Chapter 1

Spectrum of bounded operators

[Draft version, November 16, 2022]

In this chapter we introduce the basic notions of spectral theory for bounded operators.
We do not too far in the general properties since many aspects will be common with the
theory for unbounded operators, discussed in the next chapter.

1.1 Bounded operators - Examples

Let E and F be two Banach spaces. We denote by L(E,F) the set of bounded linear maps
from E to F, and for A € L(E,F) we set

Aol
1A] = sup :
£EF) peE\{0} H@HE

We write L(E) for L(E, E).
Remark 1.1. We recall that a linear map from E to F is continuous if and only if it is bounded.
Remark 1.2. Let G be a third Banach space. For A € L(E,F) and B € L(F,G) we have

IBAl 26y < Al e 1Bl 2k 6 -

FEzample 1.3. If E has finite dimension then all the linear maps from E to F are continuous.

Ezample 1.4. We consider on ¢?(N) the operators S, and S, defined by
Sp(ug, Uty -y Upy o) = (0,80, oy Up—1,...)

and
Se(uo, Uty ey Upy o) = (U1, U,y ooy Upgdy .- )

Then S, and S, are bounded operators on ¢?(N) with 151 22y = 1Sell ez oy = 1-

Ezample 1.5. Let a = (an)nen be a bounded sequence in C. For u = (uy)neny € £2(N) we
define M,u € ¢?(N) by
VneN, (M), = apuy,.

We have M, € ¢*(N) with IMall £ o2y = SUPpen |anl.
Ezample 1.6. More generally, let (€2, 1) be a measure space. Let w € L*(§). We consider
on L?(Q) the multiplication operator M,, : u — uw. Then we have M, € L(L?(Q2)) with

[ Ml 22y = lwlpe ) -

Definition 1.7. We say that A € L(E,F) is invertible if there exists B € L(F,E) such that
BA =1dg and AB = Id.

FEzample 1.8. e S, is not surjective and Sy is not injective, so these two operators are not
invertible.
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o Given a = (a,) € £*°(N), the operator M, is invertible if and only if

0¢ {an,n e N}

o Given w e L®(£, ), the operator M, is invertible in L?(, u1) if and only if there exists
€ > 0 such that
p({reQ: jw(x)| <e})=0. (1.1)

Assume that (1.1) holds. Then w~! is well defined almost everywhere and Hwil ”LﬁC(Q) <

1. Then M,-1 € L(L?*(2)) is an inverse for M,,. Conversely, assume that M, is in-

vertible. Assume by contradiction that (1.1) does not hold. Then for all n € N* we

set ) 1
A, =w? (D (0, )) and wu, = %.
n N(An)E

Then ||unHL2(Q) =1 and

1
M,u, 2 = f w(z)|? du(z < —.
” HL2(Q) [L(An) A | ( )‘ /J“( ) n2

Then

_ | R
HunHL2(Q) = HMwleunHL2(Q) < ﬁ“MleE(LQ(Q)) m 07

which gives a contradiction.

The following result is a consequence of the open mapping theorem (see for instance
[Brell, Cor. 2.7]).

Proposition 1.9. Let A € L(E,F). Assume that A is bijective. Then its inverse is necessarily
continuous.

1.2 Spectrum of bounded operators - Resolvent

Let E be a Banach space.

1.2.1 Definition and basic properties

Definition 1.10. Let A€ L(E).

(i) The resolvent set p(A) of A is the set of z € C such that (A — z) = (A — zIdg) is
invertible.

(ii) The spectrum o(A) of A is the complementery set of p(A) in C.

Definition 1.11. Let A € L(E). We say that A € C is an eigenvalue of A if (A — X) is not
injective. In other words, there exists u € E\ {0} such that Au = Au. Such a vector u is called
an eigenvector of A for the eigenvalue A\. The geometric multiplicity of \ is the dimension
of ker(A — X). We denote by o,(A) the set of eigenvalues of A.

