
Chapter 2

Sobolev spaces

2.1 Weakly differentiable functions

In this first paragraph we introduce the notion of weak derivatives and define the Sobolev
spaces of weakly differentiable functions. This generalizes the notion of differentiability to a
class of functions which are not differentiable in the classical sense.

We will sometimes refer to distributions and the notion of derivatives in the sense of
distributions, which are assumed to be known. However, we will recall all the required
definitions and results to make this chapter self-contained.

2.1.1 One derivative in Lp in dimension one

We begin with the one dimensional case. Let I be an open and non-empty interval of R. The
key observation behind the definition of the weak derivative is the integration by parts. For
u P C1pIq and φ P C8

0 pIq we have
ż

I

u1φ dx “ ´
ż

I

uφ1 dx. (2.1)

The right-hand side makes sense even when u is not differentiable. This is how we define the
function u1 which appears in the left-hand side.

Definition 2.1. Let u P L1
locpIq. We say that u has a weak derivative in L1

locpIq if there
exists v P L1

locpIq such that

@φ P C8
0 pIq, ´

ż

I

uφ1 dx “
ż

I

vφ dx. (2.2)

In this case we denote by u1 this function v.

Definition 2.2. We denote by W 1,ppIq the set of functions u P LppIq with a weak derivative
u1 P LppIq. We also write H1pIq for W 1,2pIq.

Of course, if u is differentiable in the usual sense, then the derivatives in the usual and
in the weak senses coincide. However u and u1 are not necessarily in LppIq, so u is not nec-
essarily in W 1,ppIq (if I is a compact interval, then continuous functions are integrable and
hence, in this particular case, continuously differentiable functions on I belong to W 1,ppIq).

The weak derivative is just the derivative in the sense of distributions. A function u P
L1
locpIq defines a distribution Tu on I. This distribution has a derivative T 1

u P D1pIq. Saying
that the derivative of u belongs to L1

locpIq means that T 1
u is the distribution defined by a

function in L1
locpIq. In other words, for some v P L1

locpIq we have T 1
u “ Tv in D1pIq. Then

a function u P LppIq belongs to W 1,ppIq if and only if u1 P LppIq, where u1 is understood in
the sense of distributions.

Notice also that a function v satisfying (2.2) is necessarily unique (up to equality almost
everywhere), so there is no ambiguity in the definition of u1.
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Example 2.3. We consider on s0, 1r the function u : x ÞÑ x´ 1
4 . Then u belongs to L2ps0, 1rq

but its derivative u1 : x ÞÑ ´1
4x

´ 5
4 is not in L2ps0, 1rq, so u is not in H1ps0, 1rq. We similarly

consider u : x ÞÑ x´ 1
4 on s1,`8r. Then u1 P L2ps1,`8rq but u R L2ps1,`8rq, so u R

H1ps1,`8rq.
On the other hand, the function u ÞÑ x

3
4 belongs to H1ps0, 1rq and x ÞÑ x´ 3

4 belongs to
H1ps1,`8rq.
Exercise 1. Let p P r1,`8s and α P R. Does the function x ÞÑ xα belongs to W 1,pps0, 1rq
? W 1,pps1,`8rq ? W 1,pps0,`8rq ?

These first examples concern functions differentiable in the usual sense. But W 1,ppIq
contains functions which are only differentiable in the weak sense.

Example 2.4. We consider on s ´ 1, 1r the map u : x ÞÑ |x|. Then its derivative in the sense
of distributions is given by

u1 : x ÞÑ
#

´1 if x ă 0,

1 if x ą 0.

Then u belongs to W 1,pps ´ 1, 1rq for any p P r1,`8s.
A function in LppIq can have a derivative in the sense of distributions which is not a

function.

Example 2.5. The Heaviside function

H : x ÞÑ
#
1 if x ą 0,

0 if x ă 0,

belongs to Lpps ´ 1, 1rq. However, there is no function v P Lpps ´ 1, 1rq such that

@φ P C8
0 ps ´ 1, 1rq,

ż 1

´1

vφ dx “ ´
ż 1

´1

Hφ1 dx “ φp0q,

so H has no weak derivative in Lpps ´ 1, 1rq, and hence it does not belong to W 1,pps ´ 1, 1rq.
With the vocabulary of distributions the derivative of H in the sense of distributions is the
Dirac distribution H 1 “ δ, and δ is not associated to any function in Lpps´1, 1rq. Similarly, a
piecewise C1 function on I which is not continuous cannot be in W 1,ppIq (with the vocabulary
of distributions, by the jump formula the derivative in the sense of distributions of such a
function involves Dirac distributions and cannot belong to LppIq).

More generally, we can prove that a function in W 1,ppIq is necessarily continuous on I.
We recall that a function in LppIq or in W 1,ppIq is in fact a equivalence class of functions
which are pairwise almost everywhere equal. When we say that u P W 1,ppIq is continuous,
this means that one of the representatives of u is continuous.

Proposition 2.6. Let p P r1,`8s and u P W 1,ppIq. Then u has a representative ũ P LppIq
such that, for x, y P I,

ũpyq ´ ũpxq “
ż y

x

u1psq ds.

In particular ũ is continuous. If p ą 1 then ũ is even p´1
p -Hölder continuous on I (when

p “ `8 this means that ũ is Lipschitz continuous). Moreover, if I is not bounded and if
p Ps1,`8r then ũ goes to 0 at infinity.

Finally, for all p P r1,`8s, ũ is bounded and hence u P L8pIq.
For the proof we recall the following results (prove them as an exercice if not already

known).

Lemma 2.7. Let u P L1
locpIq be such that

@φ P C8
0 pIq,

ż

I

uφ1 dx “ 0.

There exists a constant α such that u “ α almost everywhere.

4 J. Royer - Université Toulouse 3



Sobolev spaces

Lemma 2.8. Let w P L1
locpIq and x0 P I. Then the map

v ÞÑ
ż x

x0

wpsq ds

is well defined, it is continuous on I, and

@φ P C8
0 pIq,

ż

I

vφ1 dx “ ´
ż

I

wφ dx.

Now we can prove Proposition 2.6:

Proof. We fix x0 P I. For x P I we set

vpxq “
ż x

x0

u1psq ds.

This makes sense since u1 P LppIq Ă L1
locpIq. Then, by Lemma 2.8, v is continuous and its

derivative in the sense of distributions is u1. By Lemma 2.7, there exists a constant α such
that u ´ v “ α almost everywhere. We set ũ “ v ` α.

For x, y P I we have

ũpyq ´ ũpxq “ vpyq ´ vpxq “
ż y

x

u1psq ds.

If p “ 1 then for some x0 P I we have |ũpyq| ď |ũpx0q| ` }u1}L1pIq.
If p “ `8 then |ũpyq ´ ũpxq| ď |y ´ x| }u1}L8pIq, so ũ is }u1}L8pIq-Lipschitz continuous.

If p Ps1,`8r, we have by the Hölder inequality

|ũpyq ´ ũpxq| ď
ˇ̌
ˇ̌
ż y

x

ˇ̌
u1psqˇ̌

ds

ˇ̌
ˇ̌ ď |y ´ x| p´1

p

ˆż

I

ˇ̌
u1psqˇ̌p

ds

˙ 1
p

.

This proves that ũ is p´1
p -Hölder continuous, and in particular uniformly continuous. All the

statements of the proposition follow.

Exercise 2. Let α P R. For x P R we set

uαpxq “
#
xαe´x if x ě 0,

´ |x|α e´|x| if x ă 0.

1. Prove that uα P C1pRq if α ą 1.
2. Prove that uα P H1pRq if α ą 1

2 .

Exercise 3. Let u P LppIq. Prove that u P W 1,ppIq if and only if there exists v P LppIq
such that

@φ P C1
0 pIq,

ż

I

uφ1 “ ´
ż

I

vφ.

Exercise 4. 1. Let u` P C1
0 pr0,`8rq. For x P R we set

upxq “
#
u`pxq if x ě 0,

0 if x ă 0.

Does u belong to H1pRq ? to C1pRq ?
2. Same questions with

upxq “
#
u`pxq if x ě 0,

u`p´xq if x ă 0,

3. Same questions with

upxq “
#
u`pxq if x ě 0,

´3u`p´xq ` 4u`p´x{2q if x ă 0.
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2.1.2 General definitions
The above definitions can be extended in any dimension d P N˚ and we can consider any
order k P N of derivatives.

Definition 2.9. Let Ω be an open subset of Rd. For p P r1,`8s and k P N we set

W k,ppΩq “ �
u P LppΩq : Bαu P LppΩq for all α P Nd with |α| ď k

(
,

where Bαu is the derivative of u in the sense of distributions. In other words, a function
u P LppΩq belongs to W k,ppΩq if for all α P Nd such that |α| ď k there exists vα P LppΩq such
that

@φ P C8
0 pΩq,

ż

Ω

u Bαφ dx “ p´1q|α|
ż

Ω

vα φ dx. (2.3)

In this case vα is unique (up to equality almost everywhere) and we set Bαu “ vα. We also
set HkpΩq “ W k,2pΩq.
Remark 2.10. By the Riesz Theorem and by density of C8

0 pΩq in L2pΩq, a function u P
L1
locpΩq belongs to HkpΩq is and only if for all α P Nd with |α| ď k there exists Cα ą 0 such

that
@φ P C8

0 pΩq,
ˇ̌
ˇ̌
ż

Ω

uBαφ dx

ˇ̌
ˇ̌ ď Cα }φ}L2pΩq .

Example 2.11. Let α ą 0. For x P Bp0, 1qz t0u we set upxq “ |x|´α. Then u P LppBp1qq if and
only if αp ă d. On the other hand u is of class C1 on Bp1qz t0u and ∇upxq “ ´α |x|´α´2

x
for all x P Bp0, 1qz t0u. Thus ∇u P LppBp1qq if and only if pα ` 1qp ă d. This proves that if
α ě d

p ´ 1 then u is not in W 1,ppBp0, 1qq. Now assume that α ă d
p ´ 1.

Let φ P C8
0 pBp0, 1qq. Since u P L1pBp0, 1qq we have by the dominated convergence

theorem
´

ż

Bp0,1q
|x|´α ∇φ dx “ ´ lim

εÑ0

ż

Bp0,1qzBp0,εq
|x|´α ∇φ dx.

For ε Ps0, 1r we have by the Green formula

´
ż

Bp0,1qzBp0,εq
|x|´α ∇φ dx “ ´

ż

Sp0,εq
|x|´α

φν dσpxq ´ α

ż

Bp0,1qzBp0,εq
|x|´α´2

xφ dx,

where Sp0, εq is the sphere of radius ε. On the one hand we have
ˇ̌
ˇ̌
ˇ

ż

Sp0,εq
|x|´α

φν dσpxq
ˇ̌
ˇ̌
ˇ ď }φ}8 |Sp0, 1q| εd´1´α ÝÝÝÑ

εÑ0
0,

and on the other hand,
ż

Bp0,1qzBp0,εq
|x|´α´2

xφ dx ÝÝÝÑ
εÑ0

ż

Bp0,1q
|x|´α´2

xφ dx.

This proves that the map x ÞÑ ´α |x|´α´2
x is the gradient of u on Bp0, 1q in the weak sense.

And hence ∇u P LppBp0, 1qq. Finally we have proved that u P W 1,ppBp0, 1qq if and only if
pα ` 1qp ă d.

Exercise 5. Let d ě 2. We denote by B the unit ball in Rd. Let u P C1pBz t0uq such that
∇u (well defined on Bz t0u) is in L1

locpBq.
1. For ε Ps0, 1s we denote by Bpεq the ball of radius ε. Prove that

ż

BzBpεq
εd´1

|x|d´1
∇upxq dx ÝÝÝÑ

εÑ0
0.

2. For ε Ps0, 1s we denote by Spεq the sphere of radius ε. We set S “ Sp1q. Prove that
ż

Spεq
|u| ď εd´1

ż

S

|u| `
ż

BzBpεq
εd´1

|x|d´1
|∇u| dx.
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3. Prove that u P L1
locpBq.

4. Prove that for j P �1, d� and φ P C8
0 pBq we have

@φ P C8
0 pBq, ´

ż

B

u Bjφ dx “
ż

B

Bjuφ dx

Exercise 6. Does the map x ÞÑ lnp|lnp|x|q|q belong to W 1,dpBp0, 1qq (we recall that Bp0, 1q
is the unit ball of Rd) ?

Example 2.11 and Exercise 6 show that the results of Proposition 2.6 are only valid in
dimension 1. In higher dimensions, a function in W 1,ppΩq is not necessarily continuous.

In the following proposition we give some basic properties for the set W k,ppΩq (the proof
is left as an exercice). We define C8

0 pΩq as the restrictions to Ω of functions in C8
0 pRdq.

