
Chapter 3

Green Formula

The aim of this chapter is to give a proof to the Stokes Formula. this is a d ě 2 di-
mensional generalization of the fundamental theorem of calculus which makes the link
between integrals and primitives in dimension 1. Our main motivation here is the Green
formula that generalizes the integration by parts.

As often, to compute integrals in d-dimensionnal spaces we use the Fubini Theorem
to compute integrales of dimension 1. For example, if we consider two functions u and
v of class C1 on R2, with u or v compactly supported, we can see that

ż

R2
pBx1uq v dx “ ´

ż

R2
u pBx1vq dx.

Indeed, for x2 P R fixed, using the integration by parts on R (there is no boundary term
since puvqp¨, x2q vanishes outside a compact of R)

ż

R
Bx1upx1, x2qvpx1, x2q dx1 “ ´

ż

R
upx1, x2qBx1vpx1, x2q dx1.

To conclude, we now have to integrate this equality with respect to x2 P R. This is in
fact valid in dimension d and for any of the partial derivatives.

Now we consider an open subset Ω of Rd. The previous reasonning still holds for
functions u and v of class C1 with at least one having a compact support in Ω. Since u
or v is null near the boundary of Ω, there is still no boundary terms in the integration
by part. Finally, the following result seems accessible.

Proposition 3.1. Let Ω be an open set of Rd and u, v be two fnctions of class C1 on
Ω, with u or v compactly supported. Then for j P �1, d� we have

ż

Ω
pBxj uq v dx “ ´

ż

Ω
u pBxj vq dx.

The trouble begins when we consider functions u and v which do not vanish near
the boundary. If we have a simple parametrization of the open set Ω, we can apply the
same argument, with boundary terms. For example, if Ω is the open unit disc of R2,
then for any y Ps ´ 1, 1r we compute

ż ?
1´y2

x“´
?

1´y2
Bxupx, yqvpx, yq dx

“ puvq`a
1 ´ y2, y

˘ ´ puvq` ´
a

1 ´ y2, y
˘ ´

ż ?
1´y2

x“´
?

1´y2
upx, yqBxvpx, yq dx.
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Integrating with respect to y Ps ´ 1, 1r we get
ĳ

Ω

Bxupx, yqvpx, yq dx dy

“
ż 1

y“´1

´
puvq`a

1 ´ y2, y
˘ ´ puvq` ´

a
1 ´ y2, y

˘¯
dy ´

ĳ

Ω

upx, yqBxvpx, yq dx dy.

The purpose of this chapter is to understand the first term of the right-hand side.
As expected, it involves the values of u and v on the unit circle of R2, which is the
boundary of Ω. Thus, it is an integral on a circle.

More generally, a formula of integration by parts on an open set Ω will necessarily
involve an integral on the boundary BΩ of Ω. We will only consider the convenient case
where BΩ is a sufficiently regular submanifold of Rd. As any set, a submanifold of Rd

can be endowed with a structure of measured space and the corresponding integral. In
the first part of this chapter we will define the Lebesgue integral on submanifolds. The
specifications are the same as in the Euclidean space. The Lebesgue measure of a curve
should extend the notion of length, the Lebesgue measures of surfaces should extend the
notion of area, etc.

Once this work is done, we will state the integration by parts formula, where the
boundary term will be an integral on BΩ endowed with this Lebesgue measure.

For k P NY t8u we denote by C8pΩq the set of restrictions to the open set Ω of C8
functions on Rd. We denote by e “ pe1, . . . , edq the canonical basis of Rd.

3.1 Lebesgue measure on a submanifolds of Rd

3.1.1 Hypersurfaces of Rd

Definition 3.2. Let S be a subset of Rd and k P N˚ Y t8u. S is said to be an
hypersurface of class Ck if for any w P S there exists a neighbourhood V of w in Rd and
a map F : V Ñ R of class Ck such that ∇F pwq ‰ 0 and S X V “ F ´1pt0uq.
Examples 3.3. • Let ν P Rdz t0u. Then the hyperplane H “ VectpνqK is a hypersur-

face of class C8 in Rd. For F we can consider the function which maps x to x ¨ ν
(in the neighbourhood of any w P H, the definition holds V “ Rd).

• We consider the sphere

Sd´1 “
!

x “ px1, . . . , xdq P Rd | x2
1 ` ¨ ¨ ¨ ` x2

d “ 1
)

.

Then Sd´1 is a hypersurface of class C8 in Rd (consider F : px1, . . . , xdq ÞÑ
x2

1 ` ¨ ¨ ¨ ` x2
d ´ 1). For any r ą 0 we can similarly consider the sphere of radius r:

Sd´1
r “

!
x “ px1, . . . , xdq P Rd | x2

1 ` ¨ ¨ ¨ ` x2
d “ r2

)
.

