M2 RI SPECTRAL THEORY

Final Exam

Monday, November 28 (3h)

Five pages of notes are allowed. French or English can be used for the answers. Unless
otherwise specified, all the answers have to be justified and the clarity of the writing will be
taken into account.

Exercise 1. We consider on ¢?(N) the operator A defined on the domain

o0
Dom(A) = { u = (tun)nen € £2(N) : Z n? \un\Q <+

n=0

by
Yu = (Un)nen € Dom(A),  Au = (ne™™uy, ) pen.

1. Prove that A is densely defined.
2. Prove that A is closed.
3. What is the adjoint of A 7

Correction :  1.Let u = (up) € £2(N) and € > 0. Let N € N such that ZI:ON_H |un|? < e. We define
v = (U )neN € Zz(N) by
uy ifn <N,
o= {0 ifn > N.

Then v € Dom(A) and |u — 11”?2 < &, which proves that Dom(A) is dense in £2(N).

(N)
2. Assume that we have a family (u”) of sequences in Dom(A) such that u* — u and Au® — v for
some u and v in £2(N). Then for all n € N we have

k 2

n

2 k in_ k 2 k
U, — Uy < |u —u —> 0 and ne "u, — v, < |Au — — 0.
2(N) koo 2(N) koo

This implies that v, = ne'™u, for all n € N. In particular,

SinPlunl® = Y val® < 0.

neN neN

This proves that u € Dom(A). We also have Au = v, which proves that A is closed.
3.Let v = (vp)nen € Dom(A*). We set w = (Wn ) neny = A*vp. Then for all w = (un)nen € Dom(A) we
have

o0 0 [ee]

D untn = <u Af)kv> g = CAou, v) = 3 neMuntn = ) unne=inuv,.
24 (N

n=0 ( ) n=0 n=0

Applied with the sequence ey = (eg,n)nen defined by e = 1 and e, = 0 if n # k, this proves that
VneN, w,=mne Tu,.

In particular,

YinPlonl® = ) lwal® < 40,

nenN neN

so v € Dom(A). Conversely, assume that v = (v, )nen belongs to Dom(A). Then for all u = (uy)nen €
Dom(A) we have by the Cauchy-Schwarz inequality

KAu, o) < 3 funl foal < lull2g |3 02 o

neN neN

This proves that v € Dom(A*). Finally we have proved that Dom(A*) = Dom(A) and that for
v = (Vpn )nen we have

A*y = (ne” ™ vn ) nen.



Exercise 2. Let E;, E; and E3 be three Banach spaces such that E; ¢ E; < E3. We
assume that the embedding ¢ : E; — Es is compact and that the embedding j : Es — Eg is
continuous. Let € > 0. Prove that there exists C. > 0 such that for all ¢ € E; we have

lele, < e lele, + Celiele, -

Correction : Assume by contradiction that the statement is not true. Then for all n € N there exists
@n € E1 such that

H‘PnHEQ > € H‘PnHEl +n H‘PTL”ES -

In particular HaanEQ # 0, so |¢n HEl # 0. After dividing by HtanEl if necessary, we can assume
without loss of generality that HcanEl =1 for all n € N.

Then the sequence (¢,) is bounded in E;, so it has a convergent subsequence in Es. After
extracting a subsequence if necessary, we can assume that ¢, goes to some ¢ € E2. And by continuity
of the injection of Ex in E3, ¢, also goes to ¢ in E3. Then

lele, = lim Jeule, < lim % -
This proves that ¢ = 0. This gives a contradiction with
WneN, [enlg, > e
and concludes the proof by contradiction. o

Exercise 3. For u = (uy)nez € £*(Z) we define Hou € ¢*(Z) by
VneZ, (Hou)p=2up—Upt1 — Up_1.

1. Prove that this defines a bounded operator Hy on ¢?(Z).

2. We denote by L?,er the space of 2m-periodic functions in L2 (R) (this is equivalent to
considering L?(S!), where S is the circle, or one dimensional torus). It is endowed with the
norm defined by

2 1 (7 2
ol = 5 | _lo@ da.
For u = (un)nez € (*(Z) we define Fu e L2, by

VeeR, (Fu)(z)= Z Upe” ",

nez

We recall that F : (3(Z) — Lﬁer is a unitary operator. Prove that FHyF ! is the operator
M of multiplication by 2(1 — cos(z)) on L2,
3. Give without proof the spectrum of M.

4. Prove that o(Hy) = o(M).

5. Prove that Hy has no eigenvalue.

6.Let (Bn)nez be a real-valued sequence such that 8, > 0 for all n € Z and 3, — 0
as n — +o0. We denote by B the operator on ¢?(Z) which maps u = (u,) € ¢*(Z) to
Bu = (Bpup)nen. For a € R we set H, = Hy + aB. Prove that H, is selfadjoint for all
aeR.

7.Let « € R. What is the essential spectrum of H,, 7

8. Prove that there exists o € R such that H, has at least one eigenvalue.

9.Let N € N*. Prove that there exists a € R such that H, has at least N eigenvalues
(counted with multiplicities).

Correction : 1.Let u = (un)nez € Z2(Z). We define u+ by w4+ n = un+1. In particular we have
us € £%(Z) and lutllo2(zy = lule2z)- Since Hou = 2u — u— — uy we have by the Cauchy-Schwarz
inequality

HHOUHﬂ(z) <2 ”uuﬂ(z) + ”u-%—”ﬂ(z) + H“—Hﬂ(z) <4 H“HeZ(z) .

This proves that Hy is bounded on ¢2(Z) and |Ho Ha(ﬂ(z)) < 4.
2. Let u = (uy) € £2(Z). For € R we have

(FHou)(x)

Z (2un — Un—1 — un+1)eiinw

new

2 (2e—inz _ itz _ efi(nfl)z)un
new

Z 2(1 — cos(z))e” "Tu,

nez

= 2(1 — cos(x))(Fu)(x).



This proves that FHo = MF.

3. We know that the spectrum of the operator of multiplication by a function is the closure of the
image of this function. In this case, the spectrum of the multiplication M by 2(1 — cos(z)) on [—m, 7]
is [0, 4].

4.Let z € C. We have

Ho — 21dg2gy = F "MF — 21dgp g = F (M -2 Iz )F.

Then Ho — z1dy2z is invertible if and only if M — zId ;2 is, so 0(Ho) = o(M) = [0,4].
per

5. Similarly, A is an eigenvalue of Hy if and only if it is an eigenvalue of M. However, for A € [0, 4]
we have

A{z € [—m,mw] : 2(1 — cos(z)) = A}) =0.

Then M has no eigenvalue, so Hp has no eigenvalue. We recall the proof of this fact. Assume that
vE Lie and X\ € C are such that Mv = Av. Then for almost all x € R we have

(2(1 = cos(z)) — A)v(z) = 0.

This implies that v = 0 almost everywhere. Thus A is not an eigenvalue of M.
6. The sequence (8, )nez goes to 0 at infinity, so it is bounded. For v = (uy )nen we have

Z |5nun‘2 < Supan‘z Z ‘unlz'

nez

nez nez

This proves that B is bounded. Then for any « € R the operator H, is bounded.
Let u = (u,) and v = (v,) in £2(Z). We have

(Hatt, V) g2z =2 3 UnTp = D) Unp 1T — Y, Un—1Tp + | aBptinn

nez nez neL nez
=2 UnTn — D) UnTp T — D, UnVniT + Y, UnoBnvn
nez nez nez nez

= {u, HO,’L)>£2(Z) .

This proves that H, is symmetric. Then it is selfadjoint.
7.Let N € N. We denote by By the operator which maps u = (uy)nez to the sequence Bywu such
that

Bnu, if |n| < N,
B —
(BNu)nez {0 if |n| > N.

Then By is of finite rank, so it is a compact operator on £2 (Z). On the other hand we have

0,

1B = Bnlzezzy) = sup [Bn]
n|>N N—w©

so B is also a compact operator on £2 (z).

In particular, it is Ho-compact. By the Weyl Theorem, we have oess(Hqa) = 0ess(Ho)[0, 4].
8. For a € R we set o = mino(H,). For k € Z we define the sequence e = (eF),,cz such that ef =1
and ef = 0 if n # k. We have Hek“ﬂ(z) =1 for all k € Z. We have

<Haeo7 eo> = <ngo7 eo> + afy —— —00.

a——0

In particular, there exists o« € R such that <Haek,ek> < 0. By the Min-max Theorem we have
Na < 0. Then no € 0(Hy) but ng ¢ 0ess(Hea). This implies that 7, is an eigenvalue of H,.
9.Let N € N. We set Fy = span(e’,...,eN™1). For u = ij:_(]l unpe™ and a < 0 we have

<Hau7u>12(z) = Z ujW<Haej7ek>
0<j,k<N-—-1

N—-1
> uka<H0€J7€k>+Oé > B lur|?
k=0

0<j,k<N-—-1

. 2
S(O (o) _int B fulfags

where C' = supg<; p<n-1 |<Hoej7 e"'>|. This proves that

sup (Hqu,u)y ——> —00.
ueF a——00
flull=1

In particular, there exists a € R such that the left-hand side is negative, and in particular smaller
than inf oess(Hy ). In this case, the Min-max Theorem ensures that H, has at least N eigenvalues
(counted with multiplicities) under the essential spectrum.

o



Exercise 4. We consider on H = L?(0,1) the operator A defined by
Dom(A) = {ue H?(0,1) : u(0) =0 and u(1) = 0}

and Au = —u” for all u € Dom(A). We recall that if u € L?(0,1) is such that v” € L?(0,1)
then «' € L?(0,1), and moreover the graph norm on Dom(A) is equivalent to the norm

I 20,1y
1. Prove that A is selfadjoint.

2. Prove that A > 0.

3. Prove that (—A) generates a contractions semigroup on L?(0,1).

4. Prove that ker(A) = {0} (we recall that if u € H?(0,1) satisfies —u” = 0 in the sense of
distributions, then it is of class C?).

5. Prove that mino(A4) > 0.

6. Prove that there exists v > 0 such that for all ¢ > 0 we have He’ <e .

A Hg(L2(o,1))

Correction :
1. For u,v € H?(0,1) we have by the Green formula

— J: o (z)v(z) de = —u/ (1)v(1) + o/ (0)v(0) + u(1)v’(1) — u(0)v’(0) — Jl w(z)v” (x) da.

0

In particular, for u,v € Dom(A) we have (Au,v) = (u, Av), so A is symmetric.
Let v € Dom(A*). For all ¢ € C°(0,1) we have

1 1 1
- j ¢ (z)0(@) dw = j () (A%0) () da.
0 0

This proves that in the sense of distributions we have A¥v = —v” € L2(0, 1). We deduce in particular
that v € H2(0,1).
Then for all w € Dom(A) we have by the computation above

0 = (Au,v) — <u7 A*v> ={(—u",v) = {u, ") = o/ (0)v(0) + u(1)v’(1).

Considering u € Dom(A) such that «/(0) = 0 and u(1) = 1 we deduce that v'(1) = 0. Similarly,
v(0) = 0, and finally v € Dom(A). This proves that A¥ — A, and hence A is selfadjoint.
2. For all u € Dom(A) we have by the Green Formula

1 _ 1
(Au,up,, = —L u’ (z)u(z) do = J; |u/(w)‘2 dz >0,

so A = 0.

3. Since (—A) is selfadjoint and non-positive, it is in particular maximal dissipative, and it generates
a contractions semigroup.

4. Assume that u € H2(0,1) is such that u” = 0. There exist «, 8 € C such that u(z) = ax + 3 for
almost all z €]0,1[. Since u € Dom(A), the boundary conditions imply that « = 8 = 0, so u = 0
almost everywhere on |0, 1.

5. Since Dom(A) is continuously embedded in H?(0, 1), it is compactly embedded in H, and hence the
operator A has compact resolvent (notice that the resolvent set is not empty since A is selfadjoint).
Its spectrum consists of a sequence of isolated eigenvalues of finite multiplicities (and going to +o0
since A is non-negative), so the essential spectrum of A is empty.

We denote by (Ag)gcn# the non-decreasing sequence of eigenvalues of A (counted with multi-
plicities, even if this is not important here). Since A is non-negative and ker(A) = {0}, we have
mino(A) = A1 > 0.

6. We set B = A— A;. Then B is selfadjoint and min o(B) = 0. This implies that B > 0. Then (—B)
also generates a contractions semigroup. Moreover, for all t > 0 we have

—tA —t(B+A —t\] _—tB
e = B _ ot .

Indeed, (e *1e~'5) defines a continuous semigroup on H. For ¢ € Dom(B) we have

d _ _ _ _
e A1 ,~tB = —(B+M)e tA1—tB

50 A A
—t —tB —t(B
e le p=ce (B+ L.

By density of Dom(B) and continuity of the semigroups, this equality holds for all ¢ € H and t > 0.

‘We deduce
—tA —tA
=] <e

—e <
L(H)

_ tM “6713"
L(H)

Exercise 5. Let H be a Hilbert space. Let (S;);>0 be a strongly continuous semigroup on
H and let A be its generator. Prove that the generator of the semigroup (S;)i>0 is A* (the
proof that (Sf):=>¢ is a strongly continuous semigroup is not required).



Correction :  We denote by B the generator of the semigroup (St*)t>0.
e Let ¢ € Dom(B). Let » € Dom(A). We have

<sa, M> o, AR
t t—0

Spp — SFep —
<s97 twt w>:< ti ¢7¢>—><B<p7w>»
t—0

This proves that (@, Ay) = (Bep, ) for all ) € Dom(A), so ¢ € Dom(A*) and A*p = Bp.
e Let ¢ € Dom(A¥). Let v € H. By Proposition 5.33 we have

and

(S — 0. 0) = (o, Sutb — ) = <«>,Af: Se dr> - <A*«o,£sfw dr>

:J:<A*¢,ST¢> d7:£<sj‘A*¢,w> dr:<£s;"A*<,pdr,w>.

This gives
S¥p — 1t
2PTE 7J' S A¥pdr —— A* .
t t Jo t—0

Thus ¢ € Dom(B) (and By = A¥g). o

Exercise 6. Let H = L?(R).

1. We set Dom(T') = {ue C(R) : u(0) =0}, and for u € Dom(T') we set Tu = —u" + u.
Prove that this defines a symmetric and non-negative operator T' on H.

2. Prove that T is not selfadjoint.

3.We set Vy = H'(R). For v € Vx we set qn(v) = HvHil(R) = Hv'Hiz(R) + H”Hi?(ﬂ&)'
What is the operator Ay (domain and action) associated with the quadratic form gy by the
representation theorem on H 7 Prove that Ay is a selfadjoint extension of T'.

4. We set Vp = {ve H'(R) : v(0) = 0}. For v € Vp we set qp(v) = ||v|\?{1(R). What is the
operator Ap (domain and action) associated with the quadratic form ¢p by the representation
theorem on H ? Prove that Ap is a selfadjoint extension of T'.

5. Give all the selfadjoint extensions of 7" on H.

Correction : 1. Let u,v € Dom(T'). By integrations by parts we have

(Tu, vy, = — fu& o (@)v(z) dz + J-]R uw(z)v(z) dz

Ju@ o' (z)v’ (z) da + J-R u(z)v(z) dz

_ L w(a)o" (@) dz dz + JR w(z)v(z) de

uy Tv)gy, -

This proves that T is symmetric. Moreover the computation gives
(Tu,uy, = f |u/(w)‘2 dz > 0,
R

which proves that T is non-negative.
2. Now let v € C°(R) with v(0) # 0. The same computation as above shows that for all u € Dom(T)
we have

(Tu, vy, = — J;R w(z)v”(z) de dz + J}R w(z)v(z)dz = {u, —v" + ’U>,H .

This proves that v € Dom(T*). Since v ¢ Dom(T), T cannot be selfadjoint.
3.Let u € Dom(An) € V. For all ¢ € Cf°(R) € Vn we have

—f u' ()¢ (z) de = —qn (u, B) +j u(z)p(x)de = (—Anu+ u, p).
R R

This proves that u’ has a derivative in L%(R), and «” = —Axu 4 u. In particular, u € H?(R).
Conversely, assume that u € H2(R). Then for all v € H*(R) we have by the Green formula

gn (u,v) = I]R (u/(w)v’(aj) + u(x)v(w)) dz = <—u// + u, v>L2(R) .

This proves that u € Dom(Ay) (and Axu = —u” + ). Finally we have Dom(Ax) = H?(R) and for
u € Dom(Ay) we have Ay = —u” + u.



4.Let u € Dom(Ap). We denote by w4 the restriction of u on ]Ri. For ¢ € CF° (Rf) we have

- f;w W ()5 (@) da = —qp (u, &) + j:w w(@)3(@) dz = (~Apu + u, 6.

This proves that uy € H2(Rf) and v/ = —Apu + u on Rf. Similarly, u_ € H?(R*) and v’ =
—Apu + u on R¥. Conversely let u € Vp such that the restrictions uy and u_ of u to ]Ri and R*
belong to Hz(Rf) and H?(R*). Then for all v € Vp we have

a0 = [

(uﬂr(x)m + u(z)o(z)) de + f:w (u’_(z)v"(z) + u(z)v(z)) de
={(—u’ + “7’”>L2(Rﬂ_<) + <7“/+l— + "+’U>L2(Ri) :

This proves that u € Dom(Ap). Finally, we have

Dom(4) = {w€ Vi + ey € HED)) .

and for u € Dom(Ap) we have, with u4 = Uy s
+

—u/fr +uy on R*,

ADU = ” I

—u_ +u_ onR*.

5.Let A be a selfadjoint extension of T. We have T c A = A* < T*. Let v € Dom(A) < Dom(T*).
As above we see that vy = let € HQ(Rt) and v_ = Uk € H?(R*). Moreover,

Ao — —vl + vy on ]Ri‘,
- —v” +v_ on ]R”_‘A
For all uw € Dom(T") we have

0 = (Tu,v) —{u, Av)

0 ” o "
= J'_T (— v (@)v(z) + u(z)v” (z)) do + J;) (= u"(@)v(z) + u(z)v”(z)) do

= —u/(0)v(0) + v/ (0)v(0+).

Choosing u € Dom(T) such that u’(0) # 0, we deduce that v(07) = v(07), and hence v € H(R).
We already know that Ap is a selfadjoint extension of T. We assume that A # Ap. Then there
exists u € Dom(A) such that u(0) # 0. Then for all v € Dom(A) we have

0 = (Au, vy — {u, Av)

0 ” +oo " -
= Jﬁw ( —u(z)v(z) + u(a:)v”(w)) dx + L ( —u (z)v(z) + u(w)'u”(a:)) dzx

=~/ (07)0(0) + u(0)v(07) + u'(0")(0) — u(0)v (0 F).
‘We set
u'(0F) —w/(07)
u(0)

Then for all v € Dom(A) we have
v'(07) =2/ (07) = av(0).

Applied with v = wu, this proves in particular that o € R. Finally, there exists a € R such that Dom(A)
is included in

Da :{ueHl(R) : i EHZ(Ri) and u/(0+)—u,(07):au(0)}.

'lL“R

For a« € R we denote by A, the operator defined by Dom(A,) = D, and, for v € Dom(A,) and
Ui = U‘Ri’
—u” 4+ u on ]R*,

Aqu = { ¥ + i

—u_ +u_ onR*.

If A is a selfadjoint extension of T', then there exists o € R such that A ¢ A,, and hence A = A,.
Conversely, we prove that for any o € R the operator A, is a selfadjoint extension of T'.

Let a € R. We have T' < A,. We check by direct computation that A, is symmetric. Then we
consider v € Dom(A¥). We have vy € HQ(Rf). Then for all u € Dom(A,) we have

u' (0F)u(0F) — ' (07)v(07) — u(0)(v/(0F) — v/(07)).

With %(0) = 0 and »/(0%) = «/(07) # 0 we see that v(07) = v(07), so v € H'(R). Then

u(0) (av(O) — (v'(0t) — v’(O*))) = 0.

This implies that (v/(07) —v'(07)) = av(0) and proves that v € Dom(A). Thus A, is selfadjoint.
Finally, the selfadjoint extensions of T are the operators A, for a € R.