Remark 1.12. We have o,(A) < o(A), but the inclusion can be strict.

Ezample 1.13. We consider the multiplication operator M, defined in Example 1.6. Let
A€ C. Then A is an eigenvalue of M, is and only if

p{xe: wlx)=2A})>0.

On the other hand, since M,, — A = M,,_», we see that A belongs to o(M,,) if and only if for

all e > 0 we have
p{ze: Jwx)— A <e})>0.

Proposition 1.14. Let A e L(E).
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(i) o(A4) = D(O, HAHL(E))-
(i) p(A) is open. For zg € p(A) and |z — 29| < |(A — zo)_lﬂz(lE) we have z € p(A) and

(A=2)7" =) (2= 20)"(A = 20) ", (1.2)

neN
(iii) o(A) is compact.

Proof. e Let z € C such that |z| > |A]|. Then we have

A—2=—2 <IdA>.
z

A

z

Since
_ 14l

<1
|2

)

the operator Id —é is invertible with inverse given by the Neumann series ZkeN(é)k. This
proves that A — z is invertible with inverse

_ Ak

keN

o Let zg € p(A). For z € D(z, (A — zo)’lﬂz(lE) ) we have
A—z=(A—2z)—(z—2)=(1—(2—20)(A—20)"") (4 - 2).

Since (2 — 29)(A — 29) ! has norm less that 1, the operator 1 — (2 — 2¢)(A — z9) ™! is invertible

with inverse .

(1 — (z—zo)(A—zo)_l) = Z(z—zo)"(A—zo)_".

neN

Then A — z is invertible and (A — 2)~! is given by (1.2). This proves in particular that p(A)
is open.
e Finally, 0(A) = C\p(A) is closed by (ii) and bounded by (i), so it is compact. O

Proposition 1.15. Let A € L(E) be invertible. Then
oA ={x" Aea(A)}.
Proof. We already know that 0 is in p(A) n p(A~1). For X € C\ {0} we have
(A=XN) = A\t —A™h
so (A=! — A\71) is invertible if and only if (A — \) is invertible. O

Proposition 1.16. Let A€ L(E). Let z € C. Assume that there exists co > 0 such that
Voek, |(A—=2)¢le=colele- (1.3)
We say that z is a regular point of A. Then
(i) (A —X) is injective ;
(ii) (A — X) has closed range;
(i) If (A — X) is invertible then |[(A — X7 < gt

This means that if z is a regular point of A, then z € p(A) if and only if Ran(A — \) is
dense in E. Moreover, in this case we already have a bound for the inverse.

Proof. We prove the second statement. Let (1,,) be a sequence in Ran(A —z) which converges
to some v in E. For n € N we consider ¢,, € E such that (A — 2)p, = ¥,. Since ((A — 2)¢,)
is a Cauchy sequence, so is (p,) by (1.3). Since E is complete, ¢,, converges to some ¢ in E.
Finally, since A is continuous, ¥ = (A — 2)p € Ran(A — z). This proves that Ran(A — z2) is
closed in E. O

2022-2023 5

& Ex. 1.3



M2RI - Spectral Theory and Evolution Equations

1.2.2 Resolvent
Definition 1.17. Let A € L(E). The resolvent of A is the map

{P(A) - L(E),
z = (A-2)7L

Proposition 1.18 (Resolvent Identity). Let A € L(E). For z1, 2 € p(A) we have

(A—z) "= (A—2) ' = (z1 —2)(A—2)~
= (21— 22)(A — 22)~

— —
—~
NN
I
N N
= [ V]
~— —
Lol

Proof. We have (A — z3) — (A — z1) = 21 — z2. The first equality follows after composition
by (A —2z1)~! on the left and by (A — z2)~! on the right. The second equality is similar. [

Remark 1.19. The resolvent identity proves in particular that (A — z1)~! and (4 — 29)7!

commute.

Proposition 1.20. Let A € L(E). The resolvent Ry : z — (A — 2)~! is analytic on p(A)
and Ry = R%.

