Chapter 2

Fourier Transform

The Fourier transform is a fundamental tool, in particular for the study of partial deriva-
tive equations, because it “diagonalizes” (in a sense to be made precise) the differential
operators.

Let us begin by reminding the motivation for diagonalization in finite dimension.
Let E be a C-vector space of finite dimension n € N. Let A be an endomorphism of £
and ug € E. We consider the following problem on E

{u’(t) = Au(t), VteR, 1)

where the unknown u is a function (say of class C!) from R to E. The favorable case
is the case where ug is an eigenvector of A, associated to an eigenvalue A € C. In that
case, It is easy to see that we get a solution by setting, for any ¢ € R,

u(t) = ePug.

Indeed, the function u thus defined is of class C® from R to E, we have u(0) = ug and,
for any t € R,
u'(t) = e g = e Aug = Aul(t).

Since the equation u’ = Au is linear with respect to u, we get that if ug is a linear
combination of eigenvectors, that is if

k
Uug = Z aj€j,
j=1

where £ < n, a1,...,04 € R and for any j € [1,k] the vector e; is an eigenvector A
associated to an eigenvalue A; € C, then a solution of (2.1) is given by

k
u(t) = Z eMaje;.
j=1

The interest of results about diagonalization is to give criteria ensuring that any vector
ug of ¥ can be written as a linear combination of eigenvectors of A. Thus, if A is diag-
onalizable and if we can determine its eigenvalues and eigenvectors, we can easily solve
(2.1) for any initial data ug.

It turns out that many models from concrete problems can be written in the form
(2.1), but in a functionnal space E of infinite dmension (typically L?(R%)), and a linear
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map A that is a differential operator. An important example (for example for the heat
equation, but also for Schrodinger equation or the wave equation) is the Laplace operator

d 62
A=A=>) —5.
k=1

2
ox;,
For example, the heat equation on R¢ can be written as
dwu(t,z) = Au(t,x), Vt=0,Vze R

The analysis is obviously more complicated in infinite dimension, so it is even more
important to use an appropriate setting.

To simplify the rest of the discussion, we assume that d = 1. The simplest differential
operator on R is

Av(z) =o' ().

We look for eigenvectors of A, that is functions v such that v/ = Av for some A € C. The
candidates are obviously the exponential functions z — e**. These functions appears in
the Fourier series theory, that have precisely been introduced to solve the heat equation,
but on a bounded interval. According to the Fourier series theory, if we set

2iTtnx

én:x—e 7 , fornelZ,

then the family (en)nez is a Hilbert basis of the Hilbert space L2 (R) of locally integrable
and T-periodic functions from R to C, endowed with the norm defined by

T
1 (2
1l = 7 |, 1f@F da.
2
Thus for any f € L2(R) we have
1 % _ 2imny
f= X enlfen where enlf) = (fee) = 7 [ e F ) dy.
nez 2

In addition, each e, is an eigenvector for the derivative operator. If f is regular we have

f'= X el = X 2 el Pen

neZ nez

This holds for T-periodic functions, but we can do the same for the functions defined
on an interval of length T

Here, we are interested in functions that are not periodic and are defined on all R.
Formally, we want to see what happens if we let T go to 400 in the previous expressions.
Observing that for ¢ € C°(R) we have

%%Zgzs (2””> [ s (2.2)

T T T—+0 R

(this is essentially a Riemann sum), we want to write f(z) as

1 ( fR oIV £(y) dy> ¢i7€ e, (2.3)

27 Jw
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If this has a meaning, and if it really gives an expression for f(z), then we have
written f as an integral (that can be seen as the limit of a series, see (2.2), or as a
“continuous sum”) of functions of the form cg(f)e®¢, that are “eigenvectors” (it would
be necessary to specify the space in which one works) associated to the derivative oper-
ator. In addition the corresponding coefficient c¢(f) can be written as a scalar product

in L2(R) of f with the conjugate function z — e = =%, Except that the function
x> € is not in L2(R). ..

