Chapter 2

Sobolev spaces

2.1 Weakly differentiable functions

In this first paragraph we introduce the notion of weak derivatives and define the Sobolev
spaces of weakly differentiable functions. This generalizes the notion of differentiability to a
class of functions which are not differentiable in the classical sense.

We will sometimes refer to distributions and the notion of derivatives in the sense of
distributions, which are assumed to be known. However, we will recall all the required
definitions and results to make this chapter self-contained.

2.1.1 One derivative in L? in dimension one

We begin with the one dimensional case. Let I be an open and non-empty interval of R. The
key observation behind the definition of the weak derivative is the integration by parts. For
ue CY(I) and ¢ € C(I) we have

Lu’d)dac = —Lugf)’ dx. (2.1)

The right-hand side makes sense even when w is not differentiable. This is how we define the
function «’ which appears in the left-hand side.

Definition 2.1. Let uw € L] (I). We say that u has a weak derivative in L] (I) if there

exists v € L] (I) such that
Vo e CP(I), —J ug dx = J vo dz. (2.2)
I I

In this case we denote by v’ this function v.

Definition 2.2. We denote by WP (I) the set of functions u € LP(I) with a weak derivative
u’ € LP(I). We also write H'(I) for Wh2(1).

Of course, if u is differentiable in the usual sense, then the derivatives in the usual and
in the weak senses coincide. However u and u’ are not necessarily in L?(I), so u is not nec-
essarily in WP (I) (if I is a compact interval, then continuous functions are integrable and
hence, in this particular case, continuously differentiable functions on I belong to W1?(I)).

The weak derivative is just the derivative in the sense of distributions. A function u €
L{ .(I) defines a distribution T, on I. This distribution has a derivative T/, € D'(I). Saying
that the derivative of u belongs to L{ _(I) means that 77, is the distribution defined by a

loc

function in L{ (I). In other words, for some v € L (I) we have T, = T, in D'(I). Then
a function u € LP(I) belongs to W1P(I) if and only if ' € LP(I), where v’ is understood in
the sense of distributions.

Notice also that a function v satisfying (2.2) is necessarily unique (up to equality almost

everywhere), so there is no ambiguity in the definition of «'.
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Ezample 2.3. We consider on 0, 1[ the function u : # — 2z~ %. Then u belongs to L2(]0, 1])
but its derivative v’ : x — —im’% is not in L2(]0,1[), so u is not in H*(]0, 1[). We similarly
consider u : & — 7% on ]1,+0[. Then «’ € L2(]1,4[) but u ¢ L2(]1,4w[), so u ¢
HY(]1, +0]).

On the other hand, the function u — x7 belongs to H'(]0,1[) and z — 277 belongs to
HY(]1, +0]).

Ezxercise 1. Let p € [1,+o] and a € R. Does the function z — x% belongs to W?(]0, 1[)
? WhP(]1, +o0[) 7 WHP(]0, +oo[) ?

These first examples concern functions differentiable in the usual sense. But WP ([)
contains functions which are only differentiable in the weak sense.

Ezample 2.4. We consider on | — 1, 1] the map u : z — |z|. Then its derivative in the sense
of distributions is given by
, -1 ifx <0,
vz

1 ifz>0.

Then u belongs to W1P(] — 1,1]) for any p € [1, +0].

A function in LP(I) can have a derivative in the sense of distributions which is not a
function.

Ezample 2.5. The Heaviside function

Howe 1 ifzxz>0,
0 ifx <0,

belongs to LP(] — 1, 1[). However, there is no function v € L?(] — 1, 1[) such that

1 1
VoeCE=110. | vods——[ Ho'dz=0(0)

so H has no weak derivative in LP(] —1,1[), and hence it does not belong to W1(] — 1, 1[).
With the vocabulary of distributions the derivative of H in the sense of distributions is the
Dirac distribution H' = 4, and ¢ is not associated to any function in LP(]—1,1[). Similarly, a
piecewise C! function on I which is not continuous cannot be in W (I) (with the vocabulary
of distributions, by the jump formula the derivative in the sense of distributions of such a
function involves Dirac distributions and cannot belong to LP([I)).

More generally, we can prove that a function in W1?(I) is necessarily continuous on I.
We recall that a function in LP(I) or in W1P(I) is in fact a equivalence class of functions
which are pairwise almost everywhere equal. When we say that u € WP (I) is continuous,
this means that one of the representatives of u is continuous.

Proposition 2.6. Let p € [1,+0] and u e WYP(I). Then u has a representative i € LP(I)
such that, for x,y eI,

In particular © is continuous. If p > 1 then u is even %—Hﬁldﬁr continuous on I (when

p = +0 this means that @ is Lipschitz continuous). Moreover, if I is not bounded and if
p €1, +o[ then @ goes to 0 at infinity.
Finally, for all p € [1,+w], @ is bounded and hence uw € L*(I).

For the proof we recall the following results (prove them as an exercice if not already
known).

Lemma 2.7. Let u € Li (I) be such that

Vo e CP(I), Lwﬁ’dﬂc = 0.

There exists a constant o such that u = o almost everywhere.
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Lemma 2.8. Let we L, (I) and zo € I. Then the map

v f w(s)ds
zo

is well defined, it is continuous on I, and

Vo e CP(I), leﬁ'dx = —ngzﬁdm.

Now we can prove Proposition 2.6:

Proof. We fix xg € I. For x € I we set

This makes sense since v’ € LP(I) < L}, (I). Then, by Lemma 2.8, v is continuous and its
derivative in the sense of distributions is u’. By Lemma 2.7, there exists a constant a such
that u — v = a almost everywhere. We set @ = v + a.

For z,y € I we have

If p =1 then for some zg € I we have |a(y)| < [@(zo)| + [u'[ 11 ()
If p = +oo then |a(y) — a(z)| < |y — @[ [v'| e gy, s0 @ is '] o )-Lipschitz continuous.
If p €]1, +oo[, we have by the Holder inequality

Ly l/(s)] ds| < |y — 2|7 (L /()| ds)é.

This proves that @ is 2=-Hélder continuous, and in particular uniformly continuous. All the
statements of the proposition follow. O

la(y) — a(x)] <

Ezxercise 2. Let a € R. For x € R we set

e " ifx >0,
ua(a:) = o —|z| .
—lz|%e if z <.

1. Prove that u, € C*(R) if o > 1.
2. Prove that u, € H'(R) if a > 1.

Ezercise 3. Let u € LP(I). Prove that v € WP(I) if and only if there exists v € LP(I)
such that

Yo e C(I), J ug = —J V.
I I
Ezercise 4. 1.Let uy € C}([0, +o0[). For z € R we set

u(z) = ug () %fa: =0,
0 ifx <0.

Does u belong to HY(R) ? to C*(R) ?
2. Same questions with

() = us(z) ifz=0,
up(—x) ifz<0,

3. Same questions with

(2) = uy(x) if x >0,
T S3uy (<) + duy (—2/2) ifz <0,
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2.1.2 General definitions

The above definitions can be extended in any dimension d € N* and we can consider any
order k € N of derivatives.

Definition 2.9. Let Q be an open subset of RY. For p € [1,4+o] and k € N we set
WhP(Q) = {ue LP(Q) : 0“ue LP(Q) for all v € N with |a| < k},

where 0“u is the derivative of u in the sense of distributions. In other words, a function
u € LP(Q2) belongs to W¥*?(Q) if for all « € N? such that |a| < k there exists v, € LP(£2) such
that
Vo e CF(Q), f wo*pdr = (—1) J Vo G da. (2.3)
Q

Q

In this case v, is unique (up to equality almost everywhere) and we set 0%u = v,. We also
set HF(Q) = Wk2(Q).

Remark 2.10. By the Riesz Theorem and by density of C(Q2) in L?(f2), a function u €
LL () belongs to H*(12) is and only if for all a € N¢ with |a| < k there exists C, > 0 such
that

Vo e CL (), UQ ud®¢dz| < Co |9l 120 -

Example 2.11. Let a > 0. For z € B(0,1)\ {0} we set u(x) = |x|”*. Then u € LP(B(1)) if and
only if ap < d. On the other hand u is of class C* on B(1)\{0} and Vu(z) = —a|z| * =
for all € B(0,1)\ {0}. Thus Vu € LP(B(1)) if and only if (o + 1)p < d. This proves that if
a = % — 1 then u is not in WP (B(0,1)). Now assume that o < % -1

Let ¢ € C(B(0,1)). Since u € L'(B(0,1)) we have by the dominated convergence
theorem

—f |z]”* Vo dx = — lim || Ve du.
B(0,1) =0 JB(0,1\B(0,¢)
For € €]0, 1[ we have by the Green formula
—J || Vo dx = —f |z|” ¢v do(x) —a‘[ 2|7 ? z¢ dux,
B(0,1)\B(0,¢) S(0,¢) B(0,1)\B(0,)

where S(0,¢) is the sphere of radius €. On the one hand we have

< ¢l 1500, 1)1 —> 0,

e—0

| el ovdato)
S(0,e)
and on the other hand,

f 2|7 % 2 de — 2|7 % 2¢ du.
B(0,1\B(0,¢) =0 JB(o,1)

in the weak sense.

This proves that the map z — —a |91:|7a72 x is the gradient of v on B(0,1)
(B(0,1)) if and only if

And hence Vu € LP(B(0,1)). Finally we have proved that u € WP
(a+1p <d.

Ezxercise 5. Let d > 2. We denote by B the unit ball in R%. Let u € C'(B\{0}) such that
Vu (well defined on B\ {0}) is in L{ _(B).

loc

1. For ¢ €]0, 1] we denote by B(e) the ball of radius . Prove that
cd—1
J —— Vu(r)dr — 0.
B\B(e) || =0

2. For ¢ €]0, 1] we denote by S(g) the sphere of radius £. We set S = S(1). Prove that

gd—1
J lul < Ed*IJ [ul +J —— |Vu| d.
S(e) s B\B(z) ||
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3. Prove that u € L} (B).

