Chapter 3

Second order elliptic equations

In this chapter we discuss on some open subset 2 of R¢ an equation of the form
Pu=f, (3.1)

where f is some given function, u is the unknown and P is a so-called elliptic operator. The
model of an elliptic operator is the Laplace operator P = —A (in this case (3.1) is refered to
as the Poisson equation, see Section 3.4 below). When Q # R?, we will have to add boundary
conditions to the equation to get a well posed problem (see Section 3.2).

We will only consider second order equations. This means that P will be a partial differ-
ential operator of second order:

d d
P =—divA@)V + B(x)V + c(x) = — Y} 0a;x(2)0 + ) bi(2)d; + c(x), (3.2)
j,k=1 k=1

where A = (aj1)1<jk<ds B = (bk)i1<k<a and c are real-valued functions on 2.

We will always assume that A is symmetric:
Vi kel,d], ajk(z)=ag;(z). (3.3)
We will also assume that the operator P is elliptic.

Definition 3.1. We say that the differential operator P defined by (3.2) is (uniformly)
elliptic if there exists o > 0 such that for almost all z € Q and for all £ = (£1,...,&;) € RY

we have
d

A6 &= > ajr(@)€é = alé. (3.4)

jk=1

This means that the real symmetric matrix A(x) is uniformly definite postive, with small-
est eigenvalue greater than or equal to a > 0.

All these assumptions are in particular satisfied for the Poisson equation (A(z) = Id,
B=0,c=0).

Since the equation (3.1) is linear and has real coefficients, it is enough to consider a real
valued source term f, and we look for a real valued solution .

3.1 Variational method

In this section we discuss the variational method used to solve second order elliptic equations.
We illustrate the method on the simplest problem. We consider on R? the equation

—Au+u=f (3.5)
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Before trying to solve this problem, we have to be explicit about what will be called a
solution of (3.5). Since two derivatives of the unknown u are involved, it is natural to look
for twice differentiable solutions.

Definition 3.2. Assume that f € C°(R?). Then a classical solution of (3.5) is a function
u e C?(R%) such that (3.5) holds in the usual sense.

We will see that this is not necessarily the best point of view to discuss this problem.

3.1.1 The Lax-Milgram Theorem

We recall in this paragraph the Lax-Milgram Theorem, which will be our main tool for the
analysis of elliptic equations. We give different versions and different proofs.

Theorem 3.3 (Lax-Milgram’s Theorem). Let V be a real Hilbert space. Let a be a bilinear
form on V. We assume that

(i) a is continuous: there exists C > 0 such that, for all u,v €V,
la(u, v)| < Culy, vl ,
(i) a is coercive: there exists a > 0 such that, for allu eV,
2
a(u,u) = o fuly, .

Then for any continuous linear form € on V there exists a unique u € V such that
YoeV, alu,v)={L(v). (3.6)

Moreover 1
Yk
lully < ==

This result is just a generalization of the Riesz representation theorem. If we add the
assumption that the bilinear form a is symmetric, then it defines an inner product on V,
and the corresponding norm is equivalent to the original norm on V. In particular, ¢ is still
continuous if V is endowed with this new Hilbert structure. Then the result follows by the
Riesz representation theorem.

In general, the bilinear form a is not symmetric, but we can still give a proof which relies
on the Riesz theorem.

Proof. e Let ue V. The map v — a(u,v) is a continuous linear form on V, so by the Riesz
representation theorem there exists an element of V, which we denote by Au, such that

YveV, a(u,v)=(Au,v),,.

This defines a map A : V — V. Similarly, there exists f € V such that £(v) = (f,v),, for all
veV, and | f|;, = [€],%. Then (3.6) holds if and only if Au = f.
e Let ui,us €V and A € R. For all v € V we have

(A(ur + Aug),v)y, = a(uy + Aug,v) = a(uy,v) + Aa(ug,v) = (Aur,v)y, + X (Auz, v),,
= <AU1 + AMuo, 1}> .

This proves that A(u; + Aug) = Auy + AAus, and hence that the map v — Au is linear.
Moreover, for u € V we have

| Auly, = (Au, Au)y, = a(u, Au) < C [lull, [Auly,,

so |Auf,, < C'llul,,. This proves that the operator A is bounded on V.
e For u eV we have

2
aluly < a(u,v) < (Au, u),, < [Auly, July
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SO
HAUHV Z H“Hv . (3.7)

This proves in particular that A is injective. This also proves that the range of A is closed.
Indeed, assume that the sequence (v,),oy in V is such that Awv, goes to some w € V as n
goes to +00. Then for n,m € N we have

0.

H,Un - Um”V < a_l HAU” - AvaV n,m——+0o0

Since V is complete, the sequence (vy,)
w = Av € Ran(4).
Now let w € Ran(A)*. Then in particular we have

neny Das a limit v € V, and by continuity we have

0 = (Aw,w)y, = a(w,w) > awls,

so w = 0. Since Ran(A) is closed, this implies that Ran(A4) = V. Thus A is bijective, so there
exists a unique u € V such that Au = f.
e Finally (3.7) gives

1l ys = £y = 1Auly, = aul,,

and the proof is complete. O

Corollary 3.4. We keep the notation of Theorem 3.3 and assume that a is symmetric. For

u €Y we set
a(u, u)

2
Then J atteins a unique minimum, obtained for the solution u of (3.6).
Proof. Let u be given by Theorem 3.3. For h € V\ {0} we have

J(u+h) = J(u)+ a(u,h) —£(h) + @ = J(u) +

so J has a strict minimum at point wu. O

J(u) = — l(u).

Exercise 23. We use the notation of Theorem 3.3 and assume that a is symmetric. The
purpose of this exercice is to give a new proof of Theorem 3.3 in this case, based on the
analysis of the minima of J.

1. Prove that the function J is bounded from below.

2. Consider a minimizing sequence (uy,), .y of J. Prove that

. Up — Uy, Uy — U
limsup a [ — Ly ) <o,
n,m—+0o0 2 2

and deduce that this sequence has a limit » in V.

3. Prove that J reaches a minimum at point u.

4. Prove that u solves the variational problem (3.6).

5. Prove that this minimum is strict, and hence unique.

Ezxercise 24. We keep the notation of Theorem 3.3, and assume that V is separable. We
consider a sequence (V,,), oy of finite dimensional subspaces of V such that V,, © V,,; for all
ne N and |,y Vn is dense in V.

1. Prove that the problem (3.6) has at most one solution.

2. Prove that for all n € N there exists a unique u,, € V,, such that

Yo eV, alup,v)=1~v).

3. Prove that the sequence (uy),,cy
by w the corresponding weak limit.
4. Prove that u is a solution of (3.6).

5. Prove that for n € N and v € V,, we have

has a weakly convergent subsequence in V. We denote

= tnlly < < Ju— o]
nly < — u—v,.

6. Prove that u,, goes to u strongly in V.
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In this chapter we will only consider problems on real Hilbert space. However, for many
applications we work in complex Hilbert space. All the results are easily adapted to this
case, and in particular we have the following version of the Lax-Milgram theorem

Theorem 3.5 (Lax-Milgram’s Theorem on a complex Hilbert space). Let V be a complex
Hilbert space. Let a be a sesquilinear form on V (linear on the right and semi-linear on the
left). We assume that a is continuous and that Re a is coercive: there exists o > 0 such that
for all uw eV we have
2
Re (a(u,u)) = o |ulf; .

Then for any continuous linear form £ on V there exists a unique uw € V such that
YoeV, alu,v)={L(v).

Moreover

1€y
ully, < .
Jully < =,

Ezxzercise 25. Prove Theorem 3.5.

Ezxercise 26. We consider the setting of Theorem 3.5, but instead of the coercivity we
assume that there exist @ > 0 and two bounded linear operators ®;, ®5 on V such that, for
every u € V,
2
la(u, w)| + |a(®1(uw), u)| = auly,

and )
|la(u, w)| + [a(u, @2(u))| = auly, .

Show that the first conclusion of Theorem 3.5 hold with this weaker assumption.

3.1.2 Weak solutions on the Euclidean space

Our purpose in this paragraph is to apply the Lax-Milgram Theorem to solve (3.5). For this
we have to define a suitable notion of solution. The Lax-Milgram theorem only applies in
Hilbert spaces, so with this method we cannot work in C?(£2). Moreover, we do not want to
restrict ourselves to the case f € CY(€).