Thus, the definition of the Fourier transform on R (or R? for any d € N*) is motivated
and guided by good properties of the Fourier series on a bounded interval, but to get
similar results in this setting, a specific analysis is necessary. This is the purpose of this
chapter.

2.1 The Schwartz space

In this chapter we will rely on Schwartz functions.

Definition 2.1. We note S(R?) and we call Schwartz space the set of functions ¢ of
class C® on R? such that for any «, 8 € N¢ there exists Ca,p > 0 for which

Ve RY, ’xaé’ﬂgb(x)‘ < Cup.

We say that every derivative of ¢ is a rapidly decreasing function.

Ezamples 2.2. « We have C°(R?) < S(RY).
e The map z — elo s in S(R?%) but not in CP(R?).

Definition 2.3. We say that f : R? — C is a slowly increasing function if there exist
N e N and C' > 0 such that

VeeRY |f(z)] <CQA + |z)P.

Proposition 2.4. S(Rd) is a vector space, stable under the usual product, under convo-
lution, under derivation and multiplication by a function of class C® whose derivatives
are slowly increasing.

Proof. Let us prove that f and g are Schwartz functions then their convolution (f * g)
is also in S(R?). Let k€ N and x € R, Let y € R If || > 2|y| we have
>l — ol >
o =yl = el =yl = 57
SO

2" 1(f * 9)(2)] < || - [f (@ =y)l1g(y)| dy

1f(z—y) 28 |y|* lg(y)| dy.

< lyl=5!

Ele — oyl f(z —
<] el a |

This proves that f and g are rapidly decreasing functions, then (f * g) is also a rapidly
decreasing function.

By derivation under the integral sign, we see that for f,g € S(RY) the convolution
(f % g) is of class C® on R? and for 3 € N we have 0°(f % g) = (0°f) * g. The previous
result applied to 0° f and ¢ ensures that the derivatives of (f # g) are rapidly decreasing,
and so (f * g) € S(R?). O
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Since we will also work in different Lebesgue spaces, we give some useful links between
these different spaces.

Proposition 2.5. (i) For any p € [1, +©] we have S(R?) = LP(RY).

(i) For p e [1,+o[, S(R?) is dense in LP(RY). More precisely, for p,q € [1,+o[ and
f e LP(RY) n LY(RY) there exists a sequence (fy) of Schwartz functions that
converges to f in both LP(R?) and LI(R?).

neN

The first point is easy, for the second one we use the fact that these properties of
density are valid for CL(R?), which is included in S(R).

We finish with the property of integration by parts on R%. The fact that Schwartz
functions ar rapidly decreasing at infinity ensures that there is no difficulty with the
boundary terms to show the following result.

Proposition 2.6. Let u € CY(R?) be a slowly increasing function whose first order
partial derivatives are also slowly increasing. Let v € S(R?). Then for j € [1,d] the
functions (;u)v and u(d;v) are integrable on R and we have

fRd((?ju)v dr = — JRd u(0;v) dx.

2.2 Fourier transform in L!

We begin by defining what will play the role of “Fourier coefficient” for a non periodic
function. It is in L'(R%) that the following definition has a natural meaning.

Definition 2.7. Let f e L'(R?). For ¢ € R? we set
fle) = | et (2.4

This defines a function f on R? which is called the Fourier transform of f. It is also
denoted by Ff.

This definition is licit since the function  — e~ f(z) is integrable for any ¢ € R%.
Moreover, the definition of f (&) does not depend of the choice of the representative of
f (in other words, the definition does not change if we replace f by a function equal to
f almost everywhere). In the sequel we will no longer discuss the distinction between
functions of £!(R%) or equivalence classes modulo almost everywhere equality in L'(R?).

