Chapter 3

Selfadjoint operators

[Draft version, November 16, 2022]

Let H be a Hilbert space.

3.1 Selfadjoint operators

3.1.1 Symmetric operators

Definition 3.1. Let A be an operator on H. We say that A is symmetric if

Vi, € Dom(A), (Ap, ), = {p, At),, . & Ezx. 8.1

Remark 3.2. If A is symmetric then (Ap, ), € R for all ¢ € Dom(A). The converse is also
true, as can be seen from the polarization formula

V%¢ € Dom(A)a 4<A<P>¢> = <A(()0 + ¢)7<P + ¢> - <A(<P - w)#P - ¢>
+i{A(p + i), o + i) — i (A(p — i), —ith).

Definition 3.3. Let A be a symmetric operator on H.
(i) We say that A is non-negative (and we write A = 0) if (Ap, @), = 0 for all p € Dom(A).

(ii) We say that A is semi-bounded from below if there exists v € R such that A—~ = 0 (we
can write A = ). Equivalently, (Ap, ), = HcpH?_L for all ¢ € Dom(A). In this case
we say that 7y is a lower bound for A.

Proposition 3.4. Let A be a symmetric and densely defined operator on H . Then A* is a
closed extension of A.

Proof. Let ¢ € Dom(A). For all ¢ € Dom(A) we have (A, ¥y = {p, Ap) so 1) € Dom(A*) and
A*p = Ap. This proves that A* is an extension of A. Moreover A* is closed by Proposition
2.48. O

Proposition 3.5. Let A be a symmetric operator on H. The eigenvalues of A (if any) are
real, and two eigenvectors of A associated to different eigenvalues are orthogonal.

Proof. e Let A € C and assume that for some ¢ € Dom(A)\ {0} we have Ay = Ap. Then
A H‘P”i{ = (A, p),, € R. This implies that A € R.

e Now let A, u be two distinct eigenvalues of A. Let ¢ € ker(A — A) and ¢ € ker(A — u).
Then

(1= N, 00gy = (b, )3 — (b, Mgy = (AY, ) — (¥, Ap),, = 0.
Since pt — A # 0, this implies that (1, ¢),, = 0. O

Proposition 3.6. Let A be a non-negative and densely defined operator. Let ¢ € Dom(A)
be such that (Ap, @), = 0. Then Ap = 0.
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Proof. Since A is non-negative, we can apply the Cauchy-Schwarz inequality to the sesquilin-
ear form (¢, ) — (A(, 1), on Dom(A). Then for all v € Dom(A) we have

[KAQ, )| < [KA@, g | KA, )5 | = 0.
Since Dom(A) is dense in H, this proves that Ay = 0. O

Proposition 3.7. Let A be a symmetric operator on H.

(i) For z € C\R and ¢ € Dom(A) we have
[(A = 2)¢ly = [Tm(2)] ]y -

(ii) Assume moreover that A is bounded from below and let v € R be such that A = ~v. Then
for A < and ¢ € Dom(A) we have

[(A=2)els = (v = A) el -

Proof. Let v € Dom(A).
e Let ze C\R, A = Re(z) and € = Im(z). We have

[(A=2)¢]* = (A= Ne|® + &% o]* + 2Re{(A — N)g, —iep).
Since
(A= N, —iep) = ic (Ap, ) —icX|g|* € iR,
this gives
2 2 2 2
I(A—=2)el” = 1(A = Nel” + % ell” = €2 [l O

e Similarly, if A —~ > 0 then for A €] — o0, y[ we have

1A = Nel3, = I(A=2el5 + (r = N2 lels, + 20y = N Re (A = 7)p, 0y
> (7= A2 el

and the second statement follows.

3.1.2 Selfadjoint operators

Definition 3.8. An operator A on H is said to be selfadjoint if it is densely defined and
A* = A.

Definition 3.9. An operator A on H is said to be skew-adjoint if it is densely defined and
A* = —A.

Remark 3.10. An operator A is skew-adjoint if and only if A is selfadjoint. Then one usually
only discusses the properties of selfadjoint operators, and we can deduce similar properties
for skew-adjoint operators.

Ezample 3.11. o The Laplacian H = —A on L*(R?) (with domain Dom(H) = H?(R%))
is selfadjoint. The Laplacian Hy = —A with domain C§°(R?) is symmetric but not self-
adjoint (in particular C§°(R?) ¢ H?(R?) = Dom(H)). However, Hy has a selfadjoint
extension (H).

Ezample 3.12. The Dirichlet and Neumann Laplacians on ]0, 1[ (introduced in Section 2.5.2)
are selfadjoint.

Ezample 3.13. The harmonic oscillator introduced in Section 2.4 is selfadjoint.

Remark 3.14. A selfadjoint operator is closed by Proposition 2.47.

Proposition 3.15. Let A be a selfadjoint operator on H. Then

Ran(A) = ker(A)*.
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Definition 3.16. Let A be a selfadjoint operator on H. Let F be a subspace of H. We say
that F is reducing for the operator A (or that it reduces A) if it is closed and the orthogonal
projection 1 on F satisfies ITA < AIl.

Remark 3.17. If F reduces A, then so does F*.

Proposition 3.18. Let A be a selfadjoint operator on H. Let F be a reducing subspace for
A. Then the restriction Ag of A on F is a selfadjoint operator on F.

