Chapter 3

Green Formula

The aim of this chapter is to give a proof to the Stokes Formula. this is a d > 2 di-
mensional generalization of the fundamental theorem of calculus which makes the link
between integrals and primitives in dimension 1. Our main motivation here is the Green
formula that generalizes the integration by parts.

As often, to compute integrals in d-dimensionnal spaces we use the Fubini Theorem
to compute integrales of dimension 1. For example, if we consider two functions u and
v of class C' on R?, with u or v compactly supported, we can see that

j (Ogyu)vde = J u (0, v) dz.

R2 R2

Indeed, for z5 € R fixed, using the integration by parts on R (there is no boundary term
since (uv)(-, x2) vanishes outside a compact of R)

j Oz, u(x1, x2)v(21, 22) dry = —f u(zy, x2)0z,v(21, x2) doy.
R R

To conclude, we now have to integrate this equality with respect to zo € R. This is in
fact valid in dimension d and for any of the partial derivatives.

Now we consider an open subset Q of R?. The previous reasonning still holds for
functions v and v of class C'! with at least one having a compact support in €. Since u
or v is null near the boundary of €, there is still no boundary terms in the integration
by part. Finally, the following result seems accessible.

Proposition 3.1. Let Q be an open set of R? and u,v be two factions of class C on
Q, with u or v compactly supported. Then for j € [1,d] we have

Jg(ﬁxju) vder = — JQ u (Og;v) da.

The trouble begins when we consider functions v and v which do not vanish near
the boundary. If we have a simple parametrization of the open set {2, we can apply the
same argument, with boundary terms. For example, if © is the open unit disc of R2,
then for any y €] — 1, 1[ we compute

1—y2
J Ozu(z,y)v(x,y) de
Tz=—1/1—y2
2

1—y
= (uw) (V1 —=y%y) — (w)(—/1—y%y) — J - u(z,y)0pv(z, y) dz.
z=—y/1-y
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Integrating with respect to y €] — 1, 1] we get

J dru(w,y)v(z,y)dz dy
Q

y=—1

= fl ((uv)( 1— yQ,y) — (uv)( — /1 -2, y)) dy — fju(m,y)&zv(a:, y) dz dy.
Q

The purpose of this chapter is to understand the first term of the right-hand side.
As expected, it involves the values of w and v on the unit circle of R?, which is the
boundary of 2. Thus, it is an integral on a circle.

More generally, a formula of integration by parts on an open set £ will necessarily
involve an integral on the boundary 02 of 2. We will only consider the convenient case
where 02 is a sufficiently regular submanifold of R%. As any set, a submanifold of R?
can be endowed with a structure of measured space and the corresponding integral. In
the first part of this chapter we will define the Lebesgue integral on submanifolds. The
specifications are the same as in the Euclidean space. The Lebesgue measure of a curve
should extend the notion of length, the Lebesgue measures of surfaces should extend the
notion of area, etc.

Once this work is done, we will state the integration by parts formula, where the
boundary term will be an integral on 02 endowed with this Lebesgue measure.

For k € Nu {00} we denote by C®(Q) the set of restrictions to the open set Q of C®
functions on R%. We denote by e = (eq,...,eq) the canonical basis of R

3.1 Lebesgue measure on a submanifolds of R?

3.1.1 Hypersurfaces of R?

Definition 3.2. Let S be a subset of R and k € N* U {o0}. S is said to be an
hypersurface of class C* if for any w € S there exists a neighbourhood V of w in R¢ and
amap F :V — R of class C* such that VF(w) # 0 and S n'V = F~1({0}).

Ezamples 3.3. o Let v € R {0}. Then the hyperplane H = Vect(v)" is a hypersur-
face of class C® in R%. For F we can consider the function which maps = to z - v
(in the neighbourhood of any w € H, the definition holds V = R%).

o We consider the sphere
Sdil:{xz(xl,...,xd)eRd|x%+~-+xfl=1}.

Then S9! is a hypersurface of class C* in RY (consider F : (x1,...,24) —
z? + - +x2—1). For any 7 > 0 we can similarly consider the sphere of radius r:

Sa=1 = {x: (ml,...,xd)eRd]x%+--~+x3:rQ}.
« Let O be an open set of R~ and ¢ be a function of class C* (k € N* U {o0}) from
O to R. The graph of ¢ is then
I'={(z,p(z') e O xR,a’ € O}.
It is a hypersurface of class C* in R?. To see this, consider

F{ OxR — R,
(z',2q) = xg—p(z').
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The case of the graph will be particularly comfortable for the coming calculations.
The Implicit Functions Theorem ensures that, locally in the neighborhood of each of its
points, any hypersurface can in fact be seen as a graph (up to a change of basis).