• Let O be an open set of Rd´1 and ϕ be a function of class Ck (k P N˚ Y t8u) from
O to R. The graph of ϕ is then

Γ “ �px1, ϕpx1qq P O ˆ R, x1 P O
(

.

It is a hypersurface of class Ck in Rd. To see this, consider

F :
"

O ˆ R Ñ R,
px1, xdq ÞÑ xd ´ ϕpx1q.
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The case of the graph will be particularly comfortable for the coming calculations.
The Implicit Functions Theorem ensures that, locally in the neighborhood of each of its
points, any hypersurface can in fact be seen as a graph (up to a change of basis).

Definition 3.4. Let Γ be a part of Rd and k P N˚ Y t8u. Γ is said to be a graph of
class Ck if there exists an orthonormal basis β “ pβ1, . . . , βdq of Rd, an open set O of
Rd´1 and a map ϕ : O Ñ R of class Ck such that Γ is the graph of ϕ in Rd endowed
with the basis β. It means that Γ is the image of O by

Φ :
"

O Ñ Rd,
px1, . . . , xd´1q ÞÑ x1β1 ` ¨ ¨ ¨ ` xd´1βd´1 ` ϕpx1, . . . , xd´1qβd.

Φ is then said to be a parametrization of Γ.

Proposition 3.5. Let k P N˚ Y t8u. A graph of class Ck in Rd is an hypersurface of
class Ck.

Proof. With the notation of Definition 3.4 we set

V “
#

dÿ

j“1
xjβj , px1, . . . , xd´1q P O, xd P R

+
,

and for x P V and x1, . . . , xd P R such that x “ ř
xjβj P V (the decomposition is unique)

we set
F pxq “ xd ´ ϕpx1, . . . , xd´1q.

Then F satisfies all the conditions of Definition 3.2.

Proposition 3.6. Let S a hypersurface of Rd and w P S. There exists a neighbourhood
V of w in Rd such that S X V is a graph.

Proof. Let V be a neighbourhood of w and F : V Ñ R as given by Definition 3.2. There
exists j P �1, d� such that Bxj F pwq ‰ 0. We construct an orthonormal basis pβ1, . . . , βdq
of Rd by reordering the vectors of the canonical basis pe1, . . . , edq in such a way that
βd “ ej . We then denote by py1, . . . , ynq the coordinates of a point y P Rd in this basis.
Thus we have Byd

F pwq ‰ 0. By the Implicit Functions Theorem we get that, after
having reduced V if necessary, S X V is indeed a graph of class Ck in Rd.

Examples 3.7. • We consider the sphere S2 of R3. S2 is not a graph, but each half
of the sphere is a graph. For example, the half sphere

S2 X tx “ px1, x2, x3q | x3 ą 0u (3.1)

is the graph of the map

ϕ` :
"

D Ñ R
px1, x2q ÞÑ 1 ´ x2

1 ´ x2
2

(3.2)

where we set D “ �px1, x2q P R2 | x2
1 ` x2

2 ă 1
(
. A graph is not necessarily the

graph of a function expressing its last coordinate with respect to the others. We
can also see the set

S´
1 “ �

x P S2 | x1 ă 0
(

as a graph, since

S´
1 “ tϕ´px2, x3qe1 ` x2e2 ` x3e3, px2, x3q P Du
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where
ϕ´px2, x3q “ ´p1 ´ x2

2 ´ x2
3q.

To be consistent with the framework of Definition 3.4, it suffices to change the
basis. Indeed, If we consider the basis β “ pβ1, β2, β3q “ pe2, e3, e1q then we also
have

S´
1 “ ty1β1 ` y2β2 ` ϕ´py1, y2qβ3, py1, y2q P Du .

Proposition-Definition 3.8 (Tangent space and normal vector). Let Γ be a C1 graph.
Let β, O, ϕ and Φ be as in Definition 3.4. Let w P Γ and x1 P O such that w “ Φpx1q.

(i) The tangent space TwΓ to Γ at w is the image of the differential dxΦ. It is a
hyperplane of Rd.

(ii) ν P Rd is said to be the normal vector to Γ at w if it is orthogonal to TwΓ. In
addition, ν is said to be a unit vector if }ν} “ 1.

Proof. Let us prove that the definition of TwΓ does not depend of the choice of pβ, O, ϕq.
Assume that γ “ pγ1, . . . , γdq is an orthonormal basis of Rd, that Õ is an open set of
Rd´1 and that ψ P C1pÕ,Rq is such that Γ is also the graph of ψ in the basis γ, that is
the image of Ψ : Õ Ñ Rd, where for y1 “ py1, . . . , yd´1q P Õ we have set

Ψpy1q “
d´1ÿ

j“1
yjγj ` ψpy1qγd.