Notice that even if f is only defined for an equivalence class of function, f (&) is well
defined for each fixed. Notice also that f (0) is just the integral of f:

fo) = | sta) e

Example 2.8. Let a > 0. We consider on R the function f : z — 2—1a]l[_a7a]. Then
f e LY(R), f(0) =1 and for £ € R* we have

o L[ ot Lo
2a a

—i& a€

Ezample 2.9. Let a > 0. For z € R we set f(z) = e~®*|. Then f e L'(R) and for ¢ € R
we have (exercise)

—a

B 2a
R

£©
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Remark 2.10. Different conventions co-exist for the definition of f . We can also set

ey = 1 e f(x) da
fO1= o i s

The advantage of this definition is that the expression of the Fourier transform and its
inverse transform (see Proposition 2.14) are symetrical, and there is no 27 factor in the
Parseval identity (see Proposition 2.21). However a (2#)% factor appears for example

for the convolution (see Proposition 2.13). Another convention is to set

f&) = | e do.

None of these choices is better than the others, if we remove the 27 factor somewhere it
will appear somewhere else in the theory. Thus, when we use the Fourier transform, it
is better to recall which definition is used and to be consistent afterwards (even if the
(27)¢ factor is in general harmless for the studied properties).

We now give a number of basic properties for the Fourier transform.
Proposition 2.11. (i) For f € LY(R%), f is bounded and | f|o < ||f];-
(ii) The map f — f is linear from L*(RY) to L*(R%).
(iii) For fe LY(RY), f is continuous on R% and tends to 0 when |¢| tends to +oo.

Proof. The first two properties result from the triangular inequality and the linearity of
the integral. The continuity of f is given by continuity under the integral sign.

Let us prove that f tends to 0 when [£| tends to +00. We first assume that f is in
S(RY). Let j € [1,d]. Let & = (&,...,&,) € R such that & # 0. By performing an
integration by part, we get

" 1 1 1

_ - o —ix-§ _ - —iz-€ -
1€) = & J]Rd Ox;€ f(@)de = 1 fRd ¢ Or; /() d = i Oz, F(8)-
Since 0, f € L'(R?) we have éj\f e LP(R%), and so f(€) tends to 0 when |¢;| tends to
+00. This applies to every 7, so we get the result for f e S(R?).
Now let us consider the general case. Let f € L'(R?). Let ¢ > 0. Since S(RY) is
dense in L'(R?), there exists g € S(RY) such that |[f — g1 < 5. Then there exists
R > 0 such that for [{| > R we have |§({)| < §. For |[{] > R we have

A

FOI<IFE) =g+ 19 < If — gl +

e
§<€.

This proves that f(€) tends to 0 when |¢| tends to +o0. O
The proof of the following properties are left as exercises for the reader:
Proposition 2.12. Let f € L'(RY).

(i) If f is an even (respectively odd) function, then f is even (respectively odd). More
generally, if we note P the operator that associates Pf : x — f(—x) to f, then for

f e LY(RY) we have
PFf=FPf. (2.5)

(ii) If f is a real valued function f(—ﬁ) = f(ﬁ) for any & € R?.
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(iii) Let g e RY et g: x — f(x —x0). Then §(€) = f(&)e ¢ for any & € RY.

Let & € RY and g : x — €80 f(z). Then §(€) = f(& — &) for any € € R,
(iv) Let « >0 and g : © — f(ax). Then §(§) = %if(g) for any € € R,

[0

A remarkable property (and one that will play an important role in applications)
is that the Fourier transform of a convolution product is the usual product of Fourier
transforms.

Proposition 2.13. Let f,g e L'(R%). Then we have
fg=fa.

Proof. Let ¢ € RY. The map (z,y) — e @ f(x —vy)g(y) is measurable and using Fubini-
Tonelli theorem and convolution properties of L'(R%) functions we have

JRd xRd

Using the Fubini-Lebesgue theorem, we then have

e f(w — y)g(y)| dedy < J]Rd

( [ 1= wlow) dy) dz < |fl, lgl, < +o0.
]Rd

—_

@) = | e

Il
g

([ e g ) ao

i g(y) ( [ ey d:c> dy
Rd

2.3 Inversion formula

The property that makes the Fourier transform usable in practice is that we can recover
a function if we know its Fourier transform.

Proposition 2.14. Let f € L*(RY) such that f € LY(R%). Then for almost every x € RY

we have
1

x) = e f .
@) = g |, €7 F©) de

We observe that the formula giving the inverse Fourier transform is almost the
same as the one giving the Fourier transform itself (only the sign in the exponential
changes, and with our choice for the definition of F there is an extra factor (27)~9).
For g € L'(R?) and z € R? we set

Fola) = oy |, ¢ 4016) dE = G (Fo) (o).

Using the notation P introduced in proposition 2.12 this can be rewritten as

— 1 1
Thus we can write
_ 1 1 _
— - = = . 2.
f=FFf (%)dP}']-"f (%)d}']-"Pf FFf (2.6)
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Proof. « For e >0 and x € R? we set

gt | A€ e and Fua) = g | el e e

F(z) =

By continuity under the integral sign, these two functions are continuous on R%. More-
over, by the dominated convergence Theorem we have, for all z € R,

e—0
e Lete>0and x € R% The function

(y,€) > @V EgellEalFleal) £(y))

is integrable on R% x R?, so by the Fubini-Lebesgue Theorem we have

F.(z) = (271r)d JRd oiw€ e (|1l ++]€al) (JRd e W (y) dy> dé

d
j=1

Let j € [1,d]. The computation of Example 2.9 gives

2e

@iyl ge = =&
JR T2t (x5 — y;)?

For s = (s1,...,58;) € R? we have
1 1 s
x(s) = ]11 T+ and  x.(s) = ZaX (g) .
Then .
Fa) = o BTGy = (xew ).

d d
(2m)¢ Jpa [T (% + (25 — 5)?)
Since (Xe)ze]o,1] defines an approximation of unity, we have F. € LY(R%) and

e

In particular, there exists a sequence (ey,), .y that tends to 0 and such that F;, tends
to f almost everywhere. This proves that F' = f almost everywhere. O

Thus we have proved that under the hypotheses of the proposition 2.14, the expres-
sion obtained formally in (2.3) holds for almost any = € R,

We observe that Proposition 2.14 gives injectivity for the Fourier transform in
LY (R%).

Corollary 2.15. If f € L'(R?) is such that f =0 almost everywhere, then f = 0.

Proof. If f = (0 then in particular f e LY(R%). So we can apply Proposition 2.14, which
shows that f(z) = 0 for almost every € R%. O
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2.4 Derivation and multiplication by a polynomial - Fourier
transform in S

We now discuss the property for which the Fourier transform has been introduced,
namely the good behavior with respect to differential operators. We work with functions
x — €€ because computing their derivatives is the same as multiplying them by a

scalar. Thus, if
__1 i
f(l') - (27T)d JRd € f(g) d&a

we expect )
— FPPRE 2
00,/ (@) = fR ig;e' (&) de.

The computations we made for the proof of the proposition 2.11 gives the following
property.

Proposition 2.16. Let f € S(RY). Let j € [1,d]. Then for £ € R we have

In particular, the map £ — @f(f) is in L (RY).

This property can in fact be extended to any function f € L'(R?) n C'(R?) such
that the partial derivative d; f is also in LY(RY).

Since the inverse Fourier transform has an expression analogous to the Fourier trans-
form itself, it is not surprising to find that we actually have an analogous property in
the other direction. That is, the Fourier transform changes the multiplication by the
variable x; into a derivative with respect to §;:

Proposition 2.17. Let f € S(RY). Let j € [1,d]. Then f is derivable with respect to
& and for any § € R? we have

2, 1(€) = idg, ().

Proof. For (x,¢) € R? x R? we set p(x,&) = e < f(z). Then ¢ is differentiable with
respect to &; and for any (z,&) € (R?)? we have

(990 : —tx§
S @,0)| = |imge T f (@) = Jay f @)
0&;

Since = > |z, f(x)| is integrable on R%, we get by differentiation under the integral sign
that f is differentiable with respect to §; in R? and, for & € R?,

A —

i f6) = | e (@) do = 2 7(6). 0

Notice that this proof holds for any function f € L!'(R%) such that x +— z;f(z) is
integrable.