Proposition 2.12. Let p P r1,`8s, k P N˚ and α “ pα1, . . . ,αdq P Nd with |α| ď k. Let
u P W k,ppΩq.

(i) We have Bαu P W k´|α|,ppΩq and for β P Nd with |β| ď k´|α| we have BβpBαuq “ Bα`βu.

(ii) Let ω be an open subset of Ω. Then the restriction u|ω of u on ω belongs to W k,ppωq
and Bαpuωq “ pBαuq|ω.

(iii) Let χ P C8
0 pΩq. Then χu P W k,ppΩq and

Bαpχuq “
ÿ

βďα

ˆ
α
β

˙
BβχBα´βu,

where we have set ˆ
α
β

˙
“ α!

β!pα ´ βq! , α! “ α1! . . .αd!.

When Ω “ Rd and p “ 2 we can use the Fourier transform to give a simple characterisation
of HkpRdq. Notice that in Definition 2.9 we can see the derivatives of u in the sense of
tempered distributions. This means that we can replace C8

0 pRdq by SpRdq in (2.3).

Proposition 2.13. Let k P N˚ and u P L2pRdq. Then Bαu P L2pΩq if and only if the map
ξ ÞÑ piξqαûpξq belongs to L2pRdq (and, in this case, the latter is the Fourier transform of the
former). Then u P HkpRdq if and only if

ż

Rd

`
1 ` |ξ|2 ˘k|ûpξq|2 dξ ă `8. (2.4)

Proof. Let u P L2pRdq. For φ P SpRdq we have
ż

Rd

piyqαûφ dy “
ż

Rd

u {piyqαφ dy “ p´1q|α|
ż

Rd

uBαφ̂ dy. (2.5)

Assume that Bαu P L2pRdq for all α P Nd with |α| ď k. Then for such an α (2.5) gives
ż

Rd

piyqαûφ dy “
ż

Rd

Bαuφ̂ dy “
ż

Rd

yBαuφ dy,

so the map y ÞÑ piyqαûpyq belongs to L2pRdq, and it is the Fourier transform of Bαu.
Conversely, let u P L2pRdq be such that (2.4) holds. For α P Nd with |α| ď k (2.5) applied

with φ̌ gives ˇ̌
ˇ̌
ż

Rd

uBαφ dy

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ż

Rd

yαûφ̌ dy

ˇ̌
ˇ̌ ď }yαû}L2pRdq

p2πq d
2

}φ}L2pRdq .

This proves that Bαu P L2pRdq and the proof is complete.

Remark 2.14. If u P L2pRdq is such that Δu belongs to L2pRdq, then u belongs to H2pRdq.
This remark does not hold on a general domain (see Remark 3.17 below).
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In (2.4), k is the number of derivatives in L2pRdq. In particular it is an integer. But it
makes sense to write the same condition with any real exponent. This is a way to define
derivatives of real order, which will turn out to be useful. By Proposition 2.13, the following
definition coincides with the previous one when s P N.

Definition 2.15. Let s ě 0. We define HspRdq as the set of functions u P L2pRdq such that
ż

Rd

`
1 ` |ξ|2 ˘s|ûpξq|2 dξ ă `8.

Exercise 7. Let p P r1,`8s and u P W 1,ppRdq. Let ρ P C8
0 pRdq. We recall that pρ ˚ uq P

C8pRdq. Prove that for j P �1, d� we have

Bjpρ ˚ uq “ ρ ˚ pBjuq.
Deduce that pρ ˚ uq P W 1,ppRdq.
Exercise 8. Let u P W 1,8pRdq. Let B be a compact subset of Rd. Let ρ P C8

0 pRd,R`q
such that

ş
Rd ρ dx “ 1. For ε ą 0 and x P Rd we set ρεpxq “ ρpx{εq.

1. Prove that there exists a sequence pεnqnPN going to 0 such that if we set un “ ρεn ˚ u for
all n P N then unpxq goes to upxq for almost all x P B.
2. Prove that for all n P N we have }∇un}L8pRdq ď }∇u}L8pRdq.
3. Prove that for almost all x, y P B we have |upxq ´ upyq| ď }∇u}L8pRdq |x ´ y|.
4. Prove that u has a representative which is }∇u}L8pRdq-Lipschitz (and in particular contin-
uous).

2.2 Topology on the Sobolev spaces
In this section we define the norms on the Sobolev spaces we have just defined, and we give
the properties of these new functional spaces. In the particular case of Sobolev spaces on
the Euclidean space, we prove that smooth functions are dense in the Sobolev space, and
we show on some examples how this important result is used to generalize some properties
known for regular functions. The density of smooth functions in the general case will be
discussed in the following section.

2.2.1 Banach spaces
Let Ω be an open subset of Rd. Let p P r1,`8s and k P N. For u P W k,ppΩq we set

}u}Wk,ppΩq “
¨
˝ ÿ

|α|ďk

}Bαu}pLppΩq

˛
‚

1
p

. (2.6)

This defines a norm on W k,ppΩq. We could also consider the quantity
ÿ

|α|ďk

}Bαu}LppΩq , (2.7)

which defines an equivalent norm on W k,ppΩq.
On HkpΩq we define an inner product by setting, for u, v P HkpΩq,

�u, v�HkpΩq “
ÿ

|α|ďk

�Bαu, Bαv�L2pΩq . (2.8)

The corresponding norm is exactly (2.6) with p “ 2.
Remark 2.16. With the notation of Proposition 2.12, we observe that

}Bαu}Wk´|α|,ppΩq ď }u}Wk,ppΩq ,

for ω Ă Ω we have
}u}Wk,ppωq ď }u}Wk,ppΩq ,

and for χ P C8
0 pΩq there exists Cχ ą 0 independant of u such that

}χu}Wk,ppΩq ď Cχ }u}Wk,ppΩq .
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Theorem 2.17. Let k P N and p P r1,`8s. The Sobolev space W k,ppΩq, endowed with the
norm (2.7) or (2.6), is a Banach space. In particular, HkpΩq with the inner product (2.8) is
a Hilbert space.

Proof. Let punqnPN be a Cauchy sequence in W k,ppΩq. The sequences pBαunqnPN for |α| ď k
are Cauchy sequences in LppΩq. Since LppΩq is complete by the Riesz-Fisher theorem, there
exist vα P LppΩq for |α| ď k such that Bαun goes to vα. For |α| ď k and φ P C8

0 pΩq we have

p´1q|α|
ż

Ω

v0 Bαφ dx “ p´1q|α| lim
nÑ`8

ż

Ω

un Bαφ dx “ lim
nÑ`8

ż

Ω

Bαun φ dx “
ż

Ω

vα φ dx.

This proves that in the sense of distributions we have Bαv0 “ vα P LppΩq. Then v0 P W k,ppΩq
and

}un ´ v0}pWk,ppΩq “
ÿ

|α|ďk

}Bαun ´ vα}2LppΩq ÝÝÝÝÝÑ
nÑ`8 0.

Thus the sequence punqnPN has a limit in W k,ppΩq. This proves that W k,ppΩq is complete.

The proofs of the following two results are omitted (see [Brézis]).

Theorem 2.18. If p Ps1,`8r then W k,ppΩq is reflexive.

Theorem 2.19. If p P r1,`8r then W k,ppΩq is separable.

Proposition 2.20. Let s ě 0. Then the map

pu, vq ÞÑ
ˆż

Rd

`
1 ` |ξ|2 ˘s

ûpξqv̂pξq dξ
˙ 1

2

defines a scalar product on HspRdq. When s is an integer, this norm is equivalent to the
norm defined by (2.6) with p “ 2.

2.2.2 Approximation by smooth functions
We know that for p P r1,`8r the set C8

0 pΩq of smooth and compactly supported functions
on the open set Ω is dense in LppΩq. In this paragraph we will see in what sense we can
approach functions in W k,ppΩq by smooth functions.

More precisely, we prove the density of smooth functions in the Sobolev spaces when
Ω “ Rd. This will not be the case in general domains. Since the closure of C8

0 pΩq in
W k,ppΩq will play an important role in applications, we introduce the following notation.

Definition 2.21. For k P N and p P r1,`8r we denote by W k,p
0 pΩq the closure of C8

0 pΩq in
W k,ppΩq. We also set Hk

0 pΩq “ W 1,2
0 pΩq.

Exercise 9. For x Ps´1, 1r we set upxq “ 1. Prove that for p P r1,`8s there is no sequence
punqnPN in C8

0 ps ´ 1, 1rq which goes to u in W 1,pps ´ 1, 1rq.
As in LppRdq, the proofs will rely on regularization by convolution with a sequence of

mollifiers. Let ρ P C8
0 pRd, r0, 1sq be supported in Bp0, 1q and such that

ş
Rd ρ dx “ 1. For

n P N˚ and x P Rd we set ρnpxq “ ndρpnxq.
Lemma 2.22. Let Ω be an open subset of Rd. Let n P N˚ and let ω be an open subset of Ω
such that B

`
x, 1

n

˘ Ă Ω for all x P ω. Let ρn P C8
0 pRdq be as above and let . Let u P W k,ppΩq.

Then ρn ˚ u P C8pRdq X W k,ppωq and for |α| ď k we have in the weak sense on ω

Bαpρn ˚ uq “ ρn ˚ pBαuq.
Proof. We prove the case k “ 1, and the general case follows by induction. Let j P �1, d� and
φ P C8

0 pωq. We have

´
ż

ω

pρn ˚ uqpxqBjφpxq dx “ ´
ż

Bp0, 1
n q

ρnpyq
ż

ω

upx ´ yqBjφpxq dx dy.
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For y P B
`
0, 1

n

˘
the map x ÞÑ upx ´ yq belongs to W 1,ppωq, so

´
ż

ω

pρn ˚ uqpxqBjφpxq dx “
ż

Bp0, 1
n q

ρnpyq
ż

ω

Bjupx ´ yqφpxq dx dy “
ż

ω

pρn ˚ Bjuqpxqφpxq dx.

The conclusion follows.

Notice that the lemma applies in particular with ω “ Ω “ Rd.
Given v P W k,ppRdq we set for n P N˚

vn “ ρn ˚ v.

Then vn P C8pRdq X W k,ppRdq and for α P Nd with |α| ď k we have

Bαvn “ ρn ˚ pBαvq. (2.9)

In particular,
}vn ´ v}Wk,ppRdq ÝÝÝÝÝÑ

nÑ`8 0.

Moreover, if v is compactly supported then vn P C8
0 pRdq for all n P N˚.

Statement (2.9) can be seen as a particular case on Rd of the more general following result.
For the following two proofs we also consider χ P C8

0 pRdq supported in the ball Bp0, 2q of
radius 2 and equal to 1 on Bp0, 1q. Then for m P N˚ and x P Rd we set χmpxq “ χp x

m q.
Theorem 2.23. Let p P r1,`8r. Then C8

0 pRdq is dense in W k,ppRdq. In other words we
have W k,p

0 pRdq “ W k,ppRdq.
Proof. Let u P W k,ppRdq and ε ą 0. Let α P Nd with |α| ď k. By Proposition 2.12 we have
χmu P W k,ppRdq for all m P N˚ and

}Bαpχmuq ´ Bαu}LppRdq ď
ÿ

0ďβďα

ˆ
α
β

˙ ››Bα´βpχm ´ 1qBβu
››
LppRdq .

By the dominated convergence theorem we have for β ď α

››Bα´βχmBβu
››p
LppRdq ď ››Bα´βpχm ´ 1q››

L8pRdq

ż

|x|ěm

ˇ̌Bβupxqˇ̌p
dx ÝÝÝÝÝÑ

mÑ`8 0,

so there exists m P N˚ such that

}u ´ χmu}Wk,ppRdq ď ε

2
.

We set v “ χmu, and for n P N˚ we set vn “ ρn ˚ v. Then vn P C8
0 pRdq and for all α P Nd

with |α| ď k we have by Lemma 2.22

}Bαvn ´ Bαv}LppRdq “ }ρn ˚ pBαvq ´ Bαv}LppRdq ÝÝÝÝÝÑ
nÑ`8 0.

Then, if for n P N˚ large enough we set uε “ vn we have uε P C8
0 pRdq and

}uε ´ v}Wk,ppRdq ď ε

2
,

so finally
}uε ´ u}Wk,ppRdq ď ε.

Remark 2.24. For any ε ą 0 the function uε constructed in the previous proof is such that
}uε}L8pRdq ď }u}L8pRdq.