This map Ψ is of class C1 on O1 and realizes a bijection from O1 to Γ. If we note Π
the orthogonal projection of Rd on the hyperplane generated by pγ1, . . . , γd´1q (this is
a function of class C8), then the inverse of Φ is the restriction to Γ of Π. We note
Θ “ Ψ´1 ˝ Φ. This defines a bijection from O to Õ. Since we also have Θ “ Π ˝ Φ, Θ is
of class C1 on O. Let x1 P O, w “ Φpx1q and y1 “ Θpx1q “ Ψ´1pwq P Õ. We have

Impdx1Φq “ Im
`
dx1pΨ ˝ Θq˘ “ Im

`
dy1Ψ ˝ dx1Θ

˘ Ă Impdy1Ψq.
We similarly see that Impdy1Ψq Ă Impdx1Φq. Hence Impdx1Φq “ Impdy1Ψq, and the
definition of TwΓ does not depend of the choice of a parametrization. Moreover, the
subspace Impdx1Φq is generated by the vectors

BΦ
Bxj

px1q “ βj ` Bϕ

Bxj
px1qβd, 1 ď j ď d ´ 1,

which are linearly independant, so TwΓ has dimension d ´ 1.

Remark 3.9. The two normal unit vectors to Γ at w are given by

νpwq “ 1b
1 ` }∇ϕpx1q}2

˜
d´1ÿ

j“1

Bϕ

Bxj
px1qβj ´ βd

¸
(3.3)

and its opposite ´νpwq.
Remark 3.10. We can prove that with the previous notation we have

detpdx1Θq “ det
`Bx1Φpx1q, . . . , Bxd´1Φpx1q, γd

˘
. (3.4)

For j P �1, d� there exist aj,1, . . . , aj,d P R such that βj “ řd
k“1 aj,kγk. Then we have

Bxj Φpx1q “ βj ` Bxj ϕpx1qβd “
dÿ

k“1

`
aj,k ` Bxj ϕpx1qad,k

˘
γk,
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Hence

detγ

`Bx1Φpx1q, . . . , Bxd´1Φpx1q, γd

˘

“

����������

a1,1 ` ad,1Bx1ϕpx1q . . . ad´1,1 ` ad,1Bxd´1ϕpx1q 0
...

...
...

a1,d´1 ` αd,d´1Bx1ϕpx1q . . . ad´1,d´1 ` αd,d´1Bxd´1ϕpx1q 0
a1,d ` ad,dBx1ϕpx1q . . . ad´1,d ` ad,dBxd´1ϕpx1q 1

����������

(3.5)

On the other hand for x1 P O we have

Φpx1q “
d´1ÿ

j“1
xjβj ` ϕpx1qβd

“
d´1ÿ

j“1
xj

dÿ

k“1
aj,kγk ` ϕpx1q

dÿ

k“1
ad,kγk

“
dÿ

k“1

˜
d´1ÿ

j“1
xjaj,k ` ϕpx1qad,k

¸
γk,

So if we note y1 “ Θpx1q then for k P �1, d ´ 1� we have

yk “
d´1ÿ

j“1
xjaj,k ` ϕpx1qad,k.

Hence

detpdx1Θq “
�������

a1,1 ` ad,1Bx1ϕpx1q . . . ad´1,1 ` ad,1Bxd´1
...

...
a1,d´1 ` ad,d´1Bx1ϕpx1q . . . ad´1,d´1 ` ad,d´1Bxd´1

�������
. (3.6)

Expanding (3.5) with respect to the last column, we get that (3.5) and (3.6) coincide,
which proves (3.4).

3.1.2 Lebesgue measure on a hypersurface
In this section we define the Lebesgue measure of a hypersurface of Rd. This generalizes
the notion of lenghth for a curve in R2 and of are for a surface in R3. We could similarly
define the Lebesgue measure for a submanifolds of Rd of any dimension (for example,
the length of a curve in R3).

Exercise 2. Prove that the Lebesgue measure of a hypersurface of Rd is always 0.

We begin with the definition of the Borel sigma algebra of a hypersurface. We
consider on S the topology induced by the usual topology of Rd. It means that the open
sets of S can be written as S X O where O is an open set of Rd. We can then endow S
with the corresponding Borel sigma algebra BpSq . Then we can check (exercise) that

BpSq “
!

S X B, B P BpRdq
)

.

The following proposition implies that we also have

BpSq “
!

B P BpRdq | B Ă S
)

.
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Proposition 3.11. Let S be a hypersurface of class C1 in Rd. Then S is a Borel set
of Rd.

Proof. Let B “ SzS. If B “ H, then S is closed. In particular, it is a Borel set. If
B ‰ H then for n P N˚ we set

Sn “
"

x P S | distpx, Bq ě 1
n

*
.

Then Sn is closed in Rd for any n P N˚. Since S “ Ť
nPN˚ Sn, we get that S is a Borel

set of Rd.

Let us now define the measure of a graph. Using proposition 3.6, we will then extend
this to more general hypersurfaces.