The Schwartz space is the space of functions for which one can derive and multiply
by the variable as many times as one wants. Moreover, these two operations play sym-
metric roles with respect to the Fourier transform. With the two previous propositions,
everything indicates that it is a space in which the Fourier transform is particularly
convenient.
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Proposition 2.18. The Fourier transform F defines a bijection from S(RY) to itself,
and its inverse function is the restiction of F to S(R?). Moreover, for f € S(RY),
a, B e N% and € € R we have

O FF(8) = (—i)lIHPIF(a27 £)(9). (2.7)

Proof. Let f € S(RY) and o, 8 € N®. Applying |3| times Proposition 2.17, we get that
the partial derivative 8? f exists and

P f(€) = i90] f(¢).
Now applying Proposition 2.16 to the successive derivatives of 2% f we get
oaf f (&) = ilIHPlea] f ().

In particular, the function & — £20° f (&) is bounded. this ensures that fes (RY) and

proves (2.7). The restriction Fs of F to S(R?) is then injective by the corollary 2.15.

Finally, according to (2.6) we have f = W}"}"Pf, so Fg is surjective. Thus Fg is a

bijection in S(R?), and its inverse function is the restriction of F to S(RY). O

Ezample 2.19. Let f € S(RY). Then the Fourier transform of —Af is £ |£|2 f(&)
Ezxample 2.20. We want to compute on R the Fourier transform of the Gaussian f : z —

"L‘2 A
e~ 2. Notice that f € S(R). In particular f € S(R). Since f'(x) = —zf(z) for any
x € R, we have that for £ e R

F1(€) = —izf (&) = if'(€) = —£f(©).
This proves that

But we know that

So for any £ € R we have

22
More generally, for ¢ > 0, if we consider f, : x — e 202 then for £ € R we have

2€2

1(6) = ov2me™ 2.

2.5 Fourier transform in L2

So far we have discussed the properties of the Fourier transform in L'(RY) (because it
is the space in which the definition naturally makes sense) or of its restriction to S(R9)
(where it is the most comfortable). But our favorite space in the analysis of partial
differential equations will be LQ(Rd), because it is a Hilbert space. The problem is that
a function in L?(R?) is not necessarily integrable, and the Fourier transform as defined
n (2.4) does not even make sense in this case.

We start by going a little further with the analysis of the Fourier transform for
Schwartz functions. Since S(RY) is included in L?(R), it can be endowed with the
corresponding norm. The Fourier transform of S(R?) is then a quasi-isomery for this
norm:
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Proposition 2.21. Let f, g e S(R?). Then we have

J©3E)de = @m? | J(@)g(e) da.
In particular, ) )
[fl2 = 2m)2 [ £l 2

Proof. The map (x,&) — e @< f(x)g(€) is integrable on R? x R? so by the Fubini-

Lebesgue Theorem we have
[ ([ et aeae
R4 R4

@) < fRd e 56 d§> dx

f (€308 de
Rd

_—

R

- [ s ([ ewcater de) ao
- en)! | g d.

The second propery follows by taking g = f. O

Considering g = 5 we can re-write the previous equality as follows.

Corollary 2.22. For f,¢ € S(RY) we have

| fodv= | roan

Now we use the fact that S(R?) is dense in L?(R?) to extend the Fourier transform
on S(R?) into an ismoetry of L?(R%).

Theorem 2.23. There exists a unique isomorphism F of L*(R?) which coincides with
the Fourier transform on S(R?) and such that

Vf e LARY), | Ffliame = @m)F £l @) - (2.8)

Proof. e Assume that two isomorphisms of L?(R?) satisfy the conditions of the theo-
rem. They are in particular continuous applications on L?(R%) which coincide on the
dense subset S(R?). Then they coincide everywhere, which gives uniqueness.

