Chapter 4

Distributions

The purpose of this chapter is to introduce distributions. Distributions generalize the
notion of function of one or several real variables. In particular, we will extend the usual
notion of derivability, which proves to be too rigid in practice.

The notion of function (we only consider here functions of one or more real variables)
and the regularity of these functions (continuity, etc.) have taken a long time to stabilize
to the precise and general notions as they are now understood. For example, a function
f from R? to R is any correspondance that associates to any element = € R? a unique
element f(x) of R. This is a very abstract and general notion.

And yet, this notion shows limits and is not always adapted to the calculations that
one may have to make. Typically, when f represents a physical quantity as a function
of the position x. For example, if f denotes a mass density or an electric density, and
if we are interested in a very localized mass or charge, we model it by a point mass
or charge. This greatly simplifies the calculations, but the density f... is no longer a
function. Indeed, in this case the density is what is improperly called “a Dirac func-
tion”, zero outside a point but of strictly positive integral. This cannot be realized by
any function. Thus, to make a simpler calculation, we have to use an object that seems
more complicated. So what should we do ? Giving up rigorous calculations, or giving
up a model with which we can actually do the computation? Neither, obviously, and
it is the aim of the distributions to propose a rigorous, efficient and sufficiently general
framework to include in particular the functions in the usual sense and the Dirac func-
tion. In fact we have already solved this problem by introducing the measures, since
the Dirac function has been replaced by the Dirac measure. But the distributions go
further and will include in particular the measures.

Another aspect for which the usual theory of functions seems too restrictive is the
following. Let us consider a simple partial differential equation, namely the transport
problem

ou ou
R?, — — = 4.1
with a given initial condition:
VeeR, wu(0,z)=up(x). (4.2)

The study of this type of problem will come later, but an important question before
looking for a solution is to ask in which set we are working. In which space do we choose
the initial data ug ? And in which space do we look for the solution u ? A natural
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choice is to look for u in C'*(R?) and then to consider ug in C(R). We can then verify
that the unique solution of the problem is given by

V(t,z) e R?,  w(t,x) = ug(z —t). (4.3)

And now, what happens if we consider an initial data ug which is not differentiable ?
We can still define u by (4.3), physically it will do exactly the same thing (translation of
the profile ug to the right when ¢ grows), but on the other hand u is no longer derivable
and we can no longer re-inject it into (4.1). What is the problem? Should we exclude
such a solution, which seems physically reasonable but which is not a solution to the
problem as is was posed, or should we rethink the way we pose the problem?

As for the Dirac function via the unit approximation sequences, one could approxi-
mate in a suitable sense an irregular function by a sequence of regular functions. But
it is easier to make calculations with a Dirac than with a sequence of unit approxima-
tions, and the same will be true for functions that we will call “derivable in the sense of
distributions”. Thus it is quite relevant to introduce these new spaces of “functions”.

The change of point of view on functions that leads to the definition of distributions
is the following. Rather than characterizing a function of = (for example) by evaluating
its value at each point x in R, it is characterized by all its averages weighted by a
function with compact support. In other words, instead of focusing on every f(z) for
x € R, we will focus on every {5 f(s)¢p(s)ds for ¢ € CF(R).

The characterization of a function by its value at each point had already been chal-
lenged in integration, where one began to consider that two functions that differ only
at one point must be considered as equal.

This new approach is not a simple mathematical artifice. On the contrary, it is quite
natural if we look closely. Or rather a little less closely. Consider for example a function
f which describes the temperature of an infinite wire. What sense does it make to talk
about the temperature at a specific point? The temperature measures the degree of
agitation of particles. What sense would it make to measure the temperature with a
precision greater than the typical distance traveled by each particle during the measure
? And even so, no device could measure it with infinite precision. What a thermometer
measures, in the best case, is an average of the temperature over a small area around
each x point. Considering that the function # has a meaning, what is measured is not
the value 6(z), but a quantity of the form

| b@10(a) .

where ¢ is a function which describes the weight with which the average is obtained.
We call ¢ a test function.

In addition, this point of view perfectly fits what we intend to do with the Dirac
function  on R. The aim of § is to have a function such that

| @@ dz = 600}, (1.4)

for any test function ¢. Rather than trying to give a doubtful explanation to the left-
hand side, we give up seeing d as an usual function by assigning it values at each point
of R and we define directly the distribution ¢ as the map ¢ — ¢(0). And it is in fact
much simpler !
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In the same spirit, we will define a weaker notion of solution for problems such that
(4.1). We will say that u is a weak solution of (4.1) if

Vo e C1(R?), J u(t, x) <Zf(t,x) + gi(t,x)) dtdx =0,
R2

with the initial condition (4.2). Thus u can be a solution without being derivable (in
the usual sense). We will say that u is a strong solution of (4.1) on R? if it is a solution
in the previous sense, that is, if u is of class C! on R? and verifies (4.1). Using an inte-
gration by part, we see that a strong solution is a weak solution, and thus the notion of
weak solution is a generalization of the usual notion of solution. Defining the weak sense
of deviation via integration by parts will be the key of the upcoming notion of derivation.

The aim of this chapter is to give a mathematical framework to all these ideas,
by defining in particular the deviation in the sense of distributions. The differential
equations will be discussed later in another course.

4.1 Definitions

In this section, we introduce the notion of distribution. In these notes, we have chosen to
gather all the examples in Section 4.2. The drawback of this choice is that the definitions
will be given here without example. Thus, do not hesitate to read the Section 4.2 in
parallel with this one. In particular, It is in section 4.2.1 that we will see that functions
can be identified as examples of distributions, and that in that sense the notion of
distribution “includes” in a suitable sense that of function.

4.1.1 Space of tests functions

Let Q be an open set of R?. We start by collecting some properties that we will need
later for the space of the test functions C°(€2).

Recall that C§°(R?) is dense in LP(R?) for any p € [1, +o[ (see Proposition 1.18).
We have also proved a result of partition of unity with cut-off functions of class C® (see
Proposition 1.22).

The following properties of Ci°(2) are elementary and the proofs are left as exercises
for the reader.

Proposition 4.1. (i) C°(Q) is a subspace of the space of functions from R? to C.
(ii) If f e C*(Q) and ¢ € CFL () then fp e CFL(NQ).
(iil) If ¢ € CL(Q) and a € N then 0%¢ € CL(9).

(iv) Let ¢ € CL(Q). For x € R? we set

Then we have ¢ € CE(RY).

We now recall the Leibniz formula for C® functions. For o = (ay,...,aq4) and
B =(B1,...,B4) in N? we say that 3 < a if B; < o for any j € [1,d]. Then we set
o ol
=————  where al=a1!...q4!
<ﬁ> Blla —B)! b
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Proposition 4.2 (Leibniz formula). Let u,v € C®(Q) and o € N¢. Then we have

O (uv) = . <g> 0By P,

p<a

The proof can be done by induction on |« as for the case d = 1 (exercise).

4.1.2 Topologies on the spaces of regular functions with compact sup-
port

Let Q be an open set of R%. The aim of this section is to describe the topologies of the
spaces of regular functions that have compact support 2, and in particular C§°(€2).

Let us start with the simplest of situations. Let K be a compact of Q and k € N.
We denote by C¥-(Q) the set of functions of class C* on Q with support included in K.
Then for u e CF- () we set

HQS”C;{(Q) = Z Haad)HLOO(K)' (4.5)

|| <k
This defines a norm on C¥-(Q2), and C%-(Q2) is complete for this norm.

The situation is not that simple for the space C%(2) of C* functions defined on Q
and with support included in K. Obviously, one can not simply replace k by 400 in the
definition (4.5). Each norm of (4.5) for k € N is a norm for C% (), but C¥ () is not
complete for any of these norms (a sequence of very regular functions can converge to-
wards a limit that is not that regular). To obtain a complete space, we need to consider
a topology that takes into account all the derivatives of the functions. There is no such
norm on C¥ (), but we can endow C%(Q2) with a Frechet space structure from every
norms of (4.5), for any k € N.

For ¢, ¢ € CE(Q) we set
+00 1
d(6,9) = Y o min (L, ¢ —¥ler q))- (4.6)

k
k=0 2

This distance is not given by a norm, but it satisfies the important properties that we
need for applications.

Proposition 4.3. di is a distance on C% (), and C% () is complete for this distance.
Let us recall the basic properties of the topology associated to the distance dg.

Proposition 4.4. (i) Let (¢n), oy be a sequence of elements of CE () and ¢ € CE ().
Then ¢, tends to ¢ in CE(Q) if and only if

VEeN, |[én—dlcr ) —— 0.

n—-+0o0

(ii) A linear form T on C% () if and only if there exists k € N and C > 0 such that
for any ¢ € CL(Q) we have

T(@) < Cloler o -
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More generally, if (E,|-|g) is a normed vector space, then a linear map T :
CR(Q) — E is continuous if there exists k € N and C > 0 such that for any
¢ e CE(Q) we have

IT@) e < Clélez@ -

(i) A linear map T : CE(Q) — CR(Q) is continuous if for any j € N there exists k € N
and C > 0 such that for any ¢ € CE () we have

1Tl @) < Cl8lo o -

Now we turn to C3°(£2). The difference compared to C'Z(€2) is that the func-
tions of C°(§2) are not supported in the same compact. We note in particular that

CR(Q2) < CP(Q) for any compact K of 2. However there is no compact K of Q such
that Ci°(Q) is included in C%(2).

We cannot endow C§°(€2) with a distance analoguous to (4.6) or with norms ana-
loguous to (4.5) where K would be replaced by €2, since for the corresponding topology
a sequence of functions compactly supported in €2 could converge to a function whose
support is €.

To ensure that the limit of a convergent sequence has compact support, we need a
topology defined in such a way that if (¢,,),,cy is a convergent sequence in C°(£2) then
the support of the functions ¢,, n € N, are included in a common compact K of .
Once this is done, to also ensure the regularity of the limit, we impose that the sequence
(hn) ey 18 convergent in CE(2) (this is now meaningful, since ¢, belongs to C'% () for
all n).

Such a topology is complicated, but it does exist. We admit the following theorem.
Theorem 4.5. There exists a topology on C () which satisfies the following properties:
(i) A sequence (¢n),on of CL(Q) converges to ¢ € CF () if and only if

o there exists a compact K of Q such that supp(¢py,) < K for any n € N,
o 0%, goes uniformly to 0%¢ for any a € N¢.

(ii) A linear form T on C{ () is continuous if and only if for any compact K of Q
there exist m € N and C > 0 such that

Voe CR(Q), TG <C Y [0°l,- (4.7)

lal<m

4.1.3 Distributions

Now that we have described the topology of the space of test functions C§°(€2), we can
define the notion of distribution.