The Sobolev spaces have been designed to be suitable this kind of analysis. With p = 2
they are Hilbert spaces, and the corresponding topologies take into account the derivatives
of a function. This suggests the following definition.

Definition 3.6. Let f € L?(R). Then a strong solution of (3.5) is a function u € H?(R?)
such that (3.5) holds in the sense of distributions (this is then an equality in L?(R%)).

Thus we look for a function u such that
Vo e CP(RY), f u(A¢ + ¢) dx = J foda. (3.8)
Rd Rd

Then we try to apply the Lax-Milgram theorem. We denote by a(u,®) and £(¢) the
left-hand side and right-hand side of (3.8), respectively. This defines a bilinear form a and a
linear form /.

We cannot apply Theorem 3.3 with the topology of L?(R9), since then a is not continuous
(there are too many derivatives in a), and we cannot work in H?(R?) since in this case a is
not coercive (there are now too many derivatives in the definition of the norm ||| 72 (ga))-

The solution is to chose the intermediate situation, which will “equalize” the number of
derivatives on w and ¢. To write (3.8) we have transfered the two derivatives on the test
function. A better choice is to transfer one derivative on the test function and to keep one
on u. This gives this new definition.

Definition 3.7. Let f € L%(R?). We say that u € H'(R%) is a weak solution of (3.5) if for
all v e H*(RY) we have

VuVuvdx + J

wv dr = J fudz.
Rd Q

R4
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With this notion of solution, it is now easy to see that by the Lax-Milgram theorem
applied with ¢ : v — (., fv the problem (3.5) is well-posed.

Proposition 3.8. For u,v e H'(RY) we set
a(u,v) = (Vu, Vo) 12gay + (U V) p2(gay -
Let o € H~Y(R?). There exists a unique u e H'(RY) such that
voe H' (RY), a(u,v) = o(v). (3.9)
Moreover we have
lull 1 gy < Il -1 gy -

Proof. Tt is clear that a is a continuous bilinear form on H'(R?). Moreover for u € H'(R%)
we have
2
a(u,u) = [ul g,

so the coercivity is also clear in H'(R?). The conclusion follows from Theorem 3.3. O

3.1.3 Regularity of the weak solution

We have seen that the Lax-Milgram Theorem easily give existence and uniqueness of a weak
solution with continuity of this solution with respect to f. However, this notion of weak
solution which was precisely designed to be adapted to the Lax-Milgram Theorem is not so
natural.

Moreover, in this particular case, on R? and with constant coefficients, it is not difficult
to prove with the Fourier transform that (3.5) has in fact a unique strong solution. Our
purpose here is to recover this fact without the Fourier transform. For this we prove that
the weak solution given by Proposition 3.8 belongs in fact to H?(R?) and is in fact a strong
solution. The interest of this new method is that it will apply in situations where we can no
longer use the Fourier transform. Since a strong solution is necessarily a weak solution, we
already have uniqueness of a strong solution.

Proposition 3.9. Let f € L2(RY) and let u be the unique weak solution of (3.5) given by
Proposition 3.8. Then u e H?(R?), the equality (3.5) holds in L?>(R?) and there exists C > 0
independant of f such that

ul gz ray < Clflp2q) -
If moreover f € H*(R?) for some k € N then u e H¥+2(R?).

For the proof, we could proceed as follows. For all ¢ € C°(R?) we write
(—Au, ¢>D/(Rd),D(Rd) = <VU>V¢>D'(R‘1),D(RUZ) = <VU>V¢’>L2(Rd) =(f- u7¢>L2(Rd)'

This proves that in the sense of distributions we have —Au = f —u € L?(R?), and hence
—Awu belongs to L2(R%). Then, by Remark 2.14 we have u € H?(R?) and

|l g2 gay < Cll=Au + uf 2 gay = C | f] 2(ga) -
We provide another proof, which relies on the difference quotients (see Proposition 2.29).

Proof. Let h e R?\ {0}. By (3.9) applied with v = D_j(Dyu) € H'(R%), (2.13) and Proposi-
tion 2.29 we have
1Dyl ety = IV Dwtl gty + | Dntl 2y
= (Vu, V) 12 gay + (U, V) 12 (ray
= (f,0) 2 (ray
< | fll 2 ey [Pnull g gay »

SO
HDhuHHl(Rd) < ”fHL2(]Rd) :
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In particular, for all j € [1,d] we have

ou
HD <o -

h=—
aiﬂj

L2(R%)

By Proposition 2.29, this proves that 0;u € H'(R?) with |\aju|\H1(W) < [ fllp2(gay for all
j € [1,d]. Therefore u € H*(R?) with [uf g2(pay < C|[f]12(ga) for some constant C' > 0
independant of f.

We prove the higher regularity result by induction on k¥ € N. We have proved the case
k = 0, and we assume that the result is proved up to the case k — 1 for some k € N*. Assume
that f e H*(R?). By induction, since f € H*"1(R?), we already know that u € H**1(R9).
Let o € N? with |a| < k. Then 0%u € H'(RY) and

—A(0%u) + 0%u = 0° f € L*(RY).
This proves that 0%u € H?(R%), and hence that u € H**2(R9). O

Notice that for this second proof we have also used the fact that the problem (3.5) is
posed on R, In the following section we will see how this method is adapted for a problem
posed on an open subset Q # R<.

Ezxercise 27. Let A > 0 and f € L?(R%). We consider on R? the equation
—Au+ du = f.

1. Prove that this problem has a unique weak solution « (in a suitable sense to be defined).
2. Prove that this solution belongs to H2(R?) and give an estimate of |l g2 ey with respect
to HfHLQ(Rd) and )\ > 0.

3. What happens if A < 0.

3.2 Boundary conditions

In the previous section, we have described the variational method for elliptic equations with
the example of a problem on R?. We will apply the same global strategy on a general open
subset © of R?, but some arguments have to be adapted. We first observe that, in general,
the solution of equation (3.5) or the variational version (3.9) is not unique. This is easy to
see in dimension 1. For instance, on Q =] — 1, 1[ any function of the form

u(z) = Ae® + B™*

is in H%(Q) and satisfies —u” 4+« = 0. Similarly, on the unbouded open set Q =]0, +o0[, the
same applies to the functions of the form x — Be™7.

One possibility to recover a well posed problem is to add boundary conditions. This
choice is physically relevent since what happens at the boundary can be controled or at least
measured. For instance, for f € L?(—1,1) the following problems on | — 1, 1[ have at most

one solution u € H?([—1,1]):

' +u=1, =]
{u(—l) =u(l) =0, {u’(—l) = /(1) = 0. (3.10)

Ezxercise 28. Give explicitely the solutions of the two problems (3.10).

We can write the corresponding problems in any dimension. If we add the condition that
the solution vanishes at the boundary, we obtain the so-called boundary value problem with
Dirichlet boundary condition:

{—Au-ﬁ-u:f on €, (3.11)

u =0, on 0.
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As in (3.10), we can for instance solve the problem with the additional condition that
the normal derivative of the solution vanishes at the boundary. This is the corresponding
Neumann boundary problem:

{—Au +u=f on{, (3.12)

d,u =0, on 0f).
These are not the only possibilities, but we will focus on these two model cases in this

course.

FEzxercise 29. Solve the following problems:

{u”+u=1, {u”+u=1,
u(=1)=0, 4/(1)=0, w(=1) =0, /(1) =u(1).

If f is continuous on €2, then a classical solution of the Dirichlet problem (3.11) is a
function u € C?(Q) which satisfies (3.11) in the usual sense. We similarly define a classical
solution of the Neumann problem (3.12).

As in the previous section, we try to solve these two problems with the Lax-Milgram the-
orem. For this we need a suitable variational formulation (or, equivalently, a good definition
for a weak solution).

3.2.1 Dirichlet boundary conditions

We begin with the Dirichlet problem. To take into account the condition u = 0, it is natural
to try to work in HJ () (see Proposition 2.42). If u € C%(Q2) n H?(1Q) is a classical solution
of (3.11) and v € HZ (), we have by the Green Formula (Theorem 2.43)

J(fAquu)vdx:J Vu~Vvdx+J uv dz.
Q Q Q

This suggests the following definition.

Definition 3.10. Let © be an open subset of R? and let f € L?(£2). We say that u e H}(Q)
is a weak solution of (3.11) if

Yo e Hi(Q), J Vu-Vvdx+f uv dz =J fvdz. (3.13)
Q R Q

With this notion we can apply the Lax-Milgram theorem and (3.11) is well-posed.