Proof. This follows from (1.2). O
Proposition 1.21. Let A€ L(E). Then o(A) # &.

Proof. Assume by contradiction that p(A) = C. For z € C such that |z| > 2||A| ;&) we have

-1 © /1A k
(A - 1) <y Mew) o2 1y
: EPAmr B

z
Let ¢ € E and £ € E’. The map z — {((A — 2z)"1¢) is holomorphic on C and bounded. Thus
it is constant by the Liouville Theorem. By the previous estimate, its value must be 0. In
particular, £(A~1¢) = 0 for all ¢ and all £ € E’. By the Hahn-Banach Theorem, we have
A~1p for all ¢ € E. This gives a contradiction and proves that p(A) # C. O

1

||

(A~ Z)_lHL(E) =

L(E)

Remark 1.22. In the real case we know from the finite dimensional case that the spectrum
of a bounded operator can be empty.

1.2.3 Spectral radius
Definition 1.23. Let A € L(E). The spectral radius of A is

r(A) = sup |A|.
Aeo(A)

By Proposition 1.14 we already know that r(A) < [A] ). The equality is not true in
general. Consider for instance the matrix

1 «
1= (o 9)

for a € C. We have o(A4) = {1} and ||A] z(c2) — + as [a] — +o0. In general we have at
least the following result.

Proposition 1.24 (Gelfand’s Formula). Let A € L(E). We have

1
r(A) = nlerg* IA = |A L(E) "

L .
£ = Jim,

Example 1.25. Check that A, satisfies the Gelfand Formula.
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Proof.  Assume that there exists N € N such that AN = 0. Then A™ = 0 for all n > N.
Let z € C\ {0}. Then (27'A — 1) is invertible with inverse

A —1 N—-1 A n
) E
z = \z
This proves that A — z = z(27!4 — 1) is invertible. Thus o(A) = {0}. Since o(A) # &, we
have o(A) = {0} and the proposition is proved in this case. Now we assume that A™ # 0 for

all n e N.
e For n e N we set u,, = In(||A™||). For m,p € N* we have by Remark 1.2

Um+p S Um + Up.
Let p e N*. Let n € N* and (¢,7) € N x [0,p — 1] such that n = gp + r. Then we have

Un  QupHur Up | Ur
n gp +r p n

)

SO u U
. n
limsup — < 2.
n—o0 n p

Then for all p € N* we have
1 1
limsup | "]+ < 47|

n—0o0

Thus

lim sup | A"
neoo

% < inf [AP|7 .
peN*

This implies that
1 1
|A™[* —— inf [AP|?,
n— eN*

which gives the second inequality of the proposition.
1
o Weset 7(A) =lim |A™| ™. For z € C we have ker(A — z) < ker(A™ — 2™) and

n—1
A" — " = (A _ Z) Z zchn—l—lc7
k=0
so Ran(A™ — z™) < Ran(A — z). Thus, if A™ — 2" is bijective, then so is A — z. Now let
A € o(A). We have A" € g(A™). By Proposition 1.14 we have [A\|" = |A\"| < |A", so
1
|A| < ||[A™||™ for all n € N, and hence || < 7#(A). This proves that r(A) < 7(A).
e Let z € C with |z| > #(A). Then the power series
A’I’L
a Z ontl

neN

is convergent in £(E) and defines a bounded inverse for (A—z). This proves that 7#(A4) < r(A)
and concludes the proof. O

1.3 Adjoint of a bounded operator

Let H, H1, Ho be Hilbert spaces.