Proof. The restriction Af of the symmetric operator A is symmetric. Let ¢ € Dom(Af). For
all ¢ € Dom(A) n F we have
(Arp,¥) =, AFY)

Then for all ¢ = @f + ¢+ with ¢F € F and ¢+ € F* we have

(Ap, ) = (Arpr, 1) = (pr, Af) = (p, AF) .

This proves that ) € Dom(A*) = Dom(A), so ¢ € Dom(A) n F = Dom(Af) and Afy =
A*ip = Aty = Aptp. This proves that A¥ < Af, and finally Af is selfadjoint by Proposition
3.4. O

Proposition 3.19. Let A be a selfadjoint operator on H. Then ker(A) is reducing for A.

Proof. Since A is closed, ker(A) is closed in #H. Let IT be the orthogonal projection on ker(A).
For all ¢ € Dom(A) we have Ap € Ran(A) < ker(A)*, so [IAp = 0. On the other hand we
have TTyp € ker(A) < Dom(A) and Allp = 0. This proves that ITA < ATI. O

Proposition 3.20. If A and B are two selfadjoint operators on H such that A < B then
A=B.

Proof. We have Ac B = B* c A* = A,s0 A= B. O

3.1.3 A criterion for self-adjointness

Proposition 3.21. Let A be a symmetric and densely defined operator on H and z € C\R.
Then the following assertions are equivalent.

(i) A is self-adjoint.

(ii) A is closed and z,Z € p(A).
(iif) A is closed and ker(A* — z) = ker(A* —%z) = {0}.
(iv) Ran(A —z) =Ran(4 —%) = H.

Proof. e (i) = (iii). Assume that A is self-adjoint. In particular, A is closed. Moreover,
ker(A* — z) = ker(A — z) = {0} by Proposition 3.7. Similarly, ker(A* — z) = {0}.

e (iii) = (iv). By Proposition 2.46 we have Ran(A — z) = ker(A*—2z)* = {0}, so Ran(A—2)
is dense in H. On the other hand, (A — z) has closed range by Propositions 3.7 and 2.34, so
Ran(A4 — z) = H. Similarly, Ran(4 — z) = H.

e (iv) = (i). We already know by Proposition 3.4 that A* is an extension of A. Let ¢ €
Dom(A*). Since (A—z) is surjective, there exists 1) € Dom(A) such that (A*—z)p = (A—2)v.
On the other hand, we have ) € Dom(A*) and A*y) = Ay so (A* — z)p = (A* — 2)¢. By
Proposition 2.46 we have ker(A* — z) = Ran(A — %)+ = {0}, so ¢ = ¢ € Dom(A). This proves
that Dom(A) = Dom(A*), and hence A = A*.

e (i1) = (iv) is clear.

o (dit) — (iv) = (). A is closed by (ii7). By Proposition 3.7 we already know that A — z
is injective. It is surjective by (iv) so it is bijective and z € p(A). Similarly, Z € p(A). O

The proof of the implication (iv) == (i) also holds if z € R. This gives the following
sufficient condition.

Corollary 3.22. Let A be a symmetric operator on H. Assume that there exists A € R such
that Ran(A — X) = H. Then A is selfadjoint.

Combined with Proposition 3.7 this also gives the following result.

Corollary 3.23. Let A be a symmetric operator on H. Assume that A = v for some v € R.
If there exists X €] — oo, ~y[ such that Ran(A — X) is dense in H, then A is selfadjoint.
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3.1.4 Essentially selfadjoint operators

We have seen that if A is symmetric then A < A*. It may happen that A is not selfadjoint
because we have chosen the domain too small. Given a symmetric operator, the question is
then wether it has a selfadjoint extension.

We know from Proposition 3.4 that a densely defined and symmetric operator is always
closable, so the first try is to look at its closure.

Definition 3.24. Let A be a densely defined symmetric operator on H. We say that A is
essentially selfadjoint if its closure A is selfadjoint.

Proposition 3.25. Let A be a densely defined symmetric operator on H. Then A is essen-
tially selfadjoint if and only if A = A*.

Proof. ¢ By Proposition 2.48 we have A* = A* If Ais essentially selfadjoint, we also have
A = A, and hence A = A*,

e Conversely, assume that A = A*. By Proposition 2.48 again we have A** = A, so
A' = A=A O

We will see below that a symmetric operator may have many selfadjoint extensions.
However, when it is essentially selfadjoint, the extension is unique.

Proposition 3.26. Let A be a densely defined symmetric operator on H. If A is essentially
selfadjoint then A is the unique selfadjoint extension of A.

Proof. Let B be a selfadjoint extension of A. Since it is a closed extension of A, it is an
extension of A. Since B and A are selfadjoint, we have B = A by Proposition 3.20. O

Proposition 3.27. Let A be a densely defined symmetric operator on H. Let z € C\R. The
following assertions are equivalent.

(i) A is essentially selfadjoint ;
(ii) ker(A* — z) = ker(A* — %) = {0} ;

(iii) Ran(A —z) =Ran(A—2) =H.