Proposition 3.11. Let Q be an open subset of R? and let f € L*(Q). There exists a unique
solution v € H}(Q) of (3.13). Moreover lull gy < 1f 122

Proof. For u,v € H}(Q) we set
CL(U,, U) = <VU, VU>L2(Q) + <uv U>L2(Q) 9 E(U) = <fv U)LQ(Q) .

This defines a continuous bilinear form a and a continuous linear form ¢ on H{ (Q2). Moreover,
for u € H}(Q) we have
2 2
a(u, u) = [Vul 72y + |u]72(q)

so a is coercive. The conclusion follows from Theorem 3.3. O

As in R?, we have worked with the H' regularity to be able to apply the Lax-Milgram
theorem, but we would like to have a solution at least in H?2.

Here we prove this result for 2 = R%. The case where the boundary of € is not flat will
be discussed with more generality in the following section.

The proof of the following regularity result is divided into two steps. We first check that
u belongs to H2 (R%) (interior regularity), and for this we localize the solution far from the
boundary and apply the result known on the Euclidean space. Then we look at the regularity
near the boundary. For this, we adapt the proof of Proposition 3.9 with difference quotients.
We recall that for Q # R? the fact that u and Au belong to L?(2) does not imply that
ue H?(9).
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Proposition 3.12. Let f € L*(R%) and let u € H}(R) be the weak solution of (3.11). Then
ue H*(RY) and there exists C > 0 independant of f such that ||u||H2(Ri) < C|fllz2q)-

Proof. e Let w be an open bounded subset of R such that @ = R%. Let x € Ci° (R%, [0,1])
be equal to 1 on a neighborhood of @. Then yu belongs to Hj(R%), it can be extended by 0
to a function % € H'(R?), and @ is a weak solution on R? for the problem

—Au+a=xf—2Vx Vu—ulAy. (3.14)

Since the right-hand side belongs to L2(Ri) we obtain by Proposition 3.9 that @ belongs
to H?(R?) and that the equality (3.14) holds in L?(R?). This proves that u € H?(w) and
—Au +u = f in L?(w). Since this holds for any w, u belongs to HZ _(R%) and the equality
—Au+u = f holds in L} (R%). This implies

loc
~Au=f—ueL*R%). (3.15)

o Letje[2,d] andt # 0. We can define Dy, u € L*(R%) as in (2.12), and as for Proposition
2.29 we can check that

”Dtej“HLZ(JRi) < HVu”LQ(Rfﬁ)'

As in the proof of Proposition 3.9, we apply (3.13) with v = D_;., (Dye,u) € H}(R1) and we
similarly obtain

HDthuHHl(Ri) < HfHLQ(Ri) '

Then, for k € [1,d] we have

‘<u, D_y, (9k¢)>L2(Ri)

= ’<6k:Dter7¢>L2(Ri) S 2 @ay 19l L2 @a)y -

Taking the limit ¢ — 0 proves that d;0,u € L? and |\ajakuuL2(Ri) < HfHLQ(Ri).

e It remains to consider the second derivative d{u. By (3.15) we have
d
Hu=—Y Fu—f—-uel*RY),

and hence u € H2(R%) with HUHH2(R1) <C HfHL2(Ri) for some constant C' > 0. O

We finish this paragraph with the higher regularity result.

Proposition 3.13. Let k€ N and f € H*(RL). Let u be the weak solution of (3.11). Then
ue HF2(RL).

Proof. We prove the result by induction on k& € N. The case & = 0 is Proposition 3.12. We
assume that for some k € N* the result is proved up to order k — 1. Let f € H*(R). Since
f e H*"1(R?) we already know by the inductive assumption that u e H***(R%).

e Let a = (oq,...,aq) € N* such that |a] = k and oy = 0. Then 0%u € H}(R?) is the
weak solution of (3.11) with f replaced by 0*f € L?(Q). By Proposition 3.12, this proves
that 0%u € H*(R%). Thus, for any 8 = (B1,...,8q4) € N® with |3| < k+2 and 8 < 2 we
have 0u e L?(R%).

e Now we prove by induction on m € [0,k + 2] that for 8 € N¢ with |8| < k + 2 and
B1 < m we have 0°u € L?>(R%). We already have the cases m < 2. Assume that for some
m € [3,k + 2] we have prove this statement up to order m — 1 and consider € N¢ with
|8l < k+2and 81 =m. Let B = (b1 —2,P2,...,84). We have

B d

0Py = 0% (0%u) = —0P (f + 3] a§u> e L*(RY).
Jj=2

The conclusion follows by (double) induction. O
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3.2.2 Neumann boundary conditions

Now we turn to the Neumann problem (3.12). Contrary to the Dirichlet problem, we cannot
encode the boundary condition d,u = 0 in the variational space V. The normal derivative
does not even have a sense in H*(2).

It turns out that the solution of (3.12) will be given by the variational problem posed in
the full space H'(f2), without any condition at the boundary.

This is not an obvious guess. But we have not used the boundary condition in the proof of
Proposition 3.11, so it is a natural to wonder what happens if we replace H3(Q) by H'(2) in
the results of the previous paragraph (notice that on R? we have H* = H}, so this distinction
was irrelevant in that case).

Definition 3.14. Let Q be an open subset of R? and let f € L2(Q2). We say that u e H({)
is a weak solution of (3.12) if

Yve HY(Q), J Vu«Vvdz+f uvdxzf fvdz. (3.16)
Q Q Q

Exactly as for Proposition 3.11, we have the following well-posedness result in the weak
sense.

Proposition 3.15. Let Q be an open subset of R? and let f € L*(Q). There exists a unique
solution uw € H'(Q) of (3.16). Moreover el gy < 1122 o)

Now we prove the regularity of this weak solution when 2 = Ri. Compared to the
Dirichlet case, the Neumann boundary condition is not explicit in the definition of the weak
solution and can only be stated once we have the H? regularity.

Proposition 3.16. Let f € L*(R%) and let u € H'(RY) be the weak solution of (3.11).
Then u e H*(RL) and 0,u =0 on R,

By 0,u = 0 we mean that 1 (u) = 0 in L?(dR%), where v is the normal trace introduced
in Paragraph 2.5.2.

Proof. As in the proof of Proposition 3.12 we see that u € H%(R%) and, in L2(R%),
—Au+u=f.

By the Green formula (see Theorem 2.44), we have for all v € H'(R%)
va dx = J(—Au + u)vdx
=JVu~Vvdx—f al,uvdx/—i—.[uvdx
R4

= vadx —f oyuvdz’.
ord

This means that for all v e H*(R%) we have

J d,uvdr = 0.
oRd

Since the range of the trace operator 7y is dense in L?(R9~!), this proves that in L2(R?"1)
we have

dyu = 0. O

3.2.3 Inhomogeneous boundary conditions

So far we have considered homogeneous Dirichlet boundary conditions (u = 0) or homoge-
neous Neumann boundary conditions (0,u = 0). Now we introduce a problem with an inho-
mogeneous boundary condition. For simplicity we continue with the equation —Au + u = f
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on the half-space Ri, and we only consider the case of a Dirichlet boundary condition. Given
g € L?(09) we consider the problem

(3.17)

—Au+u=f on,
u =g, on €.

The boundary condition makes sense in the sense of the trace as soon as u belongs to
H'(R%) and g € L?>(0R%). It means
Yo(u) =g
We recall that the trace operator vy : H'(R%) — L?(0R%) is not surjective. And it is
clear that if g is not in the range H/2(dR? ), then the problem (3.17) cannot have a solution.

Now we assume that g belongs to HY/2(dR?) and we consider w € H*(R%) such that
~Yo(w) = g. Then wu is solution of (3.17) if and only if & = v — w is a solution of

(3.18)

—Al+t=f+Aw—w on
u =0, on 0€2.

The right-hand side f + Aw — w is not necessarily in L%({), but it is at least in H~1((2).
Then the Lax-Milgram Theorem gives a unique weak solution @ € H}(Q2) of (3.18). Setting
u = U+ w we have

—Au+u=feL*Q)
and
Yo(u) = yo(w) = g.
Remark 3.17. Notice that Au € L?(R1) but u is not necessarily in H?(R%) (if u e H*(R%)
then g = yo(u) € H*?(R%), which is not necessarily the case).