The conclusion of Theorem 2.23 does not hold in a general domain Ω. In other words,
W k,p

0 pΩq ‰ W k,ppΩq (see Exercise 9 and Proposition 2.42 below). However we have the
following weaker result of approximation by regular functions on any compact subset of Ω.
For a result of approximation on the whole domain Ω we refer to Proposition 2.32 below.
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Theorem 2.25. Let p P r1,`8r and k P N. Let Ω be an open subset of Rd. Let u P W k,ppΩq.
There exists a sequence punqnPN in C8

0 pRdq such that un|Ω goes to u in LppΩq and for any
open bounded subset ω such that ω Ă Ω we have

››un|ω ´ u|ω
››
Wk,ppωq ÝÝÝÝÝÑ

nÑ`8 0.

Proof. For x P Rd we set

vpxq “
#
upxq if x P Ω,

0 if x P RdzΩ.
Then we set vn “ ρn ˚ v P C8pRdq and un “ χnvn. We have

}un ´ u}LppΩq ď }un ´ v}LppRdq ď }χnpρn ˚ vq ´ χnv}LppΩq ` }χnv ´ v}LppΩq ÝÝÝÝÝÑ
nÑ`8 0.

Let N P N be so large that B
`
x, 1

N

˘ Ă Ω and χN “ 1 on B
`
x, 1

N q for all x P ω. Then for
|α| ď k we have by Lemma 2.22

}Bαpun ´ uq}Lppωq “ }Bαpvn ´ vq}Lppωq “ }ρn ˚ pBαvq ´ Bαv}Lppωq ÝÝÝÝÝÑ
nÑ`8 0.

This proves that χvn goes to u in W k,ppωq.

Exercise 10. Let Ω be a bounded subset of Rd and p P r1,`8r. Prove that W 1,p
0 pΩq is the

closure of Ck
0 pΩq in W 1,ppΩq.

2.2.3 Examples of properties proved by density

It is not always convenient to prove results about differentiation in the weak sense, and
most of the properties of Sobolev spaces are proved by density. We first prove the result for
regular functions (smooth, or of class Ck for a property in W k,p), and then the general case
is deduced by density.

Here we give some examples of results which are already known for regular functions and
which can be extended in the suitable Sobolev spaces by density.

We begin with the integration by parts on Rd.

Proposition 2.26 (Green Formula on Rd). Let Ω be an open subset of Rd and u, v P H1
0 pΩq.

For j P �1, d� we have ż

Ω

pBjuqv dx “ ´
ż

Ω

upBjvq dx.

Proof. Let punqnPN and pvnqnPN be sequences in C8
0 pRdq which go to u and v in H1pRdq.

The Green formula for smooth and compactly supported functions gives, for all n P N,
ż

Ω

pBjunqvn dx “ ´
ż

Ω

unpBjvnq dx.

Taking the limit n Ñ `8 gives the result.

We continue with the product of differentiable functions. If u and v are continuously
differentiable, then so is the product uv. The same result holds for weak derivatives. Notice
that in this result and the following we do not take functions in W 1,p

0 pΩq. The approximation
by regular functions is given by Theorem 2.25.

Proposition 2.27 (Differentiation of a product). Let Ω be an open subset of Rd. Let p P
r1,`8s and u, v P W 1,ppΩq X L8pΩq. Then uv P W 1,ppΩq and, for j P �1, d�,

Bjpuvq “ pBjuqv ` upBjvq. (2.10)
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Proof. Assume that p ă `8. Let punqnPN be a sequence in C8
0 pRdq as given by Theorem

2.25. After extraction of a subsequence if necessary, we can assume that unpxq tends to upxq
for almost all x P Rd. By Remark 2.24, we can also assume that }un}L8pRdq ď }u}L8pRdq for
all n P N. By Proposition 2.12, we have unv P W 1,p for all n P N and, for j P �1, d� and
φ P C8

0 pRdq,
´

ż

Rd

unvBjφ dx “
ż

Rd

`pBjunqv ` unpBjvq˘
φ dx.

The limit n Ñ `8 yields (2.10). In particular Bjpuvq P LppRdq, and the proof is complete if
p ă `8.

Now assume that p “ `8. Then uv and pBjuqv`upBjvq are in L8pRdq. Let φ P C8
0 pRdq.

Let χ P C8
0 pRdq be equal to 1 on a neighborhood of supppφq. Then χu and χv are in

W 1,ppRdq for any p P r1,`8r so

´
ż

Rd

uvBjφ dx “ ´
ż

Rd

χuχvBjφ dx “
ż

Rd

`Bjpχuqχv ` χu Bjpχvq˘
φ dx

“
ż

Rd

`pBjuqv ` upBjvq˘
φ dx.

This proves (2.10) and concludes the proof.

Then we discuss the chain rule, which will be important in particular for changes of
variables.

Proposition 2.28 (Chain rule). Let Ω1 and Ω2 be two open subsets in Rd, and let Φ “
pΦ1, . . . ,Φdq : Ω1 Ñ Ω2 be a diffeomorphism of class C1. We assume that JacpΦq and
JacpΦ´1q are bounded on Ω1 and Ω2, respectively. Let p P r1,`8s. Then for u P W 1,ppΩ2q
we have u ˝ Φ P W 1,ppΩ1q and for j P �1, d�,

Bjpu ˝ Φq “
dÿ

k“1

`pBkuq ˝ Φ
˘BjΦk.

In particular there exists CΦ ą 0 such that

}u ˝ Φ}W 1,ppΩ2q ď CΦ }u}W 1,ppΩ1q .

Proof. Assume that p ă `8. Let punqnPN be a sequence in C8
0 pRdq which goes to u in the

sense of Theorem 2.25. Let ψ P C8
0 pΩ1q, K1 “ supppψq and K2 “ ΦpK1q. Then K2 is a

compact of Ω2. For n P N and ψ P C8
0 pRdq we have

´
ż

Rd

pun ˝ ΦqBjψ dx “
dÿ

k“1

ż

Rd

pBkun ˝ ΦqBjΦk ψ dx. (2.11)

By the change of variables y “ Φpxq we have

}un ˝ Φ ´ u ˝ Φ}pLppK1q “
ż

K1

|pun ´ uqpΦpxqq|p dx

“
ż

K2

|pun ´ uqpyq|p ˇ̌
JΦ´1pyqˇ̌

dy

ď ››JΦ´1
››
L8pK2q }un ´ u}pLppK2q

ÝÝÝÝÝÑ
nÑ`8 0.

We similarly have, for all j, k P �1, d�,

}pBjun ˝ ΦqBkΦj ´ pBju ˝ ΦqBkΦj}LppK1q
ď }BkΦj}L8pK1q }pBjun ˝ Φq ´ pBju ˝ Φq}LppK1q ÝÝÝÝÝÑ

nÑ`8 0.

We take the limit n Ñ `8 in (2.11) and conclude when p ă `8. The case p “ `8
follows as in the proof of Proposition 2.27.
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We finish this paragraph with the characterisation of H1pRdq by the difference quotients.
We recall that the classical notion of differentiability is defined by looking at the limit at
each point of the difference quotient. The following result gives a link between this point of
view and the weak derivative.

For u P L2pRdq and h P Rdz t0u we define the diffence quotient Dhu P L2pRdq by

Dhupxq “ upx ` hq ´ upxq
|h| . (2.12)

Notice that for u, v P L2pRdq we have
ż

Rd

pDhuqv dx “
ż

Rd

upD´hvq dx. (2.13)

Proposition 2.29. Let u P L2pΩq.
(i) Assume that u P H1pΩq. Then for h P Rdz t0u we have

}Dhu}L2pRdq ď }∇u}L2pRdq .

(ii) Assume that there exists C ą 0 such that for all h P Rdz t0u we have

}Dhu}L2pΩq ď C.

Then u P H1pRdq and for all j P �1, d� we have
››››

Bu
Bxj

››››
L2pRdq

ď C.

Proof. ‚ Assume that u P C8
0 pRdq. Then for x P Rd we have by the Cauchy-Schwarz

inequality

|upx ` hq ´ upxq|2 ď
ˆż 1

0

|∇upx ` thq| |h| dt
˙2

ď |h|2
ż 1

0

|∇upx ` thq|2 dt.

Then, by the Fubini Theorem and the change of variables y “ x ` th,
ż

Rd

|upx ` hq ´ upxq|2 dx ď |h|2
ż 1

t“0

ż

xPRd

|∇upx ` thq|2 dx dt ď |h|2 }∇u}2L2pRdq .

This gives the first property.
‚ We denote by pe1, . . . , edq the canonical basis of Rd. Let j P �1, d�. Let φ P C8

0 pRdq. For
t P R˚ we have

ˇ̌
ˇ
�
u,D´tejφ

�
L2pRdq

ˇ̌
ˇ “

ˇ̌
ˇ
�
Dteju,φ

�
L2pRdq

ˇ̌
ˇ ď C }φ}L2pRdq .

On the other hand, u P L1
locpRdq so by the dominated convergence theorem we have

ˇ̌
ˇ´ �u, Bjφ�L2pRdq

ˇ̌
ˇ “

ˇ̌
ˇlim
tÑ0

�
u,D´tejφ

�
L2pRdq

ˇ̌
ˇ ď C }φ}L2pRdq .

By the Riesz Theorem there exists vj P L2pRdq such that

@φ P C8
0 pRdq, ´ �u, Bjφ�L2pRdq “ �vj ,φ�L2pRdq .

This proves that u P H1pRdq with, for all j P �1, d�,
››››

Bu
Bxj

››››
L2pRdq

“ }vj}L2pRdq ď C.

The proof is complete.

Exercise 11. 1. Prove that the first statement of Proposition 2.29 holds in W 1,ppRdq for
any p P r1,`8r.
2. Prove that the second statement of Proposition 2.29 holds in W 1,ppRdq for any p Ps1,`8r.
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2.3 Sobolev spaces on domains with boundary

In the previous section we have given some properties of the Sobolev spaces on Rd, or local
properties in general domains. In this section we look more carefully at the behavior of
functions in Sobolev spaces at the boundary of the domain.

The model case will be the half space

Rd` “ �
x “ px1, . . . , xdq P Rd : x1 ą 0

(
.

This is the simplest case because the boundary BRd` “ t0u ˆ Rd´1 is flat. Then, if the open
subset Ω of Rd is sufficiently regular, the boundary BΩ can be locally straightened out and,
with a partition of unity and a change of variables for each part, the problem on Ω is reduced
to a problem far from the boundary (where we can apply the results on Rd) and a finite
number of problems on Rd`.

It is the purpose of this section to make these ideas clearer and to deduce some results
for the Sobolev spaces on bounded subsets.

2.3.1 Regular domains

Let k P N˚ Y t8u. We recall that an open subset Ω of Rd is said to be of class Ck if for any
w P BΩ there exist an orthonormal basis β “ pβ1, . . . ,βdq of Rd, an open subset O of Rd´1,
a, b P R with a ă b and an application ϕ : O Ñsa, br of class Ck such that U defined by

U “
#

dÿ

j“1

xjβj , px2, . . . , xdq P O, x1 Psa, br
+

is a neighborhood of w in Rd and

Ω X U “
#

dÿ

j“1

xjβj , x
1 “ px2, . . . , xdq P O, x1 P ‰

ϕpx1q, b“
+
.

In particular, in U the boundary BΩ is the graph of ϕ in the basis β. We can always construct
the basis β with the vectors of the canonical basis pe1, . . . , edq, possibly in a different order.
For x1 “ px2, . . . , xdq P O we set

ϕ̃px1q “ ϕpx1qβ1 `
dÿ

j“2

xjβj .

Then BΩ X U is also the image of O by ϕ̃.
Given w P BΩ X V and x1 “ px2, . . . , xdq P O such that w “ φ̃px1q, the outward normal

derivative to Ω at point w is defined by

νpwq “ ´β1 ` řd
j“2 Bjϕpx1qβjb

1 ` |∇ϕpx1q|2
. (2.14)

The is the only vector such that νpwqKTwpBΩq, |νpwq| “ 1 and, for some t0 ą 0,

w ` tνpwq
#

P Ω, @t Ps ´ t0, 0s,
R Ω, @t Ps0, t0r.

We define on BΩ the topology and the corresponding Borel σ-algebra inherited from the
usual structure on Rd. We define the Lebesgue measure of a Borel set B P BΩXU as follows:

σpBq “
ż

O
1Bpϕ̃pxqq

b
1 ` |∇ϕpx1q|2 dx1.
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Thus, if f is an integrable function on BΩ X U we have
ż

BΩXU
f dσ “

ż

O
fpϕ̃pxqq

b
1 ` |∇ϕpx1q|2 dx1.

Then we can define Lebesgue spaces on BΩ as on any measure space.

For x “ řd
j“1 xjβj P U we set

Φpxq “ `
x1 ´ ϕpx2, . . . , xdq˘

e1 `
dÿ

j“2

xjej .

