Chapter 2

Spectrum－Resolvent

2．1 Spectrum－Resolvent Set－Resolvent

Let E be a Banach space．

2．1．1 Definitions and first properties

Definition 2．1．Let A be an operator on E ．
（i）The resolvent set $\rho(A)$ of A is the set of $z \in \mathbb{C}$ such that $(A-z)=\left(A-z \operatorname{Id}_{\mathrm{E}}\right)$ is （boundedly）invertible（see Definition 1．23）．
（ii）The spectrum $\sigma(A)$ of A is the complementery set of $\rho(A)$ in \mathbb{C} ．
Definition 2．2．Let A be an operator on E ．
（i）We say that $\lambda \in \mathbb{C}$ is an eigenvalue of A if there exists $\varphi \in \operatorname{Dom}(A) \backslash\{0\}$ such that $A \varphi=\lambda \varphi$（in other words，$(A-\lambda)$ is not injective）．
（ii）Let $\lambda \in \mathbb{C}$ be an eigenvalue of A ．A vector $\varphi \in \operatorname{Dom}(A) \backslash\{0\}$ such that $A \varphi=\lambda \varphi$ is called an eigenvector of A associated with λ ，and $\operatorname{ker}(A-\lambda)$ is the corresponding eigenspace．
（iii）The geometric multiplicity of λ is the dimension of $\operatorname{ker}(A-\lambda)$ ．
（iv）We denote by $\sigma_{\mathrm{p}}(A)$ the set of eigenvalues of A ．
Remark 2．3．We know that if E is of finite dimension then $\sigma(A)=\sigma_{\mathrm{p}}(A)$ ．However，in general we always have $\sigma_{\mathrm{p}}(A) \subset \sigma(A)$ ，but the inclusion can be strict．
Example 2．4．We consider the multiplication operator M_{w} defined in Example 1．12．Let $\lambda \in \mathbb{C}$ ．Notice that $M_{w}-\lambda=M_{w-\lambda}$ ．Then λ is an eigenvalue of M_{w} is and only if

$$
\operatorname{Leb}(\{x \in \Omega: w(x)=\lambda\})>0,
$$

and λ belongs to $\sigma\left(M_{w}\right)$ if and only if for all $\varepsilon>0$ we have

$$
\operatorname{Leb}(\{x \in \Omega:|w(x)-\lambda| \leqslant \varepsilon\})>0 .
$$

Remark 2．5．If A is not closed then $(A-z)$ is never closed，and hence never boundedly invertible（see Proposition 1．35）．Then $\rho(A)=\varnothing$ ．This is why we are only interested in closed operators．Notice however that a closed operator can have an empty resolvent set（see Exercise 2．6）．On the other hand，by Proposition 1.35 again，if A is closed and $A-z: \operatorname{Dom}(A) \rightarrow \mathrm{E}$ is bijective，then $z \in \rho(A)$ ．

Example 2.6. - Let $\mathrm{E}=L^{2}\left(\mathbb{R}^{d}\right)$ and $A_{0}=-\Delta$ with $\operatorname{Dom}\left(A_{0}\right)=C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$. Then for any $z \in \mathbb{C}$ we have $\operatorname{Ran}\left(A_{0}-z\right) \subset C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ so $A_{0}-z$ cannot be invertible. This proves that $\sigma\left(A_{0}\right)=\mathbb{C}$. This is consistent with the fact that A_{0} is not closed.

- Now we consider $A=-\Delta$ with $\operatorname{Dom}(A)=H^{2}\left(\mathbb{R}^{d}\right)$. Then $\sigma(A)=\mathbb{R}_{+}$and for $z \in \mathbb{C} \backslash \mathbb{R}_{+}$ we have

$$
\left\|(A-z)^{-1}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)}=\frac{1}{\operatorname{dist}\left(z, \mathbb{R}_{+}\right)}
$$

Indeed, if we denote by \mathcal{F} the Fourier transform on $L^{2}\left(\mathbb{R}^{d}\right)$, then \mathcal{F} is a unitary operator. Then $(-\Delta-z)$ is invertible if and only if $\mathcal{F}(-\Delta-z) \mathcal{F}^{-1}=M-z$ is invertible on $L^{2}\left(\mathbb{R}^{d}\right)$, where $M=\mathcal{F}(-\Delta) \mathcal{F}^{-1}$ is equal to the multiplication operator M_{w} for $w: \xi \mapsto|\xi|^{2}$. In particular, we have $\operatorname{Dom}(-\Delta)=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right): \mathcal{F} u \in \operatorname{Dom}\left(M_{w}\right)\right\}$. Thus $\sigma(A)=\sigma\left(M_{w}\right)=\mathbb{R}_{+}$and for $z \in \mathbb{C} \backslash \mathbb{R}_{+}$we have

$$
\begin{aligned}
\left\|(A-z)^{-1}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)} & =\left\|\mathcal{F}^{-1}(M-z)^{-1} \mathcal{F}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)}=\left\|(M-z)^{-1}\right\|_{\mathcal{L}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)} \\
& =\sup _{\xi \in \mathbb{R}} \frac{1}{\xi^{2}-z}=\frac{1}{\operatorname{dist}\left(z, \mathbb{R}_{+}\right)}
\end{aligned}
$$

Proposition 2.7. Let A be an operator on E and $z \in \mathbb{C}$. Assume that there exists a sequence $\left(\varphi_{n}\right)$ in $\operatorname{Dom}(A)$ such that $\left\|\varphi_{n}\right\|_{\mathrm{E}}=1$ for all $n \in \mathbb{N}$ and

$$
\left\|(A-z) \varphi_{n}\right\|_{\mathrm{E}} \xrightarrow[n \rightarrow+\infty]{ } 0
$$

Then $z \in \sigma(A)$.
Proof. Assume that $z \in \rho(A)$. Then

$$
\left\|\varphi_{n}\right\|_{\mathrm{E}} \leqslant\left\|(A-z)^{-1}\right\|_{\mathcal{L}(\mathrm{E})}\left\|(A-z) \varphi_{n}\right\|_{\mathrm{E}} \xrightarrow[n \rightarrow+\infty]{ } 0
$$

This gives a contradiction.
Remark 2.8. The converse is not true in general. Consider for instance the shift operator S_{r} (see Example 1.2). Then S_{r} is not surjective, so $0 \in \sigma\left(S_{r}\right)$, but $\left\|S_{r} \varphi\right\|=\|\varphi\|$ for all $\varphi \in \ell^{2}(\mathbb{N})$.

Proposition 2.9. Let A be an operator on E . Let $z \in \mathbb{C}$. Assume that there exists $c_{0}>0$ such that

$$
\begin{equation*}
\forall \varphi \in \operatorname{Dom}(A), \quad\|(A-z) \varphi\|_{\mathrm{E}} \geqslant c_{0}\|\varphi\|_{\mathrm{E}} . \tag{2.1}
\end{equation*}
$$

We say that z is a regular point of A. Then
(i) $(A-z)$ is injective ;
(ii) If $(A-z)$ is invertible then $\left\|(A-\lambda)^{-1}\right\| \leqslant c_{0}^{-1}$.
(iii) If moreover A is closed, then $(A-z)$ has closed range.

This means that if z is a regular point of A, then $z \in \rho(A)$ if and only if $\operatorname{Ran}(A-z)$ is dense in E . Moreover, in this case we already have a bound for the inverse.

Proof. We apply Proposition 1.36 to the operator $(A-z)$.
Proposition 2.10. Let A be a closed and densely defined operator on \mathcal{H}. Then

$$
\sigma\left(A^{*}\right)=\{\bar{z}, z \in \sigma(A)\}
$$

Proof. Let $\lambda \in \mathbb{C}$. By Proposition 1.61 the operator $(A-\lambda)$ is bijective if and only if $(A-\lambda)^{*}=\left(A^{*}-\bar{\lambda}\right)$ is bijective.

Proposition 2.11. Let A be a boundedly invertible operator.
(i) A^{-1} has a bounded inverse if and only if A is bounded (and in this case we have $\left.\left(A^{-1}\right)^{-1}=A\right)$.
(ii) For $\lambda \in \mathbb{C}^{*}$ we have $\lambda \in \rho(A)$ if and only if $\lambda^{-1} \in \rho\left(A^{-1}\right)$.

Proof. We prove the second statement. Let $\lambda \in \mathbb{C}^{*}$. Assume that $A^{-1}-\lambda^{-1}$ has a bounded inverse. Since $(A-\lambda)=-\lambda\left(A^{-1}-\lambda^{-1}\right) A$, the bounded operator $-\lambda^{-1} A^{-1}\left(A^{-1}-\lambda^{-1}\right)^{-1}$ is a bounded inverse for $(A-\lambda)$. Conversely, if $(A-\lambda)$ has a bounded inverse then $\left(A^{-1}-\lambda^{-1}\right)=$ $-\lambda^{-1}(A-\lambda) A^{-1}$ has a bounded inverse given by $-\lambda A(A-\lambda)^{-1}=-\lambda\left(1+\lambda(A-\lambda)^{-1}\right)$.