Definition 3.4. Let T' be a part of R? and k € N* U {o0}. T is said to be a graph of
class C* if there exists an orthonormal basis 3 = (81, ..., 3q) of R% an open set O of
R4 and a map ¢ : O — R of class C* such that I' is the graph of ¢ in R¢ endowed
with the basis 8. It means that I' is the image of O by

q) N { O - Rda
| (@, x9-1) = b+ F 241 Bam1 + (2, 2a—1)Bd

® is then said to be a parametrization of I'.

Proposition 3.5. Let k € N* U {o0}. A graph of class C* in R? is an hypersurface of
class C*.

Proof. With the notation of Definition 3.4 we set

d
V= {Z xjﬁj,(xl,...,azd_l) EO,xdER},

J=1

and for x € V and z1,...,24 € Rsuch that z = >, z;0; € V (the decomposition is unique)
we set

F(z) = xq—p(x1,...,0q-1).
Then F satisfies all the conditions of Definition 3.2. O

Proposition 3.6. Let S a hypersurface of R and w € S. There exists a neighbourhood
V of w in R? such that S NV is a graph.

Proof. Let V be a neighbourhood of w and F': V — R as given by Definition 3.2. There
exists j € [1,d] such that 0, F'(w) # 0. We construct an orthonormal basis (31, ..., 84)
of R? by reordering the vectors of the canonical basis (eq,...,e4) in such a way that
Ba = e;j. We then denote by (y1,...,yn) the coordinates of a point y € R? in this basis.
Thus we have 0,,F(w) # 0. By the Implicit Functions Theorem we get that, after
having reduced V if necessary, S NV is indeed a graph of class C* in R, O

Examples 3.7. « We consider the sphere S? of R3. S? is not a graph, but each half
of the sphere is a graph. For example, the half sphere

5% A {x = (z1, 29, 73) |23 > 0} (3.1)

is the graph of the map

¢+:{(D - (3.2)

x1,xe) +— 1 —af— x5

where we set D = {(ml,xg) eR?|z? + 23 < 1}. A graph is not necessarily the
graph of a function expressing its last coordinate with respect to the others. We
can also see the set

Sy ={zre S*|z <0}

as a graph, since

ST = {p—(x2,x3)e1 + x2e2 + x3€3, (T2, 23) € D}
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where
p—(r2,23) = —(1 — a3 — 23).
To be consistent with the framework of Definition 3.4, it suffices to change the
basis. Indeed, If we consider the basis 8 = (81, 82, 03) = (e, e3,e1) then we also
have
St =A{yn1B1 +y2B2 + o (Y1, y2) B3, (y1,92) € D} .

Proposition-Definition 3.8 (Tangent space and normal vector). Let ' be a C* graph.
Let 8, O, ¢ and ® be as in Definition 3.4. Let w € T’ and ' € O such that w = ®(x').

(i) The tangent space T,I' to T' at w is the image of the differential d,®. It is a
hyperplane of RY.

(ii) v € R? is said to be the normal vector to T' at w if it is orthogonal to T,T'. In
addition, v is said to be a unit vector if |v| = 1.

Proof. Let us prove that the definition of T3, " does not depend of the choice of (3, O, ¢).
Assume that 4 = (71,...,74) is an orthonormal basis of R?, that O is an open set of
R~ and that ¢ € Cl(@,R) is such that I' is also the graph of 1 in the basis «, that is
the image of ¥ : O — R?, where for y/ = (Y1,---,Yd—1) € O we have set

d—1
) =Yy + ()
j=1

This map V¥ is of class C'!' on O and realizes a bijection from O’ to I'. If we note II
the orthogonal projection of R? on the hyperplane generated by (71,...,7v4—1) (this is
a function of class C®), then the inverse of ® is the restriction to I' of II. We note
© = U~! o ®. This defines a bijection from O to O. Since we also have © = ITo ®, O is
of class C' on O. Let 2/ € O, w = ®(2') and 3 = O(z') = U1 (w) € O. We have

m(dy®) = Im (dy (¥ 0 0)) = Im (dy ¥ 0 dpy©) < Im(dy V).