Then Φ is of classe Ck and it is injective. So it defines a bijection on its image denoted
by W. Then W is open in Rd and the inverse Φ´1 of Φ is of class Ck on W (Φ defines a
diffeomorphism of class Ck from U to W). Moreover we have

ΦpU X Ωq “ W X Rd`.

Notice also that for x1 P O we have Φpϕ̃px1qq “ p0, x1q, and then Wj X BRd` “ t0u ˆ O.
The interest of this change of variables is to transform a function supported in Ω X U to

a function on Rd`, where the properties of Sobolev spaces are easier.
Notice that if Ω is bounded then its boundary BΩ is compact. This is not necessary but

it will simplify the discussion (an unbounded open subset can also have a compact boundary,
but we will not consider this situation here).

Now let Ω be a bounded open subset of Rd of class Ck for some k ě 1. There exist
N P N˚, open subsets U1, . . . ,UN ,W1, . . . ,WN of Rd and diffeomorphisms Φj : Uj Ñ Wj of
class Ck such that BΩ Ă ŤN

j“1 Uj and for all j P �1, N� we have ΦpΩ X Ujq “ Rd` X Wj .

If we set Ω “ U0 then
ŤN

j“0 Uj is an open cover of Ω. We consider a corresponding
partition of unity pχjq0ďjďN (χj P C8

0 pRd, r0, 1sq is supported in Uj for all j P �0, N� andřN
j“0 χj “ 1 on Ω).

For u P W 1,ppΩq we set uj “ χju for all j P �0, N�. Then u “ řN
j“0 uj , uj P W 1,ppΩq

for all j P �0, N�, u0 is supported in a compact subset of Ω, and uj is supported in a com-
pact subset of Ω X Uj for all j P �1, N�. In particular, the extension of u0 by 0 on Rd is in
W 1,ppRdq, and puj ˝Φ´1q belongs to W 1,ppRd` XWjq (and can be extended by 0 to a function
in W 1,ppRd`q) for all j P �1, N�.

We will use this setting to prove results for Sobolev spaces on Ω.

2.3.2 Extension

We begin with a result of extension. In order to deduce results in W 1,ppΩq from results on
W 1,ppRdq it is natural to extend functions in W 1,ppΩq to functions in W 1,ppRdq (notice that
in the proof of Theorem 2.25 we were able to prove results on W k,ppωq for ω ĂĂ Ω precisely
because we had a function with a nice behavior on a bigger domain).

It is clear, at least in dimension 1, than extending functions by 0 outside Ω does not
always give a function in W 1,ppRdq. However, we have seen in Exercise 4 that in dimension
1 we can indeed extend a function in H1pR˚̀ q to a function in H1pRq. We generalize this
observation to the case of a function in W 1,ppRd`q and then, by the argument described above,
to the case of a function in W 1,ppΩq for a regular bounded open subset Ω.

Proposition 2.30. Let p P r1,`8s. For u P LppRd`q and x “ px1, . . . , xdq “ px1, x
1q P Rd

we set

pPuqpxq “
#
upx1, x

1q if x1 ą 0,

up´x1, x
1q if x1 ă 0.
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Then Pu P LppRdq and }Pu}LppRdq “ 2
1
p }u}LppRd`q. For u P W 1,ppRd`q we have Pu P

W 1,ppRdq with

B1pPuq “ P̃ pB1uq and BjpPuq “ P pBjuq, 2 ď j ď d,

where

pP̃ vqpxq “
#
vpx1, x

1q if x1 ą 0,

´vp´x1, x
1q if x1 ă 0.

In particular, P defines a continuous extension from W 1,ppRd`q to W 1,ppRdq.
Proof. ‚ We set Rd´ “ RdzRd`. It is easy to see that }Pu|Rd´ }p

LppRd´q “ }u}p
LppRd`q if p ă `8,

so Pu P LppRdq with }Pu}pLppRdq “ 2 }u}p
LppRd`q. If p “ `8 we have }Pu}L8pRdq “ }u}L8pRd`q.

‚ For x “ px1, . . . , xdq P Rd we set σpxq “ p´x1, x2, . . . , xdq. Let j P �2, d�. Let φ P C8
0 pRdq.

If φ is supported in Rd` we have

´
ż

Rd

Pu Bjφ dx “ ´
ż

Rd`
u Bjφ dx “

ż

Rd`
Bjuφ dx “

ż

Rd

P pBjuqφ dx.

If φ is supported in Rd´ then, similarly,

´
ż

Rd

Pu Bjφ dx “ ´
ż

Rd´
pu ˝ σq Bjφ dx “ ´

ż

Rd`
u pBjφ ˝ σq dx

“ ´
ż

Rd`
u Bjpφ ˝ σq dx “

ż

Rd`
Bju pφ ˝ σq dx “

ż

Rd´
ppBju ˝ σqφ dx

“
ż

Rd

P pBjuqφ dx.

We consider the general case. Let χ P C8
0 pR, r0, 1sq be even, equal to 1 on [-1,1] and supported

in ]-2,2[. For n P N and x P Rd we set χnpxq “ χpnx1q. Since p1 ´ χnqφ is supported outside
BRd` we have

´
ż

Rd

Pup1 ´ χnqBjφ dx “ ´
ż

Rd

PuBj
`p1 ´ χnqφ˘

dx “
ż

Rd`
P pBjuqp1 ´ χnqφ dx.

By the dominated convergence theorem this yields

´
ż

Rd

Pu Bjφ dx “
ż

Rd

P pBjuqφ dx.

This proves that in the weak sense we have BjpPuq “ P pBjuq. In particular BjpPuq P LppRdq
with }BjpPuq}LppRdq “ 2

1
p }Bju}LppRd`q.

‚ We proceed similarly for the first partial derivative. We observe that for φ P C8
0 pRdq we

now have B1pφ ˝ σq “ ´pB1φq ˝ σ, so if φ is supported outside BRd` we now have

´
ż

Rd

Pu B1φ dx “
ż

Rd

P̃ pB1uqφ dx.

On the other hand p1 ´ χnq does not commute with the partial derivative B1. But the
additional term is estimated as follows. Let R ą 0 be such that φ is supported in R ˆ
Bd´1p0, Rq (Bd´1p0, Rq is the ball of radius R in Rd´1). Since χ is even we have

ˇ̌
ˇ̌
ż

Rd

Pu B1χn φ dx

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ

ż

Rd`
u B1χn pφ ´ φ ˝ σq dx

ˇ̌
ˇ̌
ˇ

ď n
››χ1››8

ż 2
n

x1“0

ż

x1PBd´1p0,Rq

ˇ̌
upx1, x

1qˇ̌ ˇ̌
φpx1, x

1q ´ φp´x1, x
1qˇ̌

dx1 dx1

ď 4
››χ1››8 }B1φ}8

ż 2
n

x1“0

ż

x1PBd´1p0,Rq

ˇ̌
upx1, x

1qˇ̌
dx1 dx1

ÝÝÝÝÝÑ
nÑ`8 0.

The conclusion follows as above.
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Theorem 2.31. Let Ω be an open bounded subset of class C1 in Rd. Let p P r1,`8s. Let
O be an open subset of Rd such that Ω Ă O. Then there exists a bounded linear operator
P : W 1,ppΩq Ñ W 1,ppRdq (which is also bounded for the norm of LppΩq) such that Pu is
supported in O and pPuq|Ω “ u for all u P W 1,ppΩq.
Proof. Let u P W 1,ppΩq. We use the notation introduced in Paragraph 2.3.1. Without loss
of generality we can assume that Uj Ă O and Wj is symmetric with respect to BRd` for all
j P �1, N� (for instance Wj is a ball centered on BRd`). We denote by v0 the extension of
u0 by 0 on Rd. We have }v0}W 1,ppRdq “ }u0}W 1,ppΩq. Let j P �1, N�. We denote by ṽj the
extension of uj ˝ Φ´1

j on Wj given by Proposition 2.30. It is supported in a compact subset
of Wj , and ṽj ˝ Φj is compactly supported in Uj . Then we denote by vj the extension by
0 of ṽj ˝ Φj on Rd. By Propositions 2.28 and 2.30 and Remark 2.16 there exist constants
CΦ, CΦ´1 , CP , Cχj ą 0 independant of u such that

}vj}W 1,ppRdq “ }ṽj ˝ Φj}W 1,ppUjq ď CΦ }ṽj}W 1,ppWjq ď CPCΦ

››uj ˝ Φ´1
››
W 1,ppWjXRd`q

ď CPCΦCΦ´1 }uj}W 1,ppUjXΩq ď CPCΦCΦ´1Cχj
}u}W 1,ppΩq .

Finally we set Pu “ řN
j“0 vj , and Pu P W 1,ppRdq satisfies all the required properties.

We recall that given an open subset Ω of Rd, we denote by C8
0 pΩq the set of restrictions

to Ω of functions in C8
0 pRdq. When k “ 1, the following result follows from Theorem 2.31

(applied with O “ Rd) and Theorem 2.23. For the general case we can extend Theorem 2.31
to the case k ě 2, we can also give a direct proof.

Proposition 2.32. Let p P r1,`8r and k P N. Let Ω be equal to Rd` or be a bounded open
subset of Rd. Let u P W k,ppRd`q. There exists a sequence punqnPN of functions in C8

0 pΩq
such that

}un ´ u}Wk,ppΩq ÝÝÝÝÝÑ
nÑ`8 0.

Proof. We prove the case Ω bounded. The case Ω “ Rd` is more direct and is left as an
exercice. Let w P BΩ. We use the notation of Paragraph 2.3.1. Let u P W 1,ppΩq be
supported in Ω X U . We denote by ũ the extension of u by 0 on Rd. For τ ą 0 we set

Uτ “
#

dÿ

j“1

xjβj , px2, . . . , xdq P O, x1 Psa, b ´ τ r
+
.

There exists τ0 ą 0 such that supppuq Ă Uτ . For τ Ps0, τ0s and x P Uτ we set

uτ pxq “ upx ` τβ1q.
We extend uτ by 0 on UzUτ . The restriction of uτ to U X Ω is in W k,ppU X Ωq and the
derivatives of uτ up to order k are the translations of the corresponding derivatives of u:

Bαpuτ q “ pBαuqτ .
By continuity in LppRdq of the translation we have

}uτ ´ u}pWk,ppUXΩq “
ÿ

|α|ďk

}Bαuτ ´ Bαu}pLppUXΩq “
ÿ

|α|ďk

}vατ ´ vα}pLppRdq ÝÝÝÑ
τÑ0

0,

where we have denoted by vατ and vα the extensions by 0 of Bαuτ and Bαu (then vατ pxq “
vαpx ` τβ1q almost everywhere on Rd).

Now let τ Ps0, τ0s be fixed. There exists η0 ą 0 if we set

V “
ď

xPsupppuτ qXΩ

Bpx, η0q,

then for all y P V we have y ` τβ1 P U X Ω. Let ρ P C8
0 pRd, r0, 1sq be supported in Bp0, 1q

and such that
ş
Rd ρ “ 1. For η Ps0, η0s and x P Rd we set ρηpxq “ η´dρpx{ηq. For η Ps0, η0s

we set uη
τ “ ρη ˚ uτ . Its restriction to U X Ω belongs to C8

0 pΩq. Since uτ P W k,ppVq we can
prove as in the proof of Theorem 2.23 that

}uη
τ ´ uτ }Wk,ppUXΩq ÝÝÝÑ

ηÑ0
0.

It remains to chose τ ą 0 small enough and then η ą 0 small enough to conclude.
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2.4 Sobolev inequalities

In this section we prove some inclusions between Sobolev spaces. The inclusions between
Lebesgue spaces are already known. In particular we know that LppRdq is never included in
LqpRdq if p ‰ q. The purpose here is to prove that if we add information about the derivatives
then we get better results. In particular we will prove (continuous) inclusions of the form
W 1,ppRdq Ă LqpRdq for suitable pairs pp, qq.

As for Lebesgue spaces, we get stronger results on a bounded domain Ω. In this case
we will prove compact inclusions. For instance, H1pΩq is compactly embedded in L2pΩq.
This means that if a sequence of functions in H1pΩq is bounded, then it has a convergent
subsequence for the L2pΩq norm. This result will be of great importance for the analysis of
PDEs. We will already use this fact in the following section (see the proof of Theorem 2.49).

2.4.1 Morrey’s inequality

We have already seen in Proposition 2.6 that if I is an interval of R then for any p P r1,`8s
we have W 1,ppIq Ă L8pIq (and that a function in W 1,ppIq is also Hölder-continuous if p ą 1).
This result only holds in dimension 1. Indeed if 1 ď p ă d then for α P ‰ ´ d

p ` 1, 0r the
function x ÞÑ |x|α belongs to W 1,ppBp0, 1qq but not to L8pBp0, 1qq. The purpose of the
following theorem is to prove that we recover a result analogous to Proposition 2.6 if p ą d.