Exercise 30. In this exercise we discuss the problem

—Au+u=f, on R‘L (3.19)
dyu =g, on GR‘L ’

where f e L*(R%).

1. Discuss the problem when g € H'/2(0R%).

2. Now we consider the case g € H~1/2 (0RZ).

a. Prove that there exists a unique u € H*(R%) such that
Yo e H'(RY), Vu - Vovdz + J uv dr = fvdz +(g,70(0)) g-112(oma ), 12 (0w ) -
R¢ RY RY 7 *
+ + +

b. Does Au belong to L?(R%) ? Does u belong to H*(R1) ? What can we say about d,u
?

3.3 More general settings

In this section we discuss on a general bounded open subset {2 the general elliptic second
order equation (3.1), with the operator P introduced in (3.2). We assume that A is symmetric
and P is uniformly elliptic, see (3.3) and (3.4). We have to add boundary conditions. Here,
we only consider the case of the Dirichlet boundary condition:

Pu = Q
w=7f, onfl (3.20)
u =0, on 0f).
As above, we first solve a corresponding varitional problem and prove existence and unique-
ness of a weak solution in H} (). Then we will prove the regularity of this weak solution to
get a solution in H2(Q2) n H(9).
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3.3.1 Weak solution for a general second order elliptic equation

Following the previous cases, we define the notion of weak solution in H¢ () by transfering
a derivative on the test function by a formal integration by parts.

Definition 3.18. Let © be an open subset of R? and let f € L?(£2). We say that u e H}(Q)
is a weak solution of (3.20) if for all v € H}(Q) we have

ap(u,v) = fQ fu, (3.21)

where we have set
ap(u,v) = (AVu, Vu) 12 o) + (B - VU, 0) 12(q) + (U, v) 12
d d (3.22)
= Z J a; 1, Opul;v dx + Z bpOruv dr + J cuv dx.
Q e

jk=1 R¢

As above, it is easy to check that a is a continuous bilinear form on Hg (€2). However, it
is not necessarily coercive. For instance, for P = —A on R? we have

a(u,u) = ||VUHi2(Rd)’ (3.23)
which is not coercive in H!(R?). But for any A > 0 the bilinear form defined by
ax(u,u) = a(u, u) + Afuf 2 (ga) (3.24)

is coercive. In other words, we have a bilinear form which does not control the square of the
H' norm, but it controls at least the square of the norm of the gradient, so it is enough to
add a multiple of the square of the L? norm (which corresponds to adding to the operator a
multiple of the identity) to get coercivity. This is why we considered the operator —A + Id
instead of —A in the first example in Section 3.1.

The same applies in the more general setting of this section. The ellipticity assumption
(3.4) ensures that ap(u,u) controls at least HVuHiz(Rd), and hence it will be possible to apply
the Lax-Milgram Theorem to the equation Pu + yu = f for v > 0 large enough.

Lemma 3.19. Let ap be defined by (3.22), with A satisfying (3.3) and (3.4). Let ag €]0, af.
There exists o € R such that for all u e H}(Q) we have

ap(u,u) = ao [Vl 72 gy — Y0 [ul7zq) -
Proof. Let u e H}(Q). By (3.4) we have
2
(AVu, V) 1> ) = o |Vul 12 g -
Let e = a — ag > 0. We have

”BHQLOO(Q) HUHiz(Q)

2
(B Vu,u) 20y < Bl e VUl 2 Ul 2@y < e lVulreq) +

4e ’
so the conclusion follows with
IBlzxe)
=g~ ighe) :
Thus, instead of (3.20), we consider for v > vy the problem
Pu+~yu=f inQ, (3.25)
u =0 on 0f). ’
A weak solution of (3.25) is a function u € H}(Q) such that
Yoe H(Q), ap(u,v)+ 7 {(u, v)iz(m = JQ fvdax. (3.26)

By Lemma 3.19, the left-hand side defines a coercive bilinear form, so by the Lax-Milgram
Theorem 3.3 we have the following result.
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Proposition 3.20. Let ag €]0, o and let vo € R be given by Lemma 3.19. Then for v > v
and f € L*(Q) the problem (3.25) has a unique weak solution in H}(Q). Moreover there
exists C., > 0 independant of f such that

HUHHl(Q) <G HfHL2(Q) : (3.27)

3.3.2 Regularity of the weak solution

Now we prove the regularity of a weak solution for the problem (3.20). Since we can replace
¢ by ¢ + 7, this also gives the regularity for a weak solution of (3.25).

Proposition 3.21. Let € be a bounded open subset of R? of class C?. Let P be as above
with A € CY(Q) and b,c € L®(Q). There exists C > 0 such that if f € L?() and u € H} ()
is a weak solution of (3.20), then u € H?(Q) and

lull g2 ) < CUIF L2 ) + Ul @) ) (3.28)

and (3.20) holds in L?(SY). If moreover § is of class Ck¥*2, A, B,ce C**1(Q) and f € H*(Q)
for some k € N, then ue H2(Q).

With little more effort, we can we fact replace [ul| z1(q) by [uf;2q) in the right-hand
side of (3.28). Prove it as an exercice. Notice that in the context of Proposition 3.20 we can
apply (3.27) and have an estimate which depends on f only.

Proof. « We begin with the case Q = R? and assume that the derivatives of A are bounded
on R%. For all ve H'(R?) we have

AVu -V = fo,
Rd Ra

where we have set ~
f=f—B-Vu—cueL*R?).

There exists C; > 0 which only depends on B and c such that
; 2 2
Hf“%Q(]Rd) S Cl( Hf”L2(Rd) + HUHHI(Rd) )

Let h € R%\ {0}. As in the proof of Proposition 3.9 we apply (3.26) with v = D_j,(Dpu) €
H!(R%). For £ > 0 we have

fRd AVu -V (D_p(Dpu)) dz

= fRd AV (Dpu) - V(Dpu) dx + f (DR A)Vu - V(Dpu) dx

Rd
| DR A7 o (ga
> 0 [V (D) gy — < 19D gty — B s
and
. 1132 g C
2 L2(R 2 1 2 2
Ld frdz < e|v|pzga) + 745( < IV (Dru) |72 may + fg( 1172 ay + [l gay )-

With e = § we obtain

! 2 2 2 1
B) ||Dh(vu)HL2(Rd) < 02( ||fHL2(Rd) + HuHHl(Rd) )7 Gy = E(CI + HAHcl(Rd) )
This proves that u € H%(R%) and, for some C' > 0 which only depends on A, B and c,
lull g2 gy < C(1F 12y + Il pigay )-

e The case 2 = Ri is proved similarly by taking h parallel to 6Ri as in the proof of
Proposition 3.12. This proves that for j € [2,d] and k € [1,d] we have 0;0,u € L*(R%),
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with ”ajak“HH(Ri) < Cj,k(HfHLz(Ri) + HUHHI(Ri)) for some Cjj, > 0 independant of f

and u. Then we observe that the ellipticity (3.4) applied with £ = (1,0,...,0) shows that
a1,1(z) = a > 0. Then

1
8fu = 7(81@1718111 — (51a1,1)61u)

ai,i
1
=—|—-f- Z 0jaj kOt + B - Vu+ cu— (dra11)01u | € LZ(Ri),
a1,1 1<j,k<d
(4,k)#(1,1)

with
[0l aggay < Cra (1] aqagy + Nulinag))

for some C7,; > 0 independant of f and u. The conclusion follows in this case.
e We consider the case where Q is a bounded subset of R? of class C2. As is now usual we
will use a partition of unity and changes of variables as described in Paragraph 2.3.1. The
regularity of a solution compactly supported in € is proved as in the proof of Proposition
3.12. Now we consider an open subset I/ of R? such that 0 n U/ is a graph of class C?, a
diffeomorphism @ of class C? from U to an open subset W such that ®(U N Q) = W n R‘i,
and we assume that the solution u € H} () is supported in U n Q. We set ¥ = &1 and we
denote by J® and JV the jacobian matrices of ® and ¥, respectively. We also write |J U]
for |det(JW)|.

Let @ = uo V¥ € HY(W n R%). Then we check that @ is a weak solution on W of the
equation

—div(AVa) + B - Vi + éi = f,
where for 7 € W nR?% and z = ¥(Z) we have set
A(@) = |T9(@)] JO @) A@)J0(@)T,  BE) = [JU(@) B)Jo@)T, &F) = |JU(@) cla)

and f(Z) = |J¥(Z)| f(z). For instance, for o € H}(W n R%) and v = & o ® we have by the
change of variables x = U(Z)

—J (A(Z)Vu(z)) - Vi(F) di = —f (A(T(2))Vu(T(2))) - Vo(¥(z))|JE(z)| dz
Wr\Ri w

d
r\]RJr

= —f (A(z)Vu(x)) - Vo(x) dz.
UNQ

The matrix A is symmetric, since A is. Now let £ € RY. For € W n R‘i and z = U(Z) we
have

(A@)€) - € = |TU(@)| (A(2)J@(2)7€) - (JB(2)T€) = o |JU(@)| |[J8()TE|" > G l¢],
with

inf | J¥|

—)—— > 0.
sup [[J V|

a=a«

Thus, according to the case Q = R%, we have @ € H*(W n R%) with Hﬁ”Hg(WﬁRi) <
C’(Hf“L?(WmRi) + ||ﬂ||H1(WmRi)), for some constant C' > 0 independant of f or f. Going

back to 2, we deduce that u € H*(U n Q) with |[u] g2@n0) < C(|flL2@n) + [ul o wan))
with C' > 0 independant of f.
Now we use the notation of Paragraph 2.3.1. For all j € [0, N] we have in the weak sense

P(Xju) = fja

where, for some C; > 0,

1£il 20y < Ci (1l L2 + Iul o) )-
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For j € [0, N] we apply the above results to xju. Then we deduce that u = Z;V:O(Xju)
belongs to H%()), and

N N
HUHH2(Q) < Z HXjuHHz(Q) S Z Cj( HfjHL2(Q) + HXju”Hl(Q)))
j=0 j=0

< C( 1fll 220y + lul g q) )-
This completes the proof. For the higher regularity, we check that under the stronger as-

sumptions of the proposition we have higher regularity for @ and u at each step of the proofs.
We omit the details. U

Ezercise 31. Assume that A € W12(Q), B € L*(Q) and ¢ € L®(Q). Prove that there
exists C' > 1 such that for all u € H?(2) we have

c! ull g2 () < 1Pull o) + [l r2@) < Clulgeg) -

3.4 The Poisson equation on a bounded domain

After the analysis of a quite general second order elliptic equation, we go back to the model
case, namely the Poisson equation. We have already discussed in Exercise 27 and in Para-
graph 3.3.1 (see (3.23)) the fact that the equation —Awu = f is not well posed on R<.

Here we consider the same problem on a bounded open subset € of R%. Of course, as
above, we will have to add an additional condition to get a well posed problem (otherwise,
we see that if u is a solution, then u + § is also a solution for any constant 3).

We begin with the Poisson equation with Dirichlet boundary condition

{—Au:ﬁ on €, (3.29)

u =0, on 0f).

The corresponding bilinear form is given by (3.23) as in R%. The important difference
is the Poincaré inequality, according to which the H' norm is controled by the norm of the
gradient on H}(Q) (see Theorem 2.49).

Proposition 3.22. Let Q be a bounded subset of R? and let f € L?(Q). There exists a unique
u € HE(Q) such that

Vv e Hy (), Vu-Vodr = f fudz.
Q Q

Proof. For u,v e H} () we set
a(u,v) = J Vu - V.
Q

This defines a continuous bilinear form on H{(Q2). By the Poincaré Inequality, there exists
a > 0 such that for u € H}(2) we have

2 2
a(u,u) = [Vulz2q) = afulf g -
This gives the coercivity of a and the conclusion follows from the Lax-Milgram Theorem. [

Then, by Proposition 3.21, the weak solution of (3.29) given by Proposition 3.22 belongs
to H2(Q2) (and it is even in H**2(Q) if f € H*(Q2) and € is of class C**2 for some k € N).

We continue with the same problem with Neumann boundary condition:

(3.30)

—Au=f, on,
o,u =0, on 0f).

48 J. Royer - Université Toulouse 3



SECOND ORDER ELLIPTIC EQUATIONS

Compared to (3.12), we cannot give a analog of Proposition 3.22 with H}(Q) replaced by
H'(Q). It is clear that the constant functions belong to H!(Q) and breaks the coercivity of
the bilinear form a on H'(Q).

Thus, to recover some coercivity, we have to remove at least the constant functions from
H'(Q). The Poincaré-Wiertinger inequality tells us that this is in fact enough, see Theorem
2.51.

Notice that if u € H?(Q) solves (3.30), then by the Green formula (see Theorem 2.44)

I=- L Au = 0. (3.31)

This gives a necessary condition for (3.30) to have a solution in H?(£2). Thus it is natural to
introduce

EQ(Q)—{feLQ(Q) ; Lf—o}.

Proposition 3.23. Let Q be a bounded, connected and open subset of Re. Let f € I?(Q)
There exists a unique u € H* () (see (2.32)) such that

Vv e HY(Q), ‘[ Vu-Vvdas:f fvdz. (3.32)
Q Q

For the proof we check that H'(Q) is a Hilbert space, and then we follow the proof of
Proposition 3.22; using Theorem 2.51 instead of Theorem 2.49.

Proposition 3.24. Let f € L?(Q) and let u be the weak solution of (3.30) given by Propo-
sition 8.28. Then in the sense of distributions we have —Au = f.

Proof. Let ¢ € CF(€2). Then ¢ — ﬁ SQ ¢ dy belongs to I:Tl(Q), SO we can write

1

JQVU-V¢dx:fQVu-V<¢—|m Qcﬁdg;) dx

“J (o L) o
N L fedy - Jﬂ <|Ql| L f@) dx) %

- fQ fody.

This proves that —Aw = f in the sense of distributions. O

Ezxercise 32. Let Q be a bounded subset of R%. Show that there exists C' > 0 such that for
any u € H}(Q) such that Au e L?(2) we have

lull g0y < CllAu] 2 q) -

Exercise 33. Let Q be an open bounded subset of R?. We consider the Poisson equation
with inhomogeneous Neumann boundary condition. Given f e L?(Q2) and g € HY/?(0Q) we
consider the problem

—Au=f, on(,
dyu =g, on 0.

1. Give a necessary condition on f and g analogous to (3.31) for this problem to have a
solution u € H?(1).

2. Give a variational formulation adapted to this problem. Prove existence and uniqueness
of a weak solution in a suitable space.

3. What can we say about the regularity of this solution ?

4. What happens if g is only in H~Y2(0Q) ?
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3.5 The Fredholm alternative

3.5.1 Compact operators

We recall that we have defined compact operators in Definition 2.36. Given two Banach
spaces X,Y we denote by K(X,Y") the set of compact operators from X to Y. We also write
K(X) =KX, X).

Proposition 3.25. Let X and Y be two Banach spaces.

(i) Let K € K(X,Y) and let (x,,),cy be a sequence in X which converges weakly to some
x € X. Then K(x,) converges strongly to K(x).

(ii) An operator with finite dimensional range is compact.
(i) K(X,Y) is a closed subspace of L(X,Y).

(iv) For K € K(X,Y), By € B(X1,X) and Bs € B(Y,Y3) we have K o By € K(X1,Y) and
By oK € K(X,Ya).

(v) For K e K(X,Y) we have K* € K(Y*, X*).
Proof. We prove the first and last statements.

(i) The sequence (), is weakly convergent, so it is bounded in X. By continuity,
a convergent subsequence of (K (x,))nen necessarily goes to K (z). This implies that
K(x,) goes strongly to K(x).

(i) Let (¢n),eny be a bounded sequence in Y*. We denote by Bx the unit ball in X.
Since K is compact, K(Bx) is a compact metric space, and the functions ¢,, n €
N, are equicontinuous thereon. Then, by the Ascoli-Arzela Theorem, there exists a
subsequence (pn, )ken convergent in CO(K(By)). We denote by ¢ € CY(K(Bx)) the
limit. In particular we have

sup |on, (K (2)) — (K ()] —— 0.

o] x <1 k=

We deduce that (¢,, o K) is a Cauchy sequence in X*. Since X* is a Banach space, it
has a limit in X*. This proves that K* € K(Y*, X*).

O
Now we consider a Hilbert space H.

Theorem 3.26. Let K € K(H). Then (Id —K) is injective if and only if it is surjective, and
in this case its inverse defines a bounded operator on H. In any case we have

dim(Ker(Id —K)) = dim(Ker(Id —K™)) < 4o0.
Moreover Ran(Id —K) is always closed, and in particular
Ran(Id —K) = Ker(Id —K*)*.
Remark 3.27. We recall that for any A € £L(H) we have
Ran(A) = Ker(A*)*.

