Chapter 5

Semigroups and evolution
equations

[Draft version, November 21, 2022]

In this chapter we discuss the properties of (strongly continuous) semigroups. This is
motivated by the analysis of (linear but also non-linear) evolution (time-dependant) problems.

More precisely, given a Banach space E, an operator A on E and (g € E, we consider the
linear Cauchy problem

{tp’(t) = Ap(t), Vt=0, 51)

Definition 5.1. Let I be an interval of R which contains 0. A strong solution of (5.1) on I
is a function ¢ € C1(I;E) n C°(I;Dom(A)) which satisfies (5.1) in the natural sense.

We can also consider the inhomogeneous problem

#(0) = Apt) = F(0). Yt >0, 52)
©(0) = wo. .
or the semilinear problem
#(0) = Aplt) = Flp(), Yt >0, 653
©(0) = ¢o. .

5.1 Exponential of a bounded operator

If A is a bounded operator on E, we can set for all t € R
T 1k Ak
tFA
et =Y —— (5.4)

=

The following results are consequencies of the properties of power series in a Banach
space.

Proposition 5.2. (i) Forte R we have e € L(E) and HetAHﬁ(E) < el lee
(ii) We have e*4 = IdE.
tAesA — e(t+s)A _ BSAetA.

(iii) For s,t € R we have e

(iv) If B € L(E) commutes with A, then it commutes with e*4 for all t > 0.
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(v) The map

is of class C* and

iem = Ae!t = 1A,
dt

In particular, for @g € E the function t — e'4pq is a strong solution of (5.1) on R.

Remark 5.3. Let f € C°(R,,E). Assume that ¢ € C1(I,E) is a solution of (5.2). Then for
all ¢ € I we have the Duhamel formula

t
o(t) = etAgao + J 6(t75)Af(s) ds.
0

The purpose of this chapter is to generalize these properties for an unbounded operator
A on E (in this case the exponential cannot be defined by the power series (5.4)).

5.2 Strongly continuous semigroups

The notion of strongly continuous semigroup generalizes some properties of the family (e*4);>¢
and will be at the heart of the discussion.

Definition 5.4. We say that the family (S;)i=0 of operators in L(E) is a C°-semigroup (or
strongly continuous semigroup) if

(Z) S() = IdE 5
(7i) S¢, © Sty = Sty 41, for all s,t =0 ;

(iii) the map t — Sy is strongly continuous on Ry (for all p € E the map t — Sip € E is
continuous on Ry ).

Remark 5.5. The second property implies that S;, commutes with Sy, for all ¢1,t5 > 0.

Remark 5.6. Notice that we do not require the continuity of the map t — S; for the topology
of L(E).

Proposition 5.7. Let (S;)i=0 be a CY-semigroup. There exist M > 0 and w € R such that
for allt € Ry we have
ISt ey < Met. (5.5)

Moreover, if for some to € Ry we have |[S, | ;) <1 then (5.5) holds for some w < 0.
Proof. e Let ¢ € E. By continuity, there exists C, > 0 such that
vie[0,1], [Siple <Cyplele-
By the uniform boundedness principle, there exists C' = 1 such that
vte[0,1], [IStlE <C.
Then, for all N € N* and t € [N — 1, N] we get
A ON < Ot+1 — et n(©).

This gives the first statement with M = C and w = In(C).
o Now assume that a = ||Sy, ||z g) €]0, 1[ for some to > 0. Let C' = sup,ejo 4, [/l z(g)- Then
for N e N* and t € [(N — 1)tg, Ntg| we have

N—1 _ M & C tM
HStHL(E) < HStO ”L‘,(E) HStf(Nfl)to H < CO{N ! < EO&tO = Ee to
Then (5.5) holds with M = € and w = ) <0, O
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Remark 5.8. To prove the continuity of ¢ — Sy it is enough to prove that Sy — ¢ in E as
t — 07. Indeed, let ¢ € E and tq > 0. For the right-continuity we simply write, for A > 0,

Sto+ne — Stop = Sty (Sne — ¢) pR— 0.