4. Prove that for j € [1,d] and ¢ € C°(B) we have
Vo € CF(B), f‘[ uojpdr = J oju¢dx
B B
Ezxercise 6. Does the map z + In(|In(|z|)|) belong to W4(B(0, 1)) (we recall that B(0,1)

is the unit ball of R?) ?

Example 2.11 and Exercise 6 show that the results of Proposition 2.6 are only valid in
dimension 1. In higher dimensions, a function in W1?(Q) is not necessarily continuous.

In the following proposition we give some basic properties for the set WHkP(Q) (the proof
is left as an exercice). We define C(Q) as the restrictions to Q of functions in C§°(R?).

Proposition 2.12. Let p € [1,+o], k € N* and a = (aq,...,aq) € N® with |a| < k. Let
ue Wkr(Q).

(i) We have 0%u € W*=1el2(Q) and for 8 € N with || < k—|a| we have 0°(0%u) = 0°*+Pu.

ii) Let w be an open subset of Q. Then the restriction uy, of u on w belongs to WP (w
\

and 0% (uy,) = (0%u))y,-
(iii) Let x € CL(Q). Then xue W*P(Q) and

0%(xu) = Z <g) P x> Pu,

B<a

where we have set

6] a!
(ﬁ) =m, al =aq!. .. aql.

When Q = R? and p = 2 we can use the Fourier transform to give a simple characterisation
of H*¥(R?). Notice that in Definition 2.9 we can see the derivatives of u in the sense of
tempered distributions. This means that we can replace CF(R%) by S(R?) in (2.3).

Proposition 2.13. Let k € N* and u € L2(RY). Then 0%u € L*(Q) if and only if the map
& — (i&)*a(€) belongs to L?(R?) (and, in this case, the latter is the Fourier transform of the
former). Then u e H*(R?) if and only if

|, 1) aR s < . (2.4)
Proof. Let u e L?>(R?). For ¢ € S(R?) we have
| wraody = | u@rody = (-0 | werddy, (25)
R4 Rd R4

Assume that 0%u € L2(R?) for all o € N¢ with |a| < k. Then for such an « (2.5) gives
J (iy)*ae dy :f O"ud dy :f 0ug dy,
R4 R4 R

so the map y — (iy)®a(y) belongs to L?(R?), and it is the Fourier transform of 0%u.
Conversely, let u € L?(R9) be such that (2.4) holds. For a € N with |a| < k (2.5) applied
with ¢ gives

. ly*all L2 (ga
| e dy‘ - U yoi dy‘ < LB ) gy -
Rd Rd (2m)2
This proves that 0“u € L?(R?) and the proof is complete. O

Remark 2.14. If u € L*(R?) is such that Au belongs to L?(R?), then u belongs to H?(R?).
This remark does not hold on a general domain (see Remark 3.17 below).
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In (2.4), k is the number of derivatives in L2(R?). In particular it is an integer. But it
makes sense to write the same condition with any real exponent. This is a way to define
derivatives of real order, which will turn out to be useful. By Proposition 2.13, the following
definition coincides with the previous one when s € N.

Definition 2.15. Let s > 0. We define H*(R%) as the set of functions u € L?(R%) such that
|, G ieP)lace P de < +oe

Ezxercise 7. Let p e [1,+o] and u € WHP(RY). Let p € CP(RY). We recall that (p*u) €
C*(R%). Prove that for j € [1,d] we have

0j(p*u) = px(Oju).
Deduce that (p = u) € WHP(R?).
Ezercise 8. Let u € WL (R?). Let B be a compact subset of RY. Let p € CP (R4, R,)
such that §,, pdz = 1. For € > 0 and = € R? we set p.(z) = p(z/e).
1. Prove that there exists a sequence (g,,),,.y going to 0 such that if we set u,, = p., * u for
all n € N then u, () goes to u(x) for almost all z € B.
2. Prove that for all n € N we have |Vun | o gay < [Vl g ga)-
3. Prove that for almost all z,y € B we have [u(z) — u(y)| < |Vul pe g [ — yl-
4. Prove that u has a representative which is | Vu| ;. za)-Lipschitz (and in particular contin-
uous).

2.2 Topology on the Sobolev spaces

In this section we define the norms on the Sobolev spaces we have just defined, and we give
the properties of these new functional spaces. In the particular case of Sobolev spaces on
the Euclidean space, we prove that smooth functions are dense in the Sobolev space, and
we show on some examples how this important result is used to generalize some properties
known for regular functions. The density of smooth functions in the general case will be
discussed in the following section.

2.2.1 Banach spaces
Let 2 be an open subset of R?. Let p € [1,+o0] and k € N. For u € W*P(Q) we set
v

H“vak,p(g) = Z H@O‘uHip(Q) : (2.6)

|| <k

This defines a norm on W*?(2). We could also consider the quantity
Z Haau”LP(Q) ) (2.7)
lal<k

which defines an equivalent norm on W*?(Q).
On H*(Q) we define an inner product by setting, for u,v e H*(Q),

(V) gy = Y (07U, 0%0) (g - (2.8)
|a|<k

The corresponding norm is exactly (2.6) with p = 2.
Remark 2.16. With the notation of Proposition 2.12, we observe that

Haa“HW’v*\alm(Q) < HUHW’C»P(Q)a
for w < Q we have
H“HW’w(w) < HUHwk,p(Q),

and for x € C(Q) there exists C, > 0 independant of u such that

|‘X“”Wk7p(9) < Cy Huuwk,p(g) .
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Theorem 2.17. Let k € N and p € [1,+o]. The Sobolev space W*P(Q), endowed with the
norm (2.7) or (2.6), is a Banach space. In particular, H*(Q)) with the inner product (2.8) is
a Hilbert space.

Proof. Let (uy),y be a Cauchy sequence in W*P(Q). The sequences (0%uy)nen for || < k
are Cauchy sequences in LP(Q2). Since LP(Q) is complete by the Riesz-Fisher theorem, there
exist vq € LP(Q) for |a| < k such that 0%u,, goes to v,. For |a| < k and ¢ € C3°(£2) we have

(—1)lel J vg 0%¢dx = (—1)1* lim Up 0Y¢dr = lim 0%up pdx = f Vo ¢ d.
Q Q Q

n—+0w Jo n—+w

This proves that in the sense of distributions we have 0%vy = v, € LP(§2). Then vy € WP (Q)
and

2
ln = vl = D5 10%un = valo) S5 0
lal<k

Thus the sequence (u,,), . has a limit in W#?(Q). This proves that W#?(Q) is complete. [

neN
The proofs of the following two results are omitted (see [Breézis]).

Theorem 2.18. If p €]1, +oo[ then WP (Q) is reflexive.

Theorem 2.19. If p € [1, +o[ then W*P(Q) is separable.

Proposition 2.20. Let s = 0. Then the map

1

oy ([, 0+ ey aei@de)

defines a scalar product on H*(R?). When s is an integer, this norm is equivalent to the
norm defined by (2.6) with p = 2.

2.2.2 Approximation by smooth functions

We know that for p € [1, +oo[ the set C°(€2) of smooth and compactly supported functions
on the open set Q is dense in LP(2). In this paragraph we will see in what sense we can
approach functions in W*P?(Q) by smooth functions.

More precisely, we prove the density of smooth functions in the Sobolev spaces when
Q) = R% This will not be the case in general domains. Since the closure of CF(f) in
W¥P(Q) will play an important role in applications, we introduce the following notation.

Definition 2.21. For k € N and p € [1, +00[ we denote by W2 (Q) the closure of C°(Q) in
WP (Q). We also set HE(Q) = W, 2().

Ezercise 9. For z €] —1,1[ we set u(x) = 1. Prove that for p € [1, +00] there is no sequence
(tn) eny in CF (] — 1, 1[) which goes to u in W(] — 1,1]).

As in LP(R%), the proofs will rely on regularization by convolution with a sequence of
mollifiers. Let p € C§°(R?,[0,1]) be supported in B(0,1) and such that {,, pdz = 1. For
n € N* and x € R? we set p,(z) = nép(nz).

Lemma 2.22. Let Q) be an open subset of R%. Let n € N* and let w be an open subset of
such that B(z, L) < Q for allz € w. Let p, € C(R?) be as above and let . Let u e WHP(Q).
Then py, * ue C(RY) n WrP(w) and for |a| < k we have in the weak sense on w

0% (pn # w) = pn * (0%u).

Proof. We prove the case k = 1, and the general case follows by induction. Let j € [1,d] and
¢ € CP(w). We have

- L(p” s u)(2)0;p(x) dv = ,f

B(0,1)

pulv) f w( — y)3;(x) dz dy.
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For y € B(0,1) the map z — u(z — y) belongs to WP (w), so

_ L(pn *u)(2)0;¢(x) do = J

B(0,1 w

: on(Y) L oju(z —y)p(x) de dy = J (pn * 0ju)(z)p(x) dx.

The conclusion follows. O

Notice that the lemma applies in particular with w = Q = R%.
Given v € WkP(R?) we set for n € N*

Up = Pp * V.
Then v, € C*(R?) n WkP(R?) and for a € N¢ with |a| < k we have
0%y, = pp * (0%0). (2.9)

In particular,
0.

lvn — vHW’“vP(Rd) o0

Moreover, if v is compactly supported then v,, € C5°(R?) for all n € N*.

Statement (2.9) can be seen as a particular case on R of the more general following result.
For the following two proofs we also consider y € C§°(R?) supported in the ball B(0,2) of
radius 2 and equal to 1 on B(0,1). Then for m € N* and x € R? we set x.(z) = x(Z).

Theorem 2.23. Let p € [1,+0[. Then CL(RY) is dense in WFP(R?). In other words we
have WP (R%) = Whp(R%).