Proof. e Assume that A is essentially selfadjoint. In particular, A is closable and A = Ax

by Proposition 2.48. By Proposition 3.21 applied to the selfadjoint operator A, we have
ker(A* — z) = ker(4* —z) = {0}.

e Conversely, assume that (ii) holds. Since A" < A* we have ker(z>i< —z) = ker(z* —Z) =
{0}. By Proposition 3.21, A is selfadjoint.

e Finally (ii) and (iii) are equivalent by Proposition 2.46. O

3.1.5 Examples of closed symmetric operators which are not essen-
tially selfadjoint

We consider on L?(0, 1) the operator A which acts as

d
A=1i—
! dx
on the domain

Dom(A) = H}(0,1).

Then A is closed (by Example 2.29 and symmetric: for u,v € H}(0,1) we have by the
Green formula

(Au,v) 201y = ZJO o' (z)v(z) dz = i(u(1)v(1) — u(0)v(0)) — zJ w(z)v' (z) da

0
=u, AU>L2(0,1) ‘

Notice that for the boundary terms it was not necessary that both u and v vanish.
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Now we compute A*. Let v € Dom(A*). We have v € L?(0,1) and for all ¢ € C(]0, 1])
we have

J i¢’(m)@dx = (A9, U>L2(0,1) = (¢, A*U>L2(o,1) = f o(z)(A*v)(z) dz.
R R

This prove that in the sense of distributions we have v’ € L?(0,1) and
A%y =’
Conversely, if v € H'(0,1) then the same computation as above shows that

Vu € Dom(4), (i, U>L2(O,1) = {u, iv’>L2(071) ;

so v € Dom(A*) (and we recover A*v = 4v’). This proves that Dom(A*) = H(0,1) #
Dom(A). Thus A is not selfadjoint.

Notice that for z € C the function z — e~%* belongs to ker(A* — z). In particular,
ker(A* — z) # {0}. By Proposition 3.21, this confirms that A cannot be selfadjoint. It is not
even essentially selfadjoint. Moreover, for z € C we have by Proposition 2.46

Ran(A — 2) = ker(A* —2)* # H.

This proves that 0(A) = C.
Now the question is: does A have a selfadjoint extension ? The answer is: yes, many !
Assume that A is a selfadjoint extension of A. Then A = A* < A*. Let v € Dom(A)\Dom(A).

For all u € Dom(A) we have
0= <flu, vy —{u, flv> = i(u(1)v(1) — u(0)v(0)).

Assume that v(1) = 0. Since v is not in Dom(A) we have v(0) # 0. Then for all u € Dom(A)
we have u(0) = 0. This gives a contradiction since v(0) % 0. This proves that v(1) # 0. We

set @ =0(0)/v(1). Then for all u € Dom(A) we have
u(1) = au(0).

In particular we have v(1) = av(0). Since by definition we have v(0) = @v(1), this proves
that |a| = 1. This proves that there exists a € U such that Dom(A) < D,, where we have
set

Do ={ue H"(0,1) : u(l) = au(0)}.

For a € U we denote by A, the operator defined by A,u = v’ for v in Dom(A,) = D,.
In particular, A, is an extension of A and A* is an extension of A, for all .
We check that A, is selfadjoint. For u,v € Dom(A,) we have

(Aqu, vy = z'fR o (z)v(z) dz
= iu(1)v(1) — u(0)v(0) — zj u(z)?v'(z) dz

R
il = 1)u(0)5(0) — i fR w(@)¥ (z) dz
= (u, Aqv).

Then A, is symmetric, and hence A¥ is an extension of A,. Now let v € Dom(A¥*). The
same computation with u € CL(]0,1[) shows that v € H*(0,1) and A*v = 4v’. Then for all
u € Dom(A4,) we have

0 = (Agu, vy — (u, AXvy = —iu(0)(av(1) — v(0)).

This proves that v(1) = av(0), so v € Dom(A,), and finally A* = A,.
All this proves that the operators A, for a € U are the selfadjoint extensions of A.
Moreover we have seen that if A is a selfadjoint extension of A then we have A ¢ A,
for some a € U, and hence A = A,. So finally, the operators A, for o € U are exactly the
selfadjoint extensions of A.
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Example 3.28. We consider the previous example but on L?(0, +00):

A= ii, Dom(A) = H} (0, +0).
dx
With the same proof we see that A is symmetric with Dom(A4*) = H'(0, +o0). The difference
is that in this case A has no selfadjoint extension. Indeed, assume by contradiction that A is a
selfadjoint extension of A. We can check by direct computation that Ran(A +i) = L?(0, +0)
(or equivalently, that Ker(A* — i) = {0}), so A has no selfadjoint extension by Exercise 3.3.

3.1.6 Friedrichs extension

We have seen in the previous paragraph that a symmetric operator which is not selfadjoint
can have many selfadjoint extensions, and it is also possible that it does not have any.

In this paragraph we consider the case of lower semibounded symmetric operators and
choose in an abstract setting a selfadjoint extension. This ensures in particular that such an
operator has at least one selfadjoint extension.

Definition 3.29. Let A be a densely defined lower bounded symmetric operator on H. Let
ag € R be such that A+ oy = 0. For a > ag we consider the quadratic form associated to
A+ a on Dom(A + «) = Dom(A)

data : ¢ € Dom(A) = (A + @)p, @)y = (Ap, @)y + el
The closure of Dom(A) for the norm |¢| 4 = \/dat+a(p) is called the form domain of A.

The definition of the form domain does not depend on a > «y.