Exercise 12. Find u P W 1,dpRdq such that u R L8pRdq.
Theorem 2.33 (Morrey’s inequality). Let p Psd,`8r. We have

W 1,ppRdq Ă L8pRdq X C0,1´ d
p pRdq

and there exists C ą 0 such that, for u P W 1,ppRdq,
}u}L8pRdq ď C }u}W 1,ppRdq ,

@x1, x2 P Rd, |upx1q ´ upx2q| ď C |x1 ´ x2|1´ d
p }∇u}LppRdq .

In dimension 1, we have used the fundamental theorem of calculus to compare upxq to
upx0q for some fixed x0. It gave a one-dimensional integral which was controled by the
norm of u1. In higher dimension we can still write the fundamental theorem of calculus for
regular functions but the corresponding one-dimensional integral is not controled by the d-
dimensional integral which defines the norm of ∇u. The trick in the following proof is to
compare upxq to the mean value of u on an open subset of Rd. This will give a d-dimensional
integral controled as stated in the theorem.

Proof. ‚ We consider u P C8
0 pRdq. The general case will follow by density. Let x P Rd and

let O be an open subset of Rd. We set

δpx,Oq “ sup
yPO

|y ´ x| .

For y P O and h “ ph1, . . . , hdq “ y ´ x we have

|upyq ´ upxq| ď
ż 1

0

ˇ̌
ˇ̌ d
dt

upx ` thq
ˇ̌
ˇ̌ dt

ď
ż 1

0

dÿ

j“1

|hj | |Bjupx ` thq| dt

ď δpx,Oq
dÿ

j“1

ż 1

0

|Bjupx ` thq| dt.

For t Ps0, 1s we set
tpO ´ xq “ ttpy ´ xq, y P Ou .
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If we set
uO “ 1

|O|
ż

O
upyq dy,

then we have

|upxq ´ uO| ď 1

|O|
ż

yPO
|upxq ´ upyq| dy

ď δpx,Oq
|O|

ż

hPpO´xq

ż 1

0

dÿ

j“1

|Bjupx ` thq| dt dh

ď δpx,Oq
|O|

ż 1

0

1

td

dÿ

j“1

ż

ηPtpO´xq
|Bjupx ` ηq| dη dt.

By the Hölder inequality we have for t P r0, 1s
dÿ

j“1

ż

tpO´xq
|Bjupx ` ηq| dη ď

dÿ

j“1

˜ż

tpO´xq
|Bjupx1 ` ηq|p dη

¸ 1
p

|tpO ´ xq| p´1
p

ď t
dpp´1q

p |O| p´1
p }∇u}LppRdq ,

so

|upxq ´ uO| ď δpx,Oq |O|´ 1
p }∇u}LppRdq

ż 1

0

t´ d
p dt “ δpx,Oq |O|´ 1

p }∇u}LppRdq
1 ´ d

p

. (2.15)

‚ Now let x1, x2 P Rd and let O be the open ball with diameter rx1, x2s. We have δpx1,Oq “
δpx2,Oq “ |x1 ´ x2| and |O| “ cd

2d
|x1 ´ x2|d where cd is the size of the unit ball in Rd. Thus

|upx1q ´ upx2q| ď |upx1q ´ uO| ` |upx2q ´ uO| ď 21` d
p c

´ 1
p

d

1 ´ d
p

|x1 ´ x2|1´ d
p }∇u}LppRdq .

This gives the second statement. Now for x P Rd we apply (2.15) with O “ Bpx, 1q, the ball
of center x and radius 1. The Hölder inequality gives

|uO| ď c
´ 1

p

d }u}LppRdq ,

so

|upxq| ď c
´ 1

p

d

˜
}u}LppRdq ` 1

1 ´ d
p

}∇u}LppRdq

¸
.

This completes the proof.

2.4.2 Gagliardo-Nirenberg Inequality
In this paragraph we consider the case p ď d. This is particularly interesting for the common
case p “ 2.

We want to prove that if we control ∇u in some Lebesgue space, then we can control u
in another Lebesgue space. Assume that there exists q P r1,`8r and C ą 0 such that

@v P C8
0 pRdq, }v}LqpRdq ď C }∇v}LppRdq . (2.16)

Let u P W 1,ppRdqz t0u. For λ ą 0 and x P Rd we set uλpxq “ upλxq. Then for all λ ą 0 we
have

λ´ d
q }u}LqpRdq “ }uλ}LqpRdq ď C }∇uλ}LppRdq “ Cλ1´ d

p }u}LppRdq .

Letting λ go to 0 or to `8 we see that we necessarily have

´d

q
“ 1 ´ d

p
. (2.17)
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In the following theorem we prove that if (2.17) holds then we indeed have (2.16). For
p P r1, dr we define p˚ P r1,`8r by

p˚ “ pd

d ´ p
,

1

p˚ “ 1

p
´ 1

d
. (2.18)

Notice that we have p˚ ą p and p˚ Ñ `8 if p Ñ d.

Theorem 2.34 (Gagliardo-Nirenberg-Sobolev inequality). Let p P r1, dr and let p˚ be defined
by (2.18). There exists C ą 0 such that for all u P C1

0 pRdq we have

}u}Lp˚ pRdq ď C }∇u}LppRdq .

Proof. ‚ Let u P C1
0 pRdq. For x “ px1, . . . , xdq P Rd and j P �1, d� we have

|upxq| “
ˇ̌
ˇ̌
ż xj

´8
Bjupx1, . . . , xj´1, t, xj`1, . . . , xdq dt

ˇ̌
ˇ̌ ď vjpx̃jqd´1

where x̃j “ px1, . . . , xj´1, xj`1, . . . , xdq and

vjpx̃jq “
ˆż

R
|∇upx1, . . . , xj´1, t, xj`1, . . . , xdq| dt

˙ 1
d´1

.

This gives

|upxq| d
d´1 ď

dź

j“1

vjpx̃jq.

Now we prove by induction on d ě 2 that if we set

v : x P Rd ÞÑ
dź

j“1

vjpx̃jq,

then we have

}v}L1pRdq ď
dź

j“1

}ṽj}Ld´1pRd´1q . (2.19)

The case d “ 2 is easy. Assume that (2.19) is true up to the dimension d´ 1 for some d ě 3.
We fix x1 P R and see v as a function of x1 “ px2, . . . , xdq. By the Hölder inequality we have

ż

Rd´1

vpx1, x
1q dx1 ď }ṽ1}Ld´1pRd´1q

˜ż

Rd´1

dź

j“2

ṽjpx1, x̃
1
jq d´1

d´2 dx2 . . . dxd

¸ d´2
d´1

,

where for j P �2, d� we have set x̃1
j “ px2, . . . , xj´1, xj`1, . . . , xdq. The induction assumption

gives ż

Rd´1

dź

j“2

ṽjpx1, x̃
1
jq d´1

d´2 dx1 ď
dź

j“2

ˆż

Rd´2

ṽjpx1, x̃
1
jqd´1 dx̃1

j

˙ 1
d´2

and hence
ż

Rd´1

vpx1, x
1q dx1 ď }ṽ1}Ld´1pRd´1q

dź

j“2

ˆż

Rd´2

ṽjpx1, x̃
1
jqd´1 dx̃1

j

˙ 1
d´1

.

After integration over x1 P R we get, by the Hölder inequality,

ż

Rd

vpxq dx ď }ṽ1}Ld´1pRd´1q
dź

j“2

ˆż

Rd´1

ṽjpx̃jqd´1 dx̃j

˙ 1
d´1

.

This is (2.19). We deduce

ż

Rd

|upxq| d
d´1 dx ď

ˆż

Rd

|∇upxq| dx
˙ d

d´1

,
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which gives the result for u P C1
0 pRdq when p “ 1.

‚ Let γ ą 1. The case p “ 1 applied to |u|γ´1
u (still in C1

0 pRdq, with gradient γ |u|γ´1 ∇u)
gives

ˆż

Rd

|u| γd
d´1

˙ d´1
d

ď γ

ż

Rd

|u|γ´1 |∇u| dx ď γ

ˆż

Rd

|u| pγ´1qd
d´1 dx

˙ p´1
p

ˆż

Rd

|∇u|p dx

˙ 1
p

.

(2.20)
If we choose

γ “ ppd ´ 1q
d ´ p

ą 1

we have
γd

d ´ 1
“ pγ ´ 1qp

p ´ 1
“ dp

d ´ p
“ p˚,

and the conclusion follows for u P C1
0 pRdq. The general case u P W 1,ppRdq follows by

density.

In Theorem 2.34 we have only used the fact that ∇u P LppRdq. If u is also in LppRdq
we have better conclusions. We know that LppRdq X Lp˚ pRdq Ă LqpRdq (with continuous
inclusion) for any q P rp, p˚s. This is the first statement of the following theorem. The second
statement is about the limit case p “ d. Notice that Theorem 2.34 does not hold with p “ d
and p˚ “ `8 (see Exercise 12), but for u P W 1,dpRdq we have a result similar to the case
p ă d.

Theorem 2.35. (i) Let p P r1, dr. Then for all q P rp, p˚s we have W 1,ppRdq Ă LqpRdq
with continuous injection.

(ii) For all q P rd,`8r we have W 1,dpRdq Ă LqpRdq with continuous injection.

Proof. We prove the second statement. We prove by induction on γ ě d ´ 1 that for q P“
d, γd

d´1

‰
there exists Cq ą 0 such that, for all u P C1

c pRdq,
}u}LqpRdq ď Cq }u}W 1,dpRdq . (2.21)

The result will follow by density. (2.21) is clear when γ “ d´ 1. We assume that it is proved
up to γ ´ 1 for some γ ě d. Let u P C1

c pRdq. We use estimate (2.20) from the previous proof
with p “ d. With the induction assumption this gives

}u}γ
L

γd
d´1 pRdq

ď γ }u}γ´1

L
pγ´1qd
d´1 pRdq

}∇u}LdpRdq ď γCγ´1
pγ´1qd
d´1

}u}γW 1,dpRdq .

This gives (2.21) for q “ γd
d´1 . The case q P “

d, γd
d´1

‰
follows since u belongs to LdpRdq.

2.4.3 Sobolev embeddings on a bounded domain
So far we have only proved inclusions between Sobolev spaces on Rd. Our purpose in this
paragraph is to prove analogous results for Sobolev spaces on a bounded open subset Ω. For
this, we will use the extension operator of Theorem 2.31 to deduce inequalities on Ω from
their analogs on Rd.

However, as said in introduction, we will get better results on Ω. For instance we recall
that LppΩq Ă LqpΩq if p ą q. This will automatically improve the result of Theorem 2.34 (in
particular the discussion before Theorem 2.34 is not valid on a bounded domain).

Another very important difference between the case of Rd and the case of a bounded
domain is that some inclusions will be not only continuous but also compact.

Definition 2.36. Let X and Y be Banach spaces. A bounded linear operator T : X Ñ Y is
said to be compact if for any bounded sequence punqnPN P XN, the sequence pTunqnPN has a
convergent subsequence in Y . Equivalently, T is compact if T pBXq is compact in Y , where
BX is the unit ball in X.

Compactness for a set of functions is usually given by the Ascoli-Arzelá Theorem, which
we recall now.
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Theorem 2.37 (Ascoli-Arzelá Theorem). Let K be a compact metric space and let F be a
bounded subset of CpK,Rq. We assume that F is equicontinuous:

@ε ą 0, Dδ ą 0,@f P F ,@x, y P K, dpx, yq ď δ ùñ |fpxq ´ fpyq| ď ε.

Then the closure F of F in CpKq is compact.

The results of Theorem 2.35 and 2.33 are extended to bounded domains as follows.

Theorem 2.38. Let Ω be a bounded open subset of class C1 in Rd. Let p P r1,`8s. Then
we have the following compact inclusions.

(i) If p ă d then for all q P r1, p˚r we have W 1,ppΩq ĂĂ LqpΩq.
(ii) For all q P rd,`8r we have W 1,dpΩq ĂĂ LqpΩq.
(iii) If p ą d then we have W 1,ppΩq ĂĂ C0pΩq.
In particular we always have W 1,ppΩq ĂĂ LppΩq.
Proof of Theorem 2.38. ‚ We begin with the last case. By the extension Theorem 2.31, we
can see functions in W 1,ppΩq as functions in W 1,ppRdq supported in some fixed compact of
Rd. If p ă `8, the conclusion follows from the Morrey inequality (Theorem 2.33) and the
Ascoli-Arzelá Theorem 2.37. Since W 1,`8pΩq is continuously embedded in W 1,ppΩq for any
p Psd,`8r, it is also compactly embedded in C0pΩq.
‚ Assume that (i) is proved and let q P rd,`8r. Then there exists p P r1, dr such that
q ă p˚. Then we have

W 1,dpΩq Ă W 1,ppΩq ĂĂ LqpΩq,
where the first inclusion is continuous (since Ω is bounded) and the second is compact by (i).
Thus it only remains to prove (i).
‚ Let q P r1, p˚r. We consider a sequence punqnPN bounded in W 1,ppΩq. As above, we
identify this sequence with a sequence (still denoted by punqnPN) bounded in W 1,ppRdq such
that the functions un are supported in the same bounded open subset U . Let ρ P C8

0 pRd,R`q
be supported in the unit ball and such that

ş
Rd ρ “ 1. For ε ą 0 and x P Rd we set

ρε “ 1
εd
ρ

`
x
ε

˘
, and then uε

n “ ρε ˚ un P C8pRdq. Let ε ą 0. For n P N and x P Rd we have

|uε
npxq| ď }ρε}L8pRdq }un}L1pUq

and
|∇uε

npxq| ď }∇ρε}L8pRdq }un}L1pUq ,

so the sequence puε
nqnPN is bounded in C0pRdq and uniformly equicontinuous. Moreover

the functions uε
n are supported in a common bounded set V of Rd, so by the Ascoli-Arzelá

Theorem 2.37 there exists a subsequence puε
nk

qkPN which converges uniformly in V and hence
in U . This gives

lim sup
j,kÑ`8

›››uε
nj

´ uε
nk

›››
LqpUq

“ 0.

‚ We already know that uε
n goes to un as ε Ñ 0 in LqpUq for all n P N. We prove that this

convergence is uniform with respect to n. Let v P C1
0 pRdq be supported in U . For ε ą 0 we

set vε “ ρε ˚ v. Then for x P Rd we have

vεpxq ´ vpxq “
ż

Bp0,1q
ρpyq`

vpx ´ εyq ´ vpxq˘
dy “ ´ε

ż

Bp0,1q
ρpyq

ż 1

0

∇vpx ´ εtyq ¨ y dt dy,

and hence

}vε ´ v}L1pUq “
ż

U
|vεpxq ´ vpxq| dx ď ε

ż

Bp0,1q
ρpyq

ż 1

0

ż

U
|∇vpx ´ εtyq| dx dt dy

ď ε }∇v}L1pUq .
(2.22)
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By density, the same estimate holds for any v P W 1,ppRdq supported in U (note that if
vm P C1pRdq goes to v in W 1,ppRdq then ρε ˚ vn goes to ρε ˚ v in L1pRdq). Let θ Ps0, 1r be
such that

1

q
“ θ ` 1 ´ θ

p˚ .

By (2.22) applied with v “ un and the Gagliardo-Nirenberg inquality (Theorem 2.34 there
exists C ą 0 independant on u, n or ε such that

}uε
n ´ un}LqpUq ď }uε

n ´ un}θL1pUq }uε
n ´ un}1´θ

Lp˚ pRdq ď Cεθ }∇un}LppUq .

This proves that uε
n goes to un in LqpUq as ε Ñ 0 uniformly with respect to n P N. Then for

any η ą 0 we get
lim sup
j,kÑ`8

››unj
´ unk

››
LqpUq ď η.

Using a standard diagonal argument, we obtain a subsequence which goes to 0 in LqpUq and
hence in LqpΩq.

Exercise 13. Let p P r1, dr. Prove that we have the continuous inclusion W 1,ppBp0, 1qq Ă
Lp˚ pBp0, 1qq, but that this inclusion is not compact.

2.5 Traces

We recall that functions in the Sobolev spaces are not really functions, but equivalence classes
of functions pairwise almost everywhere equal. In particular, for u in some Sobolev space
W k,ppΩq, it does not make sense to consider the value of u at some point x0 P Ω.

We have seen in Proposition 2.6 that, in dimension 1, an element u of W 1,ppIq has a
continuous reprentative ũ. It is reasonnable to consider ũpx0q as the value of u at x0. Indeed,
if ṽ is another representative of u then ṽpx0q can be far from ũpx0q, but for almost all x P I
“close to x0” then ṽpxq is equal to ũpxq and hence “close to ũpx0q”.

However, this possible definition only works in dimension 1, since in higher dimension an
element of W 1,ppΩq does not necessarily have a continuous representative.

In applications, it is not crucial to give the value of a function at a point, but we are
interested in what happens at the boundary of the domain. This will be important for in-
stance for integration by parts (Green formula in higher dimension), where the value of the
function at the boundary appears. For regular domains, the boundary is a submanifold of
dimension pd ´ 1q. This is still of dimension 0 for the Lebesgue measure on Ω, but if d ě 2
this is in some sense “bigger” than a point.

Our purpose in this section is the following. Given a regular open subset Ω of Rd and
u P W 1,ppΩq, we want to give a natural sense to the restriction of u on the boundary BΩ, in
such a way that if u belongs to C0pΩq then the new definition coincides with the usual one.

2.5.1 Trace

As explained in the previous section, we begin our analysis with the model case Ω “ Rd` and
then, using a partition of unity and changes of variables, we will give a more general result.

Proposition 2.39. Let p P r1,`8r. There exists C ą 0 such that for u P C8
0 pRd`q we have

}up0, ¨q}pLppRd´1q ď C }u}p
W 1,ppRd`q .

For the proof we only have to integrate over Rd´1 the one-dimensional case which is very
close to Proposition 2.6:
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Proof. For x1 P Rd´1 we have

ˇ̌
up0, x1qˇ̌p ď p

ż `8

0

ˇ̌Bx1
ups, x1qˇ̌ ˇ̌

ups, x1qˇ̌p´1
ds

so, by the Hölder and Young inequalities,

ˇ̌
up0, x1qˇ̌p ď p

ˆż `8

0

ˇ̌Bx1
ups, x1qˇ̌p

ds

˙ 1
p

ˆż `8

0

ˇ̌
ups, x1qˇ̌p

ds

˙ p´1
p

ď
ż `8

0

ˇ̌Bx1
ups, x1qˇ̌p

ds ` pp ´ 1q
ż `8

0

ˇ̌
ups, x1qˇ̌p

ds.

After integration over x1 P R we get

}up0, ¨q}pLppRd´1q ď pp ´ 1q }u}p
LppRd`q ` }Bx1

u}pLppRdq ,

and the conclusion follows.

Theorem 2.40. Let Ω be an open subset of Rd of class C1. Let p P r1,`8r. There is a
unique bounded linear operator

γ0 : W 1,ppΩq Ñ LppBΩq
such that

@u P W 1,ppΩq X C0pΩq, γ0puq “ u|BΩ.
Proof. Let u P C8

0 pΩq. We use the notation of Paragraph 2.3.1. Let j P �1, N�. We have
ż

BΩXUj

|u|p dσ “
ż

Oj

ˇ̌
upϕ̃px1qqˇ̌p b

1 ` |∇ϕpx1q|2 dx1

ď Cϕ

ż

Oj

ˇ̌
upϕ̃px1qqˇ̌p

dx1 “ Cϕ

ż

BRd`

ˇ̌pu ˝ Φ´1qˇ̌p
dx1,

where Cϕ “ supx1PO
b
1 ` |∇ϕpx1q|2 and pu ˝ Φ´1q has been extended by 0 on Rd`. By

Propositions 2.39 and 2.28 there exists Cj ą 0 independant of u such that
ż

BΩXUj

|u|p dσ ď CϕC
››u ˝ Φ´1

››p
WjXRd`

ď Cj }uj}pW 1,ppΩq .

Then,
››u|BΩ

››
LppΩq ď

Nÿ

j“1

›››uj |BΩ
›››
LppΩq

ď
Nÿ

j“1

Cj }uj}W 1,ppΩq .

Finally, there exists C ą 0 such that for all u P C8
0 pΩq we have

››u|BΩ
››
LppBΩq ď C }u}W 1,ppΩq .

Since C8
0 pΩq is dense in W 1,ppΩq, the map u P C8

0 pΩq ÞÑ u|BΩ P LppBΩq extends to a unique
continuous map on W 1,ppΩq. Moreover, if u P W 1,ppΩq X C0pΩq then the sequence punqnPN
given by the proof of Proposition 2.32 goes uniformly to u and hence the restriction of un

goes to the restriction of u uniformly on BΩ, and hence in LppBΩq.
The following notation is motivated by Theorem 2.47 below:

Definition 2.41. When p “ 2 we denote by H1{2pBΩq the range of γ0 : H1pΩq Ñ L2pΩq.
We do not discuss the properties of H1{2pBΩq here. However we will use in the following

chapter that even if γ0 is not surjective, H1{2pBΩq is dense in L2pBΩq.
Proposition 2.42. Let Ω be an open subset of Rd of class C1. Let p P r1,`8r and u P
W 1,ppΩq. Then we have

γ0puq “ 0 ðñ u P W 1,p
0 pΩq.
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Proof. ‚ Assume that u P W 1,p
0 pRdq. Then there is a sequence punqnPN in C8

0 pΩq going to
u in W 1,ppΩq. Since γ0punq “ 0 for all n P N and γ0 is continuous, we have γ0puq “ 0.
‚ For the converse, we consider the case Ω “ Rd` and u supported in a bounded domain.
Then, with a partition of unity and changes of variables as above, we get the general case.
So let u P W 1,ppRd`q such that γ0puq “ 0. Let punqnPN be a sequence in C8

0 pRd`q which goes
to u in W 1,ppRd`q (see Proposition 2.32). Let n P N and x1 ą 0. For x1 P Rd´1 we have by
the Hölder inequality

ˇ̌
unpx1, x

1qˇ̌p ď
ˆˇ̌

unp0, x1qˇ̌ `
ż x1

0

ˇ̌
∇unps, x1qˇ̌

ds

˙p

ď 2p´1
ˇ̌
unp0, x1qˇ̌p ` 2p´1

ˆż x1

0

ˇ̌
∇unps, x1qˇ̌

ds

˙p

ď 2p´1
ˇ̌
unp0, x1qˇ̌p ` 2p´1xp´1

1

ż x1

0

ˇ̌
∇unps, x1qˇ̌p

ds,

so for ε ą 0
ż ε

0

ż

Rd´1

ˇ̌
unpx1, x

1qˇ̌p
dx1 dx1 ď 2p´1ε }γ0punq}p

LppRd`q ` 2p´1εp
ż

Rd´1

ż ε

0

ˇ̌
∇unps, x1qˇ̌p

ds dx1.

Taking the limit n Ñ 0 yields, by continuity of the trace,

}u}pLpps0,εrˆRd´1q ď 2p´1εp }∇u}pLpps0,εrˆRd´1q . (2.23)

Let χ P C8pR`, r0, 1sq, equal to 1 on r0, 1s and equal to 0 on r2,`8r. Then for n P N˚
and x “ px1, . . . , xdq P Rd` we set χnpxq “ χpnx1q. For n P N˚ we set un “ p1 ´ χnqu, so
that un P C8

0 pRd`q. By the dominated convergence theorem, we have

}un ´ u}LppRd`q “ }χnu}LppRd`q ÝÝÝÝÝÑ
nÑ`8 0.

For n P N˚ we have
∇pun ´ uq “ p1 ´ χnq∇u ´ uB1χn.

The first term goes to 0 in LppRd`q. For the second term we use (2.23) to write

}uB1χn}pLp “ np

ż 2
n

x1“ 1
n

ˇ̌
χ1pnx1qˇ̌p ż

x1PRp´1

ˇ̌
upx1, x

1qˇ̌p
dx1 dx1

ď 22p´1
››χ1››8 }∇u}p

Lpps0, 2
n rˆRd´1q

ÝÝÝÝÝÑ
nÑ`8 0.

This proves that
}un ´ u}W 1,ppRd`q ÝÝÝÝÝÑ

nÑ`8 0,

and hence u P W 1,p
0 pRd`q.

Exercise 14. Find an open domain Ω and u P W 1,8pΩq such that u|BΩ “ 0 but u is not in
the closure of C8

0 pΩq in W 1,`8pΩq.

2.5.2 Normal derivative

Let Ω be a bounded open subset of class C1 in Rd. For the rest of this section we only
consider the case p “ 2.

Let u P H2pΩq. For j P �1, d� the derivative Bju belongs to H1pΩq and hence has a trace
on BΩ. Then we set

γ1puq “ Bνu “
dÿ

j“1

γ0pBjuqνj P L2pBΩq,
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where ν “ pν1, . . . , νdq is the outward normal derivative (see (2.14)). Notice that if u belongs
to C1pΩq then on BΩ we have

Bνu “ ∇u ¨ ν.
This defines a continuous function γ1 from H2pΩq to L2pΩq. We can prove (see Theorem
2.47 below for the case Ω “ Rd`) that

�Bνu, u P H2pΩq( “ H1{2pΩq.