Definition 4.6. Let  be an open set of R%. A distribution on €2 is a continuous linear
form on C°(Q). We denote by D'(€2) the set of distributions on €.

In general, we denote by (T, ¢) or (T',$)p (o) p(q) instead of T(¢) for the image of
the test function ¢ € D(Q2) = CF°(2) by the distribution 7" € D’(Q2).

We will give many examples of distributions in Section 4.2 (they can be consulted
right now).
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As the set of continuous of linear forms on a topological vector space, D'(2) is
naturally endowed with a structure of topological vector space. Thus if T" and S are two
distributions, the sum T + S is defined by

Vo e Cy (), (T+S,¢)=(T,0)+(5,9),
and for A € K we define AT by
Vo e C(Q), (AT, ¢) = (T.9).

We can check that 7'+ S and \S are indeed distributions on €2 and that D’(§2) endowed
with these two operations is vector space. We then endow D'(Q) with the weak-x*
topology.

Definition 4.7. Let Q be an open set of R%. Let (7},),y be a sequence of distributions
on . We say that T}, goes to T in D'(Q) if

Ve C' (), (T, ¢) (T,9).

n—+00
By the Banach-Steinhaus Theorem, we have the following result:

Proposition 4.8. Let Q) be an open set of R* and (Th),en be a sequence of distributions
on Q. We suppose that for any ¢ € C*(Q) the sequence ({(Ty,, ))nen is convergent. Then
the sequence (T},),cy s convergent in D'().

4.1.4 Finite order distributions

Among the distributions, we distinguish those for which the choice of m in (4.7) does not
depend on the compact K (the constant C' can depend on K in the following definition).

Definition 4.9. Let Q be an open set of R? and T be a distribution on Q. Let m € N.
T is said to be a distribution of order at most m if for any compact K of € there exists
C > 0 such that

Vo e CE(Q), [T(@)I<C Y, [0l

lal<m

If there exists m € N such that this property is satisfies then T is said to have be a finite
order distribution, and the smaller m is the order of T'. Otherwise, T is said to be of
infinite order.

We will see at section 4.2 that many usual distributions are of finite order.

Remark 4.10 (This remark can be omitted). If T is a distribution of order m € N on €,
we only need to control a finite number of derivatives to ensure that if ¢,, tends to ¢ then
T(¢n) tends to T'(¢). Thus, a distribution of order m can be seen as a continuous linear
form on the space C§*(£2) of compactly supported functions of class C™ on €. More
precisely, C§*(€2) is endowed with a topology similar to the one described in theorem
4.5. A sequence (¢y,), .y in Cg*(Q2) tends to ¢ € Cg*(Q?) if and only if

(i) There exists a compact K of §2 such that supp(¢,) < K for any n € N,
(ii) 0%, tends uniformly to 0%¢ for any « € N such that |a| < m.

We can then verify that any distribution of order m on {2 extends into a continuous
linear form on C{*(Q2) and conversely, a continuous linear form on C§*(€2) defines by
restriction to C§°(2) a distribution of order m on €.
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4.1.5 Multiplication of a distribution by a regular function

The purpose of distributions is to generalize the notion of function. In order for this to
be useful, it will be necessary to be able to generalize the operations that we usually
perform on functions to this framework and in a suitable sense. We have already seen
that we can naturally add distributions and multiply them by a scalar. To go further,
the mechanism will essentially always be the same. The operation in question is carried
over to the test function. In particular, the operation in question must preserve the space
of test functions C°(€2). We illustrate this idea on a first example, the multiplication
by a regular function.

Proposition-Definition 4.11. Let Q be an open set of R? and T be a distribution on
Q. Let fe C®(Q). For ¢ € CL () we set

(fT,¢) = (T, fo).
This defines a distribution fT on Q.

There are two things to check to validate this definition. On the one hand it is
necessary that the expression (T, f¢) has a meaning, and for this it is necessary that f¢
is an element of C°(€2). This is obvious here, but it will not always be the case. And then
we must show that the application ¢ — (T, f¢) = T(f¢) is indeed a continuous linear
form on C°(€2). And in general, the continuity is not obvious. For this point we can
directly apply Proposition ?? or we can verify that the operation (here the multiplication
by f) is a continuous application on C°(€2) and we conclude by the continuity of the
composite of two continuous functions. Often, we choose the first option.

Proof. The map ¢ — f¢ is a linear map on Ci°(2), so by composition f7" is a linear
form on C°(€2). Let K be a compact of Q. There exists m € N and C' > 0 such that for
any ¢ € CE(€2) we have

(T, o) <C D) 0%l

|a|<m

The function f and its derivatives are bounded on the compact K. By the Leibniz rule,
we have

mral<c 3 letalo<c X X (5)]ed], . 2%
|

lal<m al<m B<a

Thus, there exists a constant C' > 0 independant of ¢ such that

(T, f) < C D 107, -

lal<m
This proves that f7T is continuous on C{°(£2). O

Remark 4.12. We observe that if T' is of order m then fT is of order at most m. Indeed,
in this case, the integer m does not depend on K in the calculations of the previous
proof, and the last inequality shows that fT is of lower order or equal to m. In fact, if
f is not identically zero, fT is of exactly the same order as T

Remark 4.13. Given a certain f € C*(2) the map T — fT is continuous D'(Q2). In
other words, if (T,),cy is a sequence of distributions that converges to 7' € D'(Q2) (in
the sens given by Definition 4.7), then f7,, converges to fT" in D’(Q).

An important remark to finish this section. There is no reasonable definition for the
product of two distributions ! One must immediately forget this idea.
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4.1.6 Exercises

Ezxercise 1. Using directly the definition of the topology given by theorem 4.5, prove
that the map ¢ — f¢ is continuous on C{°(12).

Ezxercise 2. Let T be a distribution on R and f € C®(R). Prove that the map ¢ —
(T, f¢') is a distribution on R and give its order according to the order of T.

4.2 Important examples of distributions

In this section we give examples of usual distributions. Other examples will appear later
in the exercises.

4.2.1 Locally integrable functions

One of the motivations for introducing the notion of distribution is that it must generalize
the notion of function. It is therefore necessary that the set of distributions contain the
set of functions in a reasonable sense. We said in the introduction that we could replace
the evaluation of a function f at each point of {2 by the evaluation of mean weights of

the form
f fodz.
Q

This defines precisely a distribution, and it is indeed with this distribution that we will
identify the function f. In order for all this to make sense we must nevertheless restrict
ourselves to the case of locally integrable functions. The constraint is reasonable.

Proposition-Definition 4.14. Let Q2 be an open set of R and f € LL (). Then the
map

Ty fQ f(@)é() da
is a distribution on Q.

Proof. The map Ty is well defined, and it is linear on C¢°(§2) by linearity of the integral.
Let K be a compact set of 2. Then f is integrable on K and for ¢ € C2(Q2) we have

\ | fqﬁ‘ <ol | 1) s
Q K

This proves that T is a distribution on (2. O

We note that T’ is always a distribution of order 0. On the other hand, we recall that
we cannot multiply two distributions, and besides the product of two locally integrable
functions is not necessarily locally integrable. But we can multiply a locally integrable
function by a regular function, and we have defined the product of a distribution by a
regular function. We verify that in the case of a distribution associated to a function,
these two multiplications coincide. More precisely, for f € L () and g € C*(Q2) we
have

g1y = Tyy.

Indeed, for any test function ¢ € C7°(§2) we have

Ty, 8) = (Ty, gd) = L f(g6) dz = L(gfw dz = Ty, ).
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We have said that we wish to identify the functions (that are locally integrable) to
distributions. To do this, we must make sure that two different functions are not associ-
ated with the same distribution. This means that no information is lost by considering
the set of weighted mean values of f instead of the sets of their values up to equality
almost everywhere (it is clear that if f and g are two locally integrable functions equal
almost everywhere on  we will have Ty = T,).

Proposition 4.15. Let Q be an open set of R%. The map

{Llloc(Q) - D'(Q)
/ — Ty

18 injective.

Proof. Suppose that f € L{, () is such that {, f¢ = 0 for any ¢ € CF(Q).
Let N e Nand Ay = {z € Q : |f(x)] < N}. Let x € C(Q,[0,1]). Then
xf1a, € L3(Q). There exists a sequence (¢y,),cy in CF () which converges to xf1a,

in L2(Q2). Then we have

n—+0o0

Ozf Xflaydndx j 1f(@)f de.
Q AN

This proves that xf = 0 almost everywhere on A,,. Since this holds for any N, xf =0
almost everywhere on ). And since this holds for any x, f = 0 almost everywhere on
Q. O

With practice, one often identifies a distribution of the form 7'y with the correspond-
ing function f. Moreover, we can say that a distribution T € D’(Q) is in Ljoc(f2) (or
in LP(Q) for a certain p € [1, +o0]) if there exists f € Lioc(2) (f € LP(f2)) such that
T =1y

4.2.2 Dirac mass and other measures

The typical example of an object that one would like to manipulate as a function but
which is not a function is the “Dirac function”, mentioned in the introduction. What
is usually meant by a Dirac function on R? would be a positive-valued function, null
outside {0} and with an integral equal to 1. Such a function cannot exist, since the
definition of the integral imposes in particular that a function which vanishes almost
everywhere on R? has an integral equal to 0.

As we said, the purpose of such a definition is to have a function f which would
verify

voeCFmY, [ o= 0l0). (4.

Proposition 4.16. There is no function f € Li (R?) verifying (4.8).

Proof. Assume by contradiction that f e L _(R?) satisfies (4.8). Let ¢ € C5°(R%, [0,1])
such that ¢(0) = 1 and its support is in B(0,1). For n € N* and = € R? we set
¢n(z) = ¢(nx). Then ¢, has values in [0,1], it is supported in B(0,1), and ¢,(0) = 1.
Using (4.8) we then have for any n € N*

1= 00(0) = [ f@)o(ne)do < fB(O )]
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Since f is integrable on B(0,1), we have by the dominated convergence theorem

f f(2)] dz ——— 0.
B(0,2

n—+00
This gives a contradiction. O

Thus we must definitely give up the idea to see the Dirac function as a function.
But, on the other hand, the right-hand side of (4.8) does define a distribution.

Proposition-Definition 4.17. Let zg € R?. The map

5x0 Do gb(IEO)

is a distribution on R%, called Dirac distribution at x (In general, when xo = 0, we
simply denote it by § instead of &g ).

Proof. The map 0y, is linear on C§°(€2). In addition for any ¢ € C3°(£2) we have

¢ (zo)| < [ -

This proves that d,, is a distribution on . O

We note that d,, defines a distribution of order 0. Furthermore, Proposition 4.16
can be adapted at any point to see that d,, is not the distribution associated with a
function L (Q) (short version: &, is not in Li (R%)).