Ezample 3.30. We consider on L?(0,1) the Laplacian Hy = —0? with domain Dom(Hy) =
C§(]0,1[). For all we CP(]0,1[) we have

2 2
AHy+1(u,u) = <*AU,U>L2(O,1) + ||U||L2(0,1) = HuHHl(O,l)'

The closure of C(]0,1[) for the H' norm is H}(0,1). Then the form domain of Hy is
H}(0,1).

Proposition 3.31. Let V be a Hilbert space densely and continuously embedded in H. Let q
be a continuous sesquilinear form on V such that, for some ag > 0,

VoeV, a(p) = aolels - (3.1)

Let A be the operator given by the representation theorem (Theorem 2.52). Then A is self-
adjoint on H and A = ag. Then V is the form domain of A.

Proof. For all ¢ € Dom(A) we have (Ap, ¢y = q(p, @) by definition of A. By continuity of q
and (3.1), the norm ¢ — 1/q(¢, ¢) is equivalent to the norm |-|,,. Since Dom(A) is dense in
V by Theorem 2.52, the closure of Dom(A) for ||-|,, is V. Finally, as for Remark 3.2, since
the quadratic form takes real values it is symmetric. Then we deduce that A is selfajdjoint
by Theorem 2.52. O

Ezample 3.32. The form domain of the Dirichlet Laplacian on ]0,1[ (see Example 2.57) is
H}(0,1) and the form domain of the Neumann Laplacian (see Example 2.56) is H'(0,1).

Definition 3.33. Let A be a lower bounded symmetric operator on H and let V be the form
domain of A. Let ag € R be such that A+ ag = 0. Let a > 0. We denote by A, the operator
associated to the coercive quadratic form qa+ by the representation theorem (Theorem 2.52).
Then we define the Friedrichs extension Arp of A by Ap = Ay, — .

This definition does not depend on the choice of a.

Ezample 3.34. Let Hy be the operator of Example 3.30. Its Friedrichs extension is the
Dirichlet Laplacian on ]0, 1].
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Remark 3.35. If A is a non-negative selfadjoint operator, we have Ap = A. Indeed, we
consider the quadratic form ¢ associated with A + 1. For all ¢, ) € Dom(A),

Q(Qpa ¢) = <A(p, w>7-[ + <()07 w>7—t .

Then ¢ — +/q(p, @) defines a norm on Dom(A) and we denote by V the closure. Then ¢
extends to a continuous and coercive form on V. We denote by T the corresponding operator
given by the representation theorem. Let ¢ € Dom(A). For all ¢y € Dom(A) we have

la(e, ) < (1Alyy + el ) 18] -

Then, by density of Dom(A) in V we obtain the same inequality for all ¥ € V. Then
v € Dom(T") and
To=Ap+ .

Now let ¢ € Dom(T'). For all ¥ € Dom(A) we have

<A, 03| = la(, )| = la(p, D) < Co [Pl -
This proves that ¢ € Dom(A*) = Dom(A). Finally we have T = A+ 1and Ap =T -1 = A.

3.1.7 Relatively bounded perturbations of self-adjoint operators

Definition 3.36. Let A and B be operators on E. We say that B is A-bounded if Dom(A) c
Dom(B) and there exist a,b = 0 such that

Vi e Dom(4), |Byle < allAgle +b ol (3.2
The A-bound of B is the infimum of all a = 0 for which there exists b such that (3.2) holds.
Remark 3.37. B is A-bounded if and only if Dom(A) < Dom(B) and B is a continuous map

from (Dom(A), |-[pom(a)) to E.

Remark 3.38. If B is bounded then it is A bounded with A-bound 0 (we can take o = 0 and
b= HBH£(E) in (3.2)).

Remark 3.39. The A-bound of B is defined as the infimum of all possible a in (3.2). This
infinimum is not necessarily atteined. In particular, B can be unbounded but A-bounded
with A-bound 0. For example, if B is a symmetric operator on H then B is B2-bounded
with bound 0. Indeed,

Dom(B?) = {p € Dom(B) : By € Dom(B)} = Dom(B)
and for e > 0 and ¢ € Dom(B?) we have
2 2
0<|(eB* = g|” =" [B%o|" + || — 267 | Be|,
S0
o _ e 2 0, o 1 2 1 2
1Bol® < 5 |B%|" + - llel® <  (e]|B>| +e7 el)”
Thus (3.2) holds with a = €/4 and b = 1/(4¢) for all ¢ > 0 and B is B%-bounded with
B2-bound 0 (but (3.2) cannot hold with a = 0 if B is not bounded).

We give examples of operators which are relatively bounded with respect to the usual
Laplacian on R?. We denote by Hy the Laplacian —A on L?(R%), with domain H?(RY).

Ezample 3.40. Let B,V € L*(R?) and j € [1,d]. Then 8(z)0; and V are Hop-bounded with
Hy-bound equal to 0. Indeed for u € H?(R?),

2
Jul

4e
Theorem 3.41 (Kato-Rellich). Let A be a selfadjoint operator on the Hilbert space H. Let
B be a symmetric operator on H. Assume that B is A-bounded with bound smaller than 1.

loul* = (@ju, 05u) = (=Fu,uy < (~Au,u) < |Houl |u]| < & |Hou|* +
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(i) The operator A + B, defined on the domain Dom(A + B) = Dom(A), is selfadjoint.
(ii) Let D < Dom(A). If A is essentially selfadjoint on D, then so is A+ B.