1.3.1 Definition and basic properties

Definition 1.26. Let A € L(H1,Hz). Let ¢ € Hy. We denote by A*iy the unique vector in
H1 such that

VoeHr, (Ap, )y =<{p, A%y (1.5)
The definition is justified by the Riesz representation theorem. Indeed, since ¢ —

(Ap,1),,, 1s a continuous semilinear map on H;, there exists a unique A*1) such that (1.5)
holds.
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Example 1.27. Assume that H; and Hs are of finite dimensions ni,ne € N*. Let 81 and (5
be orthonormal bases of H; and Hs, and let M = (m;1)1<j<n, be the matrix of A in §; and

1<k<n,
B2. Then the matrix of A* in 83 and 31 is

—T
* S
M* =M =(mk’j)1<j<n,_,.
1<k<ng

Ezxample 1.28. Let f € L®(Q,u) and let My be the multiplication operator as in Example
1.6. Then the adjoint of My is M}" = M.

Ezample 1.29. The shift operators S, and Sy (see Example 1.4) are adjoint of each other on
/2(N).
Proposition 1.30. Let A€ L(H1,H2).
(i) (4%)* = A.
(ii) A* € L(Ho,H1) and HA*HL(H%HI) = Al 234 340)-
Proof. e Let ¢ € Hy. For all ¢ € Hy we have

(A*Y, pgy = o, A%y, = (AP, )y =, Apdyy

This proves that A**p = Ap.
e  We leave the linearity of A* as an exercise. For i € Ho, we have

| A5, = CAA* D, Y50, < 1Aleers, 300 1A Bl 190, »

50 [A*$]5, < |Alz(as 300) [¢],- This proves that A* € L(Ha, H1) and |A*| iy, 34,) <
||AH£(H1,H2). Then

1Al 2340 342) = 1A% 2300 742) S TA 230340y »
and finally, | A* HE(HQ,Hl) = HAH[:(?—Ll,Hz)' O
Proposition 1.31. For Ay € L(H1,Hz) and Ay € L(Ha, Hs) we have (A3 A;)* = A¥ A%,
Proof. Let ¢ € H1 and ¢ € Hz. We have
<A2A190) w>7—13 = <A1<p7A>2k¢>H2 = <<pa ATA;’(/)>H1 ’
and the conclusion follows. O

Proposition 1.32. Let A € L(H). If F is a subspace of H such that A(F) < F, then
A*(F) c Ft.

Proof. Let ¢ € F+. Then for all ¢ € F we have (p, A*) = (Ap, ) =0, s0 A*pe F-. O

1.3.2 Spectrum of the adjoint
Proposition 1.33. Let A€ L(H1,Hz). Then

ker(A*) = Ran(A)t and ker(A*)* = Ran(A4).
Proof. Let ¢ € ker(A*). Then for all ) € H; we have
(AY, 0y, = W, A%p)yy =0,

so ¢ € Ran(A)t. Conversely, if ¢ € Ran(A)! then the same computation shows that ¢ €
ker(A*). This gives the first inequality. Then, by Proposition A.5 we have

ker(A*)1 = (Ran(4)1)* = Ran(4),

and the proof is complete. O

8 J. Royer - Université Toulouse 3
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Proposition 1.34. Let A € L(H1,H2). Then A* is invertible if and only if A is, and in
this case we have (A*)™1 = (A=1)*.

Proof. e Assume that A is invertible. By Proposition 1.31 we have
A¥(ATH* = (A7TA)* =1d* = 1d.

and similarly (A71)*A* = 1d, so A* is invertible and (A4*)~! = (A~1)*.
e Similarly, if A* is bijective then A** is bijective. But A** = A by Proposition 1.30, and
the proof is complete. O

Proposition 1.35. Let A€ L(H). Then
o(A*) ={z,z€c(A)}.

Proof. Let A € C. By Proposition 2.49 the operator (A — A) is bijective if and only if
(A —X)* = (A* — X) is bijective. O

Ezample 1.36. We consider on £2(N) the shift operators of Example 1.4. We have

0p(Sr) = and 0,(Se) = D(0,1).
By Proposition 1.14, ¢(Sy) is closed and contained in D(0,1), so o(S¢) = D(0,1). Finally,
since S¥ = Sy, we also have o(S,) = D(0,1) by Proposition 1.30.