Proposition-Definition 3.12. Let Γ be a graph of class C1 in Rd. Let β, O, ϕ and Φ
be as in Definition 3.4.

(i) Let B be a Borel set of Γ and B1 “ Φ´1pBq. We set

σpBq “
ż

B1

b
1 ` }∇ϕpx1q}2 dx1.

This defines a measure σ on Γ that does not depend of the choice of β, O, ϕ and
Φ.

(ii) Let f be a measurable function from S X V to r0, `8s. The integral of f with
respect to the measure σ is given by

ż

SXV
f dσ “

ż

O
f

`
x1β1 ` ϕpx1qβd

˘b
1 ` }∇ϕpx1q}2 dx1, (3.7)

where for x1 “ px1, . . . , xd´1q we set

x1β1 “ x1β1 ` ¨ ¨ ¨ ` xd´1βd´1.

(iii) If f : S X V Ñ C is integrable, then its integrale is also defined by (3.7).

Proof. We leave as an exercise the fact that σ is a measure on pΓ, BpΓqq and we prove
that it does not depend of the choice of β, O, ϕ and Φ. We consider γ, Õ, ψ and Ψ as
in the proof of Proposition-Definition 3.8. Let B be a Borel set of Γ, B1 “ Φ´1pBq and
B̃1 “ Ψ´1pBq. Applying Remark 3.9 with ψ we have

ż

B̃1

b
1 ` }∇ψpy1q}2 dy1 “

ż

B̃1

1
|νpΨpy1qq ¨ γd| dy1.

We us the change of variables y1 “ Θpx1q, where Θ is defined as in Proposition-Definition
3.8. Now using (3.4), this gives

ż

B̃1

b
1 ` }∇ψpy1q}2 dy1 “

ż

B1

1
|νpΦpx1qq ¨ γd|

ˇ̌
det

`Bx1Φpx1q, . . . , Bxd´1Φpx1q, γd

˘ˇ̌
dx1.

Since νpΦpx1qq is orthogonal to the hyperplan generated by the vectors Bxj Φpx1q, 1 ď
j ď d ´ 1, the properties of the determinant give

ˇ̌
det

`Bx1Φpx1q, . . . , Bxd´1Φpx1q, γd

˘ˇ̌

“ ˇ̌
νpΦpx1qq ¨ γd

ˇ̌ ˇ̌
det

`Bx1Φpx1q, . . . , Bxd´1Φpx1q, νpΦpx1qq˘ˇ̌
.
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We have an analoguous property with γd replaced by βd. Applying successively these
two equalities we get

ż

B̃1

b
1 ` }∇ψpy1q}2 dy1 “

ż

B1

1
|νpΦpx1qq ¨ βd|

ˇ̌
det

`Bx1Φpx1q, . . . , Bxd´1Φpx1q, βd

˘ˇ̌
dx1.

Observing that this last determinant is just 1, and using Remark 3.9 one more time, we
finally get that

ż

B̃1

b
1 ` }∇ψpy1q}2 dy1 “

ż

B1

b
1 ` }∇ϕpx1q}2 dx1.

This ensures that the definition of σpBq does not depend of the choice of the represen-
tation of Γ.

Proposition-Definition 3.13. Let S be a hypersurface of class C1 in Rd and K a
compact part of S (if S is compact, we can choose K “ S). Let N P N and V1, . . . , VN

be open sets of Rd such that K Ă ŤN
n“1 Vn and S X Vn is a graph of class C1 for any

n P �1, N�. We consider χ1, . . . , χN P C8
0 pRd, r0, 1sq such that

řN
n“1 χn “ 1 on K and

supppχnq Ă Vn for any n P �1, N�. Let f be a measurable function from K to R. We
assume that f takes positive values or that

Nÿ

n“1

ż

KXVn

χn |f | dσ ă `8.

Then we set ż

K
f dσ “

Nÿ

n“1

ż

KXVn

χnf dσ.

Taking for f the characteristic function of a Borel set of S included in K, this defines
in particular a measure on K.

We can check that the definition of the measure σ on K does not depend of the
choice of the open sets Vn, 1 ď n ď N , or of the partition of unity pχnq1ďnďN .

Proposition-Definition 3.14. Let S be a hypersurface of class C1 in Rd. There exists
a non decreasing sequence pKnqnPN of compact parts of S (for the inclusion) such that
S “ Ť

nPN Kn. For n P N we denote by σn the measure on Kn as defined in Proposition
3.13. Then for B P BpSq we set

σpBq “ lim
nÑ`8 σnpB X Knq.

This defines a measure on σ sur S, called Lebesgue measure on S.

We can check if this definition is licit, it does not depend of the choice of the sequence
pKnqnPN, and it indeed defines a measure on pS, BpSqq.
Example 3.15. We consider in R2 the circle CR of center 0 and radius R ą 0. We look
for the measure (here the length) of the right half circle

C`
R “

!`a
R2 ´ y2, y

˘
, y Ps ´ R, Rr

)
.