Proof. The operator A+ B is symmetric as the sum of two symmetric operators. There exist
a € [0,1] and b > 0 such that (3.2) holds. Let 5 > 0. We recall that for ¢ € Dom(A) we have

[(A=iB)el® = | 4] + 82 el

SO
|Boll < alAg] +blel < (a+b571) [(A—if)e| .

Let ¢ € H. Applied with ¢ = (A —i3) "1y € Dom(A), this inequality gives
|B(A=iB)~'| < (a+087") ] -

Assume that [8| > ;2. Then T' = B(A —i3)~! is bounded with bound smaller than 1, so
(1 +T) has a bounded inverse on H. We deduce that

Ran(A+ B —if) = Ran((1 + T)(A —iB)) = H.

We similarly prove that Ran(A + B + i) = H. By Proposition 3.21, this proves that A + B
is selfadjoint. O

Proposition 3.42. Assume that d < 3. Let V be a potential (Borel function) on R, We
assume that we can write V.= Vo + V, where Vo € L%(RY) and V,, € L®(R?Y). Then
the Schrédinger operator H = Hy + V is selfadjoint on L*(R?) with domain Dom(H) =
Dom(Hy) = H%(RY).

Proof. Let u e H*(R?). For ¢ > 0 we have

(L+e%[¢a

~ 2\—
[l ety < Nl gy < 1+ €l

L2(Rd)
<C. (82 HAUHL2(Rd) + HU’HLz(Rd) )’

C. = \/J (1+e2¢?) 2 de.
Rd

L2 (R9)

where

da
We have C. = e~ 2", so

[Vulpe < Vallge lul e + Vol a2

_d _d
<201 Vo |Aul e + (672 CLVall e + Vol e ) 2 -

Applied with € > 0 small enough this proves that V is Hg-bounded with Hy-bound smaller
than 1. We conclude with Theorem 3.41. O

Remark 3.43. We can prove that the same conclusion holds for V e LP(RY) + L*(R?) for

p=>2ifd=4andpe[2, 24[ifd > 5.

Ezample 3.44. Let d < 3 and « € [0, 2[. Then for any ¢ € R the operator

I‘I=I‘.’0-‘v—L

|

is well-defined and selfadjoint on the domain Dom(H) = H?(R4).
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3.2 Spectrum of selfadjoint operators

3.2.1 Basic properties

Proposition 3.45. Let A be a selfadjoint operator on H. Then o(A) < R and for z € p(A)

we have

_ 1
[(A==z) 1HL(H) = Gtz o (A) (3.3)
In particular, o(A) # .

Proof. The first statement follows from Proposition 3.21. Let z € p(A). By Proposition 2.49
we have

(A=2))* = (4" —2) = (A—2)".

Since (A — 2)7! and (A —z)~! commute, (A — 2)~! is a bounded normal operator on H.
Then, by Propositions 1.46 and 1.15,

1
(A—2)71 = sup || = sup Azt ———
H HE(H) peo((A—z)-1) | Aeo(A) | | infyer(ay [A — 2|

The proposition follows. O
Proposition 3.46. Let A be a selfadjoint operator on H and X\ € R.

(i) Let € > 0. If there exists ¢ € Dom(A)\ {0} such that |(A— Nyl < o, then
og(A)n[A—e, A +e] # .

(it) X € o(A) if and only if there exists a sequence (¢n)nen @ Dom(A) such that ||y, =1
for allm e N and

[(A=Nenly 7= 0
Such a sequence is called a Weyl sequence.

Proof. e Assume that [p —e,p + €] < p(A). Since p(A) is open there exists £; > € such

that [p — €1, p + 1] < p(A). By Proposition 3.45 we have |[(4 — )x)leE(H) < &7l Then for
¢ € Dom(A)\ {0} we have
_ A=Ne
Il < (A =27 104 - 2ppl < LA

50 [(A—=XN)¢| = &1 |¢| > elle|- This prove the first statement by contradiction.
e If a Weyl sequence exists then A € o(A) by Proposition 2.21 (we can also use the first
statement). Now assume that there exists ¢ > 0 such that

Vo e Dom(A), [(A—Nely = clelly -

Then A — X is injective with closed range by Proposition 2.34. On the other hand, by
Proposition 2.46,

Ran(A — \) = ker((A — A\)*)* = ker(4 — \)* = H.

This proves that A € p(A). O

3.2.2 Discrete and essential spectra

Proposition 3.47. Let A be a selfadjoint operator on H. Assume that \ is an isolated
element of o(A). Let Iy be the corresponding Riesz projection. Then Iy is the orthogonal
projection on ker(A — X). In particular, A is an eigenvalue of A and if dim(ker(A —\)) < oo,
then its geometric and algebraic multiplicities coincide.
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Proof. Let r > 0 be so small that (A4) n D(\,2r) = {\}. We have

1
Iy = —— A—¢)tde.
247 C(A,r)( )
Then )
I = — A-Q'd¢=11

so ITy is an orthogonal projection. By Proposition 2.66 we have ker(A — A) < Ran(II,).
For ¢ € H we have

A-Np= - [ (A-n@-Tpd
2 c(Ar) (3 4)
= | erc-nu-09)
™ Jc(a,r)

The map ¢ — (¢ — A\)(A — ¢)7! is analytic in D(\,7)\{\}. By (3.3) it is also bounded.
Thus it extends to an analytic function on D(\,r) and (3.4) vanishes. This proves that
Ran(II) < ker(A — A), so Ran(Il) = ker(A — ). Finally, Ran(II) cannot be {0} (since A
belongs to the spectrum of the restriction of A to Ran(II)), so A is an eigenvalues of A. [J

Corollary 3.48. Let A be a selfadjoint operator on H and let A be an isolated element
of o(A). Let G be a reducing subspace for A and let Ag be the restriction of A to G. If
G < ker(A — \)* then o(Ag) < o(A)\ {)\}.

Proof. By Proposition 2.59 we have 0(Ag) < o(A). Moreover, Ag is a selfadjoint operator by
Proposition 3.18 and X is not an eigenvalue of Ag since ker(Ag — \) = ker(A — \) n G = {0}.
By Proposition 3.47, X € p(Ag). O

Lemma 3.49. Let A be a selfadjoint operator on H. Let A € o(A). Assume that ker(A — \)
has finite dimension and that there exists ¢ > 0 such that

Vo eker(A =)t (A= Mgl >l . (3-5)
Then X is isolated in o(A).

Proof. Let F = ker(A — \) and G = F-. Then F and G are closed. Let II be the orthogonal
projection on F. Let Ar and Ag be the restrictions of A to F and G. We have o(Af) = {A}.
On the other hand, Ag is a selfadjoint operator on G such that ker(Ag — A) = {0}. Then
Ran(Ag — A\) = ker(Ag — A\)* = G. By (3.5) and Proposition 2.34, Ran(Ag — \) is closed so
A € p(Ag). Since p(Ag) is open, there exists e > 0 such that |\ — &, A + e[c p(Ag). Then,
by Proposition 2.59, |A — e, A + e[\ {\} < p(AF) N p(Ag) = p(A). O

Proposition 3.50 (Weyl Criterion). Let A be a selfadjoint operator on H and A € R. The
following assertions are equivalent.

(i) A€ 0ess(A).

(i) There exists a sequence (@n), oy @ Dom(A) such that |pn|,, =1 for alln e N, @, goes
weakly to 0 and (A — N)en|s — 0 asn — 0.

(iii) There exists a sequence (pp), oy @ Dom(A) such that |[y,|l,, = 1 for alln e N, (pn)
has no convergent subsequence in H and ||(A — X)¢pn|y — 0 as n — .

neN

Proof. We set F = ker(A — \) and G = ker(4 — \)*. We denote by Ag the restriction of A
to G.

e Assume that A € gess(A). If dim(F) = 0o then we can construct an orthonormal sequence
(¢n)pey in F. Now assume that dim(F) < o0. By Lemma 3.49, (3.5) cannot hold, so there
exists a normalized sequence (¢y), oy in G such that [[(A — A)¢,| — 0asn — o0. For e F
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we have (1, ¢,» = 0 for all n € N. Tt remains to prove that (¢, ¢,» — 0 for all ¢ € G. Tt is
enough to prove this for ¢ in a dense subset of G. We have

Ran(Ag — V) = ker(Ag — A) = {0},

so it is enough to consider ¢ € Ran(Ag — A). In this case we consider ¢ € Dom(Ag) such that
¥ = (Ag — )¢ and write

<¢, Qon> = <(AG - )‘)Cv (pn> = <Ca (AG - )‘)Qon> m 0.
This proves that ¢, — 0 as n — oo. This proves (i) = (iii).
e A normalized sequence which goes weakly to 0 cannot have a convergent subsequence, so
(i) = ().
e Assume that there exists a sequence (¢n),cy @s in (iii). By Proposition 3.46 we have
A € o(A). Assume by contradiction that A € ogisc(A). For n € N we write ¢,, = 1, + -
where 9, € F and ;- € G n Dom(A). We have

(Ag = Ny = (A= Ny = (A= N —— 0.
Since A € p(Ag) by Corollary 3.48, we deduce that ¢ — 0 as n — oo. In particular,

|en — ¥nlly; — 0. But the sequence (¢y,),,oy is in F which has finite dimension, so it has a
convergent subsequence. This gives a contradiction and proves that A € gess(4). O

Proposition 3.51. Let A be a selfadjoint operator on H and A € 0ess(A). Let N € N* and
e > 0. There exists an orthonormal family (¢n)1<n<n Such that

Vne [, N], [(A=XNenly <e.

Proof. o If X is isolated, it is an eigenvalue of infinite multiplicity, so we can consider an
orthonormal family (¢, )1<n<n in ker(4A — X).

e Now assume that A is not isolated. We fix distinct elements A1, ..., Ax of o(A) such that,
for all n € [1, N],

M — A < (3.6)

N ™

Let n €]0,1]. Let n € [1, N]. By Proposition 3.50 we can consider 1, € Dom(A) such that
H¢n”7—[ =1and
H(A - An)d’n”ﬂ <.