On the other hand, by Proposition 5.7 Sy, is bounded uniformly in h €]0, ¢], so

Sto—n — Stop = Ste—n (¢ — Shp) o 0.

Remark 5.9. Let (S¢)i=0 be a strongly continuous semigroup. The map

{R+XE -~ E
(t,p) = Spp

is continous. Let (¢,¢) € Ry x E. For (7,9) € R, x E we have

HST¢ - St@HE < HS‘F¢ - ST@”E + HST<)0 - StQO”E

The first term is smaller than [S-|, g [¢ — ¢llg, and |S7] ) is uniformly bounded for
7 € [t—1,t+ 1] by Proposition 5.7. The second term goes to 0 as 7 — ¢ by strong continuity.
This proves that

S — S, — 0.
H (0 t@HE ()= (b0

Definition 5.10. We say that the family (S¢)iwer of operators in L(E) is a C°-group (or
strongly continuous group) if

(i) So = Idg,
(ii) Si, © St, = St 11, for all s,t € R,
(iii) the map t — Sy is strongly continuous on R.

Remark 5.11. If (S)ser is a strongly continuous group then S_; = St_1 for all t € R. More-
over, (S¢)i=0 and (S_¢)¢=0 are strongly continuous semigroups.

Definition 5.12. o A unitary group on H is a strongly continuous group (Up)ier such
that Uy, is unitary on H for all t € R.

o A contractions semigroup on E is a strongly continuous semigroup (St)t>0 such that
HStHz:(E) <1 forallt = 0.

Ezample 5.13 (Translation). For t € R we consider on L?(R) the operator S; such that for
ue L?(R) and = € R we have

(Stu)(x) = u(z +t).
This defines a unitary group on L?(R).

Example 5.14 (Dilation). For t € R we consider on L?(R) the operator S; such that for
u e L?(R) and = € R we have

(Siu)(z) = e*u(elz).
This defines a unitary group on L?(R).
Ezample 5.15. For t > 0, u € L*>(R) and x € R we set

_(z—yp)?

1
(S)@) = < | e F utw

Then (S;)i>0 is a contractions semigroup on L?(R).
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5.3 Dissipative operators

We set
C; ={z€C : Re(z) > 0}.

Definition 5.16. Let A be an operator on E. We say that A is dissipative if
Vo € Dom(A),Vze Cy, [(A—2)¢lg = Re(2) |ulg.

Remark 5.17. In particular, if A is dissipative then any z € C. is a regular point of A.

Ezample 5.18. A skew-symmetric operator on the Hilbert space H is dissipative (see Propo-
sition 3.7).

Proposition 5.19. Let A be an operator on H. Then A is dissipative if and only if
Vo € Dom(A), Re{Ayp,p)<0. (5.6)

Proof. Let ¢ € Dom(A). For z = 7 +iu € C, with 7 > 0 and p € R we have

[(A = 2)pl3 = [(A = i)l — 2Re (A — in)p, 7o)y + 7% [ul3,

) 5 g1 2 (5.7)
= [I(A —ip)ol3 — 27 ReCAp, )y + 77 ully, -
If (5.6) holds, this gives
I(A = 2)¢l3, = 7 ul,,
so A is dissipative. Conversely, if A is dissipative then (5.7) gives
2r Re(Ap, @)y — (A — i)l = 7 Jullz, — (A = 2)¢l7, < 0.
We divide by 7 and let 7 go to +oo. This gives (5.6). O

Definition 5.20. Let A be a dissipative operator on E. We say that A is maximal dissipative
if it is dissipative and any z € Cy belongs to its resolvent set.

Ezxample 5.21. If A is a skew-adjoint operator on the Hilbert space H, then A and —A
are maximal dissipative. In particular, if A is selfadjoint then ¢A and —iA are maximal
dissipative.

Ezample 5.22. The Laplacian A with domain Dom(A) = H?(R?) is maximal dissipative on
L?(R%). More generally, a selfadjoint and non-positive operator is maximal dissipative.