Proof. ¢ Assume by contradiction that dim(Ker(Id —K)) = +00. Then we can find a se-
quence (up),cy in H such that (u,,un) = dpm and Ku, = u, for all n,m € N. This is in
particular a bounded sequence but, for n # m,

HKun - Kum”?—[ = Hun - “mHi{ =2,

so the sequence (Kuy,)nen cannot have a convergent subsequence. This gives a contradiction
and prove that dim(Ker(Id —K)) < +o0.
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e Then we prove that there exists v > 0 such that
Vue Ker(Id —K)*,  u— Kuly =7 |uly - (3.33)

If this is not the case, we can find a sequence (uy),,oy in Ker(Id —K)* such that |u,[,, = 1
and |u, — Kuy, |, < 27" for all n € N. Since (uy,),,oy is bounded, there exists a subsequence
(tn, )wen and u € H such that u,, goes weakly to u as k — +00. Since K is compact, we
have |Ku,, — Kull,;, — 0 as k — +00. Then

Uy, = Kty + (Un, — Kuy,) —— Ku.

k—+00

This implies that u = Ku, so u € Ker(Id —K). In particular, for all n € N we have (u, u, ), =
0 so, taking the limit, |u|,, = 0. This gives a contradiction and proves (3.33).
o We deduce from (3.33) that Ran(Id —K) is closed in H. Indeed, let (vy,),,. be a sequence
in Ran(Id —K) which goes to some v in H. Then for all n € N there exists u,, € Ker(Id —K)*
such that v, = (Id —K)u,. By (3.33), (uy),y is @ Cauchy sequence in H, and hence it
has a limit u € H, By continuity, we have v = (Id —K)u € Ran(Id —K), which proves that
Ran(Id —K) is closed.
e Now assume that (Id —K) is injective, and assume by contradiction that H; = (Id —K)(H)
is not equal to H. Since H; is closed, it is a Hilbert space with the structure inherited from
H, and by restriction, K defines a compact operator on Hi. We set Ho = (Id —K)(H1).
Then Hs is closed, and since (Id —K) is injective, we have Ho & Hy (take u € H\H;, then
(Id —K)u belongs to H1\Hz). By induction we set Hy = (Id —K)(Hy_1) for all k > 2. Then
H is closed and Hy 1 & Hy, for all k € N*. In particular, for all k € N* we can find uy € Hy
such that [ug|,, =1 and uy € Hj- ;. Then for k € N* and j > k we have

Kuj — Ku, = —(u; — Kuj) + (ur — Kug) + uj — ug.

Since —(u; — Ku;) + (ux, — Kug) + uj € Hy41 this yields
HKUj — KukH > 1.

This gives a contradiction since K is compact. Thus, if (Id —K) is injective, then it is also
surjective.
e Conversely, assume that Ran(Id —K) = H. Then Ker(Id —K*) = {0}. Since K* is also
compact, we deduce that (Id —K™*) is surjective, and finally

Ker(Id —K) = Ker(Id —K**) = Ran(Id —K*)* = {0} .
This proves that (Id —K) is injective if and only if it is surjective. Moreover, in this case,
(3.33) proves that the inverse (Id —K)~! defines a bounded operator with |(Id —K)~* Hﬁ(H) <

~1

vt
e It remains to prove that Ker(Id —K') and Ker(Id —K*) have the same dimension. Assume
by contradiction that dim(Ker(Id —K)) < dim(Ran(Id —K)*). There exists a bounded op-
erator A : Ker(Id —K) — Ran(Id —K)* injective but not surjective. We extend A by 0 on
Ker(Id —K)*. This defines an operator A on H which has a finite dimensional range included
in Ran(Id —K)*. In particular it is compact, and so is K = K + A. Let u € Ker(Id —K). We
have u— Ku = Au. Since u— Ku € Ran(Id —K) and Au € Ran(Id —K)*, we have u— Ku = 0.

Therefore u = 0 since A is injective on Ker(Id —K). Then (Id —K) is injective, and hence
surjective. However for v € Ran(Id —K)+\Ran(A) the equation

u— (Ku+ Au) = v
cannot have a solution. This gives a contradiction and proves that
dim(Ker(Id —K)) = dim(Ran(Id —K)*) = dim(Ker(Id —K*)).

We get the opposite inequality by interchanging the roles of K and K*, and the proof is
complete. O]

Ezxercise 34. Let K € L(H). Prove that

dim <U Ker((Id —K)’“)) < +oo.

keN
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3.5.2 Aplication to second order elliptic equations

Now we apply the abstract Fredholm theory to our second order elliptic equations. We
introduce the formal adjoint P* of the operator P defined (3.2). It is defined by

P*u = —div(AVu) — B-Vu + (c — div B)u.

In particular P* = P if B = 0 (this is not the case with complex coefficients). The corre-
sponding bilinear form is defined on H}(Q) by

apsx(u,v) = ap(v,u),

where ap is defined by (3.22). In particular, u € H}({2) is a weak solution for the problem

P*y = Q
{ u=0, onf2, (3.34)

u =0, on 0.

if and only if ap(v,u) = 0 for all v € H} (2). Moreover P* is elliptic with the same coefficient
a >0 as P (see (3.4)), and for g €]0, o[ Lemma 3.19 gives the same -y as for P.

Theorem 3.28. Let Q be a bounded open subset of R? and let P be defined by (3.2).

(i) The problem (3.20) has a unique weak solution for any f € L?(Q) if and only if 0 is the
only weak solution for the homogeneous problem

(3.35)
u =0, on 0f).

{Pu =0, on{,
(ii) The problem (3.20) has a weak solution if and only if f is orthogonal in L*(2) to the set

N* of weak solutions of the problem (3.34). And in this case the set of weak solutions
of (3.20) is a subspace of H} () of dimension dim(N*).

Proof. » 1t is clear that if (3.20) has a unique weak solution for any f € L%(Q) then in
particular 0 is the unique weak solution for (3.35). Conversely, assume that 0 is the unique
weak solution for (3.35). By linearity, a weak solution of (3.20) is necessarily unique. It
remains to prove existence. Let f € L*(Q).

Let 70 be given by Lemma 3.19 and let v > 7. For g € L?(Q)) we denote by Rg the
unique weak solution u of the problem

Pu+~u =g, onf)
u =0, on 0€).

By Proposition 3.20, this defines a continuous operator R : L?(Q) — H}(Q). Since H}(Q)
is compactly embedded in L2(£2) by Theorem 2.38, we can see R as a compact operator on
L2(Q).
A function u € Hg () is a weak solution of (3.20) if and only if u = R(f + ~yu). If we set
K = «R, this is equivalent to
(Id—K)u = Rf. (3.36)

If u € Ker(Id —K) then u € H}(Q2) and u is a weak solution of (3.35), so u = 0. This proves
that Id —K is injective. By Theorem 3.26, it is also surjective so there exists a solution
u € L*(Q) of (3.36). Since u = Rf + Ku € H}(Q), it is a weak solution of (3.20), which
proves the first statement.

e We observe that the adjoint R* of R maps g € L?(Q2) to the unique weak solution of

P*u+~yu=g, onQ,
u =0, on 0S).

Therefore v is a weak solution of (3.34) if and only if

(Id —K*)v = 0.
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Then, by Theorem 3.26 again,
N* = Ker(Id —K*) = Ran(Id —K ).
Then the problem (3.20) has a weak solution if and only if Rf € (N*)*, that is if and only if
Voe N*, (f0)y = (F. K*0)yy = (K £,0)5 = 7 (RS, )y, = 0.
This gives the first part of the second statement. Finally, by Theorem 3.26 we also have
dim(Ker(Id —K)) = dim(N*),
and the proof is complete. O

Remark 3.29. The first statement of Theorem 3.28 is very important, and it does not hold
in general. For instance, given f € L?(R), then u is a weak solution of the Poisson equation

_u/l — f
if and only if v € H?(R) and, for almost all £ € R,

e2u(€) = f(¢).

Then we see that u = 0 is the only solution when f = 0, but there is no solution for instance
if f =1 on a neighborhood of 0.

Exercise 35. Let ) be a bounded open connected subset of R? of class C*.
1.For f e L*(Q) we denote by R(f) € H'(Q2) the unique weak solution u of the problem

—Au+u=f, on{,
oyu =0, on 0f).

Prove that this defines a compact operator R on L2().

2. Prove that R* = R.

3. Prove that Ker(Id —R) is the set (1) of constant functions on €.

4.Let f € L*(Q). Prove that (3.30) has a solution if and only if Rf € (1>J‘. Deduce that
(3.30) has a solution if and only if f itself is orthogonal to (1).

5.Let f e L*(Q) such that (3.30) has a solution ug € H*(Q2). Prove that the set of solution
is given by wug + Ker(Id —R).

Compare all these results with the results of Section 3.4.

3.6 Spectral properties of elliptic operators

Let H be a real (or complex) Hilbert. An operator A on H is a linear map from a dense
subset D of H to H. We say that D is the domain of A.

Let A € C (or A € R). We say that A is in the resolvent set p(A) of A if the operator
(A—=\Id) : D — H is bijective and if its inverse (A — AId)~! defines a bounded operator on
H. We usually write (A— \) instead of (A—A1d). The spectrum o(A) of A is the complement
of p(A4) in R (or C).

We recall that if H is of finite dimension, a linear map is bijective if and only if it is
injective, and in this case the inverse is always continuous, so the spectrum of A is exactly
the set of eigenvalues. This is not the case in general, as was discussed in Remark 3.29.

If A is an eigenvalue of A, then its geometric multiplicity is

dim(Ker(4 — X)),

and its algebraic multiplicity is

dim <U Ker((AA)k)> = lim dim(Ker(A — \)F).

k
keN o

In particular, the geometric multiplicity is smaller than or equal to the algebraic multiplicity.
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3.6.1 Spectrum of compact operators
For compact operators, we have the following result.
Theorem 3.30. Let K € K(H).

(i) Ifdim(#H) = +o0 then 0 belongs to the spectrum of K.

(ii) A e C* belongs to the spectrum of K if and only if it is an eigenvalue of K. In this case
it is an eigenvalue of finite (geometric and algebraic) multiplicity.

(iii) o(K)\{0} is finite or is given by a sequence of eigenvalues tending to 0.

Proof. e Assume by contradiction that 0 belongs to the resolvent set of K. Then Id is the
composition of the compact operator K with the bounded operator K ~*, so Id is a compact
operator. This is a contradiction and proves that 0 is in the spectrum of K.

e Let A e C*. Then we have K —\ = A\(A"'K —1d). Since A"' K is compact, Theorem 3.26
shows that (K — \) is bijective (with bounded inverse) if and only if it is injective, so A is in
the resolvent set of K if and only if it is not an eigenvalue. Moreover, if A is an eigenvalue
of K we have dim(Ker(K — )\)) = dim(Ker(A\™*K —Id)) < +00. More generally, Exercise 34
shows that 1 is an eigenvalue of finite algebraic multiplicity for A™1K.

e Since K is a bounded operator, the set of eigenvalues of K is bounded in C. Assume that
(An),en 18 @ sequence of distinct non-zero eigenvalues of K tending to some A € C. We prove
that A = 0. For n € N we consider w,, € H\ {0} such that Kw, = A,w,. Then for n € N we
set H,, = span(wy, . ..,w,_1) and we consider u,, € H,, such that ||ju,| = 1 and u, € H}_, if
n > 1. Then for j € N and k > j we have

>1
YRV

+ up — uj

)

‘ Kuk Kuj

Ku, — Mguy,— Kuj — M\juy
e X

H ‘ H

since Kur — A\gpug, Kuj — Ajuj,uy; € Hi—1. If X # 0 we obtain a contradiction with the
compactness of K. O

3.6.2 The case of symmetric operators

Let A be a bounded operator on H. We assume that A is symmetric:

VQO, 1/} € Ha <A% Q/J>’;-L = <S0, A¢>H .

In particular, even if H is a complex Hilbert space, we have (Au,u) € R for all w € H. In
particular, the eigenvalues of A are real. Moreover, two eigenspaces of A corresponding to
two distinct eigenvalues are orthogonal.

Lemma 3.31. Let A be a bounded symmetric operator on H. Let

m = inf (Au,u),, and M = sup (Au,u),, .

Hqﬁﬂ ml"l
Then o(A) c [m, M] and m, M € o(A).
Proof. We consider the case where H is a real Hilbert space. We prove that |M, +oo[c p(A)
and that M € 0(A). Let A > M. For u € H we have
(Au— Au,u),, = (A — M) ||u||3_[ .

By the Lax-Milgram Theorem, the operator A — A is bijective with bounded inverse on H,
so A€ p(A).

Now let (un,),cy be a sequence in H such that |u,|,, = 1 for all n € N and

neN

(Aup, up) —— M.
n—+0

The quadratic form u — ((M — A)u,u) is non-negative, so by the Cauchy-Schwarz inequality
we have for all u,v e H

(M = A)u, vy |* < (M = A)u,u)yy (M — A)v,v)y,
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Applied with u = u,, and v = (M — A)u,, this gives

(M = Ayun |2, < (M = Aty )y, (M = APy, (M = A)uy, ), —— 0.

H pnotowo
This proves that M € o(A). O

Theorem 3.32. Let H be a separable Hilbert space and let K be a compact and symmetric
operator on H. Then there exists an orthonormal basis (ey,), .y consisting of eigenvectors of
K.

Proof. Let (A\n)1<n<n for N € N U {+o0} be the sequence of distinct non-zero eigenvalues
of K. For n € [1, N] we set H,, = Ker(K — A,). Then we have dim(#,,) € N*. We also set
Ho = Ker(K).

We set H = span(UfLo H,). We have K(H)  H and hence K (H*) = H*. Assume by
contradiction that Ht # {0}. The restriction of K to H1 is compact and symmetric, and it
has no eigenvalue, so its spectrum is included in {0}. By Lemma 3.31, we have (Ku,u) = 0
for all u € H+. We deduce that K = 0 on H~*, and hence H+ c Ker(K) c H. This gives a
contradiction and proves that H» = {0}, so H is dense.

It only remains to choose an orthonormal basis of each H,, for n € [1, N], and a countable
orthonormal basis of H (it exists since H is separable). O

3.6.3 Operators with compact resolvent

Theorem 3.33. Let A be an operator on H with domain D. Assume that there exists zg
such that (A — zp) is bijective and (A—z9)~' : H — D < H defines a compact operator on H.
Then the spectrum of A consists of a discrete set of eigenvalues with finite (geometric and
algebraic) multiplicities (in particular the spectrum of A is countable without accumulation
points).

Proof. Let B= A — zy: D — H. We have 0 € p(B) and B~! defines a compact operator on
H. Let A € C*. Assume that A € p(B). We have

Bl —\t=-XxYB-)\NB,

we deduce that B~! — \~! : % — H is invertible, with bounded inverse (B~1 — A71)7! =
—B(B - X)"'A=—-X\—)\%(B - )\)~!. Similarly, on D we have

B—-\A=-\B'-\xHB. (3.37)

If \=t e p(B™1) then B — X : D — H is invertible and its inverse (B — \)~! = —B~1(B~! —
A7) 7IA71 defines a bounded operator on H. Thus A\ € p(B). This proves that the map
A — A7 is a bijection between the spectrum of B and the non-zero spectrum of B~!. In
particular, the spectrum of B is discrete. Moreover, if A € o(B) then (B~! — A™1) is not
injective. By (3.37), A is an eigenvalue of B, with finite geometric multiplicity. More precisely,
since B and B~! commute, we see that for k € N* we have

Ker((B —\)¥) = Ker((B~! —A™hH"),

so the eigenvalues of B have finite algebraic multiplicities. After translation, the operator A
shares the same properties and the proof is complete. O

3.6.4 Spectrum of elliptic operators

Let © be an open bounded subset of R?. We consider a second order elliptic operator P as
defined by (3.2), with the symmetry and ellipticity assumptions (3.38) and (3.4).

So far we have mostly discussed the variational version of the problem (3.20), given by
the bilinear form (3.22) on H}(2). This means that P was seen as a function from H}(Q)
to its dual H~!(Q2). However we have seen that a weak solution u € H}(Q) belongs in fact
to H?(Q), and (3.20) holds in the strong sense.

Now let us see P directly as a linear map from H?(Q) n H}(Q) to L?(Q2). This is then an
operator on L?({2) with domain D(P) = H?(Q) n H ().
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Theorem 3.34. The spectrum of P consists of a discrete set of eigenvalues with finite
algebraic multiplicities.