We have discussed the fact that there is no Dirac function, and we had introduced the
unitary approximations to approximate the behavior of this Dirac function by regular
functions. Thus, given a sequence of approximations of unity on R?, we have in D’'(R?)

Tp n 5

n—+00

Indeed, for ¢ € C(R?) we have

|, r(@0ta) e = (o )0) s 600) = (5.0}

n—-+0oo

The notion of Dirac function has already been made rigorous by the measure the-
ory.Indeed, We did define the measure ¢ such that 6({0}) = 1 and §(R?%\ {0}) = 0. In
particular,

Vo CERY, | ods - 0(0).

In fact measures are already a generalization of functions (with positive values, if we
consider the positive measures only). Indeed, if f is a locally integrable function on R?
(and positive valued), then the measure that to A € B(R?) associates

urld) = [ fax

(where X is the Lebesgue measure) is a locally finite measure (that is a measure which is
finite on compact sets) on (R?, B(RY)). The notion of distribution generalizes the notion
of (locally finite) measures.
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Proposition 4.18. Let p be a locally finite measure on (2, B(2)). Then the map

Toi0 | oda
Q
18 a distribution on ().

Be careful, the fact that u is locally finite is important to get the continuity of T),.
Note that T}, is a distribution of order 0, and that it is a positive distribution if y is a
positive measure (this means that (T),,¢) > 0si ¢ > 0).

Remark 4.19. In fact we can show that all positive distributions of order 0 are obtained
in this way and, by refining a little, this gives another way to define the Lebesgue
measure on R. Indeed, even if we only know the integral of continuous functions, we
can see that the map

'p¢Hkm@m

is a distribution of order 0 on R, locally finite, and we can define the Lebesgue measure
as the unique measure of Radon A\ (we won’t devellop this notion here) such that T = T).

4.2.3 Principal value of 1/z

The purpose of this paragraph is to define a distribution naturally associated with the
function z — 1/z on R. Recall that this function is not in Li _(R) since it is not
integrable in a neighborhood of 0. Nevertheless, it is odd and the positive and negative
parts compensate each other. We use this remark for the following definition (which
may seem rather artificial at first, but which will prove relevant in practice).

Proposition 4.20. The map

1
vp <> t ¢ — lim —dx
x e—0 lz|ze %
is a distribution of order 1 on R, called the principal value of 1/x.

Proof. Let R > 0. We consider ¢ € C§°(R) with support in [—R, R]. Let ¢ €]0, RJ.
Since the function z — ¢(0)/x is odd and integrable on [—R, —¢] U [e, R] we have

[ ey [ sos),
e<|lz|<R < e<|z|<R €z

By the mean value theorem we have, for any x € [—R, R]\ {0},
¢(z) — ¢(0)
T

/
<[y
By the dominated convergence theorem the limit

lim M dx
20 Jeqlzi<r @

exists and its modulus is smaller than 2R ||¢/| Lo(—g,r)- 0 addition, this limits defines a
linear map with respect to ¢, so it defines a continuous linear map on C°(R), of order
at most 1. For n > 3 we consider ¢, € C (R, [0, 1]) with support in ]%, 2[ and equal to
1 on [%, 1]. Then |||, =1 for any n > 3 and

1 '
vpl—),0n) = —dr —— +4o0.
x 2z n—-+00
This proves that the distribution vp (%) cannot be of order 0. It is therefore exactly of
order 1. O

oo
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4.2.4 Exercises

Ezxercise 3. For z € R* we set f(z) = ev.
1. Prove that f belongs to L{ (R*). Deduce that f defines a distribution on R*.

loc

2. Prove that f (well defined everywhere on R) does not belong to LL (R).
3. Prove that there is no distribution 7" on R such that

Vo CFRD). (T¢) = | fl@)ola) da.

Ezercise 4. Let k € N. Prove that the map which to ¢ € C(R) — ¢*)(0) is a
distribution on R and give its order.

Exercise 5. Prove that the map

+00

T:¢eCPR) — (T,¢)= > 6™ (n)

n=0

is a distribution of infinite order on R.

Ezxercise 6. In this exercise we give examples in the same spirit as the Dirac mass,
since we have to integrate a function on a submanifolds of R¢ of dimension strictly less
than d. In other words, we integrate a function with respect to a measure which only
“loads” a set of zero Lebesgue measure in R%.

1. Prove that the map
T:6eCPR) — (1,0) = | 6(0.0)ds
R

is a distribution on R? and give its order.
2.Let f:R — R be a function of class C'. Prove that the map

be CPR?) fRaS(f(w),ﬂf)\/l @) de

is a distribution sur R? and give its order.
3.Let f:R — R and v: R — R? be two functions of class C'. Prove that the map

o€ CSO(RZ) — JR Vqﬁ(f(a:),x) -v(z)dx

is a distribution on R? and give its order.

Ezercise 7. We recall that for f € Li _(R?) and y € R? we have denoted by 7, f the
translation of f (r,f : 2 — f(x —y)). Let T € D'(R?). For y € R? and ¢ € C°(R?) we
set

(ryT, ) = (T, 7—y0) .

1. Prove that this defines a distribution 7,7 on R4,
2. Prove that for f € L] (R?) we have 7,7y = T, ;.
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4.3 Derivative of a distribution

We now turn to one of the main motivations for the notion of distribution, namely the
extansion of the notion of derivability to functions that are not differentiable in the usual
sense. The idea is to see any function as a distribution, i.e. as a linear form on C{°(2),
and to transfer the derivation to the test function ¢ (which is differentiable).

If f is a function of class C' on R (in particular, it is locally integrable), then for
any ¢ € C(R) we have

JR f(z)o(x)dr = — fRf(m)¢/(m) dx. (4.9)
With the notations of proposition 4.15, this can be written as

(Tyr @) = = (Ty, ') -

For a function f € L .(R), the left-hand side in (4.9) has no meaning. However,
the right-hand side does, and we notice that it defines a distribution. It is what we are
going to define as the derivative of T;. If this distribution is associated to a function
g € LL _(R), that is if there exists g € L{ (R) such that

waﬁmx—kfma@m=kmwmm,

we will say that g is the derivative in the sense of distributions (or weak derivative) of
f
Example 4.21. For ¢ € C3°(R) we have

— JR |z| ¢/ () do = J‘Ooo ¢/ (z) dx — J+® x¢/(z) dx.

0

In each of these integrals we can do an integration by parts, this gives

0 +00
J lz| ¢/ () dow = — J ¢(z)dr + o(z) dz.
R —0 0
Thus, if we set

9(x) = (4.10)

1 ifz >0,
-1 ifx <0,

then for any ¢ € Ci°(R) we have

- | elot@)ar = [ s@ot) e

This means that g is the derivative in the sense of distribution of the absolute value
function. This was the expected result.

4.3.1 Definitions and first examples

We now give a precise definition of the derivative of a distribution. As for usual deriva-
tives, we use different notation in dimension 1 or higher.

Proposition-Definition 4.22. Let Q be an open set of R and T € D(). We call
derivative of the distribution T and denote by T' the distribution defined by

Voe CP(Q), (T',¢)=—(T,¢).
More generally, for k € N* we denote by T®) the distribution defined by
Yoe CEE), (TW,¢) = (-D)XT,6).
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Proof. We prove that the map ¢ — — (T, ¢') is indeed a distribution on €. Let K be a
compact set of Q. There exist m € N and C' > 0 such that for any ¢ € C%(£2) we have

(T, ) < C D 69w
j=0

For ¢ € CE () we then have

m+1

(T, ¢)] < C 3 1)V <C D [09]co.
3=0 J=0

This proves that 7" is a distribution on €. The general case follows by induction on the
order of diffentiation. O

We observe that if 7" is a distribution of order m, then T is a distribution of order
m + k. The definition is analogous in any dimension.

Proposition-Definition 4.23. Let Q be an open set of R? and T € D'(Q). Forj € [1,d]
we denote by 0., T the partial derivative of the distribution T' with respect to the j-th
variable. It is defined by

Vo e CF(Q), (0n,T,0) = —(T,0.,6).
More generally, for o € N we define 0*T by
Voe CP(Q), (T, ¢) = (-1)*N(T, %)

We now give some examples. In the specification of the definition, the derivative
of the distribution associated to a differentiable function has to be the distribution
associated with its derivative. This is indeed the case according to the equality (4.9) on
which the definition of 7" was based.

Example 4.24. If f is a function of class C! on R, then Ty =Ty
This is also the case in any dimension and for any order of deviation.

Example 4.25. Let f be a function of class C* on an open set  of R%. Let o € N¢ with
|a] < k. We have
(3an = Tha f-
We now rewrite Example 4.21 in terms of differentiation in the sense of distributions.

Ezample 4.26. If we denote by f the absolute value function on R, then we have TJ’I =Ty,
where g is defined by (4.10).

We now give the derivative of a function that is not continuous.

Ezxample 4.27. The Heaviside function is defined on R by

1 ifx>=0,
H(x) = 4.11
(z) {O if z <O. ( )

Then we have T}, = 4. Indeed, for ¢ € C°(R) we have
+a0

(T, ¢) = = (Tu, &) = = . ¢'(x) dz = ¢(0) = (6, 9) -

We can give an example of derivative a distribution that is not associated with a
function.
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Ezxample 4.28. We have
<6,a¢> == <5’ ¢/> = _QS/(O)
Finally, we give an example of a locally integrable function whose derivative is a

function which is not locally integrable.

Ezample 4.29. The function f : x — In(|z|) is in LL (R). It is derivable on R* and its
derivative is « — 1/x, which is not locally integrable. Let ¢ € C5°(R). Since f is locally
integrable we have by the dominated convergence theorem

__J‘ln(hjyﬂ(x)d$:= lim I,
where we have set
e 00
== [ e de— [ (@) de.

Since we have removed a neighbourhood of 0, we can do an integration by parts in both
terms. This gives

I. = —In(e)p(—¢) + J_E () + In(e)p(e) + foo qﬁ(;)

o T

I
B}
Vv
™
‘E
_|._
—~
hN
Nu2
|
=
|
o
~
~—
=3
—
™
~

b (1))
Tp = vp <i> )

Notice the importance of the domain on which we consider the distributions, as it
is already the case for the derivation in the usual sense. Let us consider for example on
the open R* the function f defined by

1 ifz >0,
ﬂ@_{Oﬁx<Q

This proves that

Then f is derivable in the usual sense on R* and its derivative is null. If we see f
as a function on R, then for any value of f at 0 we obtain a function which is not
differentiable, because it is not differentiable at 0.