e Let f e L*(RY). There exists a sequence (f,),cy of Schwartz functions that converge
to f in L*(R%). By Proposition 2.21, the sequence (};)neN is a Cauchy sequence in
L*(RY). Since L?(R?) is complete, 7, has a limit in L%(R%), which we denote by Ff.
We can check that this definition of Ff does not depend on the choice of the sequence
(fn)nen and that for f € S(RY) the limit obtained this way coincides with the Fourier
transform of f. By linearity of the Fourier transform on S(R?) and by Proposition 2.21,
the map F is linear and satisfies (2.8). By continuity, the equality (2.6) still holds in
L%(R%), which proves that F is surjective. O

Remark 2.24. For f,ge L*(R?%) we have

fRd FIFGde = (2n) fRd fgde.

and

JRd(Ff)g dy = fRd f(Fg)dy.
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Proposition 2.25. The isomorphism of Theorem 2.23 coincides with the Fourier trans-
form already defined on L*(R%) n L?(R%).

Proof. Let f € LY(R%) ~ L2(R%). For this proof, we denote by f the Fourier transform
of f in the sense (2.4), and by Ff the function of L?(R?) given by Theorem 2.23. Let
(fn)nen be a sequence of Schwartz functions which converges to f both in L'(RY) and
L?*(R%). With the same convention as for f, we have fn = Ff for any n € N. Since F
is continuous on L?(R?) we have

|F o= FFly —= 0

n—+0o0

In particular, possibly after extracting a subsequence, we can assume that F f, tends to
Ff for almost every x € R%. On the other hand we have

1 £ = Flloo < If = ful; —— 0.

n—+0o0
This implies that Ff = f almost everywhere. O

Recall that for a non integrable function, we cannot use the expression of F f given
by (2.4). We at least have the following property, where f,, is a kind of Fourier transform
for locally integrable functions.

Proposition 2.26. Let f € L?(RY). Forne N and ¢ € R* we set
B© = e
B(n)

where B(n) denotes the ball of radius n centered at 0. Then we have

[0 = Ffly o O

n—+0o0

Proof. Using the doiminated convergence Theorem we have
150 f = fly 7 O-
Since 1) f € L' ~ L? for any n € N, we get using proposition 2.25 that

|fo = Ffll2 = |FApw)f) = Ff|, —— 0. O

n—+aoo

2.6 Example of application
For f € S(R?), we consider the equation
—Au+u=f, (2.9)

of unknown u € S(R?). Taking the Fourier transform, we see that u is a solution if and
only if for any ¢ € R% we have

(1€ + Da(e) = f(€),

or equivalently
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f(€)
1+[g*”

We consider the function f which maps £ € R? to This defines a function
f € S(R?) and we have
; 2 d
[ £l < [flle2 = 2m)2 [ £l L2 -

We then set Rf = F~'f. This also defines a function of S(R%) and we have

|Rf| 2 = @)~ 2| flz < | f]e -

It is not very difficult to check that the map f — Rf is linear. Thus R defines a linear
map from S(R?) to itself, continuous for the L2 norm. It is therefore extended by con-
tinuity into a continuous linear map on L?(R%).

For f e S(RY) we thus have
(—A+1Rf = f.
We can then check that for any u € S(RY) we have
R(—A + 1)u = u.

Thus R is on S(R?) the inverse function of (—A + 1) (however, be careful, R is not a
bijection on L2(R%)).

A final question about this example. Given f € S(RY), can we give a slightly more
explicit expression for the solution Rf of the problem (2.9)?7 We have to compute the
inverse Fourier transform of the product of two functions. This is where the convolution
product appears (see Proposition 2.13). Thus, if G is a function which Fourier transform
is given by

then we will have

and hence
Rf(z) = (G = [)(z).

It remains to determine GG. At least for the dimension d = 1, we have already done the
computations at example 2.9 and we get

This gives

ozl ol
Rf(z) = JR 5 ’ fly)dy = JR 2y flz —y)dy.

We can now check with an explicit computation (left as an exercise) that if f € S(R)
then for any x € R we have

—(Rf)"(z) + Rf(z) = f().

In dimension 1, the result is not very spectacular, because it is only an ordinary differ-
ential equation with constant coefficients, and we could have got the same result using
only a double variation of constants, but the method described on this simple example
will be useful to understand more subtle problems. ..
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