1.3.3 Normal bounded operators

Definition 1.37. We say that A € L(H) is normal if AA* = A*A.
Remark 1.38. If A is normal and invertible, then A~! is normal.
Proposition 1.39. Let A€ L(H) be a normal operator.

(i) For ¢ € H we have |Ap| = |A*p|. In particular, ker(A*) = ker(A).

(ii) If X and p are two distinct eigenvalues of A, then ker(A — X) and ker(A — u) are
orthogonal.

Proof. e Let ¢ € H. We have
| Ap|® = (A* Ap, p) = (AA*p, 0y = |A* 9| ?,

which gives the first statement.
o Let ¢ € ker(A — \) and ¢ € ker(A — ). By the first statement we also have ¢ €
ker((A — p)*) = ker(A* — ). Then we have

(A =)<, ¥) = QA ¥) = o, ) = (A, by — {p, A%) = 0.
Since A # p, this proves that {p,¢) = 0, so ker(A — A) and ker(A — p) are orthogonal. [
Definition 1.40. Let A€ L(H).
(i) We say that A is symmetric if

VSO; 1][} € H, <A507 w>’H = <()07 A1/’>7{ .

(ii) We say that A is selfadjoint if A* = A.

Proposition 1.41. Let A€ L(H). Then A is symmetric if and only if it is selfadjoint.

Definition 1.42. A € L(H) is said to be skew-adjoint (or skew-symmetric) if A* = —A.
Notice that A is selfadjoint if and only if 1A is skew-adjoint.

2022-2023 9
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Definition 1.43. Let Hi and Hz be two Hilbert spaces. An operator A € L(H1,Hs) is said
to be unitary if it is invertible and A~! = A*.

Remark 1.44. Selfadjoint, skew-adjoint and unitary operators on ‘H are normal.

Ezample 1.45. The multiplication operator M, (see Example 1.6) is selfadjoint if and only
if w is almost everywhere real valued.

In Section 1.2.3 we have said that the spectral radius of a bounded operator can be smaller
that its norm. This is not the case for a normal operator.

Proposition 1.46. Let A€ L(E) be normal. We have r(A) = [|A| 2.

Proof. o Assume that A is selfadjoint. We always have |A?| < |A|?. For ¢ € H we have
[Ap)® = (A* Ap, ) = (A%, ) < | 47| o]

This proves that | A < |A2?||, and hence |A|? = |A2||. Since A?" ig selfadjoint for all k € N,

we deduce by induction that HAQk | = HA||2k for all k € N. Then, by the Gelfand Formula we
have .
r(A) = lim HA2 H’T’“ =||A].
k—o0

e Now we only assume that A is normal. We have |A*A|| = |A|* (exercise). On the other
hand, since A*A is selfadjoint we have r(A*A) = |A*A|, so r(A*A) = |A|*>. On the other
hand, since A is normal,

* 1 * n % s n\k An % s n % _ 2
P(A*A) = Tim [(A*A)"[F = Tim [(A)*A"[F = lim |A"]F = r(4)2.
This proves that r(A4) = | A|. O

Remark 1.47. If A € L(H) is a normal operator such that 0(A) = {0} then A = 0. This is
not the case in general, since every nilpotent operator has spectrum {0}.

Theorem 1.48. Let A€ L(H) a normal operator. For z € p(A) we have

1

[(A=2)" 23 = dist(z, o (A))

Proof. For ¢ € C\ {z} we have by Proposition 1.15

o((A=2)7) ={(C-2)7"cea(4)}.

Since (A — z)~! is normal, we deduce by Proposition 1.46

O

_ 1 1
A=) Y =r((A=2)"H = sup N—z|"' =- == ‘
H( ) H (( ) ) )\ea&) | | lnf)\ea(A) |A — Z| dISt(Z, O'(A))

1.4 Polar decomposition

[Not discussed in class]

Definition 1.49. Let A € L(H) be a symmetric operator. We say that A is non-negative if
(Ap, )y, =0 for all p e H.

Proposition 1.50. Let A € L(H) be non-negative. Let p € H. If (Ap,py =0 then Ap = 0.