Proof. Let ue WkP(R?) and ¢ > 0. Let o € N with || < k. By Proposition 2.12 we have
Xmu € WEP(RY) for all m € N* and

o o [0} a—
Ha (xmu) —0 u”LP(Rd) < 0<;< (ﬂ) Ha ’B(Xm - 1)8’8u||Lp(Rd) .

By the dominated convergence theorem we have for f < «

om0l ) < 10 Cm = Dl gy | [P0t o ——0,

|z|=m m—+00

so there exists m € N* such that
€
|u— XmuHWk,p(]Rd) < 5

We set v = xpu, and for n € N* we set v, = p, *v. Then v, € CSO(Rd) and for all a € N¢
with |a| < k we have by Lemma 2.22

10%vn — 00| Lo (ray = llon * (0%V) — 00| 1 (ray 0.

n—+o0

Then, if for n € N* large enough we set u. = v,, we have u. € C°(R?) and

g
|ue — 7’”wk-,p R S 55
RY) = 9

so finally
lue — UHW’W(R") SeE. O

Remark 2.24. For any € > 0 the function u. constructed in the previous proof is such that
luel g may < lull oo may-

The conclusion of Theorem 2.23 does not hold in a general domain . In other words,
Wég’p(Q) # WHFP(Q) (see Exercise 9 and Proposition 2.42 below). However we have the
following weaker result of approximation by regular functions on any compact subset of 2.
For a result of approximation on the whole domain €2 we refer to Proposition 2.32 below.
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Theorem 2.25. Letp € [1,+o[ and k € N. Let Q be an open subset of R%. Let u e WkP(Q).
There exists a sequence (uy), oy in Cf (RY) such that Un|o goes to u in LP(Q) and for any
open bounded subset w such that w < ) we have

Hunlw - ulWlec,p(w) et 0.

Proof. For x € RY we set

u(z) ifzeq,
v(z) = . i
0 if x € RM\Q.

Then we set v, = p, * v e C*(R?) and u,, = x,v,. We have

0.

lun — “HLp(Q) < Jun — UHLP(Rd) < xn(pn = v) — Xn”HLp(Q) + [IXnv — UHLP(Q) o too

Let N € N be so large that B(x, %) cQand xy =1 on B(m, %) for all x € w. Then for
|a| < k we have by Lemma 2.22

[0%(un = W)l Loy = 10%(n = V)l oy = lPn * (0%0) = 0%V 1oy 7> O

This proves that xv, goes to u in W*P(w). O

Ezercise 10. Let  be a bounded subset of R% and p € [1, +o0[. Prove that W, () is the
closure of CF(Q) in WhP(Q).

2.2.3 Examples of properties proved by density

It is not always convenient to prove results about differentiation in the weak sense, and
most of the properties of Sobolev spaces are proved by density. We first prove the result for
regular functions (smooth, or of class C* for a property in W*P?), and then the general case
is deduced by density.

Here we give some examples of results which are already known for regular functions and
which can be extended in the suitable Sobolev spaces by density.

We begin with the integration by parts on R<.

Proposition 2.26 (Green Formula on R?). Let Q be an open subset of R? and u,v € H(9).
For j € [1,d] we have

[ e =~ [ w@rv)an

Q
Proof. Let (uy), oy and (vy), oy be sequences in CF°(R?) which go to u and v in H'(R?).

The Green formula for smooth and compactly supported functions gives, for all n € N,

J (0jun)vn dx = —J Up (0j0p) da.
Q Q

Taking the limit n — 400 gives the result. O

We continue with the product of differentiable functions. If w and v are continuously
differentiable, then so is the product uv. The same result holds for weak derivatives. Notice
that in this result and the following we do not take functions in VVO1 "P(Q)). The approximation
by regular functions is given by Theorem 2.25.

Proposition 2.27 (Differentiation of a product). Let 2 be an open subset of RY. Let p €
[1,4+00] and u,v e WHP(Q) n LP(Q). Then uv € WHP(Q) and, for j € [1,d],

0j(uv) = (0ju)v + u(9;v). (2.10)
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Proof. Assume that p < +00. Let (uy), oy be a sequence in Ci°(R?) as given by Theorem
2.25. After extraction of a subsequence if necessary, we can assume that u, (z) tends to u(z)
for almost all z € R?. By Remark 2.24, we can also assume that lun oo ay < llull oo (gay for
all n € N. By Proposition 2.12, we have u,v € WP for all n € N and, for j € [1,d] and
¢ e CL(RY),
—J Upv0j¢pda = f ((0jun)v + un(d;v)) ¢ da.
R R

The limit n — 400 yields (2.10). In particular 9;(uv) € LP(R?), and the proof is complete if
p < +0.

Now assume that p = +00. Then uv and (d;u)v +u(d;v) are in L*(R?). Let ¢ € C°(R?).
Let x € C°(R?) be equal to 1 on a neighborhood of supp(¢). Then xu and xv are in
WP (R?) for any p € [1, +oo[ so

—J wvdjpde = —J Xuxvo;¢dxr = J (ﬁj(xu) XU + xu 8j(xv)) ¢dx
Rd R Rd
= f ((05u)v + u(0jv)) ¢ da.
R4
This proves (2.10) and concludes the proof. O

Then we discuss the chain rule, which will be important in particular for changes of
variables.

Proposition 2.28 (Chain rule). Let Q; and Qy be two open subsets in R, and let ® =
(®1,...,D4) : Q1 — Qo be a diffeomorphism of class C*. We assume that Jac(®) and
Jac(®~1) are bounded on Qy and Qq, respectively. Let p € [1,+00]. Then for u e W1P(y)
we have uo ® € WHP(Qy) and for j € [1,d],

d
(uo®) Z Oru) (7 Dy,
k=1

In particular there exists Cy > 0 such that
lwo @llyrpa,) < Collulyrm,) -
Proof. Assume that p < +o0. Let (uy), .y be a sequence in Cif (R?) which goes to u in the

sense of Theorem 2.25. Let ¢ € CP (1), K1 = supp(¢)) and Ky = ®(K;). Then K is a
compact of Qp. For n € N and v € C°(R?) we have

d
—f (tn © ®)0;0 dz = Zf (O, © B)0; By ¢ dox. (2.11)
R o IR
By the change of variables y = ®(x) we have
i o @~ 0001y = N~ w)(@@)P d
= = 0@l 1797 )] dy

S ”J(IYIHL%(K?) lup — UHip(Kz)

0.

n—+0o0

We similarly have, for all j,k € [1,d],

H(a]un O <I>)6k<1>] — (aju O <I>)6k¢>] HLP(K )
<0k @] oo (¢, ) 1(O5un © @) = (G0 @) 1y (g, ——— 0.

n— -+

We take the limit » — 400 in (2.11) and conclude when p < 400. The case p = 400
follows as in the proof of Proposition 2.27. O
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We finish this paragraph with the characterisation of H'(R?) by the difference quotients.
We recall that the classical notion of differentiability is defined by looking at the limit at
each point of the difference quotient. The following result gives a link between this point of
view and the weak derivative.

For u € L2(R4) and h € R%\ {0} we define the diffence quotient D,u € L?(R%) by

u(x +h) — u(a?)

Dpu(z) = ] (2.12)
Notice that for u,v € L?(R?) we have
f (Dpu)vdx = J u(D_pv) dx. (2.13)
Rd R4

Proposition 2.29. Let u e L?().
(i) Assume that we H*(Q). Then for h € R4\ {0} we have

1Dnul 2 gay < VUl p2gay -
(ii) Assume that there exists C > 0 such that for all h € R?\ {0} we have
IDhull 2y < C-.

Then w e HY(R?) and for all j € [1,d] we have
' ou

dx;
Proof. « Assume that u € CF(R?). Then for z € R? we have by the Cauchy-Schwarz
inequality

< C.

L2(R%)

2

e+ 1)~ u@) < ([ 1Vate s mlal at) < [ 19uto+ mf ar

Then, by the Fubini Theorem and the change of variables y = x + th,
1
J lu(z + h) — u(z)|* do < |h|2j f Vu(z + th)|* dxdt < |hf* | V|7 gy -
Rd t=0 JxeRd
This gives the first property.

e We denote by (e1,...,eq) the canonical basis of R%. Let j € [1,d]. Let ¢ € C5°(R?). For
t € R* we have

‘<u7D—t€j¢>L2(Rd) = ‘<Dt€ju7¢>L2(Rd) < C H¢HL2(R4) .

On the other hand, u € L. _(R?) so by the dominated convergence theorem we have

‘_ <ua aj¢>L2(Rd)

%LI}I(I] <u, D—tej ¢>L2(Rd) <C ”¢”L2(Rd) '

By the Riesz Theorem there exists v; € L?(R?) such that

Vo e CFRY),  —(u,0i0) 12 gay = (0, 8) L2 gay -
This proves that v € H(R?) with, for all j € [1,d],
' ou

oz; = H“J‘HLZ(W) <C
The proof is complete. O

L2(Rd)

Exercise 11. 1.Prove that the first statement of Proposition 2.29 holds in W?(R%) for
any p € [1, +oo[.
2. Prove that the second statement of Proposition 2.29 holds in W1 (R¢) for any p €]1, +0[.

2020-2021 13



M2RI - Elliptic PDE and evolution problems

2.3 Sobolev spaces on domains with boundary

In the previous section we have given some properties of the Sobolev spaces on R, or local
properties in general domains. In this section we look more carefully at the behavior of
functions in Sobolev spaces at the boundary of the domain.

The model case will be the half space
R‘i = {x: (x1,...,24) eR? : 2y >O}.

This is the simplest case because the boundary aRi = {0} x R%! is flat. Then, if the open
subset Q of R is sufficiently regular, the boundary 09 can be locally straightened out and,
with a partition of unity and a change of variables for each part, the problem on €2 is reduced
to a problem far from the boundary (where we can apply the results on R?) and a finite
number of problems on Ri.