When we comput the derivative in the sense of distributions, we no longer evaluate
the function at every point, but this distinction remains. If we see f as a function on
R*, its derivative in the sense of distributions is 0 (in other words, T = 0). On R, the
distribution T’y has a derivative as any distribution, and this derivative is lec =4.

In the sense of distributions we identify two functions that are equal almost every-
where, but it is not because a function is derivable in almost every point of R with zero
derivative that it is differentiable with zero derivative on R. In the sense of distributions,
the problem does not come from the differentiability at the point 0, but if we consider a
test function which is not 0 around 0 then we can see the jump at 0 and T} cannot be
0 (and cannot even be identified with a function).
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We note that the derivative of a distribution of order m is a distribution of order
at most m + 1. Its order is not necesseraly equal to m + 1. For example if T is the
distribution associated to a function of class C! then T and T’ are both of order 0.

The following proposition is a generalization of the Leibniz formula. We can similarly
give a result in higher dimension (see proposition 4.2 for the functions).

Proposition 4.30. Let I be an interval of R, f € C*(I) and T € D'(I). Then we have
(FT) = f'T + fT".

More generally, for n € N we have
(fT)™ = Z Ck pk)pn=k)
k=0

Proof. We prove the first statement. The general case follows by induction on n as for
functions. For ¢ € C§°(I) we have

(1Y, ¢) = = (fT.¢") = = (T, f¢/) = = (T, (f¢)) + (T, f'¢) = (T', f) + (T, f'$)
=(fT"+ f'T.¢).
This proves that (fT) = f'T + fT'. O

4.3.2 Jumps formula in dimension 1

In this section, we compute the derivative in the sense of distributions of a piecewise C'!
function in dimension 1.

Let f be a piecewise C' function on an open interval I of R. To simplify the
notation, we assume that f has only a finite number N of discontinuities (but we can do
the same if f has an infinite —necessarily countable— number of discontinuities). Thus
there exist aj,...,ay € I such that a; < --- < ay, f has for all j € [1, N] left and right
limits at a; (that we will respectively denote by f(a; ) and f (a;-r)), f is differentiable on
I\{aj,...,an} and its derivative (denoted by [f’]) also has left and right limits at any
point. In particular, [f'] defines a locally integrable function on I.

Proposition 4.31. Let f be as described above. Then we have
N
Th = Tipy + ), (Flaf) = f(a7)) s,
j=1

Proof. We set ag = inf(I) € [—00,a1[ and ayy1 = sup(]) €]an, +0]. For ¢ € CF(I) we
have

For the last equality we used the fact that ¢ vanishes in a neighbourhood of the (possibly
infinite) boundary points of I. O

With this proposition we recover the derivatives of Examples 4.24, 4.26 and 4.27.
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4.3.3 Examples in higher dimensions
Ezample 4.32. We consider on R? the function f which to (z1,2) associates

1 ifﬂjl >0,
0 ifzy<0.

f(xth) = {

This defines a function in L (R?). For ¢ € CF(R?) using the Fubini theorem and an

loc
integration by parts we have

+00
_ . f(:[})axld)(x) dl’ = — LQER (J 8m1¢(ac1, .%'2) d$1> d:BQ = JR ¢(0, .CL’Q) dl’g,

x1=0

hence 0, T} is the distribution seen in the exercise 6. On the other hand

— f(z)0s,0(x) dz = 0,
R2

50 Oz, Ty = 0.

Ezample 4.33. Let a €] — 00,d — 1[. We consider the unit ball B(1) of R% and the
function f — |x|~®. This defines an integrable function on B(1). In addition, it is of
class C* on B(1)\ {0} and for = € B(1)\ {0} we have

Vfi(z) = —alz|

Let ¢ € C3°(B(1)). Since f is integrable we have by the dominated convergence theorem

— fVodr = —lim fVodx.
B(1) e=0JB1)\B(e)

By the Green Formula we have for any ¢ €]0, 1|

fVédr = —f

e Ypvdx — aj lz| "2 2 da,
S(e)

JB(l)\B(E) B(1)\B(e)

where S(e) is the sphere of radius € and v is the normal unit vector to S(e) directed
towards B(e). We have on the one hand

f e Yovdx
S(e)

On the other hand, using the dominated convergence theorem, we have

<[S()] e ], — 0.

—ozf T — —af 2| % ¢ da

B(1)\B(e) =0 B(1)

This proves that the gradient of T is the distribution associated to the integrable
function z — —a |z|"* ?z. In other words, for any j € [1,d], the distribution 0Ty is
the distribution associated to the function z — —a|z|~* 2 z;.

4.3.4 First examples of differential equations

Now that we have introduced the derivatives of a distribution, we can try to solve dif-
ferential equations in the space of distributions. As for the functions, the question is to
find the set of distributions T" such that some relations between T and its derivatives
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are satisfied.

We begin by a simple problem. The first question is to ask, in dimension 1, which are
the distributions which derivatives are 0 on a given open interval of R. Of course, the
distributions associated to constant functions are solutions. They are the only solutions
in the space of differentiable functions, but since we have enlarged the space where we
look for a solution, we could have new solutions that are not distributions associated to
derivable functions. This is actually not the case.

Proposition 4.34. Let I be an open interval of R. Let T € D'(I). Then T' = 0 if and
only if T is constant (that is if T can be identified to a constant function).

To do the proof, we will use the following lemma. Notice that a function ¢ € C° (1)
has primitives on I. They are necessarily of class C®, but in general they are not
compactly supported.

Lemma 4.35. Let I be an open interval of R and ¢ € CP(I). Then there exists
Y e CP(I) such that ¢' = ¢ if and only if §; ¢ = 0.

Proof. Assume that there exists ¢ € C°(I) such that 1)’ = ¢. Then we have

fo- oo

Conversely, assume that §,¢ = 0. For z € I we set ¢(x) = §* ¢(t) dt, with a = inf(I).
Then ¢ € C(I) and ¢’ = ¢. O

Proof of proposition 4.34. We know that the derivative in the sense of distributions of
a constant function is 0. Conversely, assume that 7' € D’(I) is such that 77 = 0.
Let ¢ € C3°(I) such that §; ¢o = 1. We set v = (T, ¢o). Let ¢ € C§°(I). We have

[(oefo)o

So by Lemma 4.35 there exists ¢ € C§°(I) such that ¢ = ¢ — ¢ §; ¢. Then we have

<T,¢—¢0L¢> — (T,0/) = —(T",0) =0,

<T,¢—¢0L¢> - <T,¢>—af[¢,

<T,¢>—af]¢.

and on the other hand

hence

This proves that T is the distribution associated to the constant function equal to a.
We note that the definition of o does not depend of the choice of ¢y. O

The following generalizations are left as exercises for the reader.

Corollary 4.36. Let I be an open interval of R and k € N*. Let T € D'(I). Then
T®) =0 if and only if T is a polynomials of degree at most k — 1.
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Corollary 4.37. Let I be an open interval of R, k € N* ag,...,ar € C and f a
continuous function of I. The solutions T € D'(I) of the equation

arT® + .. 4+ aT = f
are exactly the solutions of the same problems set in C*(I).

Ezample 4.38. Let a € R. We consider the equation
T —aT =6, (4.12)

of unknown T € D'(R). As for the usual case, since it is an affine problem, it suffices
to find a particular solution and to add the solutions of the homogeneous problem. To
find a particular solution, we can use. .. the variation of parameters. Let T' € D’(I) and
S = e *T. Then T is solution of (4.12) if and only if e**S = §, or S’ = e~ **§ = 4.
According to Example 4.27 we can take the Heaviside function H and we get a particular
solution Ty = e** H. As for the case of functions, even if we are not convinced with the
previous manipulations, we can check a posteriori that 7T} is solution using Proposition
4.30 or 4.31. Thus, the set of solutions of (4.12) is the set of distributions associated to
functions of the form
z— e* (H(z) + ),
where c is a constant.

Remark 4.39. We recall that if f is a continuous function with compact support on R
then the solutions of the equation

Yy —ay=f

are functions of the form
t
ts Ce™ + J e®t=5) £ (s) ds.
—0

Notice that these solutions are precisely convolutions of functions that are solutions of
(4.12) with f. This is not a coincidence, and we will generalize this remark later on.

We observe that as in the case of functions, the difficulty to solve an equation like
(4.12) is to identify the primitive of a given distribution. As for continuous functions,
we can ensure that any distribution on an interval of R has a primitive (this is Exercise
11). In particular, any function in L (R) has a primitive in the sense of distributions.

The following proposition is left as an exercise fo the reader.

Proposition 4.40. Let f € L{ (R). For z € R we set

Fla) = L F(8)dt.

Then F is in L (R) and its derivative in the sense of distributions is f (in other words,
Tp =1Ty).

4.3.5 Exercises

Ezxercise 8. Let T € D(R), f € C*(R) and k € N. Prove that

ke -
T = Y () FO=) 7).

=0
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Ezercise 9. 1.Let a € C. Determine the set of distributions 7" € D’(R) such that
T = aT.
2. Solve in D'(R) the equation
T —aT = H(z),
where H is the Heaviside function.

Ezxercise 10. For ¢ € C(R?) we set

(T, ) = szb(x, ) dx.

1. Prove that it defines a distribution 7" on R?.
2. Prove that T cannot be seen as a Li (R?) function.
3. Compute 011 — 09T

FExercise 11. Let I be an interval of R and let T be a distribution on I.
1. Prove that T has a primitive S € D'(I).
2. Use S to describe the set of primitives of T.

Ezxercise 12. 1.Determine the set of primitives of § on R. Verify in particular that
the primitives of § can be identified to functions of L*(R).

2.Let f € L'(R). Prove that the set of primitives of f (in the sense of distributions) is
the set of functions of the form (G = f), where G is a primitive of d.

Ezercise 13. Determine the set of solutions in D’(R) of the equation
~T"+T =0.

Ezercise 14. Let Q = {(z1,22) € R? : |21| < 1,|x2| < 1}. For (1, 22) € Q we set

1—x if |.CL‘2| <,

14z if |5L‘2| < —r1,

u(z) = .
1—.%2 if |:c1| < x2,

1+ 29 if ]xl\ < —I9.
Determine the derivatives of u in the sense of distributions on 2.
Ezxercise 15. For (t,r) € R? we set

3 ift— 0
G(t,x):{2 e~ |z >0,

0 otherwise

Prove that G € L] .(R?) and compute (04 — d5,)G in the sense of distributions.

Exercise 16. For (t,r) € R? we set

22

e 4t
Azt

Prove that G € L{ (R?) and compute (J; — 0,;)G in the sense of distributions.

loc

G(t,z) = H(t)

Ezercise 17. 1. Let u be a probability measure on (R, B(R)). For z € R we set f(z) =
(] - o, o).
a. Prove that f is a nondecreasing function, tends to 0 at —oo and tends to 1 at +oco.
b. Prove that in the sense of distributions, we have f’ = p.
2. Let f be a nondecreasing function on R. Suppose that f tends to 0 at —co and tends
to 1 at +00. Prove that there exists a probability measure p on (R, B(R)) such that, in
the sense of distributions, f’ = pu.
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4.4 Compactly supported distributions

In this section we focus on the case of compactly supported distributions, that is distri-
butions that vanish outside a compact subset of €2. We first define what this means.

4.4.1 Restriction of a distribution - Support

Proposition 4.41 (Restriction of a distribution). Let Q and w be two open sets of R?
such that w < Q. Let T be a distribution on 2. Then the restriction T,, of T to C§(w)
(we identify a function ¢ € C°(w) to its extension by 0 on Q) defines a distribution on
w.

Proof. T defines a linear map on Cj°(w). Let K be a compact set of w. This is also a
compact set of €, so there exist m € N and C' > 0 such that for any ¢ € CE(w) ~ CE(Q)
we have

Tu(@)] = 1T <C Y] [0,

|al<m

This proves that T, is indeed a distribution on w. O

Definition 4.42. Let © be an open set of R% and T be a distribution on . We say that
T vanishes on w if its restriction to w vanishes, that is if (T, ¢) = 0 for any ¢ € C°(2)
supported in w.

Lemma 4.43. Let Q be an open set of R and T be a distribution on 2. We denote by
O the union of all the open sets of Q on which T vanishes. Then T vanishes on O (in
particular, O is then the biggest open set on which T vanishes).

Proof. Let ¢ € C;°(O). Let K be the support of ¢. Since K is compact, there exist
n € N and open sets w1, ...,w, < 2 such that K c U _, wj; and T vanishes on w; for any
jel,n]. Let x1,...,xn € C’O (O) be an assomated partition of unity (supp(x;) < w;j
for any j € [1,n] and 2?21 X; = 1 on K). Then supp(x;j¢) < w; for any j € [1,n] and

(T, ¢) = > (T, x;¢) = 0.
7j=1

This proves that T is vanishes on O. O

Definition 4.44. Let © be an open set of R? and let T be a distribution on Q. The
support of T', denoted by supp(T’), is the complementary set in  of the biggest open
set on which T vanishes.

Example 4.45. « If f is a continuous function on € then supp(7’y) = supp(f).
« supp(d) = {0}.

o Let fe Ll .(92) and w be an open set of . Then the restriction of Tf to w is the
distribution associated to the restriction on w of f. In particular T’y vanishes on w if
and only if f is almost everywhere null on w. Thus supp(7) is the complementary
set of the biggest open set of Q2 on which f is almost everywhere 0.

Proposition 4.46. Let Q be an open set of R and T a distribution on €.
(i) supp(T) is a closed set of §)

(ii) Let ¢ € CF(Y) such that supp(T) nsupp(¢) = &. Then (T, ¢) = 0.
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(iii) For any o € N, we have supp(0“T) < supp(T).

Remark 4.47. Let T' be a distribution on Q. There can exist ¢ € C;°(£2) such that
¢ = 0 on supp(7T) and however (T, ¢) # 0. For example, we have supp(d’) = {0} and for
¢ € CL(R) we have

(6,6 = =4/ (0).

But we can have ¢(0) = 0 and ¢'(0) # 0. In that case ¢ = 0 on supp(7T’) but (T, ¢) # 0.
However, 0 belongs to the support of ¢ so supp(T') N supp(¢) # .

4.4.2 Compactly supported distributions

We now consider distributions on €2 whose support is a compact subset of 2. We denote
by £'(2) the set of compactly supported distributions on €.

Since a distribution has “locally a finite order” it is not surprising that compactly
supported distributions are of finite order.

Lemma 4.48. Let Q be an open set of R and T a compactly supported distribution in
Q. Let x € C(Q) equal to 1 on a neighbourhood* of supp(T). Then for any ¢ € CL(Q)
we have

<T7 d)> = <T7 X¢> .

Proof. Let ¢ € Ci°(€2). Since supp(7') nsupp((1 — x)¢) = & we have (T, (1 — x)¢) = 0,
hence (T, @) = (T, x9). O

Proposition 4.49. A compactly supported distribution is of finite order. More precisely,
if K is a compact neighbourhood of supp(T') in 2, then there exist m € N et C' > 0 such
that for any ¢ € CF°(2) we have

(T.¢)| <C Y, sup|o®p(x)|. (4.13)

laj<m zeK
Proof. Let © be an open set of R and T € £(Q). By Proposition 1.21 there exists
x € C5°(92,[0,1]) supported in K such that x = 1 in a neighbourhood of supp(T).
There exist m € N and Cx > 0 such that

Vo e CR(Q), [T,o)<Ck D, 07|,

|a|<m

Then, by Lemma 4.48 and the Leibniz rule, we have for any ¢ € C{°(€)

(T, )] = (T, xd) < Cx Y. 10°(x@)l, <C . 00l

la]<m la|<m

for some constant C' which does not depend of ¢. This proves (4.13) and in particular
T is of finite order. O

We observe that another consequence of lemma 4.48 is that a compactly supported
distribution can be extended into a linear form on C®(Q2). Indeed, if ¢ € C*(Q)
has a non compact support, we can define (T, ¢) as (T, x¢), with y equal to 1 in a
neighbourhood of the support of T'. This definition does not depend of the choice of Yy,
and this new map is a linear form on C*(2).

! As for Remark 4.47, it is not enough to suppose that y is equal to one on supp(T).
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Let us now define a topology on C™(f2), to see a compactly supported distribution
as a continuous linear map on C*(Q2). For n € N we set

K, = {af € Q| |z| < n and dist(z, RN\Q) > 27”}.

This defines a sequence (Ky,),,oy of compacts of 2 such that

QzUKn.

neN

Moreover, if K is a compact set of € then there exists n € N such that K < K.
For u,v e C*(§2) we set

o g
doo (u,v) = Z on min (1, lu — ’U”c;gn(Q) )
n=0
This defines a distance on C*°(2), and (C*(2),d ) is a complete metric space.

With this topology, a sequence (up),,oy of C*(£2) converges to v € C*(Q) if and
only if for any o € N¢ and any compact K of  the sequence (0“Up)nen converges to
0“u uniformly on K.

We can now check that if T is a compactly supported distribution on 2, extended
to a linear form on C*(Q), then T is in fact continuous on C*(2).

4.4.3 Distributions supported in a singleton

Among the compactly supported distributions, we now consider those supported on a
point. We know that the support of a function cannot be a singleton. However, it is
the case for the Dirac distribution and its derivatives. We prove that there is no other
possibility.

Proposition 4.50. Let T be a distribution on R?. Assume that supp(T) = {0}. Then
there exist m € N and constants c,, € C, |a] < m, such that

T= Y cad®.

lal<m

Proof. ¢ By the previous proposition, T is of finite order, so there exist m € N and
C > 0 such that for any ¢ € C°(R?) we have

(T, o) <C ) 0%l

|al<m

Let x € CP(R,[0,1]) be equal to 1 in a neighbourhood of 0 and supported in B(0, 1).
For ¢ €]0,1] and = € R? we set y.(z) = x(%). Then x. is supported in B(0,¢) and there
exists Cy > 0 such that for any o € N with |a| < m we have

[0%Xellop < Cre™l.

o Let ¢ € CE(RY). For x € R? we set
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Then v € CF(R?) and 0% (0) = 0 for any a € N¢ with |a| < m. By the Taylor formula,
there exists Cy > 0 such that for || < m, € €]0,1] and x € B(0,¢) we have

|aaw($)| < C¢€m+1—\o¢|.
Then by the Leibniz formula we have, for any |o| < m,
ot = s 3 (4) vt o] = o, = o @)
xEB(O,E) Béa
By Lemma 4.48 we have

<T7 ¢> = <Ta X6¢> = 0 (6) — 0.

This proves that (T',) = 0. Thus,
T.6) = (Tad) = 3 %00 (121 ) = 3 o (0%6.0),
la|l<m |a|<n

where for |a| < m we have set 2

Ca = (—1)l <T ”> 0

ol

This proposition is useful when we want to show that a distribution is a Dirac
distribution. We can first show that its support is reduced to a point, which reduces the
possibilities. It only remains to check that there cannot be a term involving a derivative
of the Dirac distribution.

4.5 Convolution

In this section, we generalize the convolution product to distributions. This cannot be
done in complete generality, but we can go further than what will be discussed here.
4.5.1 Derivation and integration under the bracket

We begin by generalizing to the distributions the theorems of derivation under the
integral sign and the Fubini Theorem.

Theorem 4.51 (Derivation under the bracket). Let T € D'(R?) and ® € C*(R?
RY). We assume that there exists a compact set K of R such that supp(T) < K or
supp(®(-,\)) < K for all A e R”. For A € R we set

FX) =(T,2(:,\)) pr(ray p(re) -
Then F is of class C* on RY and for a € NV and X\ € R” we have

Proof. « Let Ao € R”. Let K be a compact neighbourhood of K in R?. There exist
m € N and C' > 0 such that for all A € R¥ we have

[F(X) = FOo)| = (T.8(,3) = 8, 20))| <C Y sup |3 ((a, A) - D(a, M)

|| <m TEK

2Check that this definition of ¢, does not depend of the choice of x
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Let 7 > |\o|. By the Mean Value Inequality we have for any A € B(r)

FO)—Fo)l <C Y sup sup |008®(a, M)| A — Aol N
lal<m,|B|<1 zeK MEB(r) A—Ao

This proves that F' is continuous on )y, and then on R”.
e We denote by (eq,...,e,) the canonical basis of R”. Let A € R” and j € [1,v]. For
h € R* we have

F(X+ hej) — F())
h

— <T, 0,\j<1>(-,)\)> = <T7 \Ijh('v/\»a

where
O(x, A+ hej) — P(x,\)

h
For any A € R” we have supp(¥,(-,\)) < K if supp(®(-,\)) € K. Moreover, 0%V,
converge uniformly to 0 as h tends to 0 for any o € N%, so as above we get that the
derivative of F' with respect to \; existd and is given by <T, é’,\j<1>(-,)\)>. Thus, F
is continuous, its partial derivatives exists and are as given by the proposition. We
conclude by applying this result to the successive derivatives of ® with respect to A. [

\I’h(xa >‘) =

— 0y, B(x, N).

Proposition 4.52. Let T € D'(R?) and ® € C°(R? x R). We suppose that there exists
a compact set K of R? such that supp(T) = K or supp(®(-,\)) < K for any X € R”.
Let P =[];_,la;,b;] be a rectangular cuboid of R”. Then we have

L (T, (-, \)) dX = <T, L ®(-, \) d>\> .