Proof. By the Cauchy-Schwarz inequality we have for all ¢ € H

KAp, 0| < (Ap, 9)? (A, )* =0,
Then (Ap, ¥) = 0 for all ¢ € H, so Ap = 0. -

10 J. Royer - Université Toulouse 3
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Proposition 1.51 (Square root of a bounded non-negative operator). Let A € L(H) be
non-negative. There exists a unique non-negative bounded operator S such that S = A.
Moreover, S commutes with A, and any operator which commutes with A also commutes
with S. We can write S = v/ A.

Proof. e Assume that the existence is proved when |A| < 1. Then in general we can
multiply A by ¢ = |A]| ™", so that |eA| < 1. Then we set S = ¢~25,, where S. is the square
root of eA. Then S? = e 'eA = A and, since S. commutes with €4, S commutes with A.

e Now assume that |A|| < 1. We set B = Id —A. For ¢ € H we have

(Be, o) = lol® = (Ap, o) < [l
We also have
2 2 2
(Be,¢) = llol” — (A, 0> = llol” — [ A |ul” > 0.
Then by the Cauchy-Schwarz inequality we have for ¢, € H,
1 1
KB, )| < (B, p)* (B, ¥)* <|le| [¥]-

This proves that |B| < 1. Now we use the power series for the function z — /1 -z,
absolutely convergent ! on D(0,1):

©
Yz e D(0,1), \/1—2:1—Zanz", Gy, =
n=1

Then we set

0
S=1—ZanB".

n=1

Then by Cauchy product for a power series we have S? = Id —B = A. Moreover S commute
with B and hence with A. Similarly, any operator which commutes with A commutes with
B and hence with S.

e Now we prove uniqueness. Assume that S’ is another solution. In particular S and S’
commute. If we set

T=(S-5)5(5—-5) and T'=(S-95)5(S—-9")
We observe that
T+T =(S—8)(S+8)S~-5-)=(S—95)(S*—-5?% =0.
Since T and T” are non-negative, they are both 0 by Proposition 1.50. Then
(S—8)=(S—-8)NT-T)=0.
This implies that (S — S”)? = 0 and finally S — S’ = 0. O
Definition 1.52. For A e L(H) we set |A| = V/A*A.

This definition makes sense since A* A is always a non-negative operator.

Definition 1.53. We say that U € L(H) is a partial isometry if for all ¢ € ker(U)* we have
Ul = llel.-

'For z € [0, 1[ we have

0

Vi—-z=1-— Z anz™.
n=1
Since all the coefficients are positive we have
w© o)
dan=1lm Y anz" =1-+vVI-1=1<+o.
rz—1
n=1 n=1

This proves that Zle an < +00.
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Proposition 1.54. Let A € L(H). There exists a unique partial isometry U such that
ker(U) = ker(A) and
A=U|Al.

Proof. o Assume that U; and Uy are solutions. We have Uy |A| = Uz |A| so Uy = Us on

Ran(]A4]), and then on Ran(|A|) by continuity. On the other hand, on Ran(|A\)L = ker(|A]) =
ker(A) (see Proposition 1.33) we have U; = U, = 0 so, finally, Uy = Us.

e For ¢ € H we have ||[|A] ¢|| = |Ag|. Then if @1, ps € H are such that |A|¢; = |A| @2, we
also have Ap; = Aps. Thus we can define U on Ran(|A]) by

U|Alp = Ap.

This is a linear isometry from Ran(]4]) to Ran(A). It can be extended to a linear isometry
—
from Ran(]A]) to Ran(A4). Then we extend U by 0 on Ran(]4|) = ker(A). In particular,

ker(A) < ker(U). On the other hand, since U is an isometry on ker(A)*, we can check that
ker(U) = ker(A). Then U is an isometry on ker(U)*, so this is a partial isometry. O

1.5 Operators and quadratic forms - Lax-Milgram The-
orem

Let V be a Hilbert space. Let V' be the space of continuous semilinear forms on V. We recall

that )
I:{ V — %
o = Y=oy,

is a bijective isometry by the Riesz theorem. We can identify V and V' via this map, but we
do not use this possibility here.
Then we can check that the map

{ﬁ(V) - LY,V
T — ZIoT

is also a bijective isometry. Moreover T € L£(V) is invertible if and only if (ZoT) € L(V,V’)
is.