We similarly see that Im(d,¥) < Im(dy®). Hence Im(dy®) = Im(d,¥), and the
definition of T;,I" does not depend of the choice of a parametrization. Moreover, the
subspace Im(d,/®) is generated by the vectors

o ., op )
- =3 + — 1<j<d-1,
G @) =B @B 1<
which are linearly independant, so T',I" has dimension d — 1. O

Remark 3.9. The two normal unit vectors to I' at w are given by

1 oy
v(w) = (Z —(2")B; — ﬁd) (3.3)
1+ [ V()2 721 9%

and its opposite —v(w).

Remark 3.10. We can prove that with the previous notation we have
det(d©) = det (0, ®(2'), ..., 0, , P(2'),7a). (3.4)

For j € [1,d] there exist aj1,...,a;q4 € R such that 3; = ZZ:1 a; 17k Then we have

d
ax] ( ) /Bj + axj Z Qaj k + accj )ad,k) Vs
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Hence

detW (ézl(b(x/)v R 6%171(1)(33/)7 ’Yd)

ai1 + ag10z, o(2') o ag—1,1 + ag10z, ,p(2') 0

_ : , : L (35)
ai,d—1 + agd—10z,9(x") ... ag—1,d-1 + @gda—10z, (') 0
aid + aqdlzn () ... ad—1,d + ad,q0z, () 1

On the other hand for ' € @ we have

d—1
O(a) = ). wiBy + p(a')Ba
j=1
d—1 d d
=), Zj Z aj ke + o) Z ad kVk
j=1 k=1 k=1
d [d—1
=) (Z Tjajk + so(lfl)ad,k> Vs
k=1 \j=1
So if we note y' = O(z’) then for k € [1,d — 1] we have
d—1
Yr = Z Tjaj ) + go(a:')achk.
j=1
Hence
a1 + ad’lam(p(xl) ... aq—1,1 + ad’laxd_l
det(d0©) = : : (3.6)
aid—1+ aga—10z,9(2") ... ag—1d4-1+ add—10z, ,

Expanding (3.5) with respect to the last column, we get that (3.5) and (3.6) coincide,
which proves (3.4).
3.1.2 Lebesgue measure on a hypersurface

In this section we define the Lebesgue measure of a hypersurface of R?. This generalizes
the notion of lenghth for a curve in R? and of are for a surface in R3. We could similarly
define the Lebesgue measure for a submanifolds of R? of any dimension (for example,
the length of a curve in R3).

Exercise 2. Prove that the Lebesgue measure of a hypersurface of R? is always 0.

We begin with the definition of the Borel sigma algebra of a hypersurface. We
consider on S the topology induced by the usual topology of R%. It means that the open
sets of S can be written as S n O where O is an open set of R?. We can then endow S
with the corresponding Borel sigma algebra B(S) . Then we can check (exercise) that

B(S) = {s n B, BeBRY}.
The following proposition implies that we also have

B(S) = {BeB(RdHB c s}.
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Proposition 3.11. Let S be a hypersurface of class C' in R?. Then S is a Borel set
of R%.

Proof. Let B = S\S. If B = ¢, then S is closed. In particular, it is a Borel set. If
B # & then for n € N* we set
. 1
Sp = {x € S|dist(x, B) > }
n
Then S, is closed in R? for any n € N*. Since S = U, en# Sn, we get that S is a Borel
set of R%. O

Let us now define the measure of a graph. Using proposition 3.6, we will then extend
this to more general hypersurfaces.

Proposition-Definition 3.12. Let T be a graph of class C* in R%. Let 3, O, ¢ and ®
be as in Definition 3.4.

(i) Let B be a Borel set of T and B' = ®~1(B). We set

B) = | 1+ |Ve(a)|*da'.
B

This defines a measure o on I' that does not depend of the choice of B, O, ¢ and
.

(ii) Let f be a measurable function from S NV to [0,+w]|. The integral of f with
respect to the measure o is given by

| rao= | s+ esy 1 Ve o (3.7
SNy (@
where for ' = (x1,...,x4-1) we set

B =z + g 1B

(iii) If f : S 0V — C is integrable, then its integrale is also defined by (3.7).