It is the purpose of this section to make these ideas clearer and to deduce some results
for the Sobolev spaces on bounded subsets.

2.3.1 Regular domains

Let k € N* U {o0}. We recall that an open subset Q of R? is said to be of class C* if for any
w € 052 there exist an orthonormal basis 8 = (31, .., 34) of R%, an open subset O of R4~1,
a,be R with a < b and an application ¢ : @ —]a, b[ of class C* such that U defined by

d
U= {Z x]ﬂj) (1'2,. . '7'Id) € Oaxl e]a,b[}
j=1
is a neighborhood of w in R?% and
d
QnlU = {Z zjBj,x = (x2,...,2q) € O,11 € ]cp(z'),b[} .
j=1

In particular, in ¢/ the boundary 0f2 is the graph of ¢ in the basis 5. We can always construct
the basis § with the vectors of the canonical basis (e1,...,eq), possibly in a different order.
For o’ = (22,...,24) € O we set

d
B(z') = p(a)pr + > x;B;.
j=2

Then 092 N U is also the image of O by &. 5
Given w € 002 NV and ¢/ = (z2,...,24) € O such that w = ¢(a’), the outward normal
derivative to 2 at point w is defined by

_ B+ 3, 050()B;

v(w) 2
1+ V(@)

(2.14)

The is the only vector such that v(w)LT,(052), |v(w)| = 1 and, for some ¢y > 0,

e, Vte]—to,0],

wt tw(w) {g_e Q, vt eo,tof.

We define on 0f2 the topology and the corresponding Borel o-algebra inherited from the
usual structure on R%. We define the Lebesgue measure of a Borel set B € 0Q nU{ as follows:

o(B) = fo 151+ V(e da.
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Thus, if f is an integrable function on 02 N U we have

Lﬂmu fda = Jo f(ga(x))\/mdx’.

Then we can define Lebesgue spaces on 0€) as on any measure space.

For z = Z;'l=1 x;fB; € U we set

d
O(a) = (21— p(az,....xa))er + Y, e
j=2

Then ® is of classe C* and it is injective. So it defines a bijection on its image denoted
by W. Then W is open in R? and the inverse ®~! of ® is of class C* on W (® defines a
diffeomorphism of class C* from U to W). Moreover we have

PUNQ) =WAnRL

Notice also that for 2/ € O we have ®(¢(z')) = (0,2'), and then W; n R4 = {0} x O.

The interest of this change of variables is to transform a function supported in Q n U to
a function on R‘i, where the properties of Sobolev spaces are easier.

Notice that if €2 is bounded then its boundary 0f) is compact. This is not necessary but
it will simplify the discussion (an unbounded open subset can also have a compact boundary,
but we will not consider this situation here).

Now let © be a bounded open subset of R? of class C* for some k > 1. There exist
N e N*, open subsets Uy, ...,Unx, Wi, ..., Wy of R? and diffeomorphisms @ U; — W; of
class C* such that 02 U;V:1 U; and for all j € [1, N] we have ®(Q nU;) = R n W);.

If we set Q = Uy then U§V=o U; is an open cover of 0. We consider a corresponding
partition of unity (x;)o<j<n (x; € CL(R%,[0,1]) is supported in U; for all j € [0, N] and
Z;io x; =1 on ).

For u € W1P(Q) we set u; = y;u for all j € [0, N]. Then u = Z;.V:O u;, u; € WHP(Q)
for all j € [0, ]\/;]] , o is supported in a compact subset of €2, and u; is supported in a com-
pact subset of Q@ nU; for all j € [1, N]. In particular, the extension of uy by 0 on R¢ is in

WLP(R?), and (u;0®~1) belongs to WHP(RY nW);) (and can be extended by 0 to a function
in WhP(R4)) for all j € [1, N].

We will use this setting to prove results for Sobolev spaces on (2.

2.3.2 Extension

We begin with a result of extension. In order to deduce results in W1P(Q) from results on
WLP(R?) it is natural to extend functions in W1?(Q) to functions in WP(R?) (notice that
in the proof of Theorem 2.25 we were able to prove results on W¥?(w) for w cc Q precisely
because we had a function with a nice behavior on a bigger domain).

It is clear, at least in dimension 1, than extending functions by 0 outside 2 does not
always give a function in WP (R%). However, we have seen in Exercise 4 that in dimension
1 we can indeed extend a function in H'(R*) to a function in H'(R). We generalize this
observation to the case of a function in WP (Ri) and then, by the argument described above,
to the case of a function in WP (Q) for a regular bounded open subset ().

Proposition 2.30. Let p € [1,+]. For ue LP(RY) and z = (z1,...,3q4) = (21,2') € R?
we set

u(zy, ') if x1 > 0,

u(—z1,2’) if r1 <O.

(Pu)(z) = {
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Then Pu € LP(RY) and 1Pul 1o gay = 2% ||u||Lp(Ri). For u € WYP(R?) we have Pu €
WP (R?) with
01(Pu) = P(61u) and 0;(Pu) = P(du), 2<j<d,

where
N _Ju(x,2) if 11 >0,
(Pv)(z) = {—v(—m,x/) if x1 < 0.

In particular, P defines a continuous extension from WHP(R%) to WhP(R?).
Proof. ¢ We set R? = Rd\@. It is easy to see that |Puga |
so Pu e LP(R?) with HPuHiP(Rd) =2 ”u”iP(Ri)
e Forz = (21,...,24) e R? weset o(z) = (—x1,72,...,24). Let j € [2,d]. Let ¢ € CL(RY).

If ¢ is supported in R‘i we have

—f Pudjpdr = ff uojpdr = J djupdxr = J P(0;u) pdx.
Rd 1:53 1:53 R4

ip(Ri) = Hqujip(Ri) ifp < +0,

. If p = +o0 we have HPUHLOO(Rd) = ‘|UHL°°(R$_)'

If ¢ is supported in R% then, similarly,

_fRd Pudyds - _fRd (woa)dsode =~ | u(@000)ds

R+
J-R

P(0;u) ¢pdx.
R4

udj(poo)dr = JRd dju(poo)dr = J;Rd ((Gjuoo)pdx

d
+

We consider the general case. Let x € C°(R, [0, 1]) be even, equal to 1 on [-1,1] and supported
in |-2,2[. For n e N and = € R? we set x,,(z) = x(nx1). Since (1 — x,,)¢ is supported outside
JR< we have

- JW Pu(l — x,)0;¢dx = fj

Rd

Puds (1= xa)é) do = || P@u)1L = xa)ode.

d
RS

By the dominated convergence theorem this yields
—f Pudjpdr = J P(oju)pdx.
Rd Rd

This proves that in the weak sense we have d;(Pu) = P(d;u). In particular d;(Pu) € LP(R?)
. 1
with Haj(Pu)“Lp(Rd) =2» HajuHLp(]Ri)-

e We proceed similarly for the first partial derivative. We observe that for ¢ € C5°(R?) we
now have d1(¢ o 0) = —(d1¢) o 0, so if ¢ is supported outside IR we now have

—f Puoi¢pdr = J P(01u)¢dz.
Rd R
On the other hand (1 — x,,) does not commute with the partial derivative ¢;. But the

additional term is estimated as follows. Let R > 0 be such that ¢ is supported in R x
By-1(0, R) (B4_1(0, R) is the ball of radius R in R¢~1). Since  is even we have

J Pud1xn ¢dx
Rd

f wixn (6 — d 0 0) de
Rd

+

2
<l [ [ue )| olr, ') = o0, do’day
x1=0 I,EBd_l(O,R)

2
n

<4[x|, lo1¢ll., J"eB o) lu(z, 2')| da’ dary
z d—1Y,

x1=0

— 0.
n—+0o0

The conclusion follows as above. O
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Theorem 2.31. Let © be an open bounded subset of class C' in R%. Let p € [1,+]. Let
O be an open subset of R such that Q@ < O. Then there exists a bounded linear operator
P WhP(Q) — WLP(RY) (which is also bounded for the norm of LP(Q2)) such that Pu is
supported in O and (Pu)|q = u for allue WHP(Q).

Proof. Let u e WHP(Q). We use the notation introduced in Paragraph 2.3.1. Without loss
of generality we can assume that ; < O and W; is symmetric with respect to 8R‘i for all
j € [1,N] (for instance Wj is a ball centered on dR%). We denote by vg the extension of
ug by 0 on R%. We have lvolwrsray = [uolyyin@- Let j € [1, N]. We denote by 9; the
extension of u; o <I>j_1 on W; given by Proposition 2.30. It is supported in a compact subset
of Wj, and v; o ®; is compactly supported in ;. Then we denote by v; the extension by
0 of ¥ 0 ®; on R?. By Propositions 2.28 and 2.30 and Remark 2.16 there exist constants
Cs,Cy-1,Cp,Cy, > 0 independant of u such that

[3llwr oy = 175 © Billwr2as) < Co 3k, < CrCa s 0 @7 a0, )
< CpCoCo-1 Ujllyyinyna) < CPCaCo-1 Oy, ullyrnq) -
Finally we set Pu = Z;V:O v;, and Pu € WP (R?) satisfies all the required properties. O

We recall that given an open subset ) of R%, we denote by C$°(Q2) the set of restrictions
to Q of functions in C°(RY). When k = 1, the following result follows from Theorem 2.31
(applied with O = R%) and Theorem 2.23. For the general case we can extend Theorem 2.31
to the case k = 2, we can also give a direct proof.