Proof. Let P" = [[/_s[a;,b;]. For A1 € [a1,b1] we set

F\) = <T, Elfl@(-;sl,mdmsl>.

By the theorem of derivation under the bracket, F' is differentiable on [a1,b;1] and for
A1 € [a1,b1] we have

F'(\) = <Tf /<I>(~;)\1,>\’) d)\’>,
Hence
Lbl <TJ /@(.;Al,A’) dX> d\1 = F(by) — F(ay) = <T’ Lbl J ,Q(';AI’X) d)\’d)\1>.

We proceed in the same way to “get out of the bracket" the integrals with respect to
every other variables. O

4.5.2 Convolution of a distribution with a function

In this paragraph we define the convolution product of a distribution and a regular
function, one of them at least being compactly supported.
Recall that for f € Ll _(R?) and ¢ € C*(R?) (one at least being compactly sup-

loc

ported) the convolution (f * ¢) is defined by

(F+0)@) = | f)o(—y)dy
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With the notations introduced for distributions this can also be written as

(f *0)(x) = (Ty, ¢(x —)) -

We recall that we have set Pg = § the function g : y — g(—y) and 7,¢ is the function
y — g(y — x). Thus we can also write

(f *&)(@) = (Ty.79)

Note that if ¢ is compactly supported, this is still the case for Txé, so this can be
generalized to a general distribution.

Definition 4.53. Let T' e D'(R?) and ¢ € CL(R?), where T € £'(R%) and ¢ € C*°(R).
For z € R? we set

(T+§)(w) = (T, ¢(x =) = (T, m0).
This defines a function on R%, called the convolution of 7' and ¢.

Example 4.54. As usual the specification for defining an operation on distributions is
that it coincides with the usual operation for a distribution associated with a function.
Here the definition has effectively been chosen in such a way that for f e L1 (R9) and
$ € C*(RY), one at least being is compactly supported, we have

(Ty @) = [0

Example 4.55. The convolution of functions had no unit element, because the Dirac
mass is not a function. Now that we can define the convolution with a distribution, we
observe that
Ve CPRY), (6 xv) = 1.
We now give some properties of this convolution product. We first prove that two
distributions which have the same convolution product with test functions are equal.

Lemma 4.56. Let T € D'(R?). We suppose that for ¢ € CF(RY) we have T * ¢ = 0.
Then T = 0.

Proof. For any ¢ € CF(RY) we have

(T, ¢) = (T * $)(0) = 0,
soT =0. ]

Corollary 4.57. If T1,T» € D'(R?) are such that Ty + ¢ = Ty # ¢ for any ¢ € CL(R?)
then T1 = TQ.

Now we generalize the fact that the convolution of two compactly supported functions
is compactly supported.

Proposition 4.58. If T € £&'(R?) is supported in B(0, Ry) and ¢ € C°(R?) is supported
in B(0, Ry) with Ry, Ry > 0, then (T * ¢) vanishes outside B(0, Ry + Ra).

Proof. Let x € R? such that |z| > Ry + Ry. Then the supports of 7' and ¢(x — -) are
disjoint, so (T * ¢)(z) = 0. O

We have seen in Proposition 1.18 that if one of the term of the convolution is regular,
then the product is also regular and the derivatives of the product can be obtained by
differentiating this term. Here, we have an analoguous result, and we can put the
derivative on any term.
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Proposition 4.59. Let T € D'(RY) and ¢ € CF(RY), or T € &'(RY) et ¢ € C*P(RY).
Then (T = ¢) is a function of class C* on RY and for any o € N® we have
0T+ 6) = T % (2°6) = (2°T) + 6.

Proof. By the theorem of derivation under the bracket, (T * ¢) is of class C* and for
any o € N we have

0T % ¢) = (T, 07 (d(z —))) = (T, (33¢)(w — ) = T * (2¢).
Moreover, for x,y € R% we have
(x —y) = (-1)"og oz — y),
so we also have
(T, 08¢(x —)) = (=1)*U(T,0%(¢(x —))) = (°T' ¢(x —)) - O

We now generalize to this context the good behavior of the convolution with trans-
lations, and we show the associativity of the convolution of a distribution with two
functions.

Proposition 4.60. Let T € D'(RY) and ¢ € C(R?), or T € £'(RY) and ¢ € C*(RY).
Then for a € R* we have
Ta(T * (Z)) =T+ (Ta¢)'

Proof. At x € R? these two functions are equal to (T, ¢p(z —a — -)). O

Proposition 4.61. Let T € D'(R?) and ¢ € C(RY), or T € &'(R?Y) and ¢ € C*(RY).
Let ¢ € CF(RY). Then we have

(Tx ) x ¢ =T+ (¢ ¢).

Proof. Let P be a rectangular cuboid of R? containing the support of ¢. For z € R¢ we
have

<<Tw>*<z>)<w>=j

P

(T« )z — 4)d(y) dy = fp (T, —y — ) d(y) dy.

By the theorem of integration under the bracket we have

()= 6)(a) = (7. | bl =y o0)dy) = (T.0+ 6)(w — ) = (T'x (5% 0)) o)
P
and the conclusion follows. O

In the next section, we will also use the following equality.

Proposition 4.62. Let T € D'(RY) and ¢ € CL(R?), or T € &'(RY) and ¢ € C*(R?).
Let g € CF(RY). Then we have

(T x4, ¢) = (T, 9 = ).

Proof. As in the previous proof we consider a rectangular cuboid P containing the
support of ¢ and we apply the theorem of integration under the bracket to get

(T w2p, 6) = fp(T « ) (@) () dz = fp (T, p(a — ) 6(z) da
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4.5.3 Density of regular functions in the space of distributions

We used convolution to prove that C°(R%) is dense in the Lebesgue spaces LP(R?),
p € [1,+o[. In the same way, we prove that C°(R) (that can be seen as a part of
D'(RY) since each f € CF(RY) is identified as a distribution of R?) is dense in D'(R%).
Be careful, this seems to be a strong result since D’(R%) is larger than LP(R?), but
the notion of density is not the same for the topology, and it is “easier” to be dense
for the topology of D'(R?) than for the topology of LP(R?). For example, we get in
particularthat we can approach any f € L®(R?) by a sequence of functions in C§°(R?)
for the topology of D'(R?), but this was not the case for the topology of L*(R%).

Proposition 4.63. Let Q be an open set of RY and T € D'(). Then there exists a
sequence (fn),en of functions in C§°(§) which converges to T' in the sense of distributions
(in other words, Ty, converges to T in D'(£2)).

Proof. Let (Ky), .y be a non-decreasing sequence (for the inclusion) of compacts sets
in © such that |,y Kn = Q. For n € N we consider x,, € C§°(£2) such that x, = 1 in
a neighbourhood of K, and then &, such that B(z,2¢e,) c Q for all = € supp(x,). We
can choose the €,,, n € N, in such a way that the sequence (e,),,. is non-increasing and
tends to 0. Let (p:)e>0 be an approximation of the unit. For n € N we set

fn = (XnT) * Pey -

Let ¢ € D(Q2). For n € N we have by Proposition 4.62

There exist a compact subset K of 2 and N € N such that pz, *¢ is compactly supported
in K for any n > N. In addition for any a € N, 0%(p7, * ¢) = pz, * 0°¢ converges
uniformly to 0%¢. Thus,

(T, pz,, * ) (T,9).

Choosing N larger if necessary, we can assume that y, = 1 on K for any n > N. Then
we have

n—+0oo

<fn7¢> = <Ta X’n(ﬁ;n *(b)) = <T7p\5/n * ¢> — <T7 ¢> :

n——+ao0

This means that f,, tends to 7" in the sense of distributions. O

4.5.4 Fundamental solution of a PDE

Let P be a differential operator with constants coefficients on R?. This means that there
exists m € N and constants b, for a € N, |a| < m such that

P= > byo"
la|<m

The formal adjoint of P is defined by

Pro= 3 (=16 (bag).

|al<m

We consider the problem
Pu = f, (4.14)

where f is a given function and u is the unknown.

94 J. Royer (translation by S. Damage) - Université Toulouse 3



DISTRIBUTIONS

Definition 4.64. A distribution G' on R? is said to be a fundamental solution of the
equation (4.14) if we have, in the sense of distributions,

PG =6.
This means that for ¢ € C°(R?) we have

<G7P*¢>D/(Rd),D(Rd) = ¢(0).
The following proposition is a direct consequence of Proposition 4.59, according to
which P(G * f) = (PG) % f for any f € C°(R?).

Proposition 4.65. Assume that G € D'(R?) is an fundamental solution of the equation
(4.14). Then for any f € C(R?) the function u = G = f is a solution of (4.14) in the
sense of distributions.

Ezample 4.66. Recall that H = §, where H is the Heaviside function. For f € C§°(R)
and x € R we have

Hx D@ = [ sy

The proposition says that (H = f)’ = f. This is indeed the case.
Ezample 4.67. Let z € C with Im(z) > 0. We consider on R the equation

—u" — 22 = f.

For z = ¢, we have already mentioned this example in the end of the chapter about the
Fourier Transform. In particular, we observed that this problem can be simply solved
with the variation of parameters. This gives the particular solution

u:x —J Y1242 £ (y) dt,
R

which is exactly what is given by Proposition 4.65 with the fundamental solution (or
Green function) G given by

pRded

G.(z) =—

2iz
Ezample 4.68. We have seen in Example 3.30 that in dimension d > 3 the fundamental
solution of the Poisson equation

—Au = f. (4.15)

is given by
1

(d = 2)o (581 |2|"

In general, we want to solve equations like (4.14) with source terms that are more
general than f € C°(R?). Under some conditions, we can define the convolution of two
distributions, and we can state Proposition 4.65 for some f € D'(R%). In the following
section, we define for example the convolution of two distributions, one of which being
compactly supported.

But instead of pushing further the general theory, we give results for some particular
situations which will include some models we are interested in.

G(x) =

Proposition 4.69. Let p,q,r € [1,4+0] such that

1 1 1

4o =14-=

p q r
Let us suppose that G € LP(R?) is a fundamental solution of (4.14). Then for f € LI(R)
we have u = G = f € L"(R?) and, in the sense of distributions, Pu = f.
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Proof. The fact that u belongs to L"(RY) has been proved in Proposition 1.10. Let
¢ € C(R?). By the Fubini Theorem, we have

f (G * 1) (@) (P*6)(x) dur = f G(x — 1) f(4)(P*6)(x) dy dx
R4 zeR? JyeRd

[ ([ ce-nwrowar) a
- [ ([ o) ay

[ ([ @ i) a
= JRd F(y)oly) dy.