Proof. We leave as an exercise the fact that o is a measure on (I', B(I')) and we prove
that it does not depend of the choice of 3, O, ¢ and ®. We consider v, O, ¢ and ¥ as
in the proof of Proposition-Definition 3.8. Let B be a Borel set of I', B’ = ®~1(B) and
B’ = U~1(B). Applying Remark 3.9 with 1 we have

[~ gty

We us the change of variables ¢y’ = ©(z’), where © is defined as in Proposition-Definition
3.8. Now using (3.4), this gives

f L+ [V (y) | dy' —J |\det(ax1<1>( )y 0y @(2),7a)| .

Since v(®(z')) is orthogonal to the hyperplan generated by the vectors 0., ®(2), 1 <
j < d—1, the properties of the determinant give

|det (8361(1)(56'), e 8%_1@(9:'), 'yd)|
= [v(®(2")) - 74 |det (04, R(2'), ..., Ony_, P(2), (®(2")))].
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We have an analoguous property with 74 replaced by 4. Applying successively these
two equalities we get

f 1+ [V (y))? dy/ —f |\det (02, @(2"), ..., Oy, ®(2), Bg)| da’.

Observing that this last determinant is just 1, and using Remark 3.9 one more time, we

finally get that
[ Vv Ray = | v

This ensures that the definition of o(B) does not depend of the choice of the represen-
tation of I'. O]

Proposition-Definition 3.13. Let S be a hypersurface of class C' in R? and K a
compact part of S (if S is compact, we can choose K = S). Let N € N and Vi,...,Vy
be open sets of R® such that K < ngl Vn and S 0V, is a gmph of class C' for any
n e [1,N]. We consider x1,...,xn € CP(R%[0,1]) such that Y_ xn =1 on K and
supp(xn) € Vy, for any n € [1,N]. Let f be a measurable function from K to R. We
assume that f takes positive values or that

ZJ Xn | f] do < +c0.
KnV,

Then we set

f fdo = Z Lmvn ynf do.

Taking for f the characteristic function of a Borel set of S included in K, this defines
in particular a measure on K.

We can check that the definition of the measure ¢ on K does not depend of the
choice of the open sets V,,, 1 < n < N, or of the partition of unity (xn)i<n<n-

Proposition-Definition 3.14. Let S be a hypersurface of class C' in R%. There exists
a non decreasing sequence (Ky), . of compact parts of S (for the inclusion) such that
S = Upneny Kn. Forn e N we denote by o, the measure on K, as defined in Proposition
3.13. Then for B € B(S) we set

o(B) = nLiIEoo on(B N Ky).

This defines a measure on o sur S, called Lebesgue measure on S.

We can check if this definition is licit, it does not depend of the choice of the sequence
(Kpn)pens and it indeed defines a measure on (S, B(S5)).

Example 3.15. We consider in R? the circle Cp of center 0 and radius R > 0. We look
for the measure (here the length) of the right half circle

Ch = {(«/Rz—yz,y),y €] —R,R[}.

For y €] — R, R[ we set ¢(y) = 1/R? — y2. Then ¢ is of class C* and for y €] — R, R|

we have
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Then we have

) R y? R R R 1
o(Ch) = 1+ y—f dy—f dy
1
1
=R dn = RJarcsin(n)]_, = 7R
1 1—77

Example 3.16. We consider the sphere Sg of radius R > 0 in R?. We compute the area
of the top half of the sphere defined as in (3.1). It is the graph of the function ¢}

defined by
@E(:Ul,:cg) =4/R? — 2% — 22,

for (21, x2) in the disc D(0, R) centered at 0 and of radius R in R?. For (z1,22) € D(0, R)
we have
a1 + o3

+ 2___ Ty
||V@R(x17x2)” - R2 o (ZL’% +«T%)’

hence, using the polar coordinate system,

f xl +:1c2 dx1dag = 27TJ -5 57
D(0,R) ) 27
- ,/7 - /P2 _ .2
QWL r 22 dr 27TR[ R T ]0

=2 R2.

Ezercise 3. Prove that the Lebesgue measure of the sphere of radius R is 47w R2.

We could give a general change of variables theorem between submanifolds, but we
only discuss an important example. For » > 0 we denote by B, and S, the open ball
and the sphere centered at 0 and with radius r, and by o, the Lebesgue measure o,.

Proposition 3.17. Let r > 0 and let f be an integrable function on S,. Then the
function y — f(ry) is integrable on S1 and

f f(x) doy(x) = ro! f F(ry) do ().
€Sy yeSt

Proof. Assume for instance that f vanishes outside
St ={z=(z1,...,24) €Sy : x4 > 0}.

We can similarly consider the case where f vanishes outside any half-sphere and deduce
the general case. The interest of this assumption is that S;f is a graph. With the
notation of Definition 3.4 we can take

Op = {2’ = (z1,...,2a-1) : |2/| <7}

and @, : 2 — /72— |2/|>. Then we denote by ®, : O, — S; the corresponding
parametrization. We similarly define O1, ¢1 et ®1. Then we have O, = rO; and for
x' € O, we have ¢, (2') = rpi(2'/r) and @, (2") = r®1(a’/r). By the change of variables
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' =ry, dr’ = r¥1dy’, we have

f f(z)do(z) =

r

The conclusion follows. O

We now discuss an analog of polar coordinates in any dimension.

Proposition 3.18. Let R > 0 and let f be an integrable function on Bgr. Then the
function w — f(rw) is integrable on Sy for almost all r €]0, R| and

R R
(z)dz = f rdlf flrw)doi(w)dr = f J f(z)doy(x).
Br r=0 weS1 r=0 Jxz€eS,
Proof. As in the previous proof we consider the case where f vanishes outside
Bf ={x = (21,...,24) € B : x4 > 0}.

We use the notation S;", O and ®; of the previous proof. For r €]0, R[ and 3’ € 01 we
set W(r,y’) = r@(y’'). This defines a bijection ¥ of class C! from ]0, R[xO; to B}, and
for (r,y') €]0, R[x O we have

d—1
T _
et = g = VP
1—1y]

By the Inverse Function Theorem we deduce that U is a C'-diffeomorphism. By the
change of variables theorem and the Fubini Theorem we get

f() da = f f F((r, o)) [Tac(r, )| dA(r, o)

]07R[><01

R 2

j R+ V) dr
r= 1

R
f—o rd= | f(rw) doy (w) dr.

S1

+
Bg

This gives the first equality. The second is given by Proposition 3.17. 0

3.2 Stokes Formula - Green Formula

3.2.1 Regular open sets of R?

Definition 3.19 (Open set of class C*). Let 2 be an open set of R, Then 2 is said to
be of class CF if for any w € 02 there exists an orthonormal basis 8 = (81, ..., 84), an
open set O of R™! a,be R with a < b and a map ¢ : O —]a, b[ of class C* such that

d
V= {Z r;B;, (z1,...,24-1) € O, 24 €]a, b[}
j=1
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is a neighbourhood of w in R% and

d
QnY = {2 ziBj, (x1,...,24-1) € O,zq € |p(z1, .. .,xdl),b[} )
=1
We then have

d
NNV = {ijﬁja(xlv-“aznd—l)eOvl‘d :So(xlv""xd—l)}'

j=1

In particular, 0S) is a hypersurface of class C* in R?. The outward normal unit vector
on 0N is the vector v defined by (3.3).

Remark 3.20. An open set whose boundary is a hypersurface of class C* is not necessarily
an open set of class C*. Consider for example in R? the open set Q = R?\H where
H = {(x1,0),2; € R}. Then we have 0Q2 = H, and H is a hypersurface of class C®, but
Q is not an open set of class C® because (2 is on both sides of its boundary.

3.2.2 Vector fields - Divergence operator
Let © be an open set of R%.

Definition 3.21. Let k € N* U{o0}. A vector field of class C* on 2 is a map X : Q — R?
of class C*. We call vector field of class C* on Q the restriction to Q of a vector field of
class C* on R,

Definition 3.22. Let X be a vector field of class C' on Q. We note X1,..., X, the
coordinates of X In the canonical basis. The divergence of X is then the function

) d
%ZZVX]'-GJ'.

ox; a

d
div(X) = ]
j=1

The following proposition proves that the divergence of a vector field does not depend
of the choice of an orthonormal basis on R¢,

Proposition 3.23. Let X = (X1,...,Xy) be a vector field of class C* on Q and 3 =
(B1,...,Bq) an orthonormal basis on RY. We denote by Y1, ..., Yy the coordinates of X
in the basis 5. Then we have

d
div(X) = > VY - By
k=1

If we denote by y = (y1,...,yq) the coordinates of a point in the basis [ this can also be
written

d
Y}

div(x) = 3 &E,
=1 Yk

Proof. For k € [1,d] there exist a1, ...,aqk € R such that 5, = Z;-lzl aj pej. Then we
have

d d d d [/ d
X = Z Y.01 = Z Yiajre; = Z (Z Oéj,kYk> €j,
k=1 k=1j=1 j=1 \k=1
so for j € [1,d] we have
d
Xj = Z Olj,kYk‘

k=1
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We then have

d d d d d d
Z VYk : ﬂk = Z VYk : (Z aj,kej> = Z v (Z aj,kYk> cej = Z VX]‘ t€j.
k=1 k=1 Jj=1

=1 =1

3.2.3 Stokes formula

We are now in position to prove the Stokes formula, which is an analogue in dimension
d = 2 of the fundamental theorem of calculus. Indeed, if we apply the following theorem
for an interval ]a, b and to the vector field x — f(x)e;, where f is a function of class
C! on [a,b] and e; is the vector of the canonical base of R (of course we do not state it
like this in dimension 1), we get!

b
| 7@ = 10 - fa).
Theorem 3.24 (Stokes Formula). Let Q be an open set of class C* in RY. We denote

by v the outward unit normal vector on 0Q. Let X be a vector field of class C' with
compact support in 2. Then we have

L div(X) dz = L (X ) do,

where o is the Lebesgue measure on 05).

Proof. e For any w € 9 we consider a neigbourhood V,, of w in R? as in Definition
3.19. There exist N € N and wy, ..., wy € 0f2 such that

N
supp(X) c Qu U Vi, -
k=1

We consider an associated partition of unity xo, x1,- .-, x~, With supp(xo) < © and
supp(xx) € Vu, for all k € [1, N]. Assume that

Vk € [0, NJ, JQ div(xxX) de = LQ (xxX) -vdo. (3.8)

Then we have

L div(X) do = I:Z_V% L i div(X

On the one hand we have

N N
ZJ vXk-de:f V(Zm) X dz =0,
k=0 L k=0

and on the other hand, according to (3.8),

N N
EJ div(ypX) dz = ZJ (xxX)-vdo=| X vdo
k=07 k=0 0%

N
ZJ div(xxX) dx— JvXk X da.
k=0

o0

lin dimension 0 the Lebesgue measure coincides with the counting measure. . .
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This gives the result. It remains to prove (3.8). For k = 0, since xoX is compactly
supported we can apply Proposition 3.1.

o Let w e 0f2. With the notation intoduced in Definition 3.19, we suppose that X has
its support included in Q N V. We denote by X1,..., X4 :V — R the coordinates of X
in the basis 5. Using the change of variables (y',yq) € Ox]a,b[— ¥/ + y4fa (whose
determinant is 1) we have

VX, Byde = f Xl B + yaBa) dyady/
y'eO Jy

VnQ 4= soy)a?/d

- | Xatws + e 0y
Now let j € [1,d — 1]. We extend X by 0 on R? and for 3’ € O and t €]0, b[ we set
h(y' ) = X; (/B + (t + ¢(y))Ba)-
This defines a function h € C1(0x]0,b[). For y' € O and t €]0,b[ we have
Oy, h(y' 1) = VX;(y'B' + (t+0()Ba) - Bi + Oyp(y )V X (/' B+ (t + 0(y')Ba) - Ba-

We deduce that

b
VX, B de = f f VX (4B + (t+ o(y))Ba) - B; dt dy

VnQ

J fay]hy 1) dt dy’ —f f 0, 0@ )VX; (4B + (¢ + o(y))Ba) - Badt da’

JJ@ hxtdxdt—f&x ( dX(yB +(t+ oy /))Bd)dt>dx’
i¥ dt
= L X ('8 + ¢(y)Ba) Oy p(a') da”.
Summing over j € [1,d] we get with (3.3)

f div(X) dz — f (X -0) (B + o()Ba)\/1 + [Vep(a) |2 da’ = f X - vdo.
% @ o2
This proves (3.8) and concludes the proof. O

3.2.4 Green Formula

We now deduce from the Stokes Formula the Green Formula, which is an analogue in
dimension d > 2 of the integration by parts. In the following theorem we assume that
one of the factors has compact support in € to ensure that the integrals are well defined
even in the case where € is not bounded, but this does not prevent the two functions
from being nonzero in the neighborhood of 0f2.