Proposition 2.32. Let p € [1,4+00[ and k € N. Let Q be equal to le_ or be a bounded open

subset of RY. Let u € WFP(RL). There exists a sequence (uy) of functions in C(Q)
such that

neN

0.

lun — u“wk,p(Q) ot

Proof. We prove the case {2 bounded. The case 2 = Ri is more direct and is left as an
exercice. Let w € 9. We use the notation of Paragraph 2.3.1. Let u € W'?(Q) be
supported in Q N Y. We denote by @ the extension of u by 0 on R%. For 7 > 0 we set

d
U = {ijﬁja(@a-n,xd)EO,xl E]a,b—r[},

j=1
There exists 79 > 0 such that supp(u) c U,. For 7 €]0,79] and = € U, we set
ur(x) = u(x + 761).
We extend u, by 0 on U\U,. The restriction of u, to U N Q is in WFP(U Q) and the
derivatives of u, up to order k are the translations of the corresponding derivatives of w:
0% (ur) = (0%).

By continuity in LP(R9) of the translation we have

ur = wlyrnungy = 25 10%r = 8 ullngingy = D5 07 = v Iaga 75 O
o<k <k

where we have denoted by v® and v® the extensions by 0 of 0®u, and 0%u (then v*(z) =
v¥(z + 761) almost everywhere on R9).
Now let 7 €]0, 79] be fixed. There exists 79 > 0 if we set

V= U B<x7770)7

zesupp(ur )N

then for all y € V we have y + 78, € U n Q. Let p e C(R4,[0,1]) be supported in B(0, 1)
and such that §,, p = 1. For 1 €]0,70] and = € R? we set p,(z) = n~%p(z/n). For n €]0,no]
we set u” = p, * u,. Its restriction to U n Q belongs to CF(Q). Since u, € W*P(V) we can
prove as in the proof of Theorem 2.23 that

||’U,Z — Ur HW’“*P(UﬁQ) m 0.
It remains to chose 7 > 0 small enough and then n > 0 small enough to conclude. O

2020-2021 17



M2RI - Elliptic PDE and evolution problems

2.4 Sobolev inequalities

In this section we prove some inclusions between Sobolev spaces. The inclusions between
Lebesgue spaces are already known. In particular we know that LP(R?) is never included in
L4(R?) if p # ¢. The purpose here is to prove that if we add information about the derivatives
then we get better results. In particular we will prove (continuous) inclusions of the form
WhP(R?) < L9(R?) for suitable pairs (p, q).

As for Lebesgue spaces, we get stronger results on a bounded domain 2. In this case
we will prove compact inclusions. For instance, H!(Q) is compactly embedded in L?(2).
This means that if a sequence of functions in H1(f2) is bounded, then it has a convergent
subsequence for the L?(€2) norm. This result will be of great importance for the analysis of
PDEs. We will already use this fact in the following section (see the proof of Theorem 2.49).

2.4.1 Morrey’s inequality

We have already seen in Proposition 2.6 that if I is an interval of R then for any p € [1, + 0]
we have WP (I) = L*(I) (and that a function in WP (1) is also Holder- continuous ifp>1).
This result only holds in dimension 1. Indeed if 1 < p < d then for a € ] ¢ —|— 1,0[ the

function z ~— |z|* belongs to W1P(B(0,1)) but not to L*(B(0,1)). The purpose of the
following theorem is to prove that we recover a result analogous to Proposition 2.6 if p > d.

Ezercise 12. Find u e WH4(R?) such that u ¢ L®(RY).
Theorem 2.33 (Morrey’s inequality). Let p €]d, +oo[. We have

Whe(RY) < LP(RY) A €15 (RY)
and there exists C' > 0 such that, for ue WHP(R?),

Il poo gay < C lullyprogay »

_d
Vai,za € RY,  u(z)) — u(z2)| < Clay — zof 77 IVul s ay -

In dimension 1, we have used the fundamental theorem of calculus to compare u(x) to
u(xzp) for some fixed zo. It gave a one-dimensional integral which was controled by the
norm of «’. In higher dimension we can still write the fundamental theorem of calculus for
regular functions but the corresponding one-dimensional integral is not controled by the d-
dimensional integral which defines the norm of Vu. The trick in the following proof is to
compare u(x) to the mean value of u on an open subset of R?. This will give a d-dimensional
integral controled as stated in the theorem.

Proof. « We consider u e CF(R?). The general case will follow by density. Let x € R? and
let O be an open subset of R?. We set

§(z,0) =suply — z|.
yeO

For y € O and h = (hy,...,hq) = y — x we have

) = )| < | 1

d
dtu(erth)‘ dt
f Z by |0yu( + th)] dt

<6z, 0) EL 0;u(z + th)] dt.

For ¢ €]0, 1] we set
HO —x) = {t(y — ),y € O} .
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If we set

then we have
1
|O| yeO

ot f J,
< 0; u x +th)| dtdh
O Jneion Z' )

lu(z) — uo| < |u(e) — u(y)| dy

6(z,0) J
< |0;u(x + n)| dndt.
|O‘ 0 td J; net(O—z) !

By the Holder inequality we have for ¢ € [0, 1]

: —1
ZJ(O " |(}ua:+77|d77 Z (J o) \9jU(9:1+77)|” dn) \t(O—x)| -

=

TVl oy
S0

6(z,0)|O] > HVUHLP(Rd)

1-4
p

1
u(e) ol < 32, 0) |0+ [Vl gy [ i = (2.15)
0

e Now let 21,22 € R? and let O be the open ball with diameter [z}, z3]. We have §(z1,0) =
d(w2,0) = |z1 — 22| and |O] = 54 |z1 — z5|* where cq is the size of the unit ball in R%. Thus

_1
P

d
25 e

_d
fu(ar) = u(a2)| < fulan) ~ vol + fu(zs) — uol < =4 o1 — 2] F [Vl )
p

This gives the second statement. Now for x € R? we apply (2.15) with O = B(z, 1), the ball
of center x and radius 1. The Hdélder inequality gives

_1
luol < ¢q” |ull Lo (gay
o)

-1 1
lu(z)| <c;” <|u”LP(Rd) 1_4 |V“|Lp(Rd)> :

P
This completes the proof. O

2.4.2 Gagliardo-Nirenberg Inequality

In this paragraph we consider the case p < d. This is particularly interesting for the common
case p = 2.

We want to prove that if we control Vu in some Lebesgue space, then we can control u
in another Lebesgue space. Assume that there exists ¢ € [1, +oo[ and C' > 0 such that

Vo e CF(RY), 1vll paray < C VY Lo (ray - (2.16)

Let u € WHP(RY)\ {0}. For A > 0 and = € R? we set uy(z) = u(Ax). Then for all A > 0 we
have

_d _d
AT ”u”Lq(]Rd) = HU/\HLq(Rd) < C||vu)\HLP(Rd) =COA'Tw HU’HLP(Rd)'

Letting X\ go to 0 or to +00 we see that we necessarily have
d d

——=1--. 2.17
. » (2.17)
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In the following theorem we prove that if (2.17) holds then we indeed have (2.16). For
p € [1,d[ we define p* € [1, +o0[ by

« pd 1 1
p = ) 7*:7
d—p p P

(2.18)

SHE

Notice that we have p* > p and p* — +ow0 if p — d.

Theorem 2.34 (Gagliardo-Nirenberg-Sobolev inequality). Let p € [1,d[ and let p* be defined
by (2.18). There exists C > 0 such that for all u € C}(R?) we have

Jall o ety < C IVl oty -

Proof. ® Let ue C}(R?). For x = (x1,...,74) € R? and j € [1,d] we have

T
|U(IL‘)| = ‘f (')ju(;vl, ce 7.’L’j,1,t,.’L'j+17 e ,xd) dt‘ < ’Uj(fj)d_l
-0
where Z; = (z1,...,2j_1,%j41,...,2q) and
3 1
vj(Z;) = (J. Vu(zq,...,xj—1,t,Zj41,...,2q)] dt)
R
This gives
d
_d_ -
Ju(@)| ™7 < [ o)
j=1
Now we prove by induction on d > 2 that if we set
d
v:reR?— nvj(;%j),
j=1
then we have 4
"UHLl(]Rd) H ijHLd—l(Rd—l) . (2.19)

The case d = 2 is easy. Assume that (2.19) is true up to the dimension d — 1 for some d > 3
We fix z1 € R and see v as a function of &’ = (x9,...,24). By the Holder inequality we have

d d
d—1
f o(@1,2') do’ < 51 s gy (J ﬂ@j(xl,x;.)deg...dxd) ,
Rd—1 Rd—1

j=2
where for j € [2,d] we have set & = (v2,...,%j-1,%j41,...,%4). The induction assumption
gives

d d . s

H (1,7 J = dy < H a:hxj) dx

Ri-1 5 5 jez \JRi—2
and hence
! ’ g /\d—1 / ﬁ
J v(zy, @) da’ < [[01]| a1 (ga-) H J 0 (1, 25)" " d]
Rd—1 j=2 Rd—2

After integration over 1 € R we get, by the Holder inequality,

1

d—1
~ ~ [~ d 1
[ —— HURM o)

This is (2.19). We deduce

fRd ()| T dz < UR V()| dac)dil,
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which gives the result for u € C}(R?) when p = 1.
e Let y> 1. The case p = 1 applied to |u|”" u (still in C}(R%), with gradient ~ [u|”~" V)
gives

d-1 p=1 1
a ( ) P P
(J u|f_d1) < ryf lu|" 7 |Vu| dz < v (J |u] 4 T dx) (J VP dx)
Rd R4 Ré Rd

(2.20)

If we choose

we have
vd _(y—1p _ dp _
d—1 p—1 d—p ’

and the conclusion follows for u € C}(RY). The general case u € W1P(R?) follows by
density. O

In Theorem 2.34 we have only used the fact that Vu € LP(R?). If u is also in LP(R)
we have better conclusions. We know that LP(R9) n * (R?) < LI(R?) (with continuous
inclusion) for any g € [p, p*]. This is the first statement of the following theorem. The second
statement is about the limit case p = d. Notice that Theorem 2.34 does not hold with p = d
and p* = 4+ (see Exercise 12), but for u € WH4(R?) we have a result similar to the case
p <d.