2.1.2 Example: the harmonic oscillator

We consider on $L^{2}(\mathbb{R})$ the operator H which acts as

$$
\begin{equation*}
H=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+x^{2} \tag{2.2}
\end{equation*}
$$

on the domain

$$
\begin{equation*}
\operatorname{Dom}(H)=\left\{u \in L^{2}(\mathbb{R}):-u^{\prime \prime}+x^{2} u \in L^{2}(\mathbb{R})\right\} \tag{2.3}
\end{equation*}
$$

Proposition 2.12. The spectrum of H consists of a sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ of simple eigenvalues. Moreover, for $k \in \mathbb{N}^{*}$ we have

$$
\lambda_{k}=(2 k+1)
$$

and a corresponding eigenfunction is given by

$$
\varphi_{k}(x)=h_{k}(x) e^{-\frac{x^{2}}{2}}
$$

where $h_{k}(x)=$ is the k-th Hermite polynomial (in particular it has degree k).
Proof. - We recall that we have introduced the operators a and c is Section 1.2.4. We observe that for $u \in \mathcal{S}(\mathbb{R})$ we have

$$
H u=2 \mathrm{c} a u+u .
$$

We also have $[\mathrm{a}, \mathrm{c}] u=\mathrm{ac} u-\mathrm{ca} u=u$ so, by induction on k,

$$
\begin{equation*}
\mathrm{ac}^{k} u=k \mathrm{c}^{k-1} u+\mathrm{c}^{k} a u \tag{2.4}
\end{equation*}
$$

- We set $\varphi_{0}(x)=e^{-\frac{x^{2}}{2}}$. We have $\varphi_{0} \in \mathcal{S}(\mathbb{R})$ and $\mathrm{a} \varphi_{0}=0$, so $H \varphi_{0}=\varphi_{0}$. For $k \in \mathbb{N}^{*}$ we set $\varphi_{k}=\mathrm{c}^{k} \varphi_{0}$. We can check by induction on $k \in \mathbb{N}$ that φ_{k} is of the form $\varphi_{k}=P_{k} \varphi_{0}$ where P_{k} is a polynomial of degree k. In particular $\varphi_{k} \in \mathcal{S}(\mathbb{R})$. We have

$$
H \varphi_{k}=2 \operatorname{cac}^{k} \varphi_{0}+\varphi_{k}=2 k \mathrm{c}^{k} \varphi_{0}+2 \mathrm{c}^{k+1} \mathrm{a} \varphi_{0}+\varphi_{k}=(2 k+1) \varphi_{k} .
$$

This proves that $\lambda_{k}=2 k+1$ is an eigenvalue of H and φ_{k} is a corresponding eigenfunction.

- We prove by induction on $j \in \mathbb{N}$ that for all $k>j$ we have $\left\langle\varphi_{j}, \varphi_{k}\right\rangle=0$. Since $c^{*}=a$, we have

$$
\left\langle\varphi_{j}, \varphi_{k}\right\rangle=\left\langle\mathrm{c}^{j} \varphi_{0}, \mathrm{c}^{k} \varphi_{0}\right\rangle=\left\langle\mathrm{a}^{k} \mathrm{c}^{j} \varphi_{0}, \varphi_{0}\right\rangle .
$$

Since a $\varphi_{0}=0$ the conclusion follows if $j=0$. For $j \geqslant 1$ we have by

$$
\left\langle\mathrm{a}^{k} \mathrm{c}^{j} \varphi_{0}, \varphi_{0}\right\rangle=j\left\langle\mathrm{a}^{k-1} \mathrm{c}^{j-1} \varphi_{0}, \varphi_{0}\right\rangle+\left\langle\mathrm{a}^{k-1} \mathrm{c}^{j} \mathrm{a} \varphi_{0}, \varphi_{0}\right\rangle=0 .
$$

This proves that the family of eigenvectors $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ is orthogonal in $L^{2}(\mathbb{R})$.

- Let us prove that the family $\left(\varphi_{k}\right)$ is total in $L^{2}(\mathbb{R})$. This means that $\overline{\operatorname{span}\left(\left(\varphi_{k}\right)_{k \in \mathbb{N}}\right)}=$ $L^{2}(\mathbb{R})$. Let $u \in L^{2}(\mathbb{R})$ be such that $\left\langle\varphi_{k}, u\right\rangle_{L^{2}(\mathbb{R})}=0$ for all $k \in \mathbb{N}$. Since P_{k} is of degree k for all k, we deduce that for any polynomial q we have

$$
\int_{\mathbb{R}} \mathrm{q}(x) e^{-\frac{x^{2}}{2}} u(x) \mathrm{d} x=0 .
$$

For $\xi \in \mathbb{C}$ we set

$$
v(\xi)=\int_{\mathbb{R}} e^{-i x \xi} u(x) e^{-\frac{x^{2}}{2}} \mathrm{~d} x .
$$

By differentiation under the integral sign we see that v is holomorphic in \mathbb{C} and for $m \in \mathbb{N}$ we have

$$
v^{(m)}(0)=\int_{\mathbb{R}}(-i x)^{m} u(x) e^{-\frac{x^{2}}{2}} \mathrm{~d} x=0
$$

This implies that $v=0$ on \mathbb{C}, and in particular in \mathbb{R}. Thus the Fourier transform of $x \mapsto$ $u(x) e^{-\frac{x^{2}}{2}}$ is 0 , so $u=0$ almost everywhere.

For $k \in \mathbb{N}$ we set

$$
\psi_{k}=\frac{\varphi_{k}}{\left\|\varphi_{k}\right\|}
$$

Then $\left(\psi_{k}\right)$ is a Hilbert basis of $L^{2}(\mathbb{R})$, and $H \psi_{k}=\lambda_{k} \psi_{k}$ for all k. Thus the spectrum of H is exactly given by the sequence $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ of simple eigenvalues (see Exercise 2.2).

2.1.3 Resolvent

Let A be an operator on E with non-empty resolvent set.
Definition 2.13. Let $z \in \rho(A)$. We say that $(A-z)^{-1}$ is the resolvent of A at z.
Notice that the operator A is completely characterized by its resolvent. The interest of considering this resolvent is that it is a bounded operator on E , even if A is not. Moreover, the good properties of the resolvent will be useful to study the operator A.

Proposition 2.14. For $z \in \rho(A)$ we have

$$
(A-z)^{-1} A \subset A(A-z)^{-1}=\operatorname{Id}+z(A-z)^{-1}
$$

Proposition 2.15 (Resolvent Identity). For $z_{1}, z_{2} \in \rho(A)$ we have

$$
\begin{aligned}
\left(A-z_{1}\right)^{-1}-\left(A-z_{2}\right)^{-1} & =\left(z_{1}-z_{2}\right)\left(A-z_{1}\right)^{-1}\left(A-z_{2}\right)^{-1} \\
& =\left(z_{1}-z_{2}\right)\left(A-z_{2}\right)^{-1}\left(A-z_{1}\right)^{-1} .
\end{aligned}
$$

Proof. On $\operatorname{Dom}(A)$ we have $\left(A-z_{2}\right)-\left(A-z_{1}\right)=z_{1}-z_{2}$. The first equality follows after composition by $\left(A-z_{1}\right)^{-1}$ on the left and by $\left(A-z_{2}\right)^{-1}$ on the right and the second after composition by $\left(A-z_{1}\right)^{-1}$ on the right and by $\left(A-z_{2}\right)^{-1}$ on the left.

Remark 2.16. The resolvent identity proves in particular that $\left(A-z_{1}\right)^{-1}$ and $\left(A-z_{2}\right)^{-1}$ commute.

Proposition 2.17. The resolvent set $\rho(A)$ of A is open (equivalently, its spectrum $\sigma(A)$ is closed) and for all $z_{0} \in \rho(A)$ we have

$$
\left\|\left(A-z_{0}\right)^{-1}\right\|_{\mathcal{L}(\mathrm{E})} \geqslant \frac{1}{\operatorname{dist}\left(z_{0}, \sigma(A)\right)}
$$

Moreover, the resolvent map $z \mapsto(A-z)^{-1}$ is analytic on $\rho(A)$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} z}(A-z)^{-1}=(A-z)^{-2}
$$

Proof. Let $z_{0} \in \rho(A)$. For $z \in D\left(z_{0},\left\|\left(A-z_{0}\right)^{-1}\right\|_{\mathcal{L}(\mathrm{E})}^{-1}\right)$ we have

$$
A-z=\left(A-z_{0}\right)-\left(z-z_{0}\right)=\left(1-\left(z-z_{0}\right)\left(A-z_{0}\right)^{-1}\right)\left(A-z_{0}\right)
$$

Since $\left(z-z_{0}\right)\left(A-z_{0}\right)^{-1}$ has norm less that 1 we can apply Proposition 1.8. Then the operator $1-\left(z-z_{0}\right)\left(A-z_{0}\right)^{-1}$ is invertible and

$$
\left(1-\left(z-z_{0}\right)\left(A-z_{0}\right)^{-1}\right)^{-1}=\sum_{n \in \mathbb{N}}\left(z-z_{0}\right)^{n}\left(A-z_{0}\right)^{-n}
$$

Then $A-z$ is invertible and $(A-z)^{-1}$ and

$$
(A-z)^{-1}=\sum_{n \in \mathbb{N}}\left(z-z_{0}\right)^{n}\left(A-z_{0}\right)^{-(n+1)} .
$$

In particular

$$
\operatorname{dist}\left(z_{0}, \sigma(A)\right) \geqslant\left\|\left(A-z_{0}\right)^{-1}\right\|_{\mathcal{L}(\mathrm{E})}^{-1}
$$

Moreover, we have written $(A-z)^{-1}$ as a power series around z_{0} from which we deduce the last statement.