We set ¢1 = 11 and for n € [2, N] we define by induction
n—1
@n = 'l/}n - 2 <¢ka¢n>7—[ ¢k~
k=1
e We prove by induction on n € [1, N] that there exists a constant C,, > 0 independant of
71 €]0, 1] such that
I(A = An)@nl < Cpn and [0 = 1] < Cun. (3.7)

This is clear for n = 1. Now assume that this holds up to order n — 1 for some n € [2, N].
For k € [1,n — 1] we have

so, for some C’km > 0,

Cin+ (1 +Crn)n _
< Cy -
|)\k—>\n\ k,nT]

K@k )| <

Then
n—1
1Bl = 1 < 18n = ¢nll < D Kk ¥adl |8k
k=1
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and

n—1

1A = An)@nll < 1A = M)l + D K@i ] (1(A = M) @l + Ak = Anl [&8]))-

k=1

We deduce (3.7). If n is chosen small enough then for n € [1, N] we can set

= SDTL
(=3

Pn

Then there exists C' > 0 such that for n € [1, N] and 7 €]0, 1] we have
H(A - An)‘ﬁn” < 077'

It remains to chose 1 smaller that ¢/(2C') and conclude with (3.6). O

3.2.3 Min-max principle
We consider on H a self-adjoint operator A bounded from below.

Proposition 3.52. We have

min(c(A)) = %

) 3.8
weDom(A\(0} |7, v

Proof. We denote by py the right-hand side of (3.8).
e Let A€ o(A). By the Weyl criterion (Proposition 3.50) there exists a sequence (p,,) such
that [|on|| = 1 for all n and (A — A)¢n| — 0. This implies in particular

p1 < {Avn, on) M

so p1 < min(o(A)).
e Now assume by contradiction that u; € p(A). We set R = (A — py)~1. For n,¢ € H we
set

a1, 9) = (Bny 1)y, -
For nn € H and ¢ = Rn € Dom(A) we have

Q(ﬂﬂl) = <¢, (A - /~L1)1/f> = 07

so q is a non-negative sesquilinear form on H. Let (¢,,) be a sequence in Dom(A) such that
[nl4 =1 for all n € N and

<A1/1m 7/1n> m H1-

For n € N we set 1, = (A — p1)¢,. Then by the Cauchy-Schwarz inequality we have

1= H%H% = Q(ﬁmwn)
< Q0 70) 7AW, ) ?
= (s (A = 1 (A))n)? (Ribp, )

— 0.

n—+00
This gives a contradiction and proves that u1 (A4) € o(A4), and in particular p;(A) = min(o(A)).
The conclusion follows. O

Theorem 3.53 (Min-max Theorem). Let A be a lower-bounded self-adjoint operator on H.
We denote by (Ak)gen k<n with N € N U {0} the non-decreasing sequence of eigenvalues
(counted with multiplicities) smaller than inf gess(A). For n € N* (with n < dim(H) if H is
of finite dimension) we have

1 —_— =
FCDc;:n)wSA) 0eF\{0} ng“i inf Uess(A) ’Lf n > N.

dim( n
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Proof. For n € N* we set
A
o=t < 90,95>H_

cpbom

o) ger\ 0y el
o Weset NV =[1,N]if Ne Nand NN = Nif N = +o0. We consider an orthonormal
family (pk)ken such that o, € Dom(A) and A = Mgy for all k € N. For n € N we set
Fr = span(¢1,...,pn). We also set 1 = inf gess(A).
e Let n € N. Let ¢ € F, such that |¢| = 1. We can write ¢ = >}, appp with
ST Je|* = 1. Then we have

(Ap, 0y = D lawl* M < A,
k=1

SO Ly < Ap.

e Let F be a subspace of Dom(A) of dimension n. By Corollary 3.48, the restriction of A to
Fi- | is selfadjoint and its spectrum is included in [\,,, +o0[. There exists p € F n F:_| with
¢l = 1. For such a ¢ we have (Ap, ¢y = A, by Proposition 3.52. This proves that u, = \,.
Then p, = A, and the infimum is a minimum.

e Now assume that N is finite and consider n > N. As in the previous step, we see that
tn = 1. Then let € > 0. Since 1 € gess(A) there exists by Proposition 3.51 an orthonormal

family (vx)1<k<n Of vectors in Dom(A) such that
€
V'

Let ¢ € F = span(¢1, ..., ¢,) such that |[¢| = 1. We write ¢ = Y| aytpy with 37, lag)? =
1. Then we have

Vke [Ln], [¢rly =1 and (A =n)iply <

(A, ) <+ [[(A=n)d|

<+ ) el [(A =)y
k=1

<n+ (Z (A—n)¢k2>

k=1
<n+e.

This proves that
fn < ax (Ap, o)y <m+e
[¥]5=1
Finally p, = n. O

Remark 3.54. o Let F be a finite dimensional subspace of Dom(A). Since the unit sphere
Sk of F is compact and the map ¢ — (Ap, p) is continuous on Sg, we have

Ap, ¢ Ap,
<72>H = sup (Ay, p),;, = max (Ap, p),, = max <72>H
eer\fo} el peSe eSe G 1%/

e Let n e N. We have seen that
Ap,p Ap, p

= n =

in P p
P eerior el pern(o} el

so the infinimum is a minimum.

e When n > N, the infimum is not necessarily reached. Consider for instance the usual
Laplacian Hy on R?. We have min o(Hy) = 0ess(Ho) = 0 and there is no ¢ € H?(R?)
such that (Hyp, ) is equal to 0.