Theorem 2.35. (i) Let p € [1,d[. Then for all q € [p,p*] we have WP(R?) < L4(R?)
with continuous injection.

(ii) For all q € [d, +oo[ we have WH4(R?) < LI(R?) with continuous injection.

Proof. We prove the second statement. We prove by induction on v > d — 1 that for ¢ €
[, del] there exists C, > 0 such that, for all u e C}(R?),
[l Lomay < Cy lullwragay - (2.21)

The result will follow by density. (2.21) is clear when v = d — 1. We assume that it is proved
up to v — 1 for some v > d. Let u € C}(R?). We use estimate (2.20) from the previous proof
with p = d. With the induction assumption this gives

ol Y
ol sy < s IV <O Pl

This gives (2.21) for ¢ = 7% The case g € [d, 7% follows since u belongs to L(R?). [

2.4.3 Sobolev embeddings on a bounded domain

So far we have only proved inclusions between Sobolev spaces on R%. Our purpose in this
paragraph is to prove analogous results for Sobolev spaces on a bounded open subset 2. For
this, we will use the extension operator of Theorem 2.31 to deduce inequalities on €2 from
their analogs on R,

However, as said in introduction, we will get better results on 2. For instance we recall
that LP(Q) < L9(Q) if p > ¢. This will automatically improve the result of Theorem 2.34 (in
particular the discussion before Theorem 2.34 is not valid on a bounded domain).

Another very important difference between the case of R? and the case of a bounded
domain is that some inclusions will be not only continuous but also compact.

Definition 2.36. Let X and Y be Banach spaces. A bounded linear operator T : X — Y is
said to be compact if for any bounded sequence (u,)neny € X', the sequence (T, )nen has a
convergent subsequence in Y. Equivalently, T" is compact if T'(Bx) is compact in Y, where
Bx is the unit ball in X.

Compactness for a set of functions is usually given by the Ascoli-Arzela Theorem, which
we recall now.
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Theorem 2.37 (Ascoli-Arzela Theorem). Let K be a compact metric space and let F be a
bounded subset of C(K,R). We assume that F is equicontinuous:

Ve > 0,36 >0,Vfe FVr,ye K, d(z,y)<d = |f(z)— f(y)| <e.
Then the closure F of F in C(K) is compact.
The results of Theorem 2.35 and 2.33 are extended to bounded domains as follows.

Theorem 2.38. Let Q) be a bounded open subset of class C* in R, Let p € [1,+00]. Then
we have the following compact inclusions.

(i) If p < d then for all q € [1,p*[ we have WLP(Q) cc LI(Q).
(ii) For all q € [d, +oo[ we have WH4(Q) cc LI(Q).

(iii) If p > d then we have WHP(Q) cc C0(Q).

In particular we always have W1P(Q) cc LP(Q).

Proof of Theorem 2.38. o We begin with the last case. By the extension Theorem 2.31, we
can see functions in W1P(Q2) as functions in W1P(R?) supported in some fixed compact of
R?. If p < +00, the conclusion follows from the Morrey inequality (Theorem 2.33) and the
Ascoli-Arzela Theorem 2.37. Since W% (Q) is continuously embedded in W1?(Q) for any
p €]d, +ol, it is also compactly embedded in C°(€).

e Assume that (i) is proved and let ¢ € [d, +oo[. Then there exists p € [1,d[ such that
q < p*. Then we have

Wh(Q) € WP(Q) cc L(9),

where the first inclusion is continuous (since €2 is bounded) and the second is compact by (i).
Thus it only remains to prove (i).

e Let g € [1,p*[. We consider a sequence (uy), . bounded in WP(Q). As above, we
identify this sequence with a sequence (still denoted by (u,,),y) bounded in WP(R?) such
that the functions u,, are supported in the same bounded open subset Y. Let p € CF° (R4 R,)
be supported in the unit ball and such that Sde = 1. Fore > 0 and z € R? we set
pe = 2p(£), and then u, = p. * u, € C(R?). Let € > 0. For n € N and = € R? we have

[ (2)] < [pell o raty [wnl 1 oy

and
Vg, (z)] < HVPEHLOO(W) ”UnHLl(u) ]

so the sequence (uS)nen is bounded in C°(R?) and uniformly equicontinuous. Moreover

the functions uf, are supported in a common bounded set V of R?, so by the Ascoli-Arzela
Theorem 2.37 there exists a subsequence (u;,, )rey Which converges uniformly in 1 and hence
in Y. This gives

€
Nk

=0.
La(U)

lim sup
J,k——+0

13
Uy — U

e We already know that uf, goes to u, as ¢ — 0 in L?(U) for all n € N. We prove that this
convergence is uniform with respect to n. Let v € C}(R?) be supported in ¢. For £ > 0 we
set ve = pe *v. Then for x € R? we have

ve(a) (o) = | ) || Vol = ety) -y,

B(0,1)

) (oo~ 2y) — v(a)) dy = < |

B(0,1)

and hence

oo =l = [ Joc(o) = ot do < |

B(0,1

) j L Voo -ty dedidy

<e|Volpigy-
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By density, the same estimate holds for any v € W'P(R?) supported in U (note that if
Um € CH(R?) goes to v in WHP(R?) then p. * v, goes to p. * v in L'(R?)). Let 6 €]0,1[ be
such that
I 0. 1-6
q p*

By (2.22) applied with v = w,, and the Gagliardo-Nirenberg inquality (Theorem 2.34 there
exists C' > 0 independant on u, n or & such that

0 1-0
s, = tnll paey < sy = alls @y lus = vl o gy < O [Vunl oy

This proves that uf, goes to u, in LY(U) as e — 0 uniformly with respect to n € N. Then for
any 1 > 0 we get

limsup ||u,, —u <.

P H ¥ Tk ”Lq(u)

Using a standard diagonal argument, we obtain a subsequence which goes to 0 in L9(U) and
hence in LI(Q). O

Ezercise 13. Let p € [1,d[. Prove that we have the continuous inclusion W1?(B(0,1))
LP*(B(0,1)), but that this inclusion is not compact.

2.5 Traces

We recall that functions in the Sobolev spaces are not really functions, but equivalence classes
of functions pairwise almost everywhere equal. In particular, for v in some Sobolev space
WkP(Q), it does not make sense to consider the value of u at some point zq € Q.

We have seen in Proposition 2.6 that, in dimension 1, an element u of WP(I) has a
continuous reprentative . It is reasonnable to consider @(xg) as the value of u at z¢. Indeed,
if ¥ is another representative of u then ©(z() can be far from @(zp), but for almost all « € I
“close to xy” then 0(x) is equal to @(x) and hence “close to u(xg)”.

However, this possible definition only works in dimension 1, since in higher dimension an
element of W1P(Q) does not necessarily have a continuous representative.

In applications, it is not crucial to give the value of a function at a point, but we are
interested in what happens at the boundary of the domain. This will be important for in-
stance for integration by parts (Green formula in higher dimension), where the value of the
function at the boundary appears. For regular domains, the boundary is a submanifold of
dimension (d — 1). This is still of dimension 0 for the Lebesgue measure on €2, but if d > 2
this is in some sense “bigger” than a point.

Our purpose in this section is the following. Given a regular open subset Q of R? and

ue WHP(Q), we want to give a natural sense to the restriction of u on the boundary 0€2, in
such a way that if u belongs to C°(2) then the new definition coincides with the usual one.

2.5.1 Trace

As explained in the previous section, we begin our analysis with the model case Q) = R‘i and
then, using a partition of unity and changes of variables, we will give a more general result.

Proposition 2.39. Let p € [1,4+00[. There exists C > 0 such that for u € C’SO(@) we have
|l (0, ')Hip(ngd—l) <C HUHI[;VI,P(R‘i) :

For the proof we only have to integrate over R?~! the one-dimensional case which is very
close to Proposition 2.6:
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Proof. For 2’ € R4 we have

+00
|u(0,2)|" < pfo |0 uls, )| Ju(s, )"~ ds

so, by the Hélder and Young inequalities,

+o0 F / rtoo =
|u(0,x/)|p <p (J |8x1u(s,x’)|p ds) (J |u(s,x’)|p ds)
0 0
+00 +0
< f |0z u(s, )" ds + (p — 1)f lu(s, )| ds.
0 0
After integration over =’ € R we get
HU(Oa ')”I[)/p(Rd—l) <(p-— 1) ||uHZ£p(Rd + HamuHLp(Rd )
and the conclusion follows. O

Theorem 2.40. Let Q be an open subset of R? of class C'. Let p € [1,+0[. There is a
unique bounded linear operator

7o : WHP(Q) — LP(09)
such that -
Vue WHP(Q) n C%(Q),  o(u) = uloq.
Proof. Let u e CP(2). We use the notation of Paragraph 2.3.1. Let j € [1, N]. We have

| e = | Jue@)l y1+ 9@ @
QnU;

<C, J Pdd =C, |(wo®™h)|” da’,

d
oRL

where C, = supycpr/1+ IVe(2)]* and (uo ®1) has been extended by 0 on RY. By
Propositions 2.39 and 2.28 there exists C'; > 0 independant of u such that

anu [u” do < CpCJuo @71, pa < C sl -

Then,
N

Hu|(79||Lp(Q = 2 ”uj\aﬂ Lr(Q Z \u] lep Q-

j=1 j=1

Finally, there exists C' > 0 such that for all u € CF(Q2) we have

H“\(?QHLP (0Q) < Clully, P(Q)

Since C§°(€2) is dense in WHP(Q), the map u € C§(Q) — ujan € LP(09) extends to a unique
continuous map on W'?(Q). Moreover, if u € WHP(Q) n C°(Q) then the sequence (uy),,
given by the proof of Proposition 2.32 goes uniformly to u and hence the restriction of u,
goes to the restriction of u uniformly on 02, and hence in LP(0). O

The following notation is motivated by Theorem 2.47 below:
Definition 2.41. When p = 2 we denote by HY2(dQ) the range of 7o : H*(Q) — L(Q).