Applying Proposition 1.45 to $(A-z)$, we get the following result for reducing subspaces.
Proposition 2.18. Let Π be a projection of E such that $\Pi A \subset A \Pi, \mathrm{~F}=\operatorname{Ran}(\Pi)$ and $\mathrm{G}=\operatorname{ker}(\Pi)$. Then we have $\sigma(A)=\sigma\left(A_{\mathrm{F}}\right) \cup \sigma\left(A_{\mathrm{G}}\right)$ and for $z \in \rho(A)=\rho\left(A_{\mathrm{F}}\right) \cap \rho\left(A_{\mathrm{G}}\right)$ we have

$$
(A-z)^{-1}=\left(A_{\mathrm{F}}-z\right)^{-1} \oplus\left(A_{\mathrm{G}}-z\right)^{-1}
$$

2.2 Spectrum of bounded operators

2.2.1 General properties

Proposition 2.19. Let $A \in \mathcal{L}(\mathrm{E})$. Then $\sigma(A)$ is compact and included in $D\left(0,\|A\|_{\mathcal{L}(\mathrm{E})}\right)$.
Proof. Let $z \in \mathbb{C}$ such that $|z|>\|A\|$. Then we have

$$
A-z=-z\left(\operatorname{Id}-\frac{A}{z}\right)
$$

Since

$$
\left\|\frac{A}{z}\right\|=\frac{\|A\|}{|z|}<1
$$

the operator $\operatorname{Id}-\frac{A}{z}$ is invertible with inverse given by the Neumann series $\sum_{k \in \mathbb{N}}\left(\frac{A}{z}\right)^{k}$. This proves that $A-z$ is invertible with inverse

$$
\begin{equation*}
(A-z)^{-1}=-\sum_{k \in \mathbb{N}} \frac{A^{k}}{z^{k+1}} \tag{2.5}
\end{equation*}
$$

In particular, $\sigma(A)$ is included in $D\left(0,\|A\|_{\mathcal{L}(\mathrm{E})}\right)$ so it is bounded. Since it is closed by Proposition 2.17, it is compact.
Proposition 2.20. Assume that $\mathrm{E} \neq\{0\}$. Let $A \in \mathcal{L}(\mathrm{E})$. Then $\sigma(A) \neq \varnothing$.
Proof. Assume by contradiction that $\rho(A)=\mathbb{C}$. For $z \in \mathbb{C}$ such that $|z| \geqslant 2\|A\|_{\mathcal{L}(\mathrm{E})}$ we have by (2.5)

$$
\begin{equation*}
\left\|(A-z)^{-1}\right\|_{\mathcal{L}(\mathrm{E})} \leqslant \frac{1}{|z|} \sum_{k=0}^{\infty}\left(\frac{\|A\|_{\mathcal{L}(\mathrm{E})}}{|z|}\right)^{k} \leqslant \frac{2}{|z|} \tag{2.6}
\end{equation*}
$$

Let $\varphi \in \mathrm{E} \backslash\{0\}$ and $\ell \in \mathrm{E}^{\prime}$. The map $z \mapsto \ell\left((A-z)^{-1} \varphi\right)$ is holomorphic on \mathbb{C} and bounded. Thus it is constant by the Liouville Theorem. By the previous estimate, its value must be 0 . In particular, $\ell\left(A^{-1} \varphi\right)=0$ for all $\ell \in \mathrm{E}^{\prime}$. By the Hahn-Banach Theorem, we have $A^{-1} \varphi=0$. This gives a contradiction and proves that $\rho(A) \neq \mathbb{C}$.

Remark 2.21. In the real case we know from the finite dimensional case that the spectrum of a bounded operator can be empty.
Remark 2.22. An unbounded operator can have empty resolvent set (see Exercise 2.6) or an empty spectrum (see Exercise 2.7).
Example 2.23. We consider on $\ell^{2}(\mathbb{N})$ the shift operators of Example 1.2. We have

$$
\sigma_{\mathrm{p}}\left(S_{r}\right)=\varnothing \quad \text { and } \quad \sigma_{\mathrm{p}}\left(S_{\ell}\right)=D(0,1)
$$

By Proposition 2.19, $\sigma\left(S_{\ell}\right)$ is closed and contained in $\bar{D}(0,1)$, so $\sigma\left(S_{\ell}\right)=\bar{D}(0,1)$. Finally, since $S_{r}^{*}=S_{\ell}$, we also have $\sigma\left(S_{r}\right)=\bar{D}(0,1)$ by Proposition 2.10.

2.2.2 Spectral radius

Definition 2.24. Let $A \in \mathcal{L}(\mathrm{E})$. We define the spectral radius of A by

$$
r(A)=\sup _{\lambda \in \sigma(A)}|\lambda| .
$$

By Proposition 2.19 we already know that $r(A) \leqslant\|A\|_{\mathcal{L}(\mathrm{E})}$. The equality is not true in general. Consider for instance the matrix

$$
A_{\alpha}=\left(\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right)
$$

for $\alpha \in \mathbb{C}$. We have $\sigma(A)=\{1\}$ and $\|A\|_{\mathcal{L}\left(\mathbb{C}^{2}\right)} \rightarrow+\infty$ as $|\alpha| \rightarrow+\infty$. In general we have at least the following result.

Proposition 2.25 (Gelfand's Formula). Let $A \in \mathcal{L}(\mathrm{E})$. We have

$$
r(A)=\inf _{n \in \mathbb{N}^{*}}\left\|A^{n}\right\|_{\mathcal{L}(\mathrm{E})}^{\frac{1}{n}}=\lim _{n \rightarrow \mathbb{N}^{*}}\left\|A^{n}\right\|_{\mathcal{L}(\mathrm{E})}^{\frac{1}{n}}
$$

Example 2.26. Check that A_{α} satisfies the Gelfand Formula.
Proof. - Assume that there exists $N \in \mathbb{N}$ such that $A^{N}=0$. Then $A^{n}=0$ for all $n \geqslant N$. Let $z \in \mathbb{C} \backslash\{0\}$. Then $\left(z^{-1} A-1\right)$ is invertible with inverse

$$
\left(\frac{A}{z}-1\right)^{-1}=-\sum_{n=0}^{N-1}\left(\frac{A}{z}\right)^{n}
$$

This proves that $A-z=z\left(z^{-1} A-1\right)$ is invertible. Thus $\sigma(A) \subset\{0\}$. Since $\sigma(A) \neq \varnothing$, we have $\sigma(A)=\{0\}$ and the proposition is proved in this case. Now we assume that $A^{n} \neq 0$ for all $n \in \mathbb{N}$.

- For $n \in \mathbb{N}$ we set $u_{n}=\ln \left(\left\|A^{n}\right\|\right)$. For $m, p \in \mathbb{N}^{*}$ we have by (1.1)

$$
u_{m+p} \leqslant u_{m}+u_{p}
$$

Let $p \in \mathbb{N}^{*}$. Let $n \in \mathbb{N}^{*}$ and $(q, r) \in \mathbb{N} \times \llbracket 0, p-1 \rrbracket$ such that $n=q p+r$. Then we have

$$
\frac{u_{n}}{n} \leqslant \frac{q u_{p}+u_{r}}{q p+r} \leqslant \frac{u_{p}}{p}+\frac{u_{r}}{n},
$$

so

$$
\limsup _{n \rightarrow \infty} \frac{u_{n}}{n} \leqslant \frac{u_{p}}{p} .
$$

Then for all $p \in \mathbb{N}^{*}$ we have

$$
\limsup _{n \rightarrow \infty}\left\|A^{n}\right\|^{\frac{1}{n}} \leqslant\left\|A^{p}\right\|^{\frac{1}{p}}
$$

Thus

$$
\limsup _{n \in \infty}\left\|A^{n}\right\|^{\frac{1}{n}} \leqslant \inf _{p \in \mathbb{N}^{*}}\left\|A^{p}\right\|^{\frac{1}{p}}
$$

This implies that

$$
\left\|A^{n}\right\|^{\frac{1}{n}} \xrightarrow[n \rightarrow \infty]{ } \inf _{p \in \mathbb{N}^{*}}\left\|A^{p}\right\|^{\frac{1}{p}}
$$

which gives the second inequality of the proposition.

- We set $\tilde{r}(A)=\lim \left\|A^{n}\right\|^{\frac{1}{n}}$. For $z \in \mathbb{C}$ we have $\operatorname{ker}(A-z) \subset \operatorname{ker}\left(A^{n}-z^{n}\right)$ and

$$
A^{n}-z^{n}=(A-z) \sum_{k=0}^{n-1} z^{k} A^{n-1-k}
$$

so $\operatorname{Ran}\left(A^{n}-z^{n}\right) \subset \operatorname{Ran}(A-z)$. Thus, if $A^{n}-z^{n}$ is bijective, then so is $A-z$. Now let $\lambda \in \sigma(A)$. We have $\lambda^{n} \in \sigma\left(A^{n}\right)$. By Proposition 2.19 we have $|\lambda|^{n}=\left|\lambda^{n}\right| \leqslant\left\|A^{n}\right\|$, so $|\lambda| \leqslant\left\|A^{n}\right\|^{\frac{1}{n}}$ for all $n \in \mathbb{N}$, and hence $|\lambda| \leqslant \tilde{r}(A)$. This proves that $r(A) \leqslant \tilde{r}(A)$.

- Let $z \in \mathbb{C}$ with $|z|>\tilde{r}(A)$. Then the power series

$$
-\sum_{n \in \mathbb{N}} \frac{A^{n}}{z^{n+1}}
$$

is convergent in $\mathcal{L}(\mathrm{E})$ and defines a bounded inverse for $(A-z)$. This proves that $\tilde{r}(A) \leqslant r(A)$ and concludes the proof.

2.2.3 Normal bounded operators

Definition 2.27. We say that $A \in \mathcal{L}(\mathcal{H})$ is normal if $A A^{*}=A^{*} A$.
Example 2.28. - The multiplication operator M_{w} (see Example 1.4) is normal.

- Since $S_{r} S_{\ell} \neq S_{\ell} S_{r}$, the shift operators S_{ℓ} and S_{r} (see Example 1.2) are not normal.

Remark 2.29. If A is normal and invertible, then A^{-1} is normal.
Proposition 2.30. Let $A \in \mathcal{L}(\mathcal{H})$ be a normal operator.
(i) For $\varphi \in \mathcal{H}$ we have $\|A \varphi\|=\left\|A^{*} \varphi\right\|$. In particular, $\operatorname{ker}\left(A^{*}\right)=\operatorname{ker}(A)$.
(ii) If λ and μ are two distinct eigenvalues of A, then $\operatorname{ker}(A-\lambda)$ and $\operatorname{ker}(A-\mu)$ are orthogonal.

Proof. - Let $\varphi \in \mathcal{H}$. We have

$$
\|A \varphi\|^{2}=\left\langle A^{*} A \varphi, \varphi\right\rangle=\left\langle A A^{*} \varphi, \varphi\right\rangle=\left\|A^{*} \varphi\right\|^{2}
$$

which gives the first statement.