Definition 1.55. Let V be a Hilbert space.
(i) A sesquilinear form q onV is a map q: V x ¥V — C such that

o forally eV the map v — q(p, ) is linear ;
o for all p €V the map 1 — q(p, ) is semilinear.

(ii) The quadratic form associated to q is the map ¢ — q(p, ). It is usually also denoted
by q.

(iii) We say that q is continuous if there exists C = 0 such that, for all p,1p €V,
la(e, )l < Clely 9]y - (1.6)
(iv) We say that q is coercive if there exists a« > 0 such that for all p € V we have
la(e, @)l = alely - (L.7)
(v) The adjoint q* of the form q is the sesquilinear form defined by

Vo, eV, q*(p,¥) = (¥, ).

Remark 1.56. Coercivity is often defined by

2
a(e, ) = alely, -

We use a weaker property here.
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Ezample 1.57. The map ¢ — H<p||$, is a (coercive) quadratic form on V.

We can also define a bijection between continuous sequilinear forms on V and operators
in L(V,V’). Given a continuous sesquilinar form q on V we define Q € L(V, V') by

Voe VYV eV, (Qe)(¥) =ale, ). (1.8)

Conversely, given Q € L(V,V’), we similarly define a corresponding continuous sesquilinear
form q.

Proposition 1.58. Let q be a continuous sesquilinear form on V. There exists a unique
operator T € L(V) such that

VQD, d) € V? q(@a 7/}) = <T507 1/)>v .

Moreover,

lale, ¥)|
sup =Tz vy -
eaweni(oy [#ly 1]y £

The operator associated with the adjoint form q* is T*.

Proof. o Let ¢ € V. The map ¢ — q(¢,®) is a continuous semilinear form on V), so by the
Riesz representation theorem there exists an element of V, which we denote by T'p, such that

VeV, q(e,v) ={Te, ), .

This defines a map T : V — V.
e Let p1,00 €V and A € R. For all ¥ € V we have

(T(p1+ Ap2), ¥y, = a1 + Ap2, V) = q(e1,¥) + Aa(p2, ) = (Te1, 1), + ATz, V),
= <T901 + >\T<P271/}>

This proves that T'(p1 + Apa) = Ty + AT 2, and hence that the map ¢ — T is linear.
e For p eV we have

2
ITelly = (Te, Teyy, = ale, Tp) < Clely [Telly,

where C' = sup,, ey (0 %, so [T¢|,, < Cl¢|,. This proves that T € L(V) and
IT] vy < C. Conversely, for ¢,9 € V\ {0} we have

la(e, )| = KT, vl < | Tl el ]

e Finally, let T be the operator associated to the adjoint form q*. Let 1) € V. For all p € V
we have

(T, ) = (e, ¥) = a* (%, 9) = (T, ) = {p, TY).
This proves that T' = T*. O

Theorem 1.59 (Lax-Milgram). Let V be a Hilbert space. Let q be a continuous and coercive
sesquilinear form on V. Let T € L(V) be the corresponding operator. Then T is bijective and
HT_le:(v) < a1, where a is given by (1.7). In particular, if £ is a bounded semilinear form
on V there exists a unique o € V such that

Vw € V} q(Wﬂ/)) = <TS0£71/)> = E(z/))
Proof. « For ¢ € V we have

2
alelly, < lale, o)l = KT, o)yl < |Tely el

o)
ITely = alely - (1.9)

This proves in particular that 7" is injective with closed range (see Proposition 1.16). Now
let ¢ € Ran(T)*. In particular we have

0 = KT, )| = la(w, ¥)| = a ¢l
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so 1 = 0. Since Ran(T) is closed, this implies that Ran(T) = V. Thus T is bijective and by
(1.9) we have ”T_luz:(v) <al

e By the Riesz theorem there exists ¢ € V such that {¢,¢) = £(¢) for all ¢» € V. Then we
set o = T71C to get the last statement. O

Ezample 1.60. We consider on H'(R) the quadratic form
2
q:u— HUHiIl(R) = JR (| (2)]” + lu(z)|? ) da.