For y Ps ´ R, Rr we set ϕpyq “ a
R2 ´ y2. Then ϕ is of class C8 and for y Ps ´ R, Rr

we have
ϕ1pyq “ ´ ya

R2 ´ y2
.
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Then we have

σpC`
R q “

ż R

´R

d
1 ` y2

R2 ´ y2 dy “
ż R

´R

Ra
R2 ´ y2

dy “
ż R

´R

1b
1 ´ `

y
R

˘2
dy

“ R

ż 1

´1

1a
1 ´ η2

dη “ R rarcsinpηqs1
´1 “ πR.

Example 3.16. We consider the sphere SR of radius R ą 0 in R3. We compute the area
of the top half of the sphere defined as in (3.1). It is the graph of the function ϕ`

R

defined by
ϕ`

Rpx1, x2q “
b

R2 ´ x2
1 ´ x2

2,

for px1, x2q in the disc Dp0, Rq centered at 0 and of radius R in R2. For px1, x2q P Dp0, Rq
we have

››∇ϕ`
Rpx1, x2q››2 “ x2

1 ` x2
2

R2 ´ px2
1 ` x2

2q ,

hence, using the polar coordinate system,

σpS`
R q “

ż

Dp0,Rq

d
1 ` x2

1 ` x2
2

R2 ´ px2
1 ` x2

2q dx1 dx2 “ 2π

ż R

0

c
1 ` r2

R2 ´ r2 r dr

“ 2π

ż R

0
r

c
R2

R2 ´ r2 dr “ 2πR
”
´

a
R2 ´ r2

ıR

0

“ 2πR2.

Exercise 3. Prove that the Lebesgue measure of the sphere of radius R is 4πR2.

We could give a general change of variables theorem between submanifolds, but we
only discuss an important example. For r ą 0 we denote by Br and Sr the open ball
and the sphere centered at 0 and with radius r, and by σr the Lebesgue measure σr.

Proposition 3.17. Let r ą 0 and let f be an integrable function on Sr. Then the
function y ÞÑ fpryq is integrable on S1 and

ż

xPSr

fpxq dσrpxq “ rd´1
ż

yPS1

fpryq dσ1pyq.

Proof. Assume for instance that f vanishes outside

Sr̀ “ tx “ px1, . . . , xdq P Sr : xd ą 0u .

We can similarly consider the case where f vanishes outside any half-sphere and deduce
the general case. The interest of this assumption is that Sr̀ is a graph. With the
notation of Definition 3.4 we can take

Or “ �
x1 “ px1, . . . , xd´1q : |x1| ă r

(

and ϕr : x1 ÞÑ
b

r2 ´ |x1|2. Then we denote by Φr : Or Ñ Sr̀ the corresponding
parametrization. We similarly define O1, ϕ1 et Φ1. Then we have Or “ rO1 and for
x1 P Or we have ϕrpx1q “ rϕ1px1{rq and Φrpx1q “ rΦ1px1{rq. By the change of variables
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x1 “ ry1, dx1 “ rd´1dy1, we have
ż

Sr

fpxq dσrpxq “
ż

Or

fpΦrpx1qq
b

1 ` |∇ϕrpx1q|2 dx1

“
ż

Or

f

ˆ
rΦ

ˆ
x1

r

˙˙ d
1 `

ˇ̌
ˇ̌∇ϕ1

ˆ
x1
r

˙ˇ̌
ˇ̌
2

dx1

“ rd´1
ż

O1

f
`
rΦpy1q˘ b

1 ` |∇1ϕpy1q|2 dy1

“ rd´1
ż

S1

fpryq dσ1pyq.

The conclusion follows.

We now discuss an analog of polar coordinates in any dimension.

Proposition 3.18. Let R ą 0 and let f be an integrable function on BR. Then the
function ω ÞÑ fprωq is integrable on S1 for almost all r Ps0, Rr and

ż

BR

fpxq dx “
ż R

r“0
rd´1

ż

ωPS1

fprωq dσ1pωq dr “
ż R

r“0

ż

xPSr

fpxq dσrpxq.

Proof. As in the previous proof we consider the case where f vanishes outside

B`
R “ tx “ px1, . . . , xdq P BR : xd ą 0u .

We use the notation S`
1 , O1 and Φ1 of the previous proof. For r Ps0, Rr and y1 P O1 we

set Ψpr, y1q “ rΦpy1q. This defines a bijection Ψ of class C1 from s0, RrˆO1 to B`
R , and

for pr, y1q Ps0, RrˆO1 we have

ˇ̌
Jac Ψpr, y1qˇ̌ “ rd´1

b
1 ´ |y1|2

“ rd´1
b

1 ` }∇ϕ1py1q}2.

By the Inverse Function Theorem we deduce that Ψ is a C1-diffeomorphism. By the
change of variables theorem and the Fubini Theorem we get

ż

B`
R

fpxq dx “
ĳ

s0,RrˆO1

fpΨpr, y1qq ˇ̌
Jacpr, y1qˇ̌

dλpr, y1q

“
ż R

r“0
rd´1

ż

O1

fprΦpy1qq
b

1 ` }∇ϕ1py1q}2 dy1 dr

“
ż R

r“0
rd´1

ż

S1

fprωq dσ1pωq dr.

This gives the first equality. The second is given by Proposition 3.17.

3.2 Stokes Formula - Green Formula
3.2.1 Regular open sets of Rd

Definition 3.19 (Open set of class Ck). Let Ω be an open set of Rd. Then Ω is said to
be of class Ck if for any w P BΩ there exists an orthonormal basis β “ pβ1, . . . , βdq, an
open set O of Rd´1, a, b P R with a ă b and a map ϕ : O Ñsa, br of class Ck such that

V “
#

dÿ

j“1
xjβj , px1, . . . , xd´1q P O, xd Psa, br

+
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is a neighbourhood of w in Rd and

Ω X V “
#

dÿ

j“1
xjβj , px1, . . . , xd´1q P O, xd P ‰

ϕpx1, . . . , xd´1q, b
“
+

.

We then have

BΩ X V “
#

dÿ

j“1
xjβj , px1, . . . , xd´1q P O, xd “ ϕpx1, . . . , xd´1q

+
.

In particular, BΩ is a hypersurface of class Ck in Rd. The outward normal unit vector
on BΩ is the vector ν defined by (3.3).

Remark 3.20. An open set whose boundary is a hypersurface of class Ck is not necessarily
an open set of class Ck. Consider for example in R2 the open set Ω “ R2zH where
H “ tpx1, 0q, x1 P Ru. Then we have BΩ “ H, and H is a hypersurface of class C8, but
Ω is not an open set of class C8 because Ω is on both sides of its boundary.

3.2.2 Vector fields - Divergence operator
Let Ω be an open set of Rd.

Definition 3.21. Let k P N˚Yt8u. A vector field of class Ck on Ω is a map X : Ω Ñ Rd

of class Ck. We call vector field of class Ck on Ω the restriction to Ω of a vector field of
class Ck on Rd.

Definition 3.22. Let X be a vector field of class C1 on Ω. We note X1, . . . , Xd the
coordinates of X In the canonical basis. The divergence of X is then the function

divpXq “
dÿ

j“1

BXj

Bxj
“

dÿ

j“1
∇Xj ¨ ej .

The following proposition proves that the divergence of a vector field does not depend
of the choice of an orthonormal basis on Rd.

Proposition 3.23. Let X “ pX1, . . . , Xdq be a vector field of class C1 on Ω and β “
pβ1, . . . , βdq an orthonormal basis on Rd. We denote by Y1, . . . , Yd the coordinates of X
in the basis β. Then we have

divpXq “
dÿ

k“1
∇Yk ¨ βk.

If we denote by y “ py1, . . . , ydq the coordinates of a point in the basis β this can also be
written

divpXq “
dÿ

k“1

BYk

Byk
.

Proof. For k P �1, d� there exist α1,k, . . . , αd,k P R such that βk “ řd
j“1 αj,kej . Then we

have

X “
dÿ

k“1
Ykβk “

dÿ

k“1

dÿ

j“1
Ykαj,kej “

dÿ

j“1

˜
dÿ

k“1
αj,kYk

¸
ej ,

so for j P �1, d� we have

Xj “
dÿ

k“1
αj,kYk.
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We then have
dÿ

k“1
∇Yk ¨ βk “

dÿ

k“1
∇Yk ¨

˜
dÿ

j“1
αj,kej

¸
“

dÿ

j“1
∇

˜
dÿ

k“1
αj,kYk

¸
¨ ej “

dÿ

j“1
∇Xj ¨ ej .

3.2.3 Stokes formula
We are now in position to prove the Stokes formula, which is an analogue in dimension
d ě 2 of the fundamental theorem of calculus. Indeed, if we apply the following theorem
for an interval sa, br and to the vector field x ÞÑ fpxqe1, where f is a function of class
C1 on ra, bs and e1 is the vector of the canonical base of R (of course we do not state it
like this in dimension 1), we get1

ż b

a
f 1pxq dx “ fpbq ´ fpaq.

Theorem 3.24 (Stokes Formula). Let Ω be an open set of class C1 in Rd. We denote
by ν the outward unit normal vector on BΩ. Let X be a vector field of class C1 with
compact support in Ω. Then we have

ż

Ω
divpXq dx “

ż

BΩ
pX ¨ νq dσ,

where σ is the Lebesgue measure on BΩ.

Proof. ‚ For any w P BΩ we consider a neigbourhood Vw of w in Rd as in Definition
3.19. There exist N P N and w1, . . . , wN P BΩ such that

supppXq Ă Ω Y
Nď

k“1
Vwk

.

We consider an associated partition of unity χ0, χ1, . . . , χN , with supppχ0q Ă Ω and
supppχkq Ă Vwk

for all k P �1, N�. Assume that

@k P �0, N�,
ż

Ω
divpχkXq dx “

ż

BΩ
pχkXq ¨ ν dσ. (3.8)

Then we have
ż

Ω
divpXq dx “

Nÿ

k“0

ż

Ω
χk divpXq dx “

Nÿ

k“0

ż

Ω
divpχkXq dx ´

Nÿ

k“0

ż

Ω
∇χk ¨ X dx.

On the one hand we have
Nÿ

k“0

ż

Ω
∇χk ¨ X dx “

ż

Ω
∇

˜
Nÿ

k“0
χk

¸
¨ X dx “ 0,

and on the other hand, according to (3.8),

Nÿ

k“0

ż

Ω
divpχkXq dx “

Nÿ

k“0

ż

BΩ
pχkXq ¨ ν dσ “

ż

BΩ
X ¨ ν dσ.

1in dimension 0 the Lebesgue measure coincides with the counting measure. . .
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This gives the result. It remains to prove (3.8). For k “ 0, since χ0X is compactly
supported we can apply Proposition 3.1.
‚ Let w P BΩ. With the notation intoduced in Definition 3.19, we suppose that X has
its support included in Ω X V. We denote by X1, . . . , Xd : V Ñ R the coordinates of X
in the basis β. Using the change of variables py1, ydq P Oˆsa, brÑ y1β1 ` ydβd (whose
determinant is 1) we have

ż

VXΩ
∇Xd ¨ βd dx “

ż

y1PO

ż b

yd“ϕpy1q
B

Byd
Xdpy1β1 ` ydβdq dyd dy1

“ ´
ż

O
Xdpy1β1 ` ϕpy1qβdq dy1.

Now let j P �1, d ´ 1�. We extend X by 0 on Rd and for y1 P O and t Ps0, br we set

hpy1, tq “ Xj

`
y1β1 ` pt ` ϕpy1qqβd

˘
.

This defines a function h P C1`
Oˆs0, br˘. For y1 P O and t Ps0, br we have

Byj hpy1, tq “ ∇Xj

`
y1β1 ` pt ` ϕpy1qqβd

˘ ¨ βj ` Byj ϕpy1q∇Xj

`
y1β1 ` pt ` ϕpy1qqβd

˘ ¨ βd.

We deduce that
ż

VXΩ
∇Xj ¨ βj dx “

ż

O

ż b

0
∇Xj

`
y1β1 ` pt ` ϕpy1qqβd

˘ ¨ βj dt dy1

“
ż

O

ż b

0
Byj hpy1, tq dt dy1 ´

ż

O

ż b

0
Byj ϕpx1q∇Xj

`
y1β1 ` pt ` ϕpy1qqβd

˘ ¨ βd dt dx1

“
ż b

0

ż

O
Bxj hpx1, tq dx1 dt ´

ż

O
Bxj ϕpx1q

ˆż b

0

d

dt
Xj

`
y1β1 ` pt ` ϕpy1qqβd

˘
dt

˙
dx1

“
ż

O
Xj

`
y1β1 ` ϕpy1qβd

˘Bxj ϕpx1q dx1.

Summing over j P �1, d� we get with (3.3)
ż

V
divpXq dx “

ż

O
pX ¨ νq`

y1β1 ` ϕpy1qβd

˘b
1 ` }∇ϕpx1q}2 dx1 “

ż

BΩ
X ¨ ν dσ.

This proves (3.8) and concludes the proof.

3.2.4 Green Formula
We now deduce from the Stokes Formula the Green Formula, which is an analogue in
dimension d ě 2 of the integration by parts. In the following theorem we assume that
one of the factors has compact support in Ω to ensure that the integrals are well defined
even in the case where Ω is not bounded, but this does not prevent the two functions
from being nonzero in the neighborhood of BΩ.

Theorem 3.25. Let Ω be an open set of class C1 and u, v P C1pΩq with u or v compactly
supported in Ω. For j P �1, d� we have

ż

Ω
Bju v dx “ ´

ż

Ω
u Bjv dx `

ż

BΩ
uv νj dσ,

where νj “ ν ¨ ej is the j-th coordonnate of ν in the canonical basis of Rd.
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Proof. For x P Ω we set Xpxq “ upxqvpxqej . For any x P Ω we have

divpXqpxq “ Bjpuvqpxq “ Bjupxqvpxq ` upxqBjvpxq.
Moreover, for x P BΩ we have Xpxq ¨νpxq “ upxqvpxqνjpxq. We conclude with the Stokes
Theorem.

For u P C1pΩq and x P BΩ we set

Bu

Bν
pxq “ ∇upxq ¨ νpxq.

Theorem 3.26. Let Ω be an open set of class C1 and u, v P C2pΩq with u or v compactly
supported in Ω. Then we have

´
ż

Ω
Δu v dx “

ż

Ω
∇u ¨ ∇v dx ´

ż

BΩ

Bu

Bν
v dσ.

Proof. By Theorem 3.25 we have, for any j P �1, d�,

´
ż

Ω
B2

j u v dx “
ż

Ω
Bju Bjv dx ´

ż

BΩ
Bju v νj dσ.

We conclude by summing over j P �1, d�.

Corollary 3.27. Let Ω be an open set of class C1 and u, v P C2pΩq with u or v compactly
supported in Ω. Then we have

ż

Ω

`
u Δv ´ Δu vq dx “

ż

BΩ

ˆ
u

Bv

Bν
´ Bu

Bν
v

˙
dσ.

Example 3.28. Let u, v P C1pB1q. Then we have
ż

B1

∇upxqvpxq dx “
ż

xPS1

upxqvpxqx dσpxq ´
ż

B1

upxq∇upxq dx.

If u P C2pB1q we also have
ż

B1

Δupxqvpxq dx “
ż

xPS1

Brupxqvpxq dσpxq ´
ż

B1

∇upxq ¨ ∇vpxq dx,

where Brupxq “ ∇upxq ¨ x
|x| is the radial derivative of u.

Example 3.29. For φ P C8
0 pRdq and j P �1, d� we have

´
ż

Rd

|x| Bjφpxq dx “
ż

Rd

xj

|x|φpxq dx. (3.9)

The function x ÞÑ |x| is of class C8 on Rdz t0u and its derivative with respect to xj is
xj

|x| . However, (3.9) is not a direct consequence of the Green Formula because of the lack
of regularity at 0.

By the dominated convergence theorem we have

´
ż

Rd

|x| Bjφpxq dx “ ´ lim
εÑ0

ż

|x|ąε
|x| Bjφpxq dx.

For ε ą 0 we have by the Green Formula

´
ż

|x|ąε
|x| Bjφpxq dx “ ´

ż

xPSε

|x| φpxqνjpxq dσpxq `
ż

|x|ąε

xj

|x|φpxq dx,
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where νpxq “ ´x
ε is the outward normal unit vector to RdzBε. Then we have

ˇ̌
ˇ̌
ż

xPSε

|x| φpxqνjpxq dσεpxq
ˇ̌
ˇ̌ ď εσεpSεq }φ}8 ÝÝÝÑ

εÑ0
0.

On the other hand, by the dominated convergence theorem we have
ż

|x|ąε

xj

|x|φpxq dx ÝÝÝÑ
εÑ0

ż

Rd

xj

|x|φpxq dx.

This proves (3.9).
The following computation will be useful to study in the next chapter the Poisson

equation ´Δu “ f in dimension d ě 3.
Example 3.30. Assume that d ě 3. We prove that for φ P C8

0 pRdq we have

´
ż

Rd

|x|´pd´2q Δφpxq dx “ pd ´ 2qσpS1qφp0q. (3.10)

The function u : x ÞÑ |x|´pd´2q is of class C8 on Rdz t0u. We recall that the Laplacian
of a radial function is given in spherical coordinates by

ΔGprq “ 1
r2

B
Br

ˆ
r2 BGprq

Br

˙
.

Here we see that Δu “ 0 on Rdz t0u. The function x ÞÑ |x|2´d is locally integrable on
Rd. By the dominated convergence theorem and the change of variables x “ εy we have

ż

Rd

1
|x|d´2 Δφpxq dx “ lim

εÑ0

ż

|x|ąε

1
|x|d´2 Δφpxq dx “ lim

εÑ0

ż

|y|ą1

1
|y|d´2 Δφεpyq dx.

where for ε ą 0 and y P Rd we have set φεpyq “ φpεyq. By the Green Formula we get
ż

Rd

1
|x|d´2 Δφpxq dx “ lim

εÑ0
Iε ´ lim

εÑ0
Jε,

where for ε ą 0 we have set

Iε “
ż

|y|“1

1
|y|d´2

Bφε

Bν
pyq dσ et Jε “

ż

|y|“1
φεpyq B

Bν

1
|y|d´2 dσ.

We have
Iε “ ε

ż

|y|“1

Bφ

Bν
pεyq dσ ÝÝÝÑ

εÑ0
0,

and by the dominated convergence theorem

Jε “ ´pd ´ 2q
ż

|y|“1

1
|y|d´1 φεpyq dσ “ ´pd ´ 2q

ż

|y|“1
φεpyq dσ ÝÝÝÑ

εÑ0
´pd ´ 2qσpS1qφp0q.

The conclusion follows.
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