2.5.3 Green Formula
As said above, one of the motivations for the definition of the traces is the generalization
of the Green Formula to functions which are not regular in the usual sense. The following
results are deduced from the regular analogs by density of regular functions and continuity
of the traces. For u P W 1,1pΩq we can write

ş
BΩ u dσ instead of

ş
BΩ γ0puq dσ and

ş
BΩ Bνu v dσ

instead of
ş

BΩ γ1puqγ0pvq dσ.

Theorem 2.43. Let u, v P H1pΩq. Then for j P �1, d� we have
ż

Ω

u Bjv dx “
ż

BΩ
uv dσ ´

ż

Ω

Bju v dx

Theorem 2.44. Let u P H2pΩq and v P H1pΩq. Then we have

´
ż

Ω

Δu v dx “ ´
ż

BΩ
Bνu v dσ `

ż

Ω

∇u ¨ ∇v dx.

2.5.4 Appendix
In this additional paragraph we continue the discussion about traces and the Green formula.
In particular we define, via the Green Formula, a normal derivative for functions which are
not in H2pΩq.

We have denoted by H1{2pΩq Ă L2pΩq the range of the trace γ0 defined on H1pΩq. This
is a vector space, which can be endowed with the following norm.

}g}H1{2pBΩq “ inf
wPH1

γ0pwq“g

}w}H1pΩq .

We notice that H1
g pΩq “ �

w P H1pΩq : γ0pwq “ g
(

is a nonempty (by definition of H1{2pBΩq)
and closed (since γ0 is continuous) affine subspace (since γ0 is linear) of the Hilbert space
H1pΩq, so by the Hilbert projection theorem there exists a unique Rpgq P H1

g pΩq such that

}g}H1{2pBΩq “ }Rpgq}H1pΩq .

Moreover Rpgq is the only solution in H1
g pΩq of

@v P H1
0 pΩq, �Rpgq, v�H1pΩq “ 0.

From this we can deduce that the application which maps g P H1{2pΩq to Rpgq P H1pΩq is
linear, and then that H1{2pBΩq is a Banach space:

Proposition 2.45. H1{2pBΩq is a Banach space.

Proof. Let pgnqnPN be a Cauchy sequence in H1{2pΩq. Then pRpgnqqnPN is a Cauchy sequence
in H1pΩq. Since H1pΩq is complete, Rpgnq tends to some w in H1pΩq. We set g “ γ0pwq P
H1{2pBΩq. Then we have

}gn ´ g}H1{2pBΩq “ }Rpg ´ gnq}H1pΩq “ }Rpgq ´ Rpgnq}H1pΩq ÝÝÝÝÝÑ
nÑ`8 0.

This proves that the sequence pgnqnPN has a limit in H1{2pBΩq, and hence that H1{2pBΩq is
complete.

26 J. Royer - Université Toulouse 3



Sobolev spaces

We denote by H´1{2pBΩq the dual of H1{2pBΩq.
Proposition 2.46. Let u P H1pΩq such that Δu P L2pΩq. Then the map

g P H1{2pΩq ÞÑ
ż

Ω

`
Δu vg ` ∇u ¨ ∇vg

˘
dx, (2.24)

where vg P H1pΩq satisfies γ0pvgq “ g is well defined (the definition does not depend on the
choice of vg) and defines a continuous linear map on H1{2pBΩq which we denote by Bνu.

We recall that in a general domain Ω the assumptions that u P H1pΩq and Δu P L2pΩq
do not imply that u P H2pΩq.

Proof. We first observe that if v1 and v2 in H1pΩq are such that γ0pw1q “ γ0pv2q “ g then
v1 ´ v2 belongs to H1

0 pΩq, so there exists a sequence pφnqnPN in C8
0 pΩq which goes to v1 ´ v2

in H1pΩq. For all n P N we have
ż

Ω

`
Δuφn ` ∇u ¨ ∇φn

˘
dx “ �Δu,φn�D1pΩq,DpΩq ` �∇u,∇φn�D1pΩq,DpΩq “ 0,

so, taking the limit n Ñ `8,
ż

Ω

`
Δu v1 ` ∇u ¨ ∇v1

˘
dx “

ż

Ω

`
Δu v2 ` ∇u ¨ ∇v2

˘
dx.

This proves that the definition in (2.24) does not depend on the choice of vg, and the map
Bνu is well-defined on H1{2pBΩq.

For g P H1{2pBΩq we have
ˇ̌
ˇ̌
ż

Ω

`
Δu vg ` ∇u ¨ ∇vg

˘
dx

ˇ̌
ˇ̌ ď

´
}Δu}L2pΩq ` }∇u}L2pΩq

¯
}vg}H1pΩq ,

and hence
ˇ̌
ˇ̌
ż

Ω

`
Δu vg ` ∇u ¨ ∇vg

˘
dx

ˇ̌
ˇ̌ ď

´
}Δu}L2pΩq ` }∇u}L2pΩq

¯
}g}H1{2pBΩq .

This proves that the map Bνu is continuous on H1{2pBΩq. Since it is also linear, this defines
an element of H´1{2pBΩq.

By definition, we have the following Green formula for u, v P H1pΩq such that Δu P L2:

´
ż

Ω

Δu v dx “ ´ �Bνu, v�H´1{2pBΩq,H1{2pBΩq `
ż

Ω

∇u ¨ ∇v. (2.25)

We finish this section about traces by giving a general result on Ω “ Rd` by means of
the Fourier transform. This will in particular ensure that the two definitions of H1{2 on
Rd´1 » BRd` are equivalent, and that the trace on H1pΩq and the normal trace on H2pΩq
have the same range.

Theorem 2.47. Let k P N and s ą k ` 1
2 . Then the map

"
SpRdq Ñ SpRd´1q

u ÞÑ Bk
1up0, ¨q

has a unique continuous extansion γk : HspRdq Ñ Hs´k´ 1
2 pRd´1q. Moreover, γk is surjective

and there exists a continuous linear map Rk : Hs´k´ 1
2 pRd´1q Ñ HspRdq such that

γk ˝ Rk “ Id
Hs´k´ 1

2 pRd´1q .
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Proof. ‚ We first observe that for m P N, η ą 0 and σ ą m`1
2 we have, with the change of

variable t “ ?
ηθ

ż

R
tm

`
η ` t2

˘´σ
dt “ η

m`1
2 ´σCm,σ, where Cm,σ “

ż

R
θmp1 ` θ2q´σ dθ. (2.26)

‚ Let φ P SpRdq. For x1 P Rd´1 we have by the inversion formula

Bk
1φp0, x1q “ 1

p2πqd
ż

Rd´1

eix
1¨ξ1

ˆż

R
piξ1qkφ̂pξ1, ξ1q dξ1

˙
dξ1,

so the Fourier transform (in Rd´1) of Bk
1φp0, ¨q is given by

g : ξ1 ÞÑ 1

2π

ż

R
piξ1qkφ̂pξ1, ξ1q dξ1. (2.27)

By the Cauchy-Schwarz inequality and (2.26) applied with η “ 1 ` |ξ1|2 we have, for all
ξ1 P Rd´1,

4π2
ˇ̌
gpξ1qˇ̌2 ď

ˆż
|φ̂pξ1, ξ1q|2`

1 ` ξ21 ` |ξ1|2˘s
dξ1

˙ ˆż

R
ξ2k1

`
1 ` ξ21 ` |ξ1|2˘´s

dξ1

˙

ď C2k,s

`
1 ` |ξ1|2˘´ps´k´ 1

2 q
ż

|φ̂pξ1, ξ1q|2`
1 ` ξ21 ` |ξ1|2˘s

dξ1.

Multiplying by
`
1 ` |ξ1|2˘s´k´ 1

2 and integrating over ξ1 P Rd´1 gives

››pBk
1φqp0, ¨q››2

Hs´k´ 1
2 pRd´1q ď C2k,s

4π2
}φ}2HspRdq .

This proves the first statement of the theorem.
‚ Now we prove that γk is surjective with a continuous right inverse. We begin with
v P SpRd´1q. Let g P SpRd´1q be the Fourier transform of v on Rd´1. The expression (2.27)
suggests to find f such that

gpξ1q “ 1

2π

ż

R
piξ1qkfpξ1, ξ1q dξ1. (2.28)

Let N ą 1
2

`
s ´ k ´ 1

2

˘
. For ξ “ pξ1, ξ1q P Rd we set

fpξq “ 2π

Ck,N` 1
2

p´iqk`
1 ` |ξ1|2˘N

`
1 ` |ξ|2 ˘N` k

2 ` 1
2

gpξ1q.

In particular, for all ξ1 P Rd´1 the map ξ1 ÞÑ p´iξ1qkfpξ1, ξ1q is integrable on R and (2.28)
holds by (2.26). Moreover, by (2.26) again we have

ż

Rd

p1 ` |ξ|2qs |fpξq|2 dξ

“ 4π2

C2
k,N` 1

2

ż

Rd´1

p1 ` |ξ1|2q2N ˇ̌
gpξ1qˇ̌2

ˆż

R
p1 ` |ξ|2q´p2N`k`1´sq dξ1

˙
dξ

“ 4π2C0,2N`k`1´s

C2
k,N` 1

2

ż

Rd´1

p1 ` ˇ̌
ξ1 ˇ̌2qs´k´ 1

2

ˇ̌
gpξ1qˇ̌2

dξ1

Then if we denote by u the inverse Fourier transform of f we obtain that u P HspRdq and

}u}2HspRdq ď 4π2C0,2N`k`1´s

C2
k,N` 1

2

}v}2
Hs´k´ 1

2 pRd´1q . (2.29)

Moreover (2.28) ensures that γkpuq “ v. Thus we have defined a map Rk : SpRd´1q Ñ HspRdq
such that γk ˝ Rk “ Id. By (2.29), Rk extends to a continuous map from Hs´k´ 1

2 pRd´1q to
HspRdq, and the proof is complete.
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2.6 Poincaré Inequality
In Theorem 2.34 we have given an estimate with the norm }∇u}LppRdq and not the full norm
}u}W 1,ppRdq. In application, and in particular for the analysis of second order PDEs, we will
often be in the situation where we only control the norm of the gradient of the function and
not the function itself.

It turns out that in some particular situations, the norm of the function is in fact controled
by the norm of the gradient:

}u}LppΩq ď C }∇u}LppΩq . (2.30)

In this case, }∇u}LppΩq defines a norm on W 1,ppΩq, equivalent to }u}W 1,ppΩq. An inequality
like (2.30) is called a Poincaré inequality. This is the subject of this paragraph.

Before giving precise statements, we notice that a Poincaré inquality cannot hold in a
space which contains constant functions. In an unbounded domain, troubles can come from
slowly varying functions. For instance on R we consider for n P N˚ the function un defined
by

unpxq “
#
1 ´ |x|

n if |x| ď n,

0 if |x| ą n.

Then we have }u}2L2pRq “ 2n
3 and }u1}2L2pRq “ 2

n . A Poincaré inequality cannot hold in H1pRq.

In fact, we have discussed all the problems to prove a Poincaré inequality. Roughly speak-
ing, on a bounded domain, and if we remove constant functions, a Poincaré inquality holds.
The first way to remove constant functions is to consider only functions vanishing at the
boundary.

We first recall that Lemma 2.7 also holds in higher dimension.

Proposition 2.48. Let Ω be an open connected subset of Rd. Let u P L1
locpΩq be such that

∇u “ 0 (in the sense of distributions). Then there exists a constant α such that u “ α almost
everywhere.

Proof. We proceed by induction on the dimension. The case d “ 1 is already known. We
assume that d ě 2 and that the result is known up to the dimension d ´ 1.

It is enough to consider the case Ω “ śd
j“1saj , bjr. Let χ P C8

0 psa1, b1rq be such thatşb1
a1

χpx1q dx1 “ 1. For x1 P Ω1 “ śd
j“2saj , bjr we set

vpx1q “
ż b1

a1

upx1, x
1qχpx1q dx1.

This defines a function v P L1
locpΩ1q. For ψ P C8

0 pΩ1q and j P �2, d� we have

´
ż

Ω1
vpx1qBjψpx1q dx1 “ ´

ż

Ω

upx1, x
1qχpx1qBjψpx1q dx1 dx

1

“ ´
ż

Ω

upx1, x
1qBj

`
χpx1qψpx1q˘

dx1 dx
1

“ 0.

This proves that, in the sense of distributions, we have ∇v “ 0 on Ω1 By the induction
assumption there exists α such that v “ α almost everywhere on Ω1.

Now let φ P C8
0 pΩq. For x “ px1, x

1q P Ω we set

φ̃px1q “
ż b1

a1

φpx1, x
1q dx1

and
ζpxq “

ż x1

a1

`
φpt, x1q ´ χptqφ̃px1q˘

dt.
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Then ζ P C8
0 pΩq and φ “ Bx1ζ ` χ b φ̃, so

ż

Ω

uφ dx “
ż b1

a1

ż

Ω1
upx1, x

1qχpx1qφ̃px1q dx1 dx1 “
ż

Ω1
vφ̃ dx1 “ α

ż

Ω1
φ̃ dx1 “ α

ż

Ω

φ dx.

This proves that u “ α almost everywhere on Ω.

Now we can prove the Poincaré inequality.

Theorem 2.49. Let Ω be an open bounded subset of Rd. Let p P r1,`8r. Then there exists
C ą 0 such that

@u P W 1,p
0 pΩq, }u}LppΩq ď C }∇u}LppΩq .

Proof. Assume by contradiction that the statement is not true. Then for all n P N there
exists un P W 1,p

0 pΩq such that

}un}LppΩq ą n }∇un}LppΩq .

Since this inequality can be divided by }un}LppΩq (which cannot be 0), we can assume without
loss of generality that }un}LppΩq “ 1 for all n P N. Then

}∇un}LppΩq ÝÝÝÝÝÑ
nÑ`8 0, (2.31)

and the sequence punqnPN is bounded in W 1,ppΩq. Since W 1,ppΩq is compactly embedded in
LppΩq (see Theorem 2.38), there exists an increasing sequence pnkqkPN P NN and v P LppΩq
such that

}unk
´ v}LppΩq ÝÝÝÝÑ

kÑ`8 0.

With (2.31), this implies that the sequence punk
qkPN is a Cauchy sequence in W 1,ppΩq. Since

W 1,ppΩq is complete (see Theorem 2.17), the sequence punk
qkPN has a limit in W 1,ppΩq. This

limit is necessarily v. In particular v belongs to W 1,ppΩq, and by (2.31) we have ∇v “ 0.
By Proposition 2.48, v is constant on each connected component of Ω. Since unk

belongs to
W 1,p

0 pΩq for all k P N, we also have v P W 1,p
0 pΩq, so v “ 0, which gives a contradiction with

the fact that }unk
}L2pΩq “ 1 for all k P N.

Notice that the proof of Theorem 2.49 does not give any clue about the constant C of
the inequality. We now give a similar result, with a more constructive proof. Moreover the
open set Ω is only required to be bounded in one direction. This means that Ω is included
in a strip of the form

Ω Ă �
x P Rd, x ¨ e Psa, br( ,

for some e P Rd, |e| “ 1 and a, b P R.

Theorem 2.50 (Poincaré inequality). Let Ω be an open subset of Rd, bounded in one direc-
tion. Let p P r1,`8r. Then there exists CΩ ą 0 such that, for all u P W 1,p

0 pΩq,
}u}LppΩq ď CΩ }∇u}LppΩq .

For instance, we can take CΩ “ pb ´ aqp.
Proof. ‚ It is enough to prove the estimate for u P C8

0 pΩq. Then the result will follow
by density of C8

0 pΩq in W 1,p
0 pΩq. We can extend u by 0, this gives a function in C8

0 pRdq
supported in Ω.
‚ We first consider the one-dimensional case. Then there exists a, b P R such that Ω Ăsa, br.
Then we can extend u as a function in C8

0 psa, brq which vanishes outside Ω. Then for all
x Psa, br we have pupxqpq1 “ pu1pxqupxqp´1 so, by the Hölder inequality

|upxq|p ď p

ż b

a

ˇ̌
u1psqˇ̌ |upsq|p´1

ds ď p }u}p´1
LppΩq

››u1››
LppΩq .

After integration over sa, br this gives

}u}pLppΩq ď pb ´ aqp }u}p´1
LppΩq

››u1››
LppΩq ,
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and the conclusion follows after simplification by }u}p´1
LppΩq.

‚ Now we consider the general case. Let pf1, . . . , fdq be an orthonormal basis of Rd such
that

supppuq Ă �
y1f1 ` y1f 1 : y1 Psa, br, y1 P Rd´1

(
,

for some a, b P R, where for y1 “ py2, . . . , ydq P Rd´1 we have set y1f 1 “ řd
j“2 yjfj . By a

change of variables and using the one-dimensional case we can write
ż

Ω

|upxq|p dx “
ż

y1PRd´1

ż b

y1“a

ˇ̌
upy1f1 ` y1f 1qˇ̌p

dy1 dy
1

ď ppb ´ aqpqp
ż

y1PRd´1

ż b

y1“a

ˇ̌
ˇ̌ B
By1upy1f1 ` y1f 1q

ˇ̌
ˇ̌
p

dy1 dy
1

ď ppb ´ aqpqp
ż

y1PRd´1

ż b

y1“a

ˇ̌
∇upy1f1 ` y1f 1qˇ̌p

dy1 dy
1

ď ppb ´ aqpqp
ż

Ω

|∇upxq|p dx.

The conclusion follows with C “ pb ´ aqp.
It can be important in application to have an explicit constant for the Poincaré inequality.

Computing the optimal constant for particular sets Ω requires more work, and we do not
discuss this issue here, but we already have an upper bound.

After Theorem 2.50, the interest of the proof given for Theorem 2.49 is not clear. For
the proof of Theorem 2.50 we have really used the fact that the function u vanishes at the
boundary. While for the proof of Theorem 2.49 we have in fact only used the property that
the only constant function is 0. The interest of the proof of Theorem 2.49 is that it can
be used in any such situation. For instance, we give the following version of the Poincaré
inequality.

For a bounded open subset Ω we define

ĂW 1,ppΩq “
"
u P W 1,ppΩq :

ż

Ω

u dx “ 0

*
. (2.32)

Notice that if Ω is connected then the only function u P ĂW 1,ppΩq such that ∇u “ 0 is u “ 0.

Theorem 2.51 (Poincaré-Wirtinger inequality). Let Ω be an open, connected and bounded
subset of Rd. Let p P r1,`8s Then there exists C ą 0 such that, for all u P ĂW 1,ppΩq,

@u P ĂW 1,ppΩq, }u}LppΩq ď C }∇u}LppΩq .

Exercise 15. Let Ω be an open, bounded and connected subset of Rd. Let p P r1,`8s.
1. Prove Theorem 2.51.
2. For u P W 1,ppΩq we set

N puq “ }∇u}LppΩq `
ˇ̌
ˇ̌
ż

Ω

u dx

ˇ̌
ˇ̌ .

Prove that N is a norm on W 1,ppΩq, equivalent to the usual one.

2.7 The dual of H1
0pΩq

Definition 2.52. We denote by H´1pΩq the dual space of H1
0 pΩq.

We recall that the dual space of H1
0 pΩq is the set of continuous linear forms on H1

0 pΩq. It
is endowed with the norm defined by

}ϕ}H´1pΩq “ sup
uPH1

0 pΩqzt0u
|ϕpuq|

}u}H1
0 pΩq

.
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We usually write �ϕ, u� (or �ϕ, u�H´1pΩq,H1
0 pΩq) instead of ϕpuq. Notice that if H1pΩq ‰ H1

0 pΩq
then H´1pΩq is not the dual space of H1pΩq.

We recall that by the Riesz Theorem, we can identify a Hilbert space with its dual.
However, in this kind of context we usually already identify L2pΩq with its dual. With this
identification we have

H1
0 pΩq Ă L2pΩq Ă H´1pΩq,

with continuous injections. The first inclusion is clear by definition of the Sovolev space
H1

0 pΩq. Now a function u P L2pΩq is identified with the continuous linear form on L2pΩq
defined by

v ÞÑ �u, v�L2pΩq . (2.33)

By restriction, this also defines a continuous linear form on H1
0 pΩq. In this sense, we can say

that u belongs to H´1pΩq. However, all the elements of H´1pΩq cannot be identified with a
function in L2pΩq. For instance, on R, the Dirac distribution

δ : v ÞÑ vp0q (2.34)

defines a continuous linear for on H1pRq “ H1
0 pRq, and it is not of the form (2.33) (notice

that this example is specific to the dimension 1, a Dirac distribution is not in H´1pΩq in
dimension d ě 2, however with the trace Theorem we can generalize this example in higher
dimension, see Exercise 16).

Let f P L2pΩq and F P L2pΩ,Rdq. Then ϕ “ f ´ divF , where the derivatives are
understood in the sense of distributions, also defines a continuous linear form on H1

0 pΩq
(which is not necessarily in L2pΩq). For v P H1

0 pΩq it is given by

ϕpvq “ �f, v� `
dÿ

j“1

�Fj , Bju� .

In particular we have

}ϕ}H´1pΩq ď }f}L2pΩq `
dÿ

j“1

}Fj}L2pΩq . (2.35)

In fact, using the Riesz Theorem in H1
0 pΩq we see that any ϕ P H´1pΩq can be written in

this form with u P H1
0 pΩq and F “ ∇u. Moreover, in this case we have an equality in (2.35).

See Theorem 5.9.1 in [Evans] (see Exercise 17 for the particular case of the Dirac distribution
(2.34)).

Exercise 16. Let f P L2pRq. Prove that the map

v P C8
0 pR2q ÞÑ

ż

R
fpxqvpx, 0q dx

extends to a continuous linear form on H1pR2q.
Exercise 17. Find u P H1pRq such that

@v P H1pRq, vp0q “
ż

R
uv `

ż

R
u1v1.
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2.8 Exercises
Exercise 18. Show that there is no continuous linear map γ : L2pR˚̀ q Ñ R such that
γpuq “ 0 for all u P C0pr0,`8rq X L2pR˚̀ q.
Exercise 19. For which values of k P N, p P r1,`8s and q P r1,`8s do we have W k,ppRdq Ă
LqpRdq ?

Exercise 20. 1. Let u P H1
0 pR2`q. For px1, x2q P R2 we set

ũpx1, x2q “
#
upx1, x2q if x1 ą 0,

0 if x1 ď 0.

Prove that ũ P H1pR2q and give an expression for the derivatives of ũ. In particular, what
can we say about }ũ}H1pR2q ?
2. Let Ω be an open subset of R2. Let u P H1

0 pΩq. Prove that the extension of u by 0 on Rd

belongs to H1pR2q.
Exercise 21. We recall that for s P r0, 1s and u P L2pRdq we have set

}u}2HspRdq “
ż

Rd

`
1 ` |ξ|2 ˘s |ûpξq|2 dξ.

Then HspRdq is the set of u P L2pRdq such that }u}HspRdq ă `8.
1. Check that H0pRdq “ L2pRdq and that H1pRdq coincides with the space already defined,
with equivalent norm.
2. Let s Ps0, 1r. Prove that there exists C ą 0 such that for all u P SpRdq we have

ż

yPRd

ż

xPRd

|upxq ´ upyq|2
|x ´ y|d`2s

dx dy “ C

ż

ξPRd

|ξ|2s |ûpξq|2 dξ.

3. Deduce that the quantity
˜

}u}2L2pRdq `
ż

yPRd

ż

xPRd

|upxq ´ upyq|2
|x ´ y|d`2s

dx dy

¸ 1
2

defines a norm on HspRdq, equivalent to the norm defined above.

Exercise 22. In this exercise we prove that for u P H1pRdq (real valued) we have |u| P
H1pRdq, ∇u “ 0 almost everywhere on u´1pt0uq and ∇ |u| “ signpuq∇u on u´1pRdz t0uq.
1. Let G : R Ñ R be of class C1, globally Lipschitz and such that Gp0q “ 0.

a. Show that G1 is bounded on R.
b. Prove that G ˝ u P H1pRdq with ∇pG ˝ uq “ pG1 ˝ uq∇u.

2. For t P R we set

H´ptq “
#
1 if x ą 0,

0 if x ď 0,
and H`ptq “

#
1 if x ě 0,

0 if x ă 0.

For n P N˚ we set

Hnptq “

$
’&
’%

1 if t ě 1
n ,

nt if 0 ď t ď 1
n ,

0 if t ď 0.

Then we set Vnptq “ şt
´8 Hnpsq ds.

a. Prove that pVn ˝ uq P H1pRdq with ∇pVn ˝ uq “ pHn ˝ uq∇u.
b. For t P R we set

gptq “
#
t if t ą 0,

0 if t ă 0.

Prove that pg ˝ uq P H1pRdq with ∇pg ˝ uq “ pH´ ˝ uq∇u.
c. Prove that ∇pg ˝ uq “ pH` ˝ uq∇u.
d. Deduce that ∇u “ 0 almost everywhere on u´1pt0uq.

3. Conclude.
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