Theorem 3.25. Let ) be an open set of class C' and u,v € C*(Q) with u or v compactly
supported in Q. For j € [1,d] we have

f Jjuvdr = —J uajvdx—i-f uv v;do,
Q Q oN

where v; = v - e; is the j-th coordonnate of v in the canonical basis of R,
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Proof. For x € Q we set X (x) = u(x)v(z)e;. For any x € Q we have
div(X)(z) = 0j(uwv)(x) = dju(z)v(z) + u(z)djv(x).

Moreover, for x € 0§2 we have X (x)-v(z) = u(x)v(z)v;(x). We conclude with the Stokes
Theorem. O

For u € C'(Q) and z € 02 we set

ou

E(ZE) = Vu(z) - v(z).

Theorem 3.26. Let Q be an open set of class C' and u,v € C?(Q) with u or v compactly
supported in Q. Then we have

—f Auvd:czf Vu-Vvda:—f a—uvda.
Q Q oq OV

Proof. By Theorem 3.25 we have, for any j € [1,d],
—J 8]2-uvda: = J oju djvdx — djuvv;do.
Q Q o0

We conclude by summing over j € [1,d]. O

Corollary 3.27. Let ) be an open set of class C* and u,v € C%(Q) with u or v compactly
supported in Q. Then we have

ov  Jdu
JQ (uAv — Auv)dz = LQ (u(?y - (9yv> do.

Ezample 3.28. Let u,v € C*(B;). Then we have

Vu(z)v(z)de = JES u(z)v(z)rdo(z) — f u(z)Vu(zr) dz.

B1 Bl

If u e C%(B;) we also have

Au(z)v(z)de = f oru(x)v(z)do(x) — Vu(z) - Vou(z) dz,
B1 27651 Bl
where 0,u(x) = Vu(x) - % is the radial derivative of w.

|z]
Ezxample 3.29. For ¢ € C(R?) and j € [1,d] we have

i

— fRd |z| 0;¢(x) do = fRd 2] o(z) dx. (3.9)

The function z ~— |z| is of class C® on R%\ {0} and its derivative with respect to z; is
%. However, (3.9) is not a direct consequence of the Green Formula because of the lack
of regularity at 0.

By the dominated convergence theorem we have

- f |z] 0jp(x) do = — lim |z| 0j¢(x) da.
R4 €20 Jiz|>e
For € > 0 we have by the Green Formula
s
| oe@dr =~ [ ldetm@ ot + [ o
|z|>e z€S. lz|>e ||
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where v(z) = —Z is the outward normal unit vector to R4\ B.. Then we have

< 20:(8) [l —5> 0.

f 2] $(x)v; (x) do ()
TES:

On the other hand, by the dominated convergence theorem we have
Ly Lj
f|m|>a |£L‘| >0 Jpa |33|

This proves (3.9).

The following computation will be useful to study in the next chapter the Poisson
equation —Awu = f in dimension d > 3.

Ezample 3.30. Assume that d > 3. We prove that for ¢ € CL(RY) we have
~ [ ol a0(a) do = (d = 2o(51)0(0). (3.10)
Rd

The function u : z — |z|~@"? is of class C® on R?\ {0}. We recall that the Laplacian
of a radial function is given in spherical coordinates by

AGH) = L2 ('rQaG(T)>.

r2or or
Here we see that Au = 0 on R\ {0}. The function z — |2/*~¢ is locally integrable on
R?. By the dominated convergence theorem and the change of variables z = ey we have
1 1

f LA¢($) dz = lim WA¢(.’L’) dz = lim
R

Ade(y) dx.
a || 0 Jiajse |2 =0 Jyisn |yl4 2

where for £ > 0 and y € R? we have set ¢.(y) = ¢(cy). By the Green Formula we get

1 ) .
fRd prate) de = lim I = lim J,

where for € > 0 we have set

1 0¢. o 1
=1 [y|"> oV =1 o[y

We have

0¢
I. = Efy|=1 g(ey) do - 0,

and by the dominated convergence theorem

Jo=—(d- 2>j| o= —(d-2) f be(y) do — —(d — 2)0(51)(0).

yl=1 |yl lyl=1 e=0

The conclusion follows.
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