Remark 5.23. o If A is maximal dissipative then for all z € C, we have
[ R —— (5.8)
L(E) ~ Re(z)

o If Ais an operator such that C < p(A) and (5.8) holds, then A is maximal dissipative.

Proposition 5.24. Let A be a dissipative operator on E. Assume that A is closed and that
Ran(A — zp) is dense in H for some zg € C,.. Then A is maximal dissipative.

Proof. Since A is closed and dissipative, (A — zg) is injective with closed range by Proposition
2.34. By assumption (A — zg) is then bijective, and zo € p(A4).
Let (zn)nen be a sequence in p(A) n C4 which goes to some z € C4. By (5.8), we have

lim sup H(A — z)le <

< +00.
neN Re(z)

This implies that z € p(A). Then p(A) is closed in C,. Since it is also open and C, is
connected, we have C; < p(A). O

Proposition 5.25. Let A be a densely defined and closed operator on the Hilbert space H.
Assume that A and A* are dissipative. Then A is mazximal dissipative.
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Proof. By Proposition 5.24, it is enough to show that Ran(A — 1) is dense in H. Since A* is
dissipative, (A* — 1) is injective and Ran(A — 1) = ker(A* — 1)1 = H. O

Proposition 5.26. Let A be a mazximal dissipative operator on the Hilbert space H. Then
A is densely defined.

Proof. Let ¢ € Dom(A)* and ¢ = (A —1)"1p € Dom(A). We have

0= <<p7’(/)>7-[ = <A¢ - w7¢>7~l ’

S0
2
(AP, g = [¥]3 = 0.
This implies that ¥ = 0 and hence ¢ = 0. O

Proposition 5.27. Let A be a maximal dissipative operator. Let B be a dissipative operator.
Assume that B is A-bounded with bound smaller than 1. Then A+ B is mazimal dissipative.

Proof. See the proof of Theorem 3.41. O

Ezxample 5.28. Let V e L®(R%, C) be such that Im(V (x)) < 0. We consider the Schrédinger
operator H = Hy+V(z), where Hj is the free Laplacian. Then —iH is a maximal dissipative
operator. Indeed —iHj is skew-adjoint and —iV is dissipative and bounded, so —iH is
maximal dissipative by Proposition 5.27.

Ezample 5.29. Let m > 0. We consider on # = H'(R?) x L?(R%) the norm defined by
2 2 2 2
[(u, )5 = [Vulpe@ay +mulzzgay + [0l L2 gay -

Then we define on # the operator
0 1
Wa = (A —m a) ’

Dom(W) = H*(R%) x H'(R?).

with domain

We know by Exercise 3.4 that W, is skew-adjoint on .7#. Since the operator

(o %)

is bounded and dissipative on ¢, we get by Proposition 5.27 that W, is maximal dissipative
on J7.

Proposition 5.30. Let A be an operator on H. Then A is skew-adjoint if and only if A and
—A are mazimal dissipative.

Proof. ¢ Assume that A is skew-adjoint. By Proposition 5.19, A and —A are dissipative.
Moreover 1 belongs to the resolvent set of A and —A, so they are both maximal dissipative
by Proposition 5.24.

e Conversely, assume that A and —A are maximal dissipative. By Proposition 5.19 we have
Re{Ap, vy =0 for all ¢ € Dom(A), so A is skew-symmetric by Remark 3.2. By definition, 1
belongs to the resolvent sets of A and —A, so A is skew-adjoint by Proposition 3.21. O

5.4 Generators of C'-semigroups

Definition 5.31. Let (S;)i=0 be a C°-semigroup on E. We denote by Dom(A) the set of
o € E such that the limit
I Sip— ¢
im —
t—0+t t
exists in E. In this case, we denote by Ay this limit. This defines an operator A on E with
domain Dom(A). We say that A is the generator of (Si)i>o-
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Ezample 5.32. Let A € L(E). For t > 0 we set S; = e, as defined by (5.4). Then the
generator of (S;) is... A.