This Min-max Theorem has an equivalent Max-min version. See Exercise 3.8.
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Corollary 3.55. Let a < inf 0ess(A). Assume that there exists a subspace V' of Dom(A) of
dimension n € N* such that

2
VeV, (Ap, o) <alely-
Then A has at least n eigenvalues (counted with multiplicities) not greater that a.

Proposition 3.56. Let A be a lower bounded selfadjoint operator A on H. Let qa be the
corresponding quadratic form and let V4 be the form domain of A (see Definition 3.29).

(i) We have

mino(A) = qA(f). (3.9)
weVa\{0} H‘P”H

(ii) The right-hand side of (3.9) is a minimum if and only if mino(A) is an eigenvalue,
and in this case the minimizers are the eigenvectors corresponding to the eigenvalue
mino(A).

Proof. ¢ We set

q4(¥)
PV} [ul3,

A
1 =mino(A) = @
peDom(AN{0} |||

and fi; =
Since Dom(A) < V4 and qa(p) = (Ap,p) for ¢ € Dom(A4), we have iy < pp. After
translation we can assume that p; > 0. Then by definition of the form domain, Dom(A)
is dense in V4 for the norm defined by g4, so we also have p; < fi;. This gives the first
statement.
e Now assume that p; is an eigenvalue of A. Then for a corresponding eigenvector ¢ we
have

qa(p) _ (App)

2 2
el el

1,

so fi1 is a minimum and ¢ is a minimizer. Conversely, assume that ¢ is a minimizer for fi;

with |¢| = 1. Let ¢ € Dom(A). The map
4., dalp +10)

2
I+t

is well defined for |¢| small enough, it is smooth and it reaches its minimum at ¢ = 0. Thus
®’(0) = 0, which implies that

Reqa(p,¥) = fun Re{p,v).

Since we can replace ¥ by i1, this gives

Vip € Dom(A), qa(e,v) = (i, ).

This proves that ¢ € Dom(A) and Ay = fiy. Then [i; is an eigenvalue of A and ¢ is a
corresponding eigenvector. O

Example 3.57. Let Q be a bounded open set of R?. We denote by Hy the Dirichlet Laplacian
on Q (Hy = —A, Dom(Hy) = H?(Q2) n H}(Q)). The form domain of Hy is H}(2) and the
corresponding quadratic form is qp, : u — HVUHQLQ(Q). We will see in Chapter 4 that Hy has
no essential spectrum. Then by Proposition 3.56 the first eigenvalue of Hy is given by

Vul?
) — IVl o)

in 2 ’
ueHE @O0} [ul 72

By the Poincaré inequality we have A1 (Hp) > 0.
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3.3 Exercises

Ezercise 3.1. Let Q be an open subset of R%. We consider on L2(2) the operators Hy and
H which act as —A on the domains Dom(Hy) = C°(Q) and Dom(H) = H%(Q)). Are Hy and
H symmetric operators 7

Ezxercise 3.2. Let H; and Hy be two Hilbert spaces. Let U : H; — Hs be a unitary
operator. Let Ay be an operator on H; and As an operator on Ha. Assume that Dom(A43) =
UDom(A;) and Ay = UA;U*. Prove that A; is selfadjoint on #H; if and only if A, is
selfadjoint on Hs.

Ezxercise 3.3. Let A be a symmetric operator on the Hilbert space H. Assume that A is
not selfadjoint but Ran(A — i) = H or Ran(A + i) = H. Prove that A has no selfadjoint
extension.

Exercise 3.4. Let m > 0. We consider the Hilbert space 2# = H'(R?) x L?(R%) the

operator
0 1
W= <A —m 0)

defined on the domain Dom(W) = H?(R?) x H'(R). Prove that W is skew-adjoint if .J# is
endowed with the Hilbert structure corresponding to the norm defined by

2 2 2 2
[ (w0} = IVulz2gay + m lullzgay + [0 22 a) -

FEzxercise 3.5. Let Ay be the operator of Example 3.30.
1. What is the adjoint of Ag ?

2. Compute ker(Af — z) for z € C\R.

3.For ue H?(0,1) we set

Bu =

Prove that there exists a matrix M € M4(C) (to be explicited) such that an operator A is a
selfadjoint extension of Ay if and only if there exists a subspace F of C* such that M F = F+
and
d2
A= o Dom(A) = {ue H?(0,1) : Bue F}.

4. Give some examples of selfadjoint extensions of Ag ?

Ezercise 3.6. Give an example of an operator A and A € C such that A € 0(A) but there is
no corresponding Weyl sequence.

Ezxercise 3.7. We consider the Laplacian H = —A on L?(R), with domain H?(R). Let
A > 0. Construct a sequence (p,) in H?(R) such that |p,| = 1, ||[(H — N)¢y| — 0 and ¢,
goes weakly to 0 in L?(R).

FEzxercise 3.8. Prove the following version of the Min-Max Theorem. Let A be a self-adjoint
operator on H. Assume that A is semi-bounded from below. For n € N* (with n < dim(H)
if H is of finite dimension) we set

A
tn(A) = sup inf %
P1renpn1EH pEsPaN(01,nen 1) [|l|3,
eDom( A\ {0}

The sequence (fip,)nen+ is non-decreasing and for n € N* one of the following statements
hold.

(i) pn(A) < infoess(A) and p,, is the n-th eigenvalue of A counted with multiplicities,
(ii) pn(A) = inf oess(A).
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