This proves that P(G = f) = f in the sense of distributions. 0

In Example 4.66 we have H € L*(R), and the result is valid for any f € L!(R). For
Example 4.67 we have G € LP(R) for any p € [1, +o0]. We now consider the Helmholtz
equation in dimension 3.

Ezample 4.70. For z € C such that Im(z) > 0 we consider on R? the equation

(=A = 2%)u = f.
For z € R3\ {0} we set
o eiz|x|
(@) = A7 |z|

This defines a function G, € L*(R3).
On R3\ {0} we have
(A - 2*)G, = 0.

Let ¢ € C(R?). By the Green fromula we have
—| G.A+2H)¢pdr = —lim G.(A + 2*)p dx
R3 e—0 |z|>e

= —lim G, 0,0 dx + lim 0,G, o dx.
e—

e—0

|z|=¢ |z|=€
We have ‘
62255
zau d = 8V d = —> U,
jb:—sG v fml—s dme ¢dz = Ofe) £—0 ’
and

f 0,G, ¢ da = f e (1 — ize) pdz —> (0).
|z|=¢

|z|=¢ 4e? e—0

This proves that (—A — 22)G, = § in the sense of distributions. Thus, if for f € L?(R?)
we set

etzlz—yl
u(z) = L@ mf(y) dy,

then u € L?(R3) and in the sense of distributions we have (—A — z2)u = f.
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Ezample 4.71. For (t,z) € R? we set

e 4t
NAart

Then G € L] (R?) and in the sense of distributions we have

G(t,x) = H(t)

(O — 025)G = 0.
Indeed, for ¢ € CF(R?) we have
(O = 0za)G, &) = (G, (=0t — Oga)P)

2

+00 67%
~ _ lim f (04 + Ou) (1, 7) da dt.
=e JzeR

e—0t t 4t

For t > 0 and £ € R we have

2

e W 1 z?

Thus, after using an integration by part we get

2
4e

O — 042)G, &) = 1
(0 )G, }) st s
2

o(e, ) dx

: e
= 81_1}(% R Fﬁb(& 2+/en) dn
= $(0,0).

For ¢t > 0 the function G(t) = G(t,-) is integrable on R, and we can see G as a
continuous and bounded function from R* to L!(R). Let us consider now a function f
defined on R*% x R such that for any ¢ > 0 the function f(t) = f(t,-) belongs to LP(R)
for some p € [1,400]. Let us suppose that f is continuous from R* to LP(R), with

+0o0
| 1@y at < 4o

We can consider the function u from R¥ to LP(R) defined as

u(t) = f—o G(t —s) = f(s)ds.

This means that for ¢ > 0 the function u(t) € LP(R) is defined for x € R by

t
u(t,z) = J G(t—s,z—y)f(s,y)dyds. (4.16)
s=0 JyeR
We can then check that in the sense of distributions on R% x R we have
Ottt — Oggt = f.

We could go even further. Even if it is not included in the framework we have discussed
so far, we could imagine a source term f supported at time ¢t = 0. Formally, we take
f(t,x) = 0(t)up(z), where ug € LP(R). Concretely, we define f as the distribution

6 CP(R?) f w(@)(0,2)da.
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Formally, the expression (4.16) becomes

_lz— yl2

u(t, ) fG uo(y) dy = \/@f uo(y) dy. (4.17)

And even if we did not give any general result including this case, we can verify that
the function u defined this way is bounded as a function from R* to LP(R), it satisfies
in the sense of distributions the heat equation

Ot — Ogau = 0, sur R} x R,
and it verifies the initial condition u(0) = wg in the sense that

[, ) = voll Loy T 0

4.5.5 Convolution of two distributions, one of which at least being
compactly supported

Now we define the convolution of two distributions. This section can be omitted. One
should simply remember that under certain conditions one can define the convolution
of two distributions, and that this convolution verifies the good expected properties (in
particular, the Dirac distribution is indeed a unit for this product on £’(R%)).

Proposition-Definition 4.72. Let T and S be two distributions on R?, one of which
at least being compactly supported. We denote by T % S the unique distribution on R?
such that

Voe CPRY), (T#S8)x¢="Tx(Sxg).

Proof. Uniqueness comes from Corollary 4.57. For the existence we consider on C(R%)
the linear form
L:¢— (T (5= (P)))(0).

If S e &(RY) then S * (Pg) € CP(R?), so T * (S = (Pe)) is a function of class C*,
whereas if T € £'(RY) then T defines a linear map from C*(R%) to itself, and S  (P¢)
belongs to C®(R?). In any case, L(¢) is well defined.

Let K be a compact set of R?. Let R > 0 such that K < B(0,R) and T or S is
supported in B(0, R).

Let ¢ € CF(R?) be supported in K. If S is supported in B(0, R) then S * ¢ has is
supported in B(0,2R). Otherwise T is supported in B(0, R). In any case there exist
mp € N and Cp > 0 which do not depend of T" and R such that

LI <Cr ), sup [0°(S«(Pe)(x)| =Cr Y, sup |(S#0*(Pe))()|.

|z|<2R |z|<2R

lal<myp la|<mr

But there exist mg € N and Cs > 0 such that for ¢ € C§°(R?) supported in B(0, R) and
x € B(0,2R) we have

(S=v)@)| = [(Sw@—N<Cs Y, 0% .

|B|<ms

Applied with ¢ = 0*P¢ we finally get

L) <cres Y, |0

IBl<mr+ms

This proves that the map L is a distribution on R?.
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Let us prove that L ¢ = T * (S = ¢) for any ¢ € C°(R?). For x € R? we have

)-
(L# @) (x) = (L, 72 Po) = (T % (S * (P12P9)))(0) = (T * (5 * (7-20)))(0)
= (T # (7-2(5 % 9)))(0) = (T-2(T * (S * 9)))(0)
(T *(S+9)(a).
Thus T % S is defined as the distribution L. O
Ezamples 4.73. e« For Te D'(RY) wehave T+ 6 =0+ T =T.
o Let T € D'(RY) and f € CFP(RY) or T € &'(R?) and f € C*(RY). Then we have
T+ Ty = Tryy.

We prove the commutativity, the good behaviour of the derivation and the associa-
tivity for this convolution.

Proposition 4.74. Let T and S be two distributions on R?, one of which at least being
compactly supported. Then we have

TS =8=T.
Proof. By Corollary 4.57 it is enough to prove that for any ¢ € C{°(RY) we have
(T+S)xp=(S*T)=¢.
For this it is enough to prove that for 1 € C$°(RY) we have
(T#8)x¢)xp = ((ST)* @)+t

Let ¢, € CF(RY). By Proposition 4.61 (twice), the definition of 7 * S and the com-
mutativity of the convolution of functions we have

(T S8)xd)xthp = (T % 8)x(¢px9p) =T (S (¢x1))
T

=Tx((Sx9)x¢)) =T = (Y= (S*9))
(T +9)+ (S +9)
Similarly,
((S#T)x ) s = (S*T)x(px 1) = (S*T) * (¢ *9)
=S5 (Tx(Pxg)) =5=((Tx*y)*0)
=Sx(@x(Txy)) = (Sx¢) (T 1)

= (T *4)* (5 9). O

Proposition 4.75. Let T and S be two distributions on R?, one of which at least being
compactly supported. For o € N® we have

0T % 8)=(0"T) S =T = (0*S).
Proof. Let ¢ € CF(RY). By Proposition 4.59 we have

(0(T%8))x¢ = (TS)*(0%¢) = T#(S%(0%¢)) = T+(0°(5%¢)) = (0°T)*(Sx¢) = ((0°T)*S)x¢

and

(0T %8))xp=T=x (S (%)) =T = ((0°S) = ¢)) = (T = (0°9)) = ¢. ]
Proposition 4.76. Let T, R and S be two distributions on R%, one of which at least
being compactly supported. Then we have

(T*S)«R=T=(S=R).
Proof. For ¢ € CF(RY) we have
(T*S)*R)x¢dp=(T*S)x(Rxp)=T=(S*(Rx¢p))=T=((S*R)*0)
= (T (S*R)) = ¢. O
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4.6 Fourier Transform

4.6.1 Tempered distributions

The Fourier transform has been naturally defined on L'(R?), then to its restriction on
LYRY) n L2(R?) (or on S(R)) and then it has been extended to L2(R?). Now we want
to extend the Fourier transform to distributions.

Most of the usual operations on functions (derivation, multiplication by a regular
function, etc.) are extended to distributions by reporting the operation on the test
functions to which we apply the distribution. It is reasonable to want to proceed in the
same way for the Fourier transform.

Recall that in Section 2.4 we have chosen S(R?) instead of C§°(R?) as the space in
which we can derive and multiply by polynomial functions as much as we wish. The
reason was Proposition 2.18 which shows that the Schwartz space has a nice behavior
with respect to the Fourier transform. This is not the case for C$°(R?) which is not even
stable under Fourier transform. Even worse, we can check that a function ¢ € C§°(R9)
such that ¢ € C(R?) is 0 (for d = 1, the Fourier transform of ¢ can be extended to
a holomorphic function on C whose restriction on R cannot be compactly supported if
it is not 0). However, since C{°(RY) = S(R?), the Fourier transform of a function in
CE(RY) at least belongs to S(RY).

Thus, the Fourier transform F¢ of a function ¢ € CL(R?) is not in C§°(R?) in gen-
eral, so we cannot apply a distribution to it. To generalize the Fourier transform to
distributions, we have to ... change the definition of a distribution. Thus we will not
extend the Fourier transform to continuous linear forms on C§°(R?), but to continuous
linear forms on S(R?).

The purpose of this paragraph is therefore to introduce the continuous linear forms
on S(RY). They will called tempered distributions. For this we first have to describe
the topology of S(R?).

This is another advantage of the tempered distributions over the usual distributions,
the topology of S(RY) is simpler to describe than the topology of C§°(R?).

For k€ N et ¢ € S(R?) we set
Ni(9) = sup [a0%g| .
lal,18|<k w0

We observe that this defines a norm on S(R?), but a norm for which S(R?) is not
complete. As we did for C%(€), we define on S(R?) a topology that is associated to
every norm at the same time. It is given by the distance defined on ¢, € S(R?) by

1 .
ds(é,v) = >, o min (1,Nk(6 = 1))
keN
Proposition 4.77. (S(R%),ds) is a complete metric space.