- Let $\varphi \in \operatorname{ker}(A-\lambda)$ and $\psi \in \operatorname{ker}(A-\mu)$. By the first statement we also have $\psi \in$ $\operatorname{ker}\left((A-\mu)^{*}\right)=\operatorname{ker}\left(A^{*}-\bar{\mu}\right)$. Then we have

$$
(\lambda-\mu)\langle\varphi, \psi\rangle=\langle\lambda \varphi, \psi\rangle-\langle\varphi, \bar{\mu} \psi\rangle=\langle A \varphi, \psi\rangle-\left\langle\varphi, A^{*} \psi\right\rangle=0
$$

Since $\lambda \neq \mu$, this proves that $\langle\varphi, \psi\rangle=0$, so $\operatorname{ker}(A-\lambda)$ and $\operatorname{ker}(A-\mu)$ are orthogonal.
In Section 2.2.2 we have said that the spectral radius of a bounded operator can be smaller that its norm. This is not the case for a normal operator.

Proposition 2.31. Let $A \in \mathcal{L}(\mathrm{E})$ be normal. We have $r(A)=\|A\|_{\mathcal{L}(\mathcal{H})}$.
Proof. • Assume that $A=A^{*}$ (A is selfadjoint). We always have $\left\|A^{2}\right\| \leqslant\|A\|^{2}$. For $\varphi \in \mathcal{H}$ we have

$$
\|A \varphi\|^{2}=\left\langle A^{*} A \varphi, \varphi\right\rangle=\left\langle A^{2} \varphi, \varphi\right\rangle \leqslant\left\|A^{2}\right\|\|\varphi\|^{2}
$$

This proves that $\|A\|^{2} \leqslant\left\|A^{2}\right\|$, and hence $\|A\|^{2}=\left\|A^{2}\right\|$. Since $A^{2^{k}}$ is selfadjoint for all $k \in \mathbb{N}$, we deduce by induction that $\left\|A^{2^{k}}\right\|=\|A\|^{2^{k}}$ for all $k \in \mathbb{N}$. Then, by the Gelfand Formula we have

$$
r(A)=\lim _{k \rightarrow \infty}\left\|A^{2^{k}}\right\|^{\frac{1}{2^{k}}}=\|A\| .
$$

- Now we only assume that A is normal. We have $\left\|A^{*} A\right\|=\|A\|^{2}$ (exercise). On the other hand, since $A^{*} A$ is selfadjoint we have $r\left(A^{*} A\right)=\left\|A^{*} A\right\|$, so $r\left(A^{*} A\right)=\|A\|^{2}$. On the other hand, since A is normal,

$$
r\left(A^{*} A\right)=\lim _{n \rightarrow \infty}\left\|\left(A^{*} A\right)^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|\left(A^{n}\right)^{*} A^{n}\right\|^{\frac{1}{n}}=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{\frac{2}{n}}=r(A)^{2}
$$

This proves that $r(A)=\|A\|$.
Remark 2.32. If $A \in \mathcal{L}(\mathcal{H})$ is a normal operator such that $\sigma(A)=\{0\}$ then $A=0$. This is not the case in general, since every nilpotent operator has spectrum $\{0\}$.

Theorem 2.33. Let $A \in \mathcal{L}(\mathcal{H})$ a normal operator. For $z \in \rho(A)$ we have

$$
\left\|(A-z)^{-1}\right\|_{\mathcal{L}(\mathcal{H})}=\frac{1}{\operatorname{dist}(z, \sigma(A))}
$$

Proof. Let $z \in \rho(A)$. By Proposition 2.11 we have

$$
\sigma\left((A-z)^{-1}\right)=\left\{(\zeta-z)^{-1}, \zeta \in \sigma(A)\right\}
$$

Since $(A-z)^{-1}$ is normal, we deduce by Proposition 2.31

$$
\left\|(A-z)^{-1}\right\|=r\left((A-z)^{-1}\right)=\sup _{\lambda \in \sigma(A)}|\lambda-z|^{-1}=\frac{1}{\inf _{\lambda \in \sigma(A)}|\lambda-z|}=\frac{1}{\operatorname{dist}(z, \sigma(A))}
$$

2.3 Riesz projections

2.3.1 Separation of the spectrum

The interest of the resolvent is that it is a bounded operator which completely characterize the operator. Moreover, since it is analytic, we can use all the tools from complex analysis. In the following section we give a first application of the resolvent for the analysis of an operator.

Let E be a Banach space and let A be a closed operator on E .
Proposition 2.34. Let $z_{0} \in \mathbb{C}$ and $r_{0}>0$. Assume that $\mathcal{C}\left(z_{0}, r_{0}\right) \subset \rho(A)$. We define

$$
\Pi=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r_{0}\right)}(A-\zeta)^{-1} \mathrm{~d} \zeta=-\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(A-\left(z_{0}+r_{0} e^{i \theta}\right)\right)^{-1} r_{0} e^{i \theta} \mathrm{~d} \theta
$$

We also set $\mathrm{F}=\operatorname{Ran}(\Pi)$ and $\mathrm{G}=\operatorname{ker}(\Pi)$.
(i) Π is a (not necessarily orthogonal) projection of E .
(ii) $\mathrm{F} \subset \operatorname{Dom}(A)$.
(iii) $\Pi A \subset A \Pi$.
(iv) $\sigma\left(A_{\mathrm{F}}\right)=\sigma(A) \cap D\left(z_{0}, r_{0}\right)$ and $\sigma\left(A_{\mathrm{G}}\right)=\sigma(A) \backslash \bar{D}\left(z_{0}, r_{0}\right)$.

Remark 2.35. In Proposition 2.34 we consider for simplicity the case where Π is defined by an integral on a circle. But we can similarly consider the integral on any rectifiable simple closed curve in $\rho(A)$ (see [Kat80, § III.6.4]).
Remark 2.36. Π is defined by the integral on a line segment of a continuous function with values in the Banach space $\mathcal{L}(E)$. This can be understood in the sense of Riemann integrals and this defines a bounded operator on E. In particular we have in $\mathcal{L}(E)$

$$
\Pi=\lim _{n \rightarrow+\infty} \Pi_{n}, \quad \text { where } \quad \Pi_{n}=-\frac{1}{n} \sum_{k=1}^{n}\left(A-\left(z_{0}+r_{0} e^{i \theta_{n, k}}\right)\right)^{-1} r_{0} e^{i \theta_{n, k}}, \quad \theta_{n, k}=\frac{2 k \pi}{n} .
$$

Then if T is a closed operator with $\operatorname{Dom}(A) \subset \operatorname{Dom}(T)$, we have

$$
T \Pi=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r_{0}\right)} T(A-\zeta)^{-1} \mathrm{~d} \zeta
$$

Indeed, for $\varphi \in \mathcal{H}$ and $n \in \mathbb{N}^{*}$ we have $\Pi_{n} \varphi \in \operatorname{Dom}(A) \subset \operatorname{Dom}(T), \Pi_{n} \varphi \rightarrow \Pi \varphi$ and

$$
T \Pi_{n} \varphi=-\frac{1}{n} \sum_{k=1}^{n} T\left(A-\left(z_{0}+r_{0} e^{i \theta_{n, k}}\right)\right)^{-1} r_{0} e^{i \theta_{n, k}} \varphi
$$

Proof. - For $\varphi \in \mathrm{E}$ and $\ell \in \mathrm{E}^{\prime}$ we have

$$
\ell(\Pi \varphi)=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r_{0}\right)} \ell\left((A-z)^{-1} \varphi\right) \mathrm{d} z
$$

Since $\rho(A)$ is open in \mathbb{C}, there exists $\left.R_{1} \in\right] 0, r_{0}\left[\right.$ and $R_{2}>r_{0}$ such that $D\left(0, R_{2}\right) \backslash \bar{D}\left(0, R_{1}\right) \subset$ $\rho(A)$. Let $\varphi \in \mathrm{E}$ and $\ell \in \mathrm{E}^{*}$. Since the $\operatorname{map} \zeta \mapsto \ell\left((A-\zeta)^{-1} \varphi\right)$ is holomorphic on $\rho(A)$, we can replace r_{0} by any $\left.r \in\right] R_{1}, R_{2}[$ in the expression of Π.

- Let $\left.r_{1}, r_{2} \in\right] R_{1}, R_{2}$ [with $r_{1}<r_{2}$. We can write

$$
\Pi^{2}=\frac{1}{(2 i \pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}\left(z_{0}, r_{1}\right)} \int_{\zeta_{2} \in \mathcal{C}\left(z_{0}, r_{2}\right)}\left(A-\zeta_{1}\right)^{-1}\left(A-\zeta_{2}\right)^{-1} \mathrm{~d} \zeta_{2} \mathrm{~d} \zeta_{1}
$$

By the resolvent identity we have

$$
\Pi^{2}=\frac{1}{(2 i \pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}\left(z_{0}, r_{1}\right)} \int_{\zeta_{2} \in \mathcal{C}\left(z_{0}, r_{2}\right)} \frac{\left(A-\zeta_{1}\right)^{-1}-\left(A-\zeta_{2}\right)^{-1}}{\zeta_{1}-\zeta_{2}} \mathrm{~d} \zeta_{2} \mathrm{~d} \zeta_{1} .
$$

Then, by the Fubini Theorem,

$$
\begin{aligned}
\Pi^{2}= & -\frac{1}{(2 i \pi)^{2}} \int_{\zeta_{1} \in \mathcal{C}\left(z_{0}, r_{1}\right)}\left(A-\zeta_{1}\right)^{-1}\left(\int_{\zeta_{2} \in \mathcal{C}\left(z_{0}, r_{2}\right)} \frac{1}{\zeta_{2}-\zeta_{1}} \mathrm{~d} \zeta_{2}\right) \mathrm{d} \zeta_{1} \\
& -\frac{1}{(2 i \pi)^{2}} \int_{\zeta_{2} \in \mathcal{C}\left(z_{0}, r_{2}\right)}\left(A-\zeta_{2}\right)^{-1}\left(\int_{\zeta_{1} \in \mathcal{C}\left(z_{0}, r_{1}\right)} \frac{1}{\zeta_{1}-\zeta_{2}} \mathrm{~d} \zeta_{1}\right) \mathrm{d} \zeta_{2}
\end{aligned}
$$

We look at the integral in brackets for each term. For the second term, for any $\zeta_{2} \in \mathcal{C}\left(z_{0}, r_{2}\right)$ the map $\zeta_{1} \mapsto 1 /\left(\zeta_{1}-\zeta_{2}\right)$ is holomorphic on $D\left(z_{0}, r_{2}\right)$, so the integral vanishes. For the first term, we get by the Cauchy Theorem that the integral is equal to $2 i \pi$ for all $\zeta_{1} \in \mathcal{C}\left(z_{0}, r_{1}\right)$. Then

$$
\Pi^{2}=-\frac{1}{2 i \pi} \int_{\zeta_{2} \in \mathcal{C}\left(z_{0}, r_{2}\right)}\left(A-\zeta_{2}\right)^{-1} \mathrm{~d} \zeta_{2}=\Pi
$$

This proves that Π is a projection of E.

- Let $\varphi \in \mathrm{F}$ and $\psi \in \mathrm{E}$ such that $\varphi=\Pi \psi$. For $n \in \mathbb{N}^{*}$ we set $\varphi_{n}=\Pi_{n} \psi \in \operatorname{Dom}(A)$. Then $\varphi_{n} \rightarrow \varphi$ in E . Moreover,

$$
\begin{aligned}
A \varphi_{n} & =-\frac{1}{n} \sum_{k=1}^{n} A\left(A-\left(z_{0}+r_{0} e^{i \theta_{n, k}}\right)\right)^{-1} r_{0} e^{i \theta_{n, k}} \psi \\
& =-\frac{1}{n} \sum_{k=1}^{n}\left(\operatorname{Id}+\left(z_{0}+r_{0} e^{i \theta_{n, k}}\right)\left(A-\left(z_{0}+r_{0} e^{i \theta_{n, k}}\right)\right)^{-1}\right) r_{0} e^{i \theta_{n, k}} \psi \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow}-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r_{0}\right)}\left(\operatorname{Id}+\zeta(A-\zeta)^{-1}\right) \psi \mathrm{d} \zeta=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r_{0}\right)} \zeta(A-\zeta)^{-1} \psi \mathrm{~d} \zeta
\end{aligned}
$$

Since A is closed this proves that $\varphi \in \operatorname{Dom}(A)$ (and $A \varphi=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r_{0}\right)} \zeta(A-\zeta)^{-1} \psi \mathrm{~d} \zeta$).

- Let $\varphi \in \operatorname{Dom}(A)$. Since A commutes with its resolvent, we have $A \Pi_{n} \varphi=\Pi_{n} A \varphi$ for all $n \in \mathbb{N}^{*}$. Since $\Pi_{n} \varphi \rightarrow \Pi \varphi$ and $A \Pi_{N} \varphi=\Pi_{N} A \varphi \rightarrow \Pi A \varphi$, we get by closedness of A that $\Pi \varphi \in \operatorname{Dom}(A)$ and $A \Pi \varphi=\Pi A \varphi$.
- Let $z \in \rho\left(A_{\mathrm{F}}\right) \backslash D\left(z_{0}, r_{0}\right)$. Let $\left.r \in\right] R_{1}, r_{0}[$. We have on F

$$
\begin{aligned}
\left(A_{\mathrm{F}}-z\right)^{-1} & =\left(A_{\mathrm{F}}-z\right)^{-1} \Pi \\
& =-\frac{1}{2 i \pi} \int_{\zeta \in \mathcal{C}\left(z_{0}, r\right)}\left(A_{\mathrm{F}}-z\right)^{-1}\left(A_{\mathrm{F}}-\zeta\right)^{-1} \mathrm{~d} \zeta \\
& =-\frac{1}{2 i \pi} \int_{\zeta \in \mathcal{C}\left(z_{0}, r\right)} \frac{\left(A_{\mathrm{F}}-z\right)^{-1}-\left(A_{\mathrm{F}}-\zeta\right)^{-1}}{z-\zeta} \mathrm{d} \zeta \\
& =\frac{1}{2 i \pi} \int_{\zeta \in \mathcal{C}\left(z_{0}, r\right)} \frac{\left(A_{\mathrm{F}}-\zeta\right)^{-1}}{z-\zeta} \mathrm{d} \zeta .
\end{aligned}
$$

The right-hand side is bounded uniformly in $z \in \rho\left(A_{\mathrm{F}}\right) \backslash D\left(z_{0}, r_{0}\right)$. By Proposition 2.17 this implies that

$$
\begin{equation*}
\sigma\left(A_{\mathrm{F}}\right) \subset D\left(z_{0}, r_{0}\right) \tag{2.7}
\end{equation*}
$$

Now let $z \in \rho\left(A_{\mathrm{G}}\right) \cap D\left(z_{0}, r_{0}\right)$ and $\left.r \in\right] r_{0}, R_{2}[$. We have on G

$$
\begin{aligned}
\left(A_{\mathrm{G}}-z\right)^{-1} & =\left(A_{\mathrm{G}}-z\right)^{-1}(1-\Pi) \\
& =\left(A_{\mathrm{G}}-z\right)^{-1}-\frac{1}{2 i \pi} \int_{\zeta \in \mathcal{C}\left(z_{0}, r\right)} \frac{\left(A_{\mathrm{G}}-z\right)^{-1}-\left(A_{\mathrm{G}}-\zeta\right)^{-1}}{\zeta-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 i \pi} \int_{\zeta \in \mathcal{C}\left(z_{0}, r\right)} \frac{\left(A_{\mathrm{G}}-\zeta\right)^{-1}}{z-\zeta} \mathrm{d} \zeta .
\end{aligned}
$$

This is bounded uniformly in $z \in \rho\left(A_{\mathrm{G}}\right) \cap D\left(z_{0}, r_{0}\right)$, so

$$
\begin{equation*}
\sigma\left(A_{\mathrm{G}}\right) \subset \mathbb{C} \backslash \bar{D}\left(0, r_{0}\right) \tag{2.8}
\end{equation*}
$$

Finally, with Proposition 2.18 and (2.7)-(2.8) we deduce that $\sigma\left(A_{\mathrm{F}}\right)=\sigma(A) \cap D\left(0, r_{0}\right)$ and $\sigma\left(A_{\mathrm{G}}\right)=\sigma(A) \backslash \bar{D}\left(0, r_{0}\right)$.

2.3.2 Isolated eigenvalues

Definition 2.37. We consider an operator A on E . Assume that $\lambda \in \mathbb{C}$ is an isolated point in the spectrum of A. Let $r_{0}>0$ such that $\sigma(A) \cap D\left(\lambda, r_{0}\right)=\{\lambda\}$ and $\left.r \in\right] 0, r_{0}[$. Then the Riesz projection of A at λ is

$$
\begin{equation*}
\Pi_{\lambda}=-\frac{1}{2 i \pi} \int_{\mathcal{C}(\lambda, r)}(A-z)^{-1} \mathrm{~d} z \tag{2.9}
\end{equation*}
$$

Remark 2.38. The definition of Π_{λ} does not depend on the choice of $\left.r \in\right] 0, r_{0}[$. More generally, we can replace $\mathcal{C}(\lambda, r)$ any closed curve in $D\left(\lambda_{r} 0\right) \backslash\{\lambda\}$ enclosing λ exactly once in the direct sense.

Definition 2.39. Let λ be an isolated element of $\sigma(A)$. The algebraic multiplicity of λ is $\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{\lambda}\right)\right)$, where Π_{λ} is the Riesz projection at λ.

Example 2.40. Let $\alpha, \beta \in \mathbb{C}$ distinct and

$$
M=\left(\begin{array}{ccccc}
\alpha & 1 & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 \\
0 & 0 & \alpha & 0 & 0 \\
0 & 0 & 0 & \beta & 1 \\
0 & 0 & 0 & 0 & \beta
\end{array}\right)
$$

Then $\sigma(M)=\{\alpha, \beta\}$ and α is an eigenvalue of geometric multiplicity 2. For $z \in \mathbb{C} \backslash\{\alpha, \beta\}$ we have

$$
(M-z)^{-1}=\left(\begin{array}{ccccc}
(\alpha-z)^{-1} & -(\alpha-z)^{-2} & 0 & 0 & 0 \\
0 & (\alpha-z)^{-1} & 0 & 0 & 0 \\
0 & 0 & (\alpha-z)^{-1} & 0 & 0 \\
0 & 0 & 0 & (\beta-z)^{-1} & -(\beta-z)^{-2} \\
0 & 0 & 0 & 0 & (\beta-z)^{-1}
\end{array}\right)
$$

Then for $r \in] 0,|\alpha-\beta|[$ we have

$$
\Pi_{\alpha}=-\frac{1}{2 i \pi} \int_{\mathcal{C}(\alpha, r)}(M-z)^{-1} \mathrm{~d} z=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

so α has algebraic multplicity 3 and Π_{α} is the projection of \mathbb{C}^{5} on $\operatorname{ker}\left((M-\alpha)^{2}\right)$ parallel to $\operatorname{ker}\left((M-\beta)^{2}\right)$.

Proposition 2.41. We use the notation of Proposition 2.34.
(i) Let $\lambda \in D\left(z_{0}, r_{0}\right)$ and $m \in \mathbb{N}^{*}$. Then $\operatorname{ker}\left((A-\lambda)^{m}\right) \subset \mathrm{F}$.
(ii) Let $\lambda \in \mathbb{C} \backslash \bar{D}\left(z_{0}, r_{0}\right)$ and $m \in \mathbb{N}^{*}$. Then $\operatorname{ker}\left((A-\lambda)^{m}\right) \subset \mathrm{G}$.

Proof. - Let $\varphi \in \operatorname{Dom}(A)$ such that $(A-\lambda) \varphi \in \mathrm{F}$. For $\zeta \in \mathcal{C}\left(z_{0}, r_{0}\right)$ we have

$$
(A-\zeta)^{-1} \varphi=(\lambda-\zeta)^{-1} \varphi-(\lambda-\zeta)^{-1}(A-\zeta)^{-1}(A-\lambda) \varphi
$$

Then

$$
\begin{aligned}
\Pi \varphi & =-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r\right)}\left((\lambda-\zeta)^{-1} \varphi-(\lambda-\zeta)^{-1}(A-\zeta)^{-1}(A-\lambda) \varphi\right) \mathrm{d} \zeta \\
& =\varphi+\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r\right)}(\lambda-\zeta)^{-1}(A-\zeta)^{-1}(A-\lambda) \varphi \mathrm{d} \zeta
\end{aligned}
$$

Since

$$
\forall \zeta \in \mathcal{C}\left(z_{0}, r\right), \quad(A-\zeta)^{-1}(A-\lambda)(1-\Pi) \varphi=(A-\zeta)^{-1}(1-\Pi)(A-\lambda) \varphi=0
$$

we deduce

$$
(1-\Pi) \varphi=(1-\Pi)^{2} \varphi=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(z_{0}, r\right)}(\lambda-\zeta)^{-1}(A-\zeta)^{-1}(1-\Pi)(A-\lambda) \varphi \mathrm{d} \zeta=0
$$

This proves that $\varphi \in \mathrm{F}$. Then we can prove by induction on $m \in \mathbb{N}^{*}$ that $\operatorname{ker}\left((A-\lambda)^{m}\right) \subset \mathrm{F}$. The second statement is similar.

Remark 2.42. Let λ be an isolated element of $\sigma(A)$. Since $\operatorname{ker}(A-\lambda) \subset \operatorname{Ran}\left(\Pi_{A}(\lambda)\right)$ the geometric multiplicity of λ (which can be 0 if λ is not an eigenvalue) is not greater than its algebraic multiplicity.
Proposition 2.43. Assume that λ is an isolated point of $\sigma(A)$ such that $\operatorname{Ran}\left(\Pi_{\lambda}\right)$ is of finite dimension $m \in \mathbb{N}^{*}$. Then λ is an eigenvalue and

$$
\operatorname{Ran}\left(\Pi_{\lambda}\right)=\operatorname{ker}\left((A-\lambda)^{m}\right)
$$

Proof. The restriction A_{F} of A to $\mathrm{F}=\operatorname{Ran}\left(\Pi_{\lambda}\right)$ is an operator on the finite dimensional space F , with $\sigma\left(A_{\mathrm{F}}\right)=\{\lambda\}$. Then the result follows from the finite dimensional case.

Remark 2.44. Notice that (see Exercise 2.14)

- an isolated point λ of $\sigma(A)$ is not necessarily an eigenvalue (in this case we have $\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{\lambda}\right)\right)=+\infty$ by Proposition 2.43);
- as isolated eigenvalue of finite geometric multiplicity can have infinite algebraic multiplicity.
Definition 2.45. Let A be a closed operator on E . Let $\lambda \in \mathbb{C}$. We say that λ belongs to the discrete spectrum $\sigma_{\text {disc }}(A)$ of A and λ is an isolated eigenvalue of A with finite algebraic multiplicity.

Example 2.46. - Assume that E has infinite dimension. Then $\sigma_{\text {disc }}\left(\operatorname{Id}_{\mathrm{E}}\right)=\varnothing$ (the spectrum is given by the eigenvalue 1 , but it has infinite dimension.

- The harmonic oscillator (see Section 2.1.2) has purely discrete $\operatorname{spectrum:~} \sigma_{\text {disc }}(H)=$ $\sigma(H)$.
- The usual Laplacian on \mathbb{R}^{d} (see Example 2.6) has empty discrete spectrum: $\sigma(-\Delta)=$ \varnothing.

2.3.3 Additional topic: regularity of the spectrum with respect to a parameter

Lemma 2.47. Let Π_{1} and Π_{2} be two projections on E . Assume that $\left\|\Pi_{2}-\Pi_{1}\right\|_{\mathcal{L}(\mathrm{E})}<1$. Then

$$
\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{1}\right)\right)=\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{2}\right)\right)
$$

Proof. Let $\pi: \operatorname{Ran}\left(\Pi_{2}\right) \rightarrow \operatorname{Ran}\left(\Pi_{1}\right)$ be the restriction of Π_{1} to $\operatorname{Ran}\left(\Pi_{2}\right)$. This is a continuous linear map. For $\varphi \in \operatorname{ker}(\pi)$ we have $\Pi_{2}(\varphi)=\varphi$ and $\Pi_{1}(\varphi)=0$ so

$$
\|\varphi\|=\left\|\Pi_{2}(\varphi)-\Pi_{1}(\varphi)\right\| \leqslant\left\|\Pi_{2}-\Pi_{2}\right\|\|\varphi\|,
$$

so $\varphi=0$. This implies that $\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{1}\right)\right) \geqslant \operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{1}\right)\right)$. Interverting the roles of Π_{1} and Π_{2} gives the reverse inequality and concludes the proof.

Proposition 2.48. Let ω be a connected subset of \mathbb{C}. Let $\left(A_{\alpha}\right)_{\alpha \in \mathbb{C}}$ be a family of linear operators on E . Assume that there exists $\lambda_{0} \in \mathbb{C}$ and $r_{0}>0$ such that $\mathcal{C}\left(\lambda_{0}, r_{0}\right) \subset \rho\left(A_{\alpha}\right)$ for all $\alpha \in \omega$. Assume that the map

$$
\left\{\begin{array}{ccc}
\omega \times \mathcal{C}\left(\lambda_{0}, r_{0}\right) & \rightarrow & \mathcal{L}(\mathrm{E}) \\
(\alpha, z) & \mapsto & \left(A_{\alpha}-z\right)^{-1}
\end{array}\right.
$$

is continuous. We denote by Π_{α} the Riesz projection of A_{α} on $\mathcal{C}\left(\lambda_{0}, r\right)$.
(i) $\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{\alpha}\right)\right)$ does not depend on $\alpha \in \omega$.
(ii) Assume that $\operatorname{dim}\left(\operatorname{Ran}\left(\Pi_{\alpha}\right)\right)=1$. Then for all $\alpha \in \omega$ the operator A_{α} has a unique simple eigenvalue λ_{α} in $D\left(\lambda_{0}, r\right)$. Moreover the maps $\alpha \mapsto \lambda_{\alpha}$ and $\alpha \mapsto \Pi_{\alpha}$ are continuous on ω. If moreover $\alpha \mapsto\left(A_{\alpha}-z\right)^{-1}$ is holomorphic on ω for all $z \in \mathcal{C}\left(\lambda_{0}, r_{0}\right)$, then $\alpha \mapsto \Pi_{\alpha}$ and $\alpha \mapsto \lambda_{\alpha}$ are holomorphic.

Proof. - Let $\alpha_{0} \in \omega$. Since $\mathcal{C}\left(\lambda_{0}, r\right)$ is compact, there exists a neighborhood \mathcal{V} of α_{0} in ω such that for all $\alpha \in \mathcal{V}$ and $\zeta \in \mathcal{C}\left(\lambda_{0}, r\right)$ we have

$$
\left\|\left(A_{\alpha}-\zeta\right)^{-1}-\left(A_{\alpha_{0}}-\zeta\right)^{-1}\right\| \leqslant \frac{1}{2 r_{0}}
$$

Then we have

$$
\left\|\Pi_{\alpha}-\Pi_{\alpha_{0}}\right\| \leqslant \frac{1}{2}
$$

and, by Lemma 2.47, $\operatorname{Ran}\left(\Pi_{\alpha}\right)=\operatorname{Ran}\left(\Pi_{\alpha_{0}}\right)$ for all $\alpha \in \mathcal{V}$. Then $\operatorname{Ran}\left(\Pi_{\alpha}\right)$ is locally constant, so it is constant on the connected set ω.

- By continuity under the integral sign, we see that Π_{α} is continuous with respect to α. If $\left(A_{\alpha}-\zeta\right)^{-1}$ is holomorphic with respect to α for all $\zeta \in \mathcal{C}\left(l_{0}, r\right)$, then Π_{α} is holomorphic by complex differentiation under the integral sign.
- Now assume that $\operatorname{Ran}\left(\Pi_{\alpha}\right)=1$ for all $\alpha \in \omega$. Let $\alpha_{0} \in \omega$ and $\psi \in \operatorname{Ran}\left(\Pi_{\alpha_{0}}\right)$ with $\|\psi\|=1$. Then ψ is an eigenvector corresponding to an eigenvalue $\lambda_{\alpha_{0}} \in D\left(\lambda_{0}, r\right)$. For $\alpha \in \omega$ we set $\psi_{\alpha}=\Pi_{\alpha} \psi$. For α close to α_{0} we have $\psi_{\alpha} \neq 0$. Then ψ_{α} is an eigenvector of A_{α} corresponding to an eigenvalue λ_{α}, and it is continuous (holomorphic if the resolvent is holomorphic) with respect to α. Finally we have $\left(A_{\alpha}-z\right)^{-1} \psi_{\alpha}=\left(\lambda_{\alpha}-z\right)^{-1} \psi_{\alpha}$. Taking the inner product with ψ gives

$$
\left\langle\psi,\left(A_{\alpha}-z\right)^{-1} \psi_{\alpha}\right\rangle=\left(\lambda_{\alpha}-z\right)^{-1}\left\langle\psi, \psi_{\alpha}\right\rangle .
$$

We have $\left\langle\psi, \psi_{\alpha}\right\rangle=1$ when $\alpha=\alpha_{0}$, so this does not vanish on a neighborhood of α_{0}. This gives

$$
\left(\lambda_{\alpha}-z\right)^{-1}=\frac{\left\langle\psi,\left(A_{\alpha}-z\right)^{-1} \psi_{\alpha}\right\rangle}{\left\langle\psi, \psi_{\alpha}\right\rangle}
$$

Thus $\left(\lambda_{\alpha}-z\right)^{-1}$ is continuous (holomorphic if the resolvent is holomorphic) for α an a neighborhood of α_{0}, and so is λ_{α}.

Proposition 2.49 (Analytic family of type A). Let ω be an open subset of \mathbb{C}. Let $\left(A_{\alpha}\right)_{\alpha \in \omega}$ be a family of closed operators on E . We assume that
(i) the operators $A_{\alpha}, \alpha \in \omega$, have the same domain \mathcal{D};
(ii) for all $\psi \in \mathcal{D}$ the map $\alpha \mapsto A_{\alpha} \psi \in \mathcal{H}$ is holomorphic on ω.

Let $\alpha_{0} \in \omega$ and $z_{0} \in \rho\left(A_{\alpha_{0}}\right)$. Then there exists $r>0$ such that $z \in \rho\left(A_{\alpha}\right)$ for all $\alpha \in D\left(\alpha_{0}, r\right)$ and $z \in D\left(z_{0}, r\right)$ and the map

$$
(\alpha, z) \mapsto\left(A_{\alpha}-z\right)^{-1}
$$

is continuous on $D\left(\alpha_{0}, r\right) \times D\left(z_{0}, r\right)$ and analytic in $D\left(\alpha_{0}, r\right)$ for all $z \in D\left(z_{0}, r\right)$.
Proof. For $\alpha \in \omega$ and $z \in \mathbb{C}$ we have

$$
\left(A_{\alpha}-z\right)=\left(1+\left(\left(A_{\alpha}-A_{\alpha_{0}}\right)-\left(z-z_{0}\right)\right)\left(A_{\alpha_{0}}-z_{0}\right)^{-1}\right)\left(A_{\alpha_{0}}-z_{0}\right)
$$

Since $\left(A_{\alpha_{0}}-z_{0}\right)^{-1}$ maps \mathcal{H} to \mathcal{D}, the operators $A_{\alpha}\left(A_{\alpha_{0}}-z_{0}\right)^{-1}$ and $A_{\alpha_{0}}\left(A_{\alpha_{0}}-z_{0}\right)^{-1}$ are well defined on \mathcal{H}. Since they are closed, they are bounded by the closed graph theorem. Then the function $\alpha \mapsto A_{\alpha}\left(A_{\alpha_{0}}-z\right)^{-1}$ is weakly holomorphic, and hence holomorphic by Proposition A.7. In particular it is continuous, so there exists $r>0$ so small that $\left\|\left(A_{\alpha_{0}}-z_{0}\right)^{-1}\right\|<1 /(4 r)$, $D\left(\alpha_{0}, r\right) \subset \omega$ and for all $\alpha \in D\left(\alpha_{0}, r\right)$ we have

$$
\left\|\left(A_{\alpha}-A_{\alpha_{0}}\right)\left(A_{\alpha_{0}}-z_{0}\right)^{-1}\right\|_{\mathcal{L}(\mathcal{H})} \leqslant \frac{1}{4}
$$

Then the map $\left.(\alpha, z) \mapsto\left(1+\left(A_{\alpha}-A_{\alpha_{0}}\right)-\left(z-z_{0}\right)\right)\left(A_{\alpha_{0}}-z_{0}\right)^{-1}\right)^{-1}$ is well defined and continuous on $D\left(\alpha_{0}, r\right) \times D\left(z_{0}, r\right)$, and analytic with respect to α for all $z \in D\left(z_{0}, r\right)$. We deduce that the same holds for $\alpha \mapsto\left(A_{\alpha}-z\right)^{-1}$.

Proposition 2.50 (Analytic family of type B). Let \mathcal{V} be a Hilbert space continuously and densely embedded in \mathcal{H}. Let ω be an open subset of \mathbb{C}. Let $\left(q_{\alpha}\right)_{\alpha \in \omega}$ be a family of continuous forms on \mathcal{V} such that $\varphi \mapsto q_{\alpha}(\varphi) \in \mathbb{C}$ is analytic for all $\varphi \in \mathcal{V}$. Assume that there exist $\alpha_{0} \in \omega$ and $z_{0} \in \mathbb{C}$ such that $q_{\alpha_{0}}-z_{0}$ is coercive. Then there exists $r>0$ such that $q_{\alpha}-z$ is coercive for all $\alpha \in D\left(\alpha_{0}, r\right)$ and $z \in D\left(z_{0}, r\right)$. For $\alpha \in D\left(\alpha_{0}, r\right)$ we denote by A_{α} the operator on \mathcal{H} given by the representation theorem (see Theorem 1.71 and Remark 1.72). Then the map

$$
(\alpha, z) \mapsto\left(A_{\alpha}-z\right)^{-1}
$$

is continuous on $D\left(\alpha_{0}, r\right) \times D\left(z_{0}, r\right)$ and holomorphic with respect to $\alpha \in D\left(\alpha_{0}, r\right)$ for all $z \in D\left(z_{0}, r\right)$.

Proof. We denote by Q_{α} the operator in $\mathcal{L}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$ associated with q_{α} (see (1.12)). For $\alpha \in \omega$ we have in $\mathcal{L}\left(\mathcal{V}, \mathcal{V}^{\prime}\right)$

$$
\left(Q_{\alpha}-z\right)=\left(1+\left(\left(Q_{\alpha}-Q_{\alpha_{0}}\right)-\left(z-z_{0}\right)\right)\left(Q_{\alpha_{0}}-z\right)^{-1}\right)\left(Q_{\alpha_{0}}-z\right)
$$

Since $\left(Q_{\alpha_{0}}-z\right)^{-1}$ maps \mathcal{V}^{\prime} to \mathcal{V}, the operators $Q_{\alpha}\left(Q_{\alpha_{0}}-z\right)^{-1}$ and $Q_{\alpha_{0}}\left(Q_{\alpha_{0}}-z\right)^{-1}$ are bounded on \mathcal{V}^{\prime}. Then the function $\alpha \mapsto Q_{\alpha}\left(Q_{\alpha_{0}}-z\right)^{-1}$ is weakly holomorphic, and hence holomorphic by Proposition A.7. In particular it is continuous, so there exists $r>0$ such that $\left\|\left(Q_{\alpha_{0}}-z_{0}\right)^{-1}\right\|_{\mathcal{L}\left(\mathcal{V}^{\prime}, \mathcal{V}\right)} \leqslant 1 /(4 r), D\left(\alpha_{0}, r\right) \subset \omega$ and for all $\alpha \in D\left(\alpha_{0}, r\right)$ we have

$$
\left\|\left(Q_{\alpha}-Q_{\alpha_{0}}\right)\left(Q_{\alpha_{0}}-z\right)^{-1}\right\|_{\mathcal{L}\left(\mathcal{V}^{\prime}\right)} \leqslant \frac{1}{4}
$$

Then the map $(\alpha, z) \mapsto\left(1+\left(\left(Q_{\alpha}-Q_{\alpha_{0}}\right)-\left(z-z_{0}\right)\right)\left(Q_{\alpha_{0}}-z\right)^{-1}\right)^{-1} \in \mathcal{L}\left(\mathcal{V}^{\prime}\right)$ is well defined and continuous on $D\left(\alpha_{0}, r\right) \times D\left(z_{0}, r\right)$, and analytic on $D\left(\alpha_{0}, r\right)$ for all $z \in D\left(z_{0}, r\right)$. We deduce that the same holds for $\alpha \mapsto\left(Q_{\alpha}-z\right)^{-1}$ in $\mathcal{L}\left(\mathcal{V}^{\prime}, \mathcal{V}\right)$. Since $\left(Q_{\alpha}-z\right)^{-1}$ and $\left(A_{\alpha}-z\right)^{-1}$ coincide on \mathcal{H}, the conclusion follows.

For the perturbation of a double eigenvalue, we refer to Exemple II.1.1 (page 64) in [Kat80]

2.4 Exercises

Exercise 2.1. Let $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$. We consider the operator M_{a} given in Example 1.3. Prove that

$$
\sigma_{\mathrm{p}}\left(M_{a}\right)=\left\{a_{n}, n \in \mathbb{N}\right\} \quad \text { and } \quad \sigma\left(M_{a}\right)=\overline{\sigma_{\mathrm{p}}\left(M_{a}\right)}
$$

Exercise 2.2. Let \mathcal{H} be a Hilbert space. Let A be a closed operator on \mathcal{H}. Assume that there exist a Hilbert basis $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ of \mathcal{H} and a complex sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\operatorname{Dom}(A)=\left\{\varphi=\sum_{n=0}^{\infty} \varphi_{n} \beta_{n}: \sum_{n=0}^{\infty}\left|\lambda_{n} \varphi_{n}\right|^{2}<\infty\right\}
$$

and $A \beta_{n}=\lambda_{n} \beta_{n}$ for all $n \in \mathbb{N}$. Prove that

$$
\sigma(A)=\overline{\left\{\lambda_{n}, n \in \mathbb{N}\right\}}
$$

Exercise 2.3. We define on \mathbb{R} the function w defined by

$$
w(x)= \begin{cases}\frac{1}{x+1} & \text { if } x>0 \\ 0 & \text { if } x \leqslant 0\end{cases}
$$

Then we consider on $L^{2}(\mathbb{R})$ the operator M_{w} of multiplication by w.

1. What is $\sigma\left(M_{w}\right)$?
2. What is $\sigma_{\mathrm{p}}\left(M_{w}\right)$? For each eigenvalue λ of M_{w}, give a corresponding eigenvector.

Exercise 2.4. Let $A \in \mathcal{L}(\mathcal{H})$. Let $U \in \mathcal{L}(\mathcal{H})$ be unitary. Prove that

$$
\sigma\left(U^{*} A U\right)=\sigma(A) \quad \text { and } \quad \sigma_{\mathrm{p}}\left(U^{*} A U\right)=\sigma(A)
$$

Exercise 2.5. We consider on $\ell^{2}(\mathbb{Z})$ the operator H_{0} which maps the sequence $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ to the sequence $H_{0} u$ defined by

$$
\forall n \in \mathbb{Z}, \quad\left(H_{0} u\right)_{n}=u_{n+1}+u_{n-1}-2 u_{n} .
$$

1. Prove that $H_{0} \in \mathcal{L}\left(\ell^{2}(\mathbb{Z})\right)$.
2. We denote by $L^{2}\left(\mathbb{S}^{1}\right)$ the set of L^{2}-functions on the torus $\mathbb{S}^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$. Functions on \mathbb{S}^{1} can also be seen as 2π-periodic functions on \mathbb{R}. For $v \in L^{2}\left(\mathbb{S}^{1}\right)$ we have

$$
\|v\|_{L^{2}\left(S^{1}\right)}^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|v(s)|^{2} \mathrm{~d} s
$$

Given a sequence $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ we define $\Theta u \in L^{2}\left(\mathbb{S}^{1}\right)$ by

$$
(\Theta u)(s)=\sum_{n \in \mathbb{Z}} u_{n} e^{i n s}
$$

Prove that Θ is a unitary operator from $\ell^{2}(\mathbb{Z})$ to $L^{2}\left(\mathbb{S}^{1}\right)$.
3. Prove that $\Theta H_{0} \Theta^{-1}$ is a multiplication operator on \mathbb{S}^{1}.
4. Compute the spectrum of $\Theta H_{0} \Theta^{-1}$ and deduce the spectrum of H_{0} (use Exercise 2.4).

Exercise 2.6. We consider on $L^{2}(\mathbb{C})(\mathbb{C}$ is endowed with its usual Lebesgue measure) the operator A defined by $(A u)(y)=y u(y)$ on the domain

$$
\operatorname{Dom}(A)=\left\{u \in L^{2}(\mathbb{C}): y u \in L^{2}(\mathbb{C})\right\}
$$

1. Prove that A is closed.
2. Prove that $\sigma(A)=\mathbb{C}$.

Exercise 2.7. We consider on $L^{2}(0,1)$ the operator

$$
A=\partial_{x}
$$

defined on the domain

$$
\operatorname{Dom}(A)=\left\{u \in H^{1}(0,1): u(0)=0\right\} .
$$

1. Prove that A is closed.
2. Prove that $\sigma(A)=\varnothing$.

Exercise 2.8. We set

$$
\mathcal{H}=\left\{u \in L^{2}(\mathbb{R}): u \text { is even }\right\}
$$

1. Prove that \mathcal{H} is a Hilbert space.
2. We want to consider on \mathcal{H} the operator defined by $A u=-u^{\prime \prime}$. What is the natural domain for A (in particular, we want A to be closed) ?
3. Then what is the spectrum of A ?

Exercise 2.9. For $u=\left(u_{n}\right)_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$ we set

$$
U\left(\ldots, u_{-2}, u_{-1}, u_{0}, u_{1}, u_{2}, \ldots\right)=\left(\ldots, u_{-1}, u_{0}, u_{1}, u_{2}, u_{3}, \ldots\right)
$$

1. Prove that $\|U\|_{\mathcal{L}\left(\ell^{2}(\mathbb{Z})\right)}=1$.
2. Prove that U is invertible and $U^{-1}=U^{*}$ (U is a unitary operator).
3. Prove that $\sigma(U) \subset \mathbb{U}=\{z \in \mathbb{C}:|z| \neq 1\}$.
4. Let $\lambda \in \mathbb{U}$. For $k \in \mathbb{N}$ we consider

$$
u^{(k)}=\left(\ldots, 0,0,1, \lambda, \lambda^{2}, \ldots, \lambda^{k}, 0,0, \ldots\right) .
$$

Compute $\left\|u^{(k)}\right\|_{\ell^{2}(\mathbb{Z})}$ and $\left\|(U-\lambda) u^{(k)}\right\|_{\ell^{2}(\mathbb{Z})}$. Prove that $\lambda \in \sigma(S)$.
Exercise 2.10. Compute, for all $n \in \mathbb{N}$ and $z \in \rho(A)$,

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}}(A-z)^{-1}
$$

Exercise 2.11. Using the resolvent identity, give another proof of the facts that the resolvent $\operatorname{map} R_{A}: z \mapsto(A-z)^{-1}$ is continuous and then holomorphic on $\rho(A)$ with $R_{A}^{\prime}=R_{A}^{2}$.
Exercise 2.12. We consider on $\ell^{2}(\mathbb{Z})$ the operator A defined by

$$
A\left(\ldots, u_{-2}, u_{-1}, u_{0}, u_{1}, u_{2}, \ldots\right)=\left(\ldots, u_{-1}, 0, u_{1}, u_{2}, u_{3}, \ldots\right)
$$

(replace u_{0} by 0 and then shift to the left). What is the spectrum of A ?
Exercise 2.13. Let A be a closed and densely defined operator on E . Let $\lambda_{0} \in \mathbb{C}$ and $r_{0}>0$ such that $D\left(\lambda_{0}, r_{0}\right) \cap \sigma(A) \neq 0$. Let

$$
\Pi=-\frac{1}{2 i \pi} \int_{\mathcal{C}\left(\lambda_{0}, r_{0}\right)}(A-\zeta)^{-1} \mathrm{~d} \zeta
$$

Prove that $1 \in \sigma(\Pi)$.
Exercise 2.14. We consider on $\ell^{2}\left(\mathbb{N}^{*}\right)$ the operator A defined by

$$
A\left(u_{1}, u_{2}, u_{3}, \ldots, u_{k}, \ldots\right)=\left(0, \frac{u_{1}}{2}, \frac{u_{2}}{4}, \frac{u_{3}}{8}, \ldots, \frac{u_{k}}{2^{k}}, \ldots\right)
$$

1. Prove that $A \in \mathcal{L}\left(\ell^{2}\left(\mathbb{N}^{*}\right)\right)$ and compute $\|A\|_{\mathcal{L}\left(\ell^{2}\left(\mathbb{N}^{*}\right)\right)}$.
2. Compute $\sigma(A)$.
3. Compute $\sigma_{\mathrm{p}}(A)$.
4. Let $z \in \mathbb{C} \backslash\{0\}$ and $f=\left(f_{k}\right)_{k \in \mathbb{N}^{*}} \in \ell^{2}\left(\mathbb{N}^{*}\right)$. Compute $(A-z)^{-1} f$.
5. Compute the Riesz projection of A at point 0 .

Exercise 2.15. Let E_{1} and E_{2} be two Banach spaces and $\mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2}$. Let A_{1} and A_{2} be two closed operators, on E_{1} and E_{2} respectively. For $\varphi=\varphi_{1}+\varphi_{2} \in \mathrm{E}$ we set $A=A_{1} \varphi_{1}+A_{2} \varphi_{2}$. 1. Prove that this defines a closed operator A on E .
2. Prove that $\sigma(A)=\sigma\left(A_{1}\right) \cup \sigma\left(A_{2}\right)$.
3. Prove that $\sigma_{\mathrm{p}}(A)=\sigma_{\mathrm{p}}\left(A_{1}\right) \cup \sigma_{\mathrm{p}}\left(A_{2}\right)$.
4. Assume that λ is an isolated eigenvalue of A. Prove that the geometric (algebraic) multiplicity of λ as an eigenvalue of A is the sum of the geometric (algebraic) multiplicities of λ as an eigenvalue of A_{1} and A_{2}.

Exercise 2.16. Let $A \in \mathcal{L}(\mathrm{E})$. Let $P \in \mathbb{C}[X]$. Prove that

$$
\sigma(P(A))=\{P(\lambda), \lambda \in \sigma(A)\}
$$

Exercise 2.17 (Regular points). Let A be an operator on the Hilbert space \mathcal{H}. Let z be a regular point of A (see Proposition 2.9). We denote by $d_{A}(z)=\operatorname{dim}\left(\operatorname{Ran}(A-z)^{\perp}\right)$ the defect number of A. We also denote by $\pi(A)$ the set of regular points of A.

1. Prove that $\pi(A)$ is open (more precisely, if $z_{0} \in \pi(A)$ and $c_{0}>0$ is the constant given by (2.1), show that $\left.D\left(z_{0}, c_{z_{0}}\right) \subset \pi(A)\right)$.
2. Assume that A is closable.
a. Let $z_{0} \in \pi(A)$. Assume that $z \in \pi(A)$ is such that $d_{A}(z) \neq d_{A}\left(z_{0}\right)$. Prove that there exists $\varphi \in \operatorname{Dom}(A) \backslash\{0\}$ such that

$$
\left\langle(A-z) \varphi,\left(A-z_{0}\right) \varphi\right\rangle=0
$$

b. Let $c_{0}>0$ is the constant given by (2.1) for z_{0} and assume that $\left|z-z_{0}\right|<c_{0}$. Prove that $d_{A}(z)=d_{A}\left(z_{0}\right)$.
c. Prove that the defect number is constant on each connected component of $\pi(A)$.

Exercise 2.18. Let A be a closed operator on E. Let $\lambda \in \sigma_{\text {disc }}(A)$. Let $r_{0}>0$ be such that $D\left(\lambda, r_{0}\right) \cap \sigma(A)=\{\lambda\}$. For $\left.r \in\right] 0, r_{0}[$ and $n \in \mathbb{Z}$ we set

$$
R_{n}=\frac{1}{2 i \pi} \int_{\mathcal{C}(\lambda, r)} \frac{(A-\zeta)^{-1}}{(\zeta-\lambda)^{n+1}} \mathrm{~d} \zeta
$$

1. Prove that for $n_{1}, n_{2} \in \mathbb{Z} \backslash\{0\}$ we have $R_{n_{1}} R_{n_{2}}=-R_{n_{1}+n_{2}+1}$.
2. We set $N=-R_{-2}$. Prove that for all $n \geqslant 2$ we have $R_{-n}=-N^{n-1}$.
3. We denote by Π the Riesz projection at λ. Prove that $N \Pi=\Pi N=N$. Deduce that N has finite rank.
4. Prove that for $z \in D\left(\lambda, r_{0}\right) \backslash\{\lambda\}$ we can write $(A-z)^{-1}$ as the Laurent series

$$
(A-z)^{-1}=\sum_{n \in \mathbb{Z}}(z-\lambda)^{n} R_{n}
$$

and in particular that the power series $\sum_{m \geqslant 0} \rho^{n} R_{-m}$ is convergent for any $\rho \in \mathbb{C}$.
5. Prove that N is nilpotent and that $R_{-n}=0$ for n large enough.