We do not discuss the properties of H'/ 2(09) here. However we will use in the following
chapter that even if o is not surjective, H/2(0Q) is dense in L?(092).

Proposition 2.42. Let Q be an open subset of R of class Ct. Let p € [1,+o0[ and u €
WLP(Q). Then we have
V) =0 <« ueWyr().
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Proof. » Assume that u € Wy’ (R?). Then there is a sequence (uy,),, .y in CF(€2) going to
w in WHP(Q). Since vo(uy,) = 0 for all n € N and 7y is continuous, we have yo(u) = 0.

e For the converse, we consider the case 2 = R‘i and u supported in a bounded domain.
Then, with a partition of unity and changes of variables as above, we get the general case.
So let u € WHP(R%) such that yo(u) = 0. Let (uy),,oy be a sequence in C(R%) which goes
to w in WHP(R?) (see Proposition 2.32). Let n € N and 1 > 0. For 2’ € R4~! we have by
the Holder inequality

e’ < (Jun0.2)] + [ [Funtos)] as)
<277 |un (0,2))7 + 2771 on [V (s, 2')] ds)p
<227 u, (0,2))]" + 2071t f: |Vun(s,2”)|” ds,
so for e > 0

£ €
J J |un(ﬂc1,x’)|p da’ dzy < 2P~ e H'yo(un)HiP(Rd) + 2p_1€pf ‘[ |Vun(s,m’)|p dsdzx’.
0 Rdfl + R 0

d—1

Taking the limit n — 0 yields, by continuity of the trace,
[ullZoqo.cpxra-1) < op—1.p IVulTs qo.cpxma—ty - (2.23)

Let x € C*(R4,[0,1]), equal to 1 on [0,1] and equal to 0 on [2, +o[. Then for n € N*
and x = (£1,...,24) € Ri we set xn(x) = x(nz1). For n € N* we set u, = (1 — xn)u, so
that u, € C°(R%). By the dominated convergence theorem, we have

lun — U”Lp(Ri) = ”XnuHLp(Ri) ot 0.

For n € N* we have
V(tn —u) = (1 — xn) VU — ud1 Xn-

The first term goes to 0 in LP(R%). For the second term we use (2.23) to write

2

n

e N I

T1=1 x/eRp—1

<277 X[, ”v“Hip(]o,%[de—l)

—— 0.
n— -+

This proves that
lun — UHWLP(R‘jr) —0,

n—+0o0

and hence u € WP (R%). O

Ezercise 14. Find an open domain 2 and u € W1 ® () such that ujpn = 0 but u is not in
the closure of CF () in WhH+*(Q).

2.5.2 Normal derivative

Let ©Q be a bounded open subset of class C! in R%. For the rest of this section we only
consider the case p = 2.

Let u e H?(Q2). For j € [1,d] the derivative d;u belongs to H'(£2) and hence has a trace
on 0€). Then we set

d
M) = du = v(0u)v; € L*(29),

=1
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where v = (v1,...,vq) is the outward normal derivative (see (2.14)). Notice that if u belongs
to C1(2) then on 0§ we have
oyu = Vu - v.

This defines a continuous function v; from H?(2) to L?(2). We can prove (see Theorem
2.47 below for the case Q = R%) that

{opu,ue H*(Q)} = H/(Q).

2.5.3 Green Formula

As said above, one of the motivations for the definition of the traces is the generalization
of the Green Formula to functions which are not regular in the usual sense. The following
results are deduced from the regular analogs by density of regular functions and continuity
of the traces. For u e W' (Q) we can write {,, udo instead of §,,vo(u) do and §,, d,uvdo
instead of §,., v1(u)vo(v) do.

Theorem 2.43. Let u,v e HY(Q). Then for j € [1,d] we have

J uajvdsz uvdaff djuvdx
Q oQ Q

Theorem 2.44. Let u e H*(QY) and ve HY(Q). Then we have

— | Auvdzr = — o,uvdo + | Vu-Voudzr.
Q oQ Q

2.5.4 Appendix

In this additional paragraph we continue the discussion about traces and the Green formula.
In particular we define, via the Green Formula, a normal derivative for functions which are
not in H2().

We have denoted by HY?(Q2)  L?(2) the range of the trace 7o defined on H'(2). This
is a vector space, which can be endowed with the following norm.

H9||H1/2(asz) wienbfrl HwHHl(Q) :

Yo(w)=g

We notice that H} () = {w e H'(Q) : yo(w) = g} is a nonempty (by definition of H/2(0Q))
and closed (since g is continuous) affine subspace (since 7 is linear) of the Hilbert space
H'(Q), so by the Hilbert projection theorem there exists a unique R(g) € H, () such that

HQHHl/z(aQ) = HR(9)||H1(Q)~
Moreover R(g) is the only solution in H_} () of
Yv e Hé (Q), <R(g), U>H1(Q) = 0.

From this we can deduce that the application which maps g € H/?(Q) to R(g) € H'(Q) is
linear, and then that HY2(dQ) is a Banach space:

Proposition 2.45. H'2(0%) is a Banach space.

Proof. Let (gn), oy be a Cauchy sequence in H'/2(Q). Then (R(gy))nen is a Cauchy sequence
in HY(Q). Since H(Q) is complete, R(g,) tends to some w in H (). We set g = vo(w) €
H'Y?(0Q). Then we have

l9n = 9l 200y = 18(9 = 92) |10y = |B(9) = B(gn)l g1 (q) —— O-

n—+0o0

This proves that the sequence (g,,), oy has a limit in H1/2(42), and hence that H'/2(0Q) is
complete. O
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We denote by H~1/2(09) the dual of H'/2(092).

Proposition 2.46. Let ue H'(Q) such that Au e L*(Q). Then the map
ge HY?(Q) — J (Auvg + Vu - V) dz, (2.24)
Q

where vy € HY(Q) satisfies vo(vy) = g is well defined (the definition does not depend on the
choice of vy) and defines a continuous linear map on H'2(6Q0) which we denote by d,u.

We recall that in a general domain 2 the assumptions that v € H'(Q) and Au € L?(Q)
do not imply that u € H%(Q).

Proof. We first observe that if v; and vy in H'(Q) are such that vo(w;) = y0(ve) = g then
v1 — vo belongs to Hg (), so there exists a sequence (¢y,),,cy in C§°(€2) which goes to vy — v2
in H(Q). For all n € N we have

JQ (Au ¢n, + Vu - V(bn) dx = <AU, ¢”>’D’(Q),D(Q) + <Vu, V¢n>D,(Q)7D(Q) = O,
so, taking the limit n — +o0,

f (Aum + Vu - Vvl) dxr = J (Au v + Vu - va) dx.
Q Q

This proves that the definition in (2.24) does not depend on the choice of vy, and the map
d,u is well-defined on H'/2(09).
For g € HY?(09) we have

J- (Auvg + Vu - va) dzx
Q

< (18wl sy + VUl 20y ) oglin ey

and hence

fQ (Au vg + Vu - va) dx

< (18wl a(ay + 1Vul 2 ) 191200 -

This proves that the map é,u is continuous on H'/2(4Q). Since it is also linear, this defines
an element of H~1/2(09). O

By definition, we have the following Green formula for u,v € H*(2) such that Au e L?:
*J A’LLU dl’ = — <(3l,u, U>H*1/2(0Q),H1/2(€Q) + J VU . V’U. (225)
Q Q

We finish this section about traces by giving a general result on 2 = le_ by means of
the Fourier transform. This will in particular ensure that the two definitions of H/? on
R4=1 ~ 0R? are equivalent, and that the trace on H'({2) and the normal trace on H?(Q)
have the same range.

Theorem 2.47. Let ke N and s > k + % Then the map

{S(Rd) —  S(RI)
u —  oku(0,-)

has a unique continuous extansion vy, : H*(RY) — He k=2 (R4=1). Moreover, ~y;, is surjective
and there exists a continuous linear map Ry, : HSF~2 (R¥=1) — H*(RY) such that

Ve o Ry, = Ist_k_%(Rd,l) :
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m+1

Proof. ¢ We first observe that for me N, > 0 and o > we have, with the change of

variable t = /n0
J (0 + 1) dt =" " Chp,  where Cpyp = f 0™ (1 + 62) =7 df. (2.26)
R R
e Let ¢ € S(R?Y). For 2’ € R4~ we have by the inversion formula

oto0.0) = i [ e ([Lieritan ¢ ae ) ae.

so the Fourier transform (in R4~1) of 0¥¢(0, ) is given by
1 /
916 = 5o [ Getacen ) de (227

By the Cauchy-Schwarz inequality and (2.26) applied with n = 1 + |¢/|? we have, for all
5/ e Rd_l,

o) < ([166. 00+ & + 17y s ) ([ @ e i) ae)

< Cara(1+ ) O[B4 € + 1) e
g1
Multiplying by (1 + |§’|2)$ "2 and integrating over ¢ € R%~! gives
CQk
O guny < S22 10l

This proves the first statement of the theorem.

e Now we prove that ; is surjective with a continuous right inverse. We begin with
ve S(RIY). Let g e S(R?!) be the Fourier transform of v on R?~!. The expression (2.27)
suggests to find f such that

o) = 5= | (i) e der (2.28)
T Jr
Let N > 1(s—k—1). For £ = (&,¢) € R? we set

2 PMO+WWN§,

f&) =

In particular, for all ¢ € R?~! the map & — (—i&)Ff(&1,¢€) is integrable on R and (2.28)
holds by (2.26). Moreover, by (2.26) again we have

| asieprisor
Rd

47‘(‘2 112\2N / 2( (2N+k+1—s) )
— [l ([ evag ) ae

k,N+1

472C s 1
_Am 022N+k+1 f (1+ 15/’2)3—;3—5 ]g(g’)f de’
Ck N+1 Rd-1

Then if we denote by u the inverse Fourier transform of f we obtain that u € H*(R?) and

HUH2 < M Iv] X
Hs(R4) == CZ Nl H°~F— 3 (Ra-1)
2

(2.29)

Moreover (2.28) ensures that v (u) = v. Thus we have defined a map Ry, : S(R4™1) — H*(R%)
such that vy o Ry = Id. By (2.29), Ry, extends to a continuous map from H* %~z (R%1) to
H*(R%), and the proof is complete. O
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2.6 Poincaré Inequality

In Theorem 2.34 we have given an estimate with the norm |Vul|;, ga) and not the full norm
[w]pa.p (ra)- In application, and in particular for the analysis of second order PDEs, we will
often be in the situation where we only control the norm of the gradient of the function and
not the function itself.