Proposition 4.78. (i) Let (¢n), oy be a sequence in S(R?) and ¢ € S(RY). Then ¢y,
tends to ¢ in S(RY) if and only if

VkeN, Ni(¢n—¢) ——0.

n—+ao0

(i) A linear form T on S(RY) is continuous if and only if there exist k€ N and C > 0
such that for any ¢ € S(R?) we have

T(¢)] < CNk(0).
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More generally, if (E,|-|g) is a normed vector space, then a linear map T :
S(RY) — E is continuous if and only if there exist k € N and C > 0 such that for
any ¢ € S(RY) we have

IT(0)p < CNik ().

(iii) A linear map T : S — S is continuous if for any j € N there exist k € N and C > 0
such that for any ¢ € S(R?) we have

Nj(T(¢)) < CNi(9)-

Now that we have defined the topology of S(R%), we can list some useful properties.
Proposition 4.79. (i) Let a € N%. The map ¢ — x%¢ is continuous from S(RY) to
itself. More generally, if f is a function of class C® on R* with slowly increasing

derivatives (see definition 2.3), then the multiplication by f is a continuous map
on S(RY).

(ii) Let a € N%. The map ¢ — 0%¢ is continuous from S(R?) to itself.
(iii) Let p € [1,+00]. The inclusion S(R?) < LP(R?) is continuous.
(iv) The Fourier transform and its inverse are continuous functions on S(R?).

The first two properties are left as exercises for the reader.

Proof. e For ¢ € S(R?) we have |¢[,, = No(¢), so the inclusion S(RY) = L®(R?) is
continuous. Now let p € [1, +oo[. Let k € N such that kp > d. For ¢ € S(RY) we have

I¢l7 = fRd(l + |2) T (L + ) |6 ()" dr < CNi(¢)

with
1
czgkf 1l pciwm
re (1+ |2])kP

This proves that the inclusion S(R?) = LP(R?) is continuous.
e Let a, 8 € N% Using propositions 2.18 and 2.11 we have for any ¢ € S(R?)

€207 $(¢)| = sup

xeR4

sup
&eRd

0°al(¢)| < |2

LY(RY)

Since multiplication by 2?, derivation 0% and inclusion in L'(R%) are continuous maps
on S(R%), there exists k € N and C' > 0 independants of ¢ such that

s

< CNj(9).

L (RY)
This proves that the Fourier transform is continuous on S(R). O
Proposition 4.80. (i) CF(R?) is dense in S(R?).

(ii) The inclusion of C°(R?) in S(R?) is continuous.
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Proof. o Let x € CP(R?,[0,1]) with support included in B(0,2) and equal to 1 on
B(0,1). For n € N* and = € R? we set

Xn(z) = X (*) :

n

Let ¢ € S(RY). For any n € N* we have y,¢ € C(R?). Let «, 8 € N¢. By the Leibniz

rule we have
2= = 3 (5) @ wde
B<B

Since 06_5(1 — Xn) is supported outside B(n) we have

Hence

LOC(Rd)Ma\-i-d-‘rl-i-W\(qb) 4’71%“0 0.

xaaﬁ—ﬁ(l _ Xn)aﬁng < H|x‘—(d+1) 55—5(1 _ Xn)H

L (R4)

asB(4 _ -
206 = X8|, e o O
and so, for any k € N,

Nk(¢ - Xn¢) 0.

n—+aoo

Thus the sequence (Y, ¢)nen+ tends to ¢ in S(RY), which proves the first point.

e Let us now consider a sequence (¢y,), .y that converges to ¢ in Ci°(R?). Then there
existsa compact set K of R? k € N and C > 0 such that ¢, is supported in K for
any n € N and 0%¢,, converges uniformly to 0%¢ uniformly on R%. This proves that ¢,
converges to ¢ in S(RY) and gives the second property. O

Now that the topology of S(R?) is well understood, we begin the study of the con-
tinuous linear forms.

Definition 4.81. A tempered distribution on R? is a continuous linear form of S(R?).
The space of tempered distributions is denoted by S’(R?).

Since C§°(R?) is continuously included and dense in S(R?), we have the following
link with the usual distributions.

Proposition 4.82. (i) By restriction, a continuous linear form on S(R?) induces a
continuous linear form on CF(RY). Thus we have S'(R?) = D'(RY).

(ii) Let T e D'(RY). Assume that there exist k € N and C > 0 such that for any
¢ € C§(RY) we have
(T, d)| < CNi(9)-

Then T can be uniquely extended to a tempered distribution.

Ezxamples 4.83. o Compactly supported distributions (for example, a Dirac mass at
one point) can be extended into tempered distributions.

o If f e L'(R?) then Tt : ¢ (pa f¢ is a tempered distribution.
o If f is measurable and slowly increasing on R¢ then T is a tempered distribution.

e The function e® defines a distribution on R but not a tempered distribution.

Basic operations on tempered distributions are defined as for usual distributions.

Proposition-Definition 4.84. Let T € S'(R).
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(i) Let a € N¢. We define the tempered distribution 0T by
Vpe SRY), (9°T.¢) = (-1)*(T, %)

(ii) Let f be a C* class function which derivatives are of slow increase. We define the
tempered distribution fT by

Voe SR, (fT.¢) = (T, f¢).
(iii) Let y € RY. We define the tempered distribution 7, T by
Ve SR, (nT,0) = (T,7y0).

Remark 4.85. Let T € &' (RY) and o € Nd. By restriction, T' defines a distribution
T € D'(RY) on R?, and its derivative 0*T € D’(R%) can be extended into a tempered

distribution. This extension is exactly the tempered distribution 0%T that we just
defined.

Definition 4.86. Let (7},),,.y be a sequence of tempered distributions. Then 7}, tends
to T in S'(RY) if
Ve SRY), (Tn,¢)

(T, ¢).

n—+aoo

4.6.2 Fourier transform of tempered distributions

Now that we have introduced the tempered distributions we can, as announced, define
the Fourier transform of such a distribution. As for the other operations, the definition
for the distributions must generalize the definition already given for the functions. The
definition is based on Corollary 2.22.

Proposition-Definition 4.87. Let T € S'(RY). Then the map T defined by
(T,¢) =T, )

is a tempered distributioon on R?, called the Fourier transform of T. It can also be
denoted as F1T .

By definition, we have .
(T7.0) = (T1.0)

for f € S(R?). This is also the case for f € L?(R%) by Remark 2.24, and it is easy to see
that it holds for f e L'(R%), using the density of S(R?) in L'(R?) or observing that the
computation we made in the corollary 2.22 is still valid for f € L'(R%).

Let us now give an example of Fourier transform for a distribution which is not a
function.

Ezxample 4.88. For ¢ € S(RY) we have

5.8y = d(0) = jR o(x) d,

SO
0=1.

Conversely, by the inversion formula for the Fourier transform we have
Wd) = | de)de = 2m)00),
R

SO
1= (2m)ds.
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We now conclude this chapter by extending to distributions some usual properties
of the Fourier transform.

Proposition 4.89. Let T € S'(R?) and a € R?. We note e, the function® y s e~ =
e~"Y. We have

F(1oT) = e FT

and
Fle_oT) =1,FT.

Proof. Let ¢ € S(R?). By Proposition 2.12.(iii) we have F(7,¢) = e, F¢ and F(e_q¢) =
ToF @. We see that this can be extended to distributions by writing

(F(1aT), ¢) = (1aT, F§) = (T, 7-aF ¢) = (T, F(ead)) = (FT, ead) = (eaF T, 9)
and

(Fle—aT), 9) = (e-aT, F¢) = (T e-aF¢) = (T, F(7-09)) = (FT,7-09) = (TaFT,9) .
O

Now we extend to distributions the results of Propositions 2.16 and 2.17.
Proposition 4.90. Let T € S'(R?) and o € N%. Then we have
F(0°T) = (i€)*F(T)

and
F(zT) = (10)*F(T).

Proof. Let ¢ € S(R?). By Propositions 2.16 and 2.17 we have
(F(2°T), ¢) = (-1)*(T, 0°F¢) = (-1)UT, F((~iy)*¢)) = (FT (iy)*¢) = ((iy)°T, F¢)

and

(F°T),¢) = (T,y* Fo) = (T, F((—i0)*@)) = (FT, (—i0)*¢) = {(i0)*FT, ¢) .
The conclusions follow. ]

We now generalize the inversion formula of Proposition 2.14. Recall that we have
defined on L'(R?) the operator F , analogous to the Fourier transform. This definition
can be extended to a tempered distribution T by

Vo e S(RY), <?ﬂ1¢>=<7§f¢>

The operator P can equally be extended to tempered distributions by the definition
Vo e S(RY), (PT,¢) = (T, Pg).

The equalities (2.6) are then still valid for a tempered distribution.

Proposition 4.91. For T € S'(R?%) we have

_ 1 1 _
T = FFT = ——PFFT = ——FFPT = FFT.
(2) (2)
3We give two expressions to emphisize the fact that a and y can both play the roles of & and &, if we
refer to the notations of Proposition 2.12.(iii).
4Everywhere we note y the dummy variable, it can play the role of the variables z or .
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The following result gives an expression analoguous to (2.4) for compactly supported
distributions.

Proposition 4.92. Let T be a compactly supported distribution on R:. Then FT is
(the distribution associated to) a C* function with slowly increasing derivatives, and
for & € R we have

T(€) = (T e¢) .

Proof.  For ¢ € R? we set f(¢) = (T, e¢). By the theorem of derivation under the
bracket, f is of class C® on R? and for any a € N¢ and ¢ € R? we have

0% f (&) = (T’ (—ix)%es) -

e Let K be a compact neighbourhood of the support of T. There exist m € N and
C > 0 such that for any ¢ € R?

P FOI<C Y sup|ad(areE).
18]<m zeK

Thus there exists C' > 0 such that for any & € R? we have

0°F(EI < CA+[¢]™).

This proves that the derivatives of f are slowly increasing.
o Let ¢ € CP(RY). Let P be a rectangular cuboid of R? containing the support of ¢.
By the theorem of integration under the bracket we have

100 = | @eowyay = (T, | oe,dy) = (1.76) = (FT.0).

and so FT' = T}. O

If T and S are two compactly supported distributions, we have defined the convolu-
tion 7 * S, and the product T'G has a meaning since F' and G are regular functions. In
that case we can generalize proposition 2.13.

Proposition 4.93. Let T, S € &'(R%). Then we have
F(T=8)=F(T)F(S).

Proof. The Fourier transforms F7T', 7S and F(T * S) are functions and for ¢ € R? we
have

F(T5)(€) = (T xS, e¢) = ((T*8)*(Peg))(0) = (T(S*(Pe)))(0) = (T, P(S = (Pe))) -
But for z € R% we have
(S # (Peg)) (=) = (S, (Pee)(—x — -)) = (S, ee(w + -)) = §(€)e ™%,

SO

FT«8)(©) = (T, 5 )ec) = (FT)O(FS)(©). =

2021-2022 105