Proof. Let ag €]0,af and let vy be given by Lemma 3.19. Let v > . For f e L?()
the problem (3.25) has a unique weak solution u € Hg(£2). Moreover u € H?(Q2) and there
exists C' > 0 independant of f such that [u]2q) < C|f]12(q). This proves that P+ :
D(P) — L2(Q) is bijective with bounded inverse. Thus —y € p(P). Moreover, since the
inclusion H2(Q) < L?(12) is compact, the inverse (P + v)~! is compact. Then we conclude
with Theorem 3.33. O

In particular we recover the first statement of Theorem 3.28. We know that the sets of
weak and strong solutions of (3.20) coincide. Then Theorem 3.34 says that P is bijective
with bounded inverse (for all f € L?(2) the problem (3.20) has a unique strong solution u
and [uf g2y < C'[fl2(q) for some C' > 0) if and only if 0 is not an eigenvalue of P (0 is

the unique solution if f = 0).

Now we assume that B = 0. Then P is formally symmetric, in the sense that
P* =P, (3.38)

where P* is as in (2.18). In particular, in Lemma 3.19 we can take g = o and 79 = —infe.
Notice then that if u € H(2)\ {0} and X € R are such that

Yoe Hy(Q), a(u,v) = \{u,v),
then we necessarily have A > —~.
Theorem 3.35. Assume that the operator P is symmetric and let vy be as above.

(i) The spectrum of P consists of a sequence of eigenvalues greater than (—vo) and going
to +00. The geometric and algebraic multiplicities of these eigenvalues coincide, and
they are all finite.

(ii) There exists an orthonormal basis of L?(Q) which consists of eigenfunctions for the
operator P.

If we denote by (A, )nen the non-decreasing sequence of eigenvalues repeated according
to multiplicities we have
Yo<AM <A <...< )\, —— +0.
n—+0o0
Then there exists an orthonormal basis (@,)nen+ such that for n € N* we have ¢, €
H?(Q) n H}(Q) and Py,, = Ay@,. Equivalently, ¢, € H}(Q) is the unique weak solution for
the problem

(3.39)

Py, = A, in Q,
wn =20 on 0f2.

Proof. We apply Theorem 3.34. We have already said that the eigenvalues are greater than
(—0)- Let v > 7. By Theorem 3.32, there exists an orthonormal basis (¢5,),,.y of eigen-
functions for (P + v)~!. The functions ¢, n € N, are also eigenfunctions for P. Indeed, if
(P+7)" " on = pinton then p,, >0, 1=y # 0 and Po, = (1—7pn) " 1, on). This implies
that geometric and algebraic multiplicities of all the eigenvalues coincide. Moreover these
multiplicities are finite, so there is an infinite (countable) number of eigenvalues. Since the
spectrum is discrete and included in | —~p, + o[, the sequence of eigenvalues goes to +o0. O

3.7 Maximum Principle

In this paragraph we discuss the maximum principle. Let {2 be an open bounded subset of
R?. We recall that if u € C?(Q2) n C°(Q) satisfies Au = 0 on Q, then for z € Q and 7 > 0
such that B(x,r) < £ we have

1

B S “©) W)

u(r) =
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To see this we compute

d 1 d 1

_— u(y)do(y) = ——=—— u(z + ry) do(y
ar 150 Jseen "W 70 = G150, Dy, “ T W)

j J
=— Oru(z + ry) do(y
SO Js0n ™ :
1
= — oyu(y) do(y
S Jopga 1@ 4

-0

This proves in particular that u cannot reach a strict maximum at x, and that if u atteins a
maximum at x then u is constant on a neighborhood of z. On the other hand, w is continuous
on the compact sets €2 and on 0€2, so it has a maximum. We get

) = g

And moreover, if € is connected and u reaches a maximum on €2, then u is constant on 2.

This facts are already known for holomorphic functions, which are particular cases of
harmonic functions (that is solutions in dimension 2 of Au = 0). It is already known that
the maximum principle has many important consequences in that case. Our purpose in this
section is to generalise these observations to more general settings. In dimension 1 it is not
difficult to see that if —u” < 0 on some interval [a,b], then u(z) < max (u(a),u(b)), with
equality if and only if u is constant on [a, b].

Theorem 3.36. Let €2 be an open bounded subset of R?. Let P be defined by (3.2) with
c=0. Let ue C%*(Q) n C°%(Q) be such that

Pu<0 onf.
(i) We have

max u = maxu.

Q o0

(ii) If moreover Q is connected and u atteins its mazimum at an interior point, then u is
constant.

The first statement is refered to as the weak maximum principle. The second statement
is the strong maximum principle.

The idea for the weak maximum principle is the following. Consider the particular case
—Au < 0 on Q. If u reaches a maximum at o € €2, then in particular 05u(zo) < 0 for all
j € [1,d], which gives a contradiction. In the first step we generalize this idea to the general
setting Pu < 0, and then we deduce the case Pu < 0.

Proof of the weak maximum principle. ® We first consider the case where Pu < 0 in €. For
h € R {0} we denote by 02u(x) the second derivative of t — u(z + th) at t = 0. Assume by
contradiction that there exists xg € Q such that u(zg) = maxwu. Then we have Vu(zg) = 0
and d7u(z) < 0 for any h € RY. Since A(zg) is symmetric and definite positive, there exist
an orthogonal matrix O and a diagonal matrix D = diag(\1, ..., Ag) with positive coefficients
such that A(zg) = ODOT. For j € [1,d] we set é; = Oe;. This defines a new basis of R%.
Then we have

d
(Pu)(zo) = — div(A(z0)Vu)(2¢) = — divODOVu(z) = — Z X032, u(mg) = 0.
=1

This gives a contradiction and proves the weak maximum principle when Pu < 0 on (2.
e Then we consider the general case Pu < 0. We can rewrite P as

d d
P=— Z aj7kajak + Z Ekak, (3.40)
jk=1 k=1
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where for k € [1,d] we have set by, = by, + Z?zl djaji. Fore > 0and z = (z1,...,2q) € Q we
set
ue(z) = u(x) + ™

for some B > 0 to be fixed large enough. For z € (2 we have
Pug(m) = Pu(a:) + g1 ( — 62a11($) + ﬁi)l(ﬂ?)) < gePT ( - ,8204 + B”BI HLoo(Q)).
This is negative if § was chosen large enough. By the first case we have

Ve >0, maxu. = maxu..
Q o0

We conclude by taking the limit € — 0.
e Now we turn to the proof of the strong maximum principle. Let

F = {a:eQ : u(:c)zmaxu}, w = Q\F.
Q
Fis closed in 2 and w is open. Assume by contradiction that F' # ¢ and F' # 2. We denote
by @ the closure of w in . Since 2 is connected, W N F' # J cannot by disjoint to U. Let
x1 € wn F. Near x; we can find z. € w such that dist(xz., F) < dist(z., Q). Then we set
r = dist(z., F') and we consider zg € F such that |zg — x| = r. We have B(z.,7) € w and,

since xg € F', we have
Vu(aco) =0.

For x € B(x.,r) we set
v(x) = ePlel® _e=Fr* 5 0,

for some 8 > 0 to be chosen large enough below. For x € B(x.,r) we have with the notation
(3.40)

d d
Z aj, k a &kv Z 6kv
7,k=1 k=1
s d d_
= ¢ Al (—4[32 Z ajr(x)xjry, + 20 Z aj;(x) + 24 Z bk(as)xk>
grk=1 j=1 k=1

< e PP (—ap? [of? + 28Tr(4) + 28(b] |2 ) -
If 3 is large enough then on C = B(xz,7)\B(x., 5) we have
Pv <0.
There exists € > 0 such that for all x € 0B (:EC7 %) we have
u(zg) = u(z) + ev(x).

This also holds on 0B(x.,r) where v vanishes. We set w(x) = u(z) + ev(z) — u(mo) Then
w < 0 on 0C and Pw < 0 on C. By the weak maximum principle, we have w < 0 on C, and
in particular Vw(xg) - (xg — z.) = 0. This gives

Vu(xo) . (1‘0 — l’c) = 76V’U(1}0) . (:EO _ Ic) _ 25/87’267Br2 > 0.

This gives a contradiction, and proves that F' = ¢§ or F' = Q. O
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