In general, if A is the generator of the semigroup (S});>0 then for all ¢t > 0 we can write
St = etA.

Proposition 5.33. Let (S;)i=0 be a C°-semigroup on E. Let A be its generator.

(i) Let ¢ € Dom(A). The map t — Sy is differentiable on Ry, we have Sy € Dom(A) for
allte Ry and

d
a(st@) = StAQO = ASt<p

(ii) Let ¢ € E. Fort = 0 we have

¢
f Srpodr € Dom(A)
0

and .
Sip— @ = Af Srpdr.
0

If ¢ € Dom(A) we also have

t

t
Sip—p = AJ Srpdr = J S;Apdr.
0 0
Proof. ¢ Lett > 0. For 7 > 0 we have
S; —1d S, —1d
Sy = 5y o —— SiAp.
T T—0t

This proves that Sy € Dom(A) and AS;p = S;Ap. Now let ¢t > 0. For 7 > 0 we have

StJrT()D B St‘ﬁ
T T—0 StA(p
and, for 7 €]0, t],
Si—rp — Sip Srp—¢
— Si—r . P SiAp

This proves that the map t — S is differentiable and

d
% (Stsﬁ) = StAgO

t t

(J SH_hcpdef STgpdT)
0 0
t+h t

(f Sredr — J Sre dT)
h 0

e For h > 0 we have

1 t t
— <Shf S-,-QO dT — J S.,.(pd’r) =
h 0 0

= e

1 [ t+h h
=7 J STgodT—J Srpdr
¢ 0
Y Stp— .

This proves the first part of the second statement. Now assume that ¢ € Dom(A). Since

uniformly in 7 € [0, t] (by Proposition 5.7), we have

1 t t _ t
P spdr = [ 8,22 ar— [ s, dpar,
0 0 h—0 0

h h
and the proof is complete. O
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Remark 5.34. If A is not closed we cannot just write A Sé Srpdr = S(t) AS;pdr to prove the
last statement of the proposition. We are actually going to use this property to prove that
A is closed.

Proposition 5.35. The generator of a C°-semigroup is a closed and densely defined operator
that determines the semigroup uniquely.

Proof. ¢ Let ¢ € E. By Proposition 5.33, we have for all h > 0
1 h
ff Srpdr e Dom(A).
h Jo

Since this goes to ¢ as h — 0, this proves that Dom(A) is dense in E.
e Let (vn)nen be a sequence in Dom(A) such that ¢, goes to some ¢ and Ay, goes to some
1 in E. For n € N and h > 0 we have by Proposition 5.33

h
Shipn — on = J S Ap, drT.
0

Taking the limit n — 400 and dividing by h, we get

Shp—w 1Jh
N T Srpdr h—0 v

This proves that ¢ € Dom(A) with Ap = . Thus A is closed.
e Assume that (S;)=0 is a C°-semigroup whose generator is A. Let ¢ € Dom(A) and ¢ > 0.
For 0 € [0, t] we set }

¥(0) = Si_oSpp € E.

For 6 € [0,t] and h € R* such that § + h € [0, t] we have

0+ h)—1(0 ~ S -85
w( ) w( ) _ St_g_h 0+hP 0P *ASQQD
h h
+ StfethSGSD

S8y

W Sop

Since S;_g_j is bounded uniformly in h € [—1,1]\{0} by Proposition 5.7, this gives by
Proposition 5.33

PO+ h) —(0)
h h—0

Then Syp = 1h(t) = ¥(0) = S;p. Since Dom(A) is dense in E, this proves that S; = S, for all
t=0. O

St—eASOSO - Agt—QSGQO =0.

Proposition 5.36. Let A be the generator of a C°-semigroup (S¢)¢=o. If D is a subspace of
Dom(A) dense in E and invariant by Sy for all t = 0, then it is a core of A.