Let f € L2(R). There exists u € H'(R) such that
Vv e H (R), jR (v (2)V' () + w(z)v(z)) do = jR f(z)v(x) dz.

Example 1.61. We consider on H*(0, 1) the quadratic form

1
an s ues uld o) =L (| @) + Ju(@)?) de..

We have the same result as above.

Example 1.62. We consider on H (0, 1) the quadratic form
- 2
dp - u = HUHHl(o,U :

This is also a coercive form.

Ezample 1.63. We consider on H{(0,1) the quadratic form
ap s u = U720y

By the Poincaré inequality, qp is a coercive form on H}(0,1).

1.6 Exercises

Ezercise 1.1. We consider on ¢2(N*) the operator A defined by

Uy Uz us Uk
Ay, uz, g, - ., Uy - . :(o,f,f,—,...,—,...).
(g, 1z, g, s 2°4°°8 2k

1. Prove that A € £(¢?(N*)) and compute IA] £ o2 ) -
2. Compute o(A4).
3. Compute op(A).

Ezxercise 1.2. We define on R the function w defined by

1 f 0
wiey = {71 H>0
0 ifx<0

Then we consider on L?(R) the operator M,, of multiplication by w.
1. What is o(M,,) ?
2. What is 0,(M,,) ? For each eigenvalue A of M, give a corresponding eigenvector.

Ezercise 1.3. Let A€ L(E). Let P € C[X]. Prove that
a(P(4)) = {P(A),Aea(A)}.

Let A € o(A). There exists @ € C[X] such that P(X) — P(\) = Q(X)(X — \) =
(X = 2Q(X).

Ezercise 1.4. Let Il € L(H) be a projection of H (II? = II). Prove that II is an orthogonal
projection if and only if is selfadjoint.

14 J. Royer - Université Toulouse 3



SPECTRUM OF BOUNDED OPERATORS

Ezercise 1.5. For u = (uy)nez € (*(Z) we set
S( ey U—2,U_1,UQ, UL, U2, . . ) = ( ey U—1,Up, U, U2, U3y . -« )
1. Prove that this defines a unitary operator A on (2(Z).
2. Prove that o(S) cU={AeC : [N\ =1}.
3.Let A e U. For k € N we consider
u® = (..,0,0,1,\,A%,...,0F,0,0,...).

Compute [ul® HZQ(Z) and (S — A)ul® . Prove that A € o(95).

)HZ2(Z)

Ezercise 1.6. Let Ae L(H). Let U € L(H) be unitary. Prove that

o(U*AU) = 0(A) and o0,(U*AU) = o(A).

Ezxercise 1.7. We consider on KQ(Z) the operator Hy which maps the sequence u = (uy,)nez

to the sequence Hyu defined by
VneZ, (Hown=tpt1 + Up_1 — 2uny,.

1. Prove that Hy € L((%(Z)).

2. We denote by L?(S') the set of L?>-functions on the torus S! = R/27Z. Functions on S!

can also be seen as 27-periodic functions on R. For v € L%(S') we have
2 L[ 2
[olzzisn = 57 ] lols)l"ds

Given a sequence u = (U, )nez we define Ou € L2(S!) by

(Ou)(s) = Z Up e,

nez

Prove that © is a unitary operator from ¢2(Z) to L%(S!).
3. Prove that © Hy©~! is a multiplication operator on S*.
4. Compute the spectrum of © Hp©®~! and deduce the spectrum of Hy (use Exercise 1.6).
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