It turns out that in some particular situations, the norm of the function is in fact controled
by the norm of the gradient:

HUHLP(Q) <C HVUHLP(Q) : (2.30)

In this case, |Vul,, defines a norm on W?(), equivalent to w1, q)- An inequality
like (2.30) is called a Poincaré inequality. This is the subject of this paragraph.

Before giving precise statements, we notice that a Poincaré inquality cannot hold in a
space which contains constant functions. In an unbounded domain, troubles can come from
slowly varying functions. For instance on R we consider for n € N* the function w,, defined

by
1— Lz <n
un(@) {0 if |z| > n.
Then we have H’U‘Hi%R) = 2 and H“/Hiz(u&) = 2. A Poincaré inequality cannot hold in H'(R).

In fact, we have discussed all the problems to prove a Poincaré inequality. Roughly speak-
ing, on a bounded domain, and if we remove constant functions, a Poincaré inquality holds.
The first way to remove constant functions is to consider only functions vanishing at the
boundary.

We first recall that Lemma 2.7 also holds in higher dimension.

Proposition 2.48. Let Q be an open connected subset of R%. Let u € Li (Q) be such that
Vu =0 (in the sense of distributions). Then there exists a constant o such that u = o almost

everywhere.

Proof. We proceed by induction on the dimension. The case d = 1 is already known. We
assume that d > 2 and that the result is known up to the dimension d — 1.

It is enough to consider the case Q0 = H?Zl]aj,bj [. Let x € C§°(Ja, b1]) be such that

Ssll x(z1)dzy = 1. For 2’ € Q' = H?:Q]aj7 b;[ we set

by
v(z') = j u(zy, 2’)x(z1) dry.

This defines a function v € L{ (Q'). For ¢ € C°(Q') and j € [2,d] we have
ff v(2")0;9(2) da’ = ff w(@y, ') x(x1)0;¢(2") doy da’
' Q

= [ ulwr a0y (xle)0() do ds’
Q
=0.
This proves that, in the sense of distributions, we have Vv = 0 on Q' By the induction

assumption there exists a such that v = « almost everywhere on €.
Now let ¢ € C(Q). For x = (z1,2) €  we set
b1
p(a') = o1, 2") dzy

ai

and
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Then ¢ € CL(Q) and ¢ = 0, + x ® ¢, s0

L up de = Lb: J /u(xl,x’)x(xl)&(x')dx’ day = J ,vggdz' = aL/ pdx’ = ozfgd)dx.

This proves that u = o almost everywhere on ). O
Now we can prove the Poincaré inequality.

Theorem 2.49. Let Q be an open bounded subset of R, Let p € [1,+o[. Then there exists
C > 0 such that
1,
Vue WiP(Q), Jul oy < C 1Vl Loy -

Proof. Assume by contradiction that the statement is not true. Then for all n € N there
exists u,, € Wy (Q) such that

HunHLP(Q) >n HVUNHLP(Q) :

Since this inequality can be divided by |[un |1, (g (Which cannot be 0), we can assume without
loss of generality that ||un |,y =1 for all n € N. Then

HVUHHLP(Q) 0, (2'31)

n—-+0o0

and the sequence (u,), .y is bounded in W'P(€). Since WP (Q) is compactly embedded in
LP(Q) (see Theorem 2.38), there exists an increasing sequence (ny),.y € NV and v € LP(Q2)
such that

ln, — U“LP(Q) m 0.

With (2.31), this implies that the sequence (u,, )ren is a Cauchy sequence in W1P(Q). Since
W1LP(Q) is complete (see Theorem 2.17), the sequence (uy, )ren has a limit in W1?(Q). This
limit is necessarily v. In particular v belongs to W1P(Q), and by (2.31) we have Vv = 0.
By Proposition 2.48, v is constant on each connected component of 2. Since w,, belongs to
W, P(2) for all k € N, we also have v € Wy (), so v = 0, which gives a contradiction with
the fact that |un, |12y =1 for all k € N. O

Notice that the proof of Theorem 2.49 does not give any clue about the constant C' of
the inequality. We now give a similar result, with a more constructive proof. Moreover the
open set ) is only required to be bounded in one direction. This means that € is included
in a strip of the form

Qc {xeRd,x-ee]a,b[},
for some e € R?, |e| = 1 and a,b e R.

Theorem 2.50 (Poincaré inequality). Let Q be an open subset of R%, bounded in one direc-
tion. Let p € [1,+o[. Then there exists Cq > 0 such that, for all u e WyP(Q),

[l ooy < CalVul L) -
For instance, we can take Cq = (b — a)p.

Proof. e Tt is enough to prove the estimate for u € CF(2). Then the result will follow
by density of CL(2) in W, *(92). We can extend u by 0, this gives a function in CZ°(R?)
supported in €.

e  We first consider the one-dimensional case. Then there exists a,b € R such that Q c]a, b].
Then we can extend u as a function in C3°(]a,b[) which vanishes outside 2. Then for all
x €]a, b[ we have (u(z)P)" = pu’(x)u(z)P~! so, by the Holder inequality

b
-1 —1
@l <p [ [ a6 ds < p el 10
After integration over ]a, b[ this gives

Hu“zp(ﬁ) < (b - a)p HUHZ[),;(lg) Hu,HLP(Q) s
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and the conclusion follows after simplification by HuHi;(lQ)

e Now we consider the general case. Let (fi,..., fs) be an orthonormal basis of R? such
that

supp(u) < {y1f1 +y'f' : y1 €la, b,y e R},

for some a,b € R, where for ¥ = (y2,...,y4) € R we have set ¢/ f’ = Zj:z y;ifj- By a
change of variables and using the one-dimensional case we can write

b
j fu()[? dx = j j (g fy + ' ) dy dyf’
Q y'eRI—1 Jy;=a

< ((b—a)p)? L,eRd_l Lbl_a

b
<((b- a)p)pj j Vuyufr + o )| dyn dy’
y'eRI~ Jyi=a

a p
aiu(ylfl +y' [ dyy dy’
n

< ((b—ap) L Vu(@)? dr.

The conclusion follows with C' = (b — a)p. O

It can be important in application to have an explicit constant for the Poincaré inequality.
Computing the optimal constant for particular sets ) requires more work, and we do not
discuss this issue here, but we already have an upper bound.

After Theorem 2.50, the interest of the proof given for Theorem 2.49 is not clear. For
the proof of Theorem 2.50 we have really used the fact that the function u vanishes at the
boundary. While for the proof of Theorem 2.49 we have in fact only used the property that
the only constant function is 0. The interest of the proof of Theorem 2.49 is that it can
be used in any such situation. For instance, we give the following version of the Poincaré
inequality.

For a bounded open subset 2 we define
W' (Q) = {u e WhP(Q) : J wde = 0} . (2.32)
Q

Notice that if Q is connected then the only function u € I/IN/LP(Q) such that Vu = 0is u = 0.

Theorem 2.51 (Poincaré-Wirtinger inequality). Let Q be an open, connected and bounded
subset of RY. Let p € [1,+00] Then there exists C > 0 such that, for all u e WHP(Q),

Yue WHP(Q), HUHLP(Q) <C HVUHLP(Q) .

Exercise 15. Let Q be an open, bounded and connected subset of R%. Let p € [1, +0].
1. Prove Theorem 2.51.
2. For u € WhHP(Q) we set

Nw) = Vil + | [ we

Prove that N is a norm on W!P(), equivalent to the usual one.

2.7 The dual of H} ()

Definition 2.52. We denote by H~1(Q2) the dual space of HJ ().
We recall that the dual space of H}(€2) is the set of continuous linear forms on H} (). It
is endowed with the norm defined by

o (u)]
”ngH—l(Q) = sup ‘ ‘ .
ue HL (2)\{0} u |Hg(sz)
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We usually write (¢, u) (or (¢, W) pr—1.(9), 11 (o)) instead of p(u). Notice that if HY(Q) # H ()
then H~1(Q) is not the dual space of H'(Q).

We recall that by the Riesz Theorem, we can identify a Hilbert space with its dual.
However, in this kind of context we usually already identify L?(Q) with its dual. With this
identification we have

Hi(Q) < L*(Q) c H (),

with continuous injections. The first inclusion is clear by definition of the Sovolev space
H}(Q). Now a function u € L?(Q2) is identified with the continuous linear form on L?((2)
defined by

V= (U V) p2g) - (2.33)

By restriction, this also defines a continuous linear form on Hg (£2). In this sense, we can say
that u belongs to H (). However, all the elements of H~1(£2) cannot be identified with a
function in L2(£2). For instance, on R, the Dirac distribution

0:v—v(0) (2.34)

defines a continuous linear for on H'(R) = H{(R), and it is not of the form (2.33) (notice
that this example is specific to the dimension 1, a Dirac distribution is not in H () in
dