D(\, o) = {A} and r €]0,79[. Then the
Riesz projection of A at X is

II ! (A—2)"tdz (2.9)

AT TS5 - .
2im Je(xr)

Remark 2.38. The definition of IT does not depend on the choice of  €]0, 79[. More generally,
we can replace C(A,r) any closed curve in D(A:0)\ {\} enclosing A exactly once in the direct
sense.

Definition 2.39. Let A be an isolated element of o(A). The algebraic multiplicity of A is
dim(Ran(IIy)), where IIy is the Riesz projection at X.

Ezample 2.40. Let o, 8 € C distinct and

<

[l
oo oo
oo =
oo D oo
owWwWo oo
wm— 0o o O

Then o(M) = {«, 8} and « is an eigenvalue of geometric multiplicity 2. For z € C\{«, 5} we
have

(a—2)"t —(a—2)"2 0 0 0

0 (a—2)7t 0 0 0

(M —2)"1' = 0 0 (a—2)71 0 0
0 0 0 B-2)"t —(B—2)"
0 0 0 0 (B—2)""

Then for r €]0, |a — 8| [ we have

10000
) 01000

Oy, = —— (M—2)"tdz=]0 0 1 0 0,
2 Je(ar) 0000 0
0000 0

so a has algebraic multplicity 3 and Il is the projection of C® on ker((M — «)?) parallel to
ker((M — B)?).

Proposition 2.41. We use the notation of Proposition 2.34.
(i) Let A € D(zp,79) and m € N*. Then ker((A — \)™) c F.
(ii) Let A e C\D(zo,70) and m € N*. Then ker((A — \)™) < G.
Proof. o Let ¢ € Dom(A) such that (A — A)p € F. For ¢ € C(z9,79) we have

(A== =0Tle = =O7HA= (A= N,

Then
Mp= - (A= o= (A= MA— ) (A= M) d¢
2’Lﬂ' C(Zo,T')
o A e U
vt 5 C(ZO,T)(/\ Q) (A=) (A= Npd¢.
Since

V(e Clzo,m), (A=Q)THA-NA-Ip= (A=)~ 1-I)(A-N¢=0,
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we deduce
(-TMe=(0-TPe=—z [ (-0 (A- Q70 -TA-Npd =0.
C(zo,7)

This proves that ¢ € F. Then we can prove by induction on m € N* that ker((4 — \)™) c F.

The second statement is similar. O

Remark 2.42. Let X\ be an isolated element of o(A). Since ker(4A — A\) < Ran(II4(X)) the
geometric multiplicity of A (which can be 0 if A is not an eigenvalue) is not greater than its
algebraic multiplicity.

Proposition 2.43. Assume that A is an isolated point of 0(A) such that Ran(ILy) is of finite
dimension m € N*. Then X is an eigenvalue and

Ran(I1,) = ker((A — \)™).

Proof. The restriction Af of A to F = Ran(II,) is an operator on the finite dimensional space
F, with o(Ag) = {A}. Then the result follows from the finite dimensional case. O

Remark 2.44. Notice that (see Exercise 2.14)

o an isolated point A of o(A) is not necessarily an eigenvalue (in this case we have
dim(Ran(IIy)) = 400 by Proposition 2.43);

o as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multi-
plicity.

Definition 2.45. Let A be a closed operator on E. Let A € C. We say that \ belongs to
the discrete spectrum ogisc(A) of A and X\ is an isolated eigenvalue of A with finite algebraic
multiplicity.

Ezxample 2.46. o Assume that E has infinite dimension. Then ogisc(Idg) = & (the spec-
trum is given by the eigenvalue 1, but it has infinite dimension.

o The harmonic oscillator (see Section 2.1.2) has purely discrete spectrum: ogisc(H) =
o(H).

« The usual Laplacian on R? (see Example 2.6) has empty discrete spectrum: o(—A) =

.

2.3.3 Additional topic: regularity of the spectrum with respect to
a parameter

Lemma 2.47. Let I1; and Ily be two projections on E. Assume that |l — H1HL(E) < 1.
Then
dim(Ran(II;)) = dim(Ran(Ils)).

Proof. Let 7 : Ran(Ilz) — Ran(IIy) be the restriction of II; to Ran(Ilz). This is a continuous
linear map. For ¢ € ker(m) we have II5(p) = ¢ and II;(¢) = 0 so

[l = T2 () = ()] < T2 = Tha| ],

so ¢ = 0. This implies that dim(Ran(II;)) > dim(Ran(II;)). Interverting the roles of II; and
II, gives the reverse inequality and concludes the proof. O

Proposition 2.48. Let w be a connected subset of C. Let (An)acc be a family of linear
operators on E. Assume that there exists g € C and ro > 0 such that C(A\g,r0) < p(As) for
all o € w. Assume that the map

{wa()\o,ro) ~  L(E)
(@2) = (Aa—2)"!

is continuous. We denote by I1,, the Riesz projection of A, on C(Ao,T).
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(i) dim(Ran(I1,)) does not depend on « € w.

(ii) Assume that dim(Ran(Il,)) = 1. Then for all o« € w the operator A, has a unique simple
eigenvalue Ay, in D(Ag, 7). Moreover the maps o — A\, and o — 11, are continuous on
w. If moreover o — (Aq — 2) 1 is holomorphic on w for all z € C(X\g,70), then o — 1,
and o — A, are holomorphic.

Proof. o Let ag € w. Since C(Ag,r) is compact, there exists a neighborhood V of ag in w
such that for all @ € V and ¢ € C(\g,7) we have

1

J(4a = 07 = ey~ O < -

Then we have 1

”Ha - HaoH < 57
and, by Lemma 2.47, Ran(Il,) = Ran(Il,,) for all &« € V. Then Ran(Il,) is locally constant,
so it is constant on the connected set w.
e By continuity under the integral sign, we see that II, is continuous with respect to c. If
(A, — ¢)~! is holomorphic with respect to « for all ¢ € C(lg,), then II,, is holomorphic by
complex differentiation under the integral sign.
e Now assume that Ran(Il,) = 1 for all & € w. Let ap € w and ¢ € Ran(Il,,) with ||¢|| = 1.
Then ¢ is an eigenvector corresponding to an eigenvalue Ao, € D(Ag, 7). For a € w we set
1o = Iy, For a close to ag we have 1, # 0. Then 1), is an eigenvector of A, corresponding
to an eigenvalue A, and it is continuous (holomorphic if the resolvent is holomorphic) with
respect to a. Finally we have (A, — 2) 1) = (Ao — 2) " 1tb,. Taking the inner product with
P gives

<¢, (Aa - Z)ilwa> = ()\a - Z)il <1/17 wa> .

We have (1,1, = 1 when a = ayg, so this does not vanish on a neighborhood of ag. This

gives
) Aa - -t o
oyt = o =2 100)
W, ¥a)
Thus (A, — 2)7! is continuous (holomorphic if the resolvent is holomorphic) for o an a
neighborhood of ag, and so is A,. O

Proposition 2.49 (Analytic family of type A). Let w be an open subset of C. Let (Aq)acw
be a family of closed operators on E. We assume that

(i) the operators A,, a € w, have the same domain D ;
(ii) for all ¢ € D the map o — Ay € H is holomorphic on w.

Let ap € w and zp € p(Aa, ). Then there exists r > 0 such that z € p(Aq) for all « € D(a, 1)

and z € D(zo,7) and the map
(@,2) = (Aq —2)7"

is continuous on D(ag,r) X D(zo,r) and analytic in D(ag,r) for all z € D(zp,7).

Proof. For o € w and z € C we have
(Ao = 2) = (14 ((Aa = Aag) = (2 = 20))(Aag = 20) ") (Aay, — 20).

Since (Aqa, —20) ! maps H to D, the operators A, (Aa, —20) ' and Ay, (Aa, —20) "' are well
defined on H. Since they are closed, they are bounded by the closed graph theorem. Then the
function o — A, (An, — 2)7F is weakly holomorphic, and hence holomorphic by Proposition
A.7. In particular it is continuous, so there exists 7 > 0 so small that |(Aa, — 20) 7| < 1/(4r),
D(ap,r) € w and for all @ € D(a,r) we have

1
[(Aa = Aag) (Aae = 20) M g0y < -

4
Then the map (o, z) — (1 + (Ao — Aay) — (2 — 20)) (Aay — zo)_l)_l is well defined and
continuous on D(ag,r) x D(zg,7), and analytic with respect to « for all z € D(zg,r). We
deduce that the same holds for « +— (A4, — 2)7 1. O
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Proposition 2.50 (Analytic family of type B). Let V be a Hilbert space continuously and
densely embedded in H. Let w be an open subset of C. Let (qu)acw be a family of continuous
forms on'V such that ¢ — g (@) € C is analytic for all p € V. Assume that there exist ag € w
and zp € C such that g, — 2o is coercive. Then there exists r > 0 such that q, — z is coercive
for all a € D(ag,r) and z € D(zg,r). For a € D(ap,r) we denote by A, the operator on H
given by the representation theorem (see Theorem 1.71 and Remark 1.72). Then the map

(@,2) = (Aa —2)7"
is continuous on D(ag,r) X D(z0,7) and holomorphic with respect to o € D(cg,r) for all
z € D(zg,7).
Proof. We denote by @, the operator in £(V,V’) associated with ¢, (see (1.12)). For o € w
we have in L(V, V')
(Qa=2) = (1+ ((Qa = Qo) = (= = 20)) (Quy = )} (Quy — 2)

Since (Qa, — 2)~* maps V' to V, the operators Qn(Qa, — )7 ! and Qa,(Qa, — 2)~ ' are
bounded on V’. Then the function a +— Q4 (Qa, — z) ! is weakly holomorphic, and hence
holomorphic by Proposition A.7. In particular it is continuous, so there exists r > 0 such
that |[(Qay — ZO)_1H[Z(V’,V) < 1/(4r), D(ap,r) < w and for all « € D(ayg,r) we have

_ 1
H(Qa‘f(gao)agao"z) thVQ < Z.

Then the map (a, 2) = (1+ ((Qa — Qao) — (2—20)) (Qay —2) 1) 'e L(V') is well defined and
continuous on D(ag,r) x D(zg,7), and analytic on D(«g,r) for all z € D(zg, 7). We deduce
that the same holds for a — (Q, — 2z)~% in £(V',V). Since (Q4 — 2)~* and (A, — 2)7!
coincide on H, the conclusion follows. O

For the perturbation of a double eigenvalue, we refer to Exemple I1.1.1 (page 64) in
[Kat80]

2.4 Exercises

Exercise 2.1. Let a = (ap)neny € {*(N). We consider the operator M, given in Example
1.3. Prove that
op(My) = {an,me N} and o(M,) = 0p(M,).

FEzxercise 2.2. Let H be a Hilbert space. Let A be a closed operator on H. Assume that
there exist a Hilbert basis (8, )neny of H and a complex sequence (A, )nen such that

Dom(A) = {(p = Z OnfBn : Z Anon]? < oo},

n=0 n=0

and AB, = A\,0, for all n € N. Prove that
o(A) = {\,,neN}.

Ezxercise 2.3. We define on R the function w defined by

1 .
0 ifz<0

Then we consider on L?(R) the operator M,, of multiplication by w.
1. What is o(M,,) ?
2. What is 0,(M,,) ? For each eigenvalue A of M,,, give a corresponding eigenvector.

Ezxercise 2.4. Let A€ L(H). Let U € L(H) be unitary. Prove that
o(U*AU) = o(A) and o,(U*AU) = o(A).
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Ezxercise 2.5. We consider on £2 (Z) the operator Hy which maps the sequence u = (up)nez
to the sequence Hyu defined by

VneZ, (Hou)p=tpt1+ Un_1— 2Uy.

1. Prove that Hy € L(¢%(Z)).
2. We denote by L%(S') the set of L2-functions on the torus S' = R/27Z. Functions on S!
can also be seen as 2m-periodic functions on R. For v € L%(S!) we have

2 L (" 2
ol = 5 | loto)” ds.
Given a sequence u = (uy,)nez we define Ou € L2(S!) by

(Bu)(s) = Z up e,

nez

Prove that © is a unitary operator from ¢%(Z) to L?(S!).
3. Prove that © Hy©~! is a multiplication operator on S'.
4. Compute the spectrum of @ Ho©~! and deduce the spectrum of Hy (use Exercise 2.4).

Ezxercise 2.6. We consider on L?(C) (C is endowed with its usual Lebesgue measure) the
operator A defined by (Au)(y) = yu(y) on the domain

Dom(A) = {ue L*(C) : yue L*(C)}.

1. Prove that A is closed.
2. Prove that o(A) = C.

Ezercise 2.7. We consider on L?(0,1) the operator
A=0,

defined on the domain
Dom(A) = {ue H'(0,1) : u(0) = 0}.

1. Prove that A is closed.
2. Prove that 0(A4) = .

FEzxzercise 2.8. We set
H={ue L*(R) : uis even}.

1. Prove that H is a Hilbert space.

2. We want to consider on H the operator defined by Au = —u”. What is the natural domain
for A (in particular, we want A to be closed) ?

3. Then what is the spectrum of A ?

Ezercise 2.9. For u = (uy)nez € (?(Z) we set
U( ey U—2,U—1,UQ, UL, U2, . . ) = ( ey U—1,Up, U, U2, U3,y . -« )

1. Prove that HU”[:(Z?(Z)) =L

2. Prove that U is invertible and U~! = U* (U is a unitary operator).
3. Prove that o(U) c U= {2z C : |z| # 1}.
4.Let A € U. For k € N we consider

u™ = (...,0,0,1,\,A%,...,0%,0,0,...).

Compute [u®|,, . and [(U = A)u®],, .. Prove that A € ().

(z) ()
Ezxercise 2.10. Compute, for all n € N and z € p(A),
4
dz"

(A—2)"L.
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Ezxercise 2.11. Using the resolvent identity, give another proof of the facts that the resolvent
map Ra : 2+ (A —2)7! is continuous and then holomorphic on p(A) with R, = R%.

Ezercise 2.12. We consider on ¢?(Z) the operator A defined by
A( ceyU—2,U_1,UQ, UL, U2, . . ) = ( . .,u,l,O,ul,UQ,u;),,. . )
(replace up by 0 and then shift to the left). What is the spectrum of A ?

Ezxercise 2.13. Let A be a closed and densely defined operator on E. Let \g € C and o > 0
such that D(X\g,r9) N o(A) # 0. Let

1 _
m=—— (A—¢)~tdce.
1T Je(xo,ro)

Prove that 1 € o(II).

Ezercise 2.14. We consider on £?(N*) the operator A defined by

Uy U2 U3 Uk
A(ul,uQ,U3,...,uk,...)=(O

7?aZa§a"'727ka"'

1. Prove that A € £L(¢?(N*)) and compute 1Al £ g2 ey -

2. Compute o(A).

3. Compute op(A).

4.Let z € C\ {0} and f = (fx)ren= € £2(N*). Compute (A —2)71f.
5. Compute the Riesz projection of A at point 0.

Ezxercise 2.15. Let E; and E5 be two Banach spaces and E = E;®E>. Let A7 and As be two
closed operators, on E; and Es respectively. For ¢ = @1 + @2 € E we set A = Ajp1 + Aops.
1. Prove that this defines a closed operator A on E.

2. Prove that 0(A) = 0(A41) U 0(A3).

3. Prove that o,(A) = 0,(A41) U 0p(A42).

4. Assume that \ is an isolated eigenvalue of A. Prove that the geometric (algebraic) multi-
plicity of A\ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of A
as an eigenvalue of A; and As.

Ezxercise 2.16. Let Ae L(E). Let P € C[X]. Prove that
o(P(A)) = {P(}),Aea(A)}.

FExercise 2.17 (Regular points). Let A be an operator on the Hilbert space H. Let z be a
regular point of A (see Proposition 2.9). We denote by d4(z) = dim(Ran(A — 2)*) the defect
number of A. We also denote by w(A) the set of regular points of A.
1. Prove that m(A) is open (more precisely, if zg € 7(A4) and ¢o > 0 is the constant given by
(2.1), show that D(zg,c.,) < 7(4)).
2. Assume that A is closable.

a. Let zg € m(A). Assume that z € w(A) is such that d4(z) # da(z0). Prove that there
exists ¢ € Dom(A)\ {0} such that

(A= 2)p, (A= 20)p) = 0.

b. Let ¢y > 0 is the constant given by (2.1) for zy and assume that |z — 29| < ¢g. Prove
that da(z) = da(zg).
c. Prove that the defect number is constant on each connected component of 7(A).

Exercise 2.18. Let A be a closed operator on E. Let A € ggisc(A4). Let 79 > 0 be such that
D(\ 1) no(A) = {A}. For r €]0,r[ and n € Z we set

1 (A-9~"

- 9 e
" 20w Jopn (=) ¢

1. Prove that for ny,ng € Z\ {0} we have R,, R,, = —Rp, tno+1-
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2. We set N = —R_5. Prove that for all n > 2 we have R_,, = —N"~1.

3. We denote by II the Riesz projection at A. Prove that NII = IIN = N. Deduce that IV
has finite rank.

4. Prove that for 2z € D(\,r0)\ {\} we can write (A — 2z)~! as the Laurent series

(A=2)7" =Y (== N"Ry,

and in particular that the power series >, _,p"R_p, is convergent for any p € C.
5. Prove that N is nilpotent and that R_,, = 0 for n large enough.
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