Proof. We have to prove that D is dense in Dom(A) (for the graph norm). Let ¢ € Dom(A)
and € > 0. Let (p,) be a sequence in D which goes to ¢ in E. By Proposition 5.33 there
exists t > 0 such that

1 t
'f eApds —

<
t Jo =

t 5
=‘J eApds — -
0 g 3

IR
+Htj e Apds — Ag
0

Dom(A) E
Again by Proposition 5.33 we have

Lt S, —1d
A(tf e(A(Lpn_(P)dS> = ti((pn_()p) — 0,

0 t n—00

so there exists n € N such that
1 1t
‘ f e, ds — = J e*Apds
t Jo t Jo
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We see the integral %Sé e’4p, ds as a Riemann integral. In particular, there exists n € N*

such that
1t 1 £
Htfe%nds‘zvz”% <3
0 k=1 Dom(A)
. .. . tkA 1 N tkA .
Since D is invariant by e~ for all k, we have >, ;e ~ ¢, € D and the conclusion

follows. O

Ezample 5.37. Let A be the generator of the translation semigroup (Example 5.13). Let
u € CP(R). Then we have

h—0

L2(R)

so u € Dom(A4) and Au = u/. Since CF°(R) is left invariant by translations and is dense in
L?(R), it is a core of A by Proposition 5.36. This implies that A is the derivative operator,
set on Dom(A) = HY(R).

Theorem 5.38. Let A be the generator of a CV-semigroup (S¢)i=0. Let M > 1 and w € R
be given by Proposition 5.7. Then for all z € C with Re(z) > w we have z € p(A), and for
pek,

+0 +0
(A—2)"tp = ff e ¥ Spdt = —J et A=)y dt.
0 0

Moreover,
M

A—2)7t <—.
I( 2) HL‘(E) Re(z) — w
In particular, if (St)i=0 is a contractions semigroup, then A is mazimal dissipative.

The integrals have to be understood in the sense of Riemann integrals for continuous
functions

+00 T
J A=A udt = lim A2 dt.
0 T—+w Jo

Proof. e For ¢ € E we set
+o0
I(p) = J et A=y dt.
0

+00 +0
<J eftze(tJrh)Aga dt — J €tZ€tAg0dt>
0 0
+oo +00
<6hz J et(Afz)SD dt — J et(Afz)SO dt>
h 0

ehz h ehz +00
=—— J- A2 dt + J etA=2)p dt
hJo 0

0 —p+ zI(p).

We have

>
=
©
S~—"
[

This proves that () € Dom(A) and

(A=2)I(p) = —¢.

Now let ¢ € Dom(A). We have

T
f et A= dt —— I(1),

0 T—+w

and

T T
(A—2) fo et A= pdt = Jo A= (A - 2)pdt I((A-2)y).

T—+00
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Since (A — z) is closed this proves that I((
invertible and its inverse is given by (A — z

A—2)) = (A= 2)I(¢p) = —. Thus (A — z) is
)"l = —I(p). Then

+o0
e 2)71H£(E) <

S

ot Re(2) HetA ”L(E) dt
0

+00
< Mf o~ t(Re(2)—w) g
0

M
< =—.
Re(z) —w

Finally, the fact that the generator of contractions semigroup (M = 1 and w = 0) is
maximal dissipative follows from Remark 5.23. O

Definition 5.39. Let (Sy)i=0 a strongly continuous group. Then we denote by Dom(A) the
set of ¢ € E such that the map t — Sy is differentiable at t = 0, and for ¢ € Dom(A) we
denote by Ay the derivative at 0.

Theorem 5.40. The generator of a unitary group on the Hilbert space H is skew-adjoint.

Proof. Let (Up)wer be a unitary group and let A be its generator. A is in particular the
generator of the contractions semigroup (U;):=0, so it is maximal dissipative. On the other
hand, the generator of the contractions semigroup (U_;);>¢ is —A, which is also maximal
dissipative. Then A is skew-adjoint by Proposition 5.30. O

5.5 Hille-Yosida Theorem

Lemma 5.41. Let A be a densely defined operator. Assume that there exist w € R and

M > 0 such that [w, +oo[< p(A) and (A — /\)_1H£(E) < AL forall A > w.

(i) For ¢ € E we have —\(A — X"l — ¢ as A\ — +o0.
(ii) For ¢ € Dom(A) we have —AA(A —\)"to = —XN(A - N)"1Ap — Ap as A - +0.
Proof. For ¢ € Dom(A) we have

M HASDHE
A A—+00

[=AA =N — e = [(4=27 0] <
Since A(A — \)~! is bounded uniformly in A > w, we deduce the first statement for all ¢ € E.

Then for ¢ € Dom(A) we apply the first statement to Ay to get the second. O

Theorem 5.42 (Hille-Yosida). Let A be a densely defined operator. Assume that 10, +o0[c
p(A) and

1
—1
YA>0, [(A=X) HL(E)<X.

Then A generates a contractions semigroup. In particular, a densely defined and mazimal
dissipative operator generates a contractions semigroup.

Proof. For n € N* we consider the bounded operator
Ap=-nA(A—n)"t = —n—-n*A-n)""
e For t > 0 we have
HetAn HL(E) = e et I(A=n) o) < pmntent — 1

Let ¢ € Dom(A) and ¢ > 0. A,, commutes with A,, and hence with e*4m for all s > 0, so

t t

d

etA"QO _ etAm<p _ f y (e(tfs)Am 6SA" (,0) ds = J e(t*S)AmeSAn (An@ o AmQO) ds.
0 @8 0
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This gives
let4n o — etime| . < t]Anp — Al -

Since (A, ) is a Cauchy sequence (by Lemma 5.41), the sequence (e!“» ) converges uniformly

on t € [0,t] for any tg > 0. Since HetA" < 1, the same conclusion holds for any ¢ € E. We
denote by Syp the limit of e*4 .

e Let ¢ € E. Since the sequence of continuous maps (e*4~¢) converges locally uniformly,
the map ¢t — S;p is continuous on R,. Let ¢,¢1,t2 = 0. For n € N we have

tlAnetzAn (t1+t2)An

Hem"gaHE <|¢lg and e p=ce ©.

Taking the limit n — +o0 gives
ISeele < llple  and  Si, S0 = Sty 4eap-

This proves that (S;) is a CY-semigroup on E.

e We denote by B (with domain Dom(B)) the generator of the semigroup (S;). Let ¢ €
Dom(A) and ¢y > 0. On [0,ty] the map t +— e!4=( and its derivative ¢ — e*4n A, ¢ converge
uniformly to t — Sip and SiAp. This implies that Sip is differentiable at time 0 with
derivative Ap. Thus ¢ € Dom(B) and By = Ap. Now let ¢ € Dom(B). Since (4 — 1) is
surjective, there exists ¢ € Dom(A) such that (B—1)¢ = (A—1)¢ = (B—1)4. Since (B—1)
is injective, we have ¢ = 1) € Dom(A) so Dom(B) < Dom(A). This proves that A = B is the
generator of (Sy). O

Theorem 5.43. A skew-adjoint operator A on H generates a unitary group.

Proof. Since A are —A are maximal dissipative, they generate two contractions semigroups
(S )e=0 and (S} )izo-
Let ¢ € Dom(A) = Dom(—A). Let t € R. For 7 € R\ {t} we have

SeSTe =SSl _ ¢-Ste—S'p  (S;=S5))S/¢
t—1 T t—T1 t—7 ’

Since |S7 | < 1 and S;'¢ € Dom(A) we get

S Sfe— S/ S

t—T1 T—

- S;ASo — S, ASH = 0.
This proves that for all t € R we have
Sy Sfe=e.

Similarly, S;"S; ¢ = ¢ for all ¢ € Dom(A). By continuity of S;” and S;” and by density of
Dom(A), these equalities hold for all p € H, so S; = (S;7)7! for all t > 0. Fot t € R we set

v - {50

S”, ift

This defines a strongly continuous group (U;)er on H. Finally for ¢t € R and ¢ € H we have
lell = [U-:Us| < |Usp| < o,

so U; is an isometry. Since it is surjective, it is unitary and the proof is complete. O

5.6 Exponentially stable semigroups

In this section we give an example of a more advanced result, with a partial proof. It shows
how we can use the properties of the resolvent of the generator to give properties on the time
dependant problem.

Proposition 5.44. Let (S;) be a strongly continuous semigroup on H and let A be its
generator. Then (Sf) is a strongly continuous semigroup whose generator is A*.
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Theorem 5.45 (Gearhart-Priiss). Let (S;)i=0 be a C°-semigroup on the Hilbert space H.
Let A be its generator. Assume that C; < p(A) and that

= A—2)! +00.
s Sup [(A—2) HL(?—L)< ©

26C4

Let v < % Then there exists C, > 0 such that for t = 0 we have

4l 230y < Coe™

Proof. o Let 7 €]y, 37! Let z € C with Re(z) = —v. There exists zy € C, such that

z € D(z9,7). Since dist(zg, 0 > ||(A- 20)71"71 > |z — 29| we have z € p(A4). Then by
the resolvent identity we have

(A=2)" (1= (z=20)(A=2)"") = (A==)""
Since
|(z = 20)(A — 20)71H <AB <1,
this gives
p
138
e Let M and w be given by Proposition 5.7. Let > w. Let ¢ € H. For 7 € R we have by
Theorem 5.38

l(A=2)72] < (A= 20)7Y H(l— (2 — 20)(A — z0)~ H <O = (5.9)

+00

(A—(u+it)) o = —J A=) o qp = — J e T g, (t)e ey dt. (5.10)
0 R

The function ¢ — —1g, (t)e” ey is in L*(R;H) and, by (5.10), its Fourier transform is
7+ (A— (pu+i7)) L. Then by the Plancherel inequality (which holds for a function with
values in a Hilbert space) we have

+o0
12 _
J [(A = (u + i) "], dr = zwf 2| plt At < Colpld,  (5.11)
0
with Cy = “M . For 7 € R we have by the resolvent identity

(A= (—v+ iT))_l =(1-(v+p(A-(—v+ iT))_l) (A—(n+ Z'T))_l7
so with (5.9)
|4~y +im) [

Then, by (5.11)
12
J (A= (v +im) ' dr<Calleld, Co=Ca(l+(v+m)Ca)’. (5.12)
e Since A* also satisfies the assumptions of the theorem, we also have for all ) € H
,1 2 9
H —y + i) szH dr < C3 |y, (5.13)

e Let o € Dom(A42?). For z € C with Re(z) > —v we have

1

(A=2)""p = - > (A=2)""(A+27)e — o),

and then

(A—2)Pp= ——<((A—2) A+ 21)’0—2(4—2) "o+ ¢).
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In particular, the map 7 +— (A — (XA +i7)) "2y is integrable on R for any \ > —~.
e Let o € Dom(A?) and v € H. By differentiation of (5.10) with respect to 7 we get

<(A —(u+ iT))_2<p, z/1> = J+OC e ir <tet(A_“))<p, w> dt.
0

The inversion formula gives after multiplication by e**

<tet‘4<p, 1/)> = % JR tlutir) < (p+i7) 724,0, 1/)> dr.

Since the map ¢ — €' ((A—()7%¢p,v) is holomorphic on {Re({) > —7} and decays like
Im(¢)~2 as [Im(¢)| — +o0, we can change the contour of integration from {Re(¢) = u} to
{Re(¢) = —v}. This gives

<tetAg0, 1/1> = % (=v+ir) < —v + Z‘T))72(p, 7,/1> dr

= % 7+”)< -y + iT))flcp, (A* — (—y —i7) > dr.

Then, by the Cauchy-Schwarz inequality and (5.12)-(5.13) we get, for all o € Dom(A?) and
YeH,

[Ctet o] < S— (f (A= (= +im) ﬂsoHQ dTY(fRH(A*—(— o wH dT)l

C e~
<= HSDH Il -

Since Dom(A?) is dense in H (see Exercise 5.8), we have the same estimate for all p € H,
and

e <

L(H) o

This gives the estimate for ¢ > 1. Since S; is bounded uniformly in [0, 1], we get the result
by choosing a larger constant if necessary. O

5.7 Exercises

Ezxercise 5.1. Compute et t € R, for the following matrices:
00 2 A1 0 0 1
A= 0 X 0|, A= , Az = .
0 0 A 0 0 X 1 1 0
’ 00 0 A

FEzxercise 5.2. Let A be a maximal dissipative operator on E. Assume that B is a dissipative
extension of A. Prove that A = B.

Ezxercise 5.3. Let a € C. We consider on L?(0,1) the Schrédinger operator with Robin
condition, defined by
d2

A, = L Dom(A,) = {ue H*(0,1) : v/(0) = au(0),u'(1) = —au(1)}.

Prove that if Im(«) > 0 then ¢4, is maximal dissipative.

FEzxercise 5.4. Let A be a maximal dissipative operator on E. Let B be a bounded operator.
Prove that A + B (defined on Dom(A + B) = Dom(A)) generates a C%-semigroup on E and
that, for all £ > 0,

‘et(A-‘rB) H < etlBlee .
L(E)
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Ezercise 5.5 (Generator of dilations). For ¢t € R and u € L?(R) we define the function S;u
by
(Syu)(z) = e2u(ez).

1. Prove that this defines a unitary group (S¢)wr on L?(R). We denote by A the generator
of St.
2. Let u € C°(R). Prove that u € Dom(A) and that Au = § + xu’ (where we denote by zv
the function z — zv(x)).
3. Prove that C°(R) is a core of A.
4. We set
D={ueL*R) : 2u’ € L*(R)}.
It is endowed with the norm defined by [u]p = [u]2g) + |2v| 12 (r). Prove that C3°(R) is

dense in D.
5. Prove that Dom(A) = D.

Ezercise 5.6. Let A be the generator of a C%-semigroup. Let ¢ € Dom(A) and ) € C such
that Ap = Ap. Prove that for all ¢ > 0 we have e!4p = ¢ p.

Ezxercise 5.7 (Dilation by a general vector field). Let X be a Lipschitzian vector field on
R<. For zo € R? on note ¢ — ¢(t; o) the solution on R of the problem

Yoo () = X(ymo (1), VEER,
Yo (0) = o

Then for t € R and xg € R we set ¢! (x9) = yz, (t). Then we have ¢° = Idga and '+ = ptoy®
for all s,¢ € R. For t € R and u e L?(R?) we set

Siu(z) = det(d,¢") %u(cptx).

1. Prove that (S})ser is a unitary group on L2(R?).
2. What is the generator of (S¢)ier ?

Ezxercise 5.8. Let A be the generator of a strongly continuous semigroup. We set

Dom(A%) = U Dom(A™)

neN*

(where, by induction, Dom(A™) = {¢ € Dom(A™™!) : A""1p e Dom(A)}).
1. Prove that Dom(A®) is a subspace of Dom(A), invariant by e*4 for all ¢ > 0.
2. We denote by C the set of smooth functions on R compactly supported in |0, +oo[. Let

¢ €C and ¢ € E. We set
+o0

Yy = (s)e* ) ds.

0
Prove that ¢4 € Dom(A) with

+00

Apy = — ¢’ (s)e*? ds.
0

3. Prove that ¢4 € Dom(A™).
4. We set D = span {t4,% € E, ¢ € C}. Assume by contradiction that D is not dense in E and
consider £ € E such that (¢,7))g, ¢ = 0 for all 1 € D (as given by the Hahn-Banach theorem).
a. Prove that <£, 65A1/1>E, g =0forall s >0andall ¢ €E.
b. Deduce that D is dense in E.
5. Prove that Dom(A%®) is a core for A.
6. Prove that Dom(A"™) is a core for A for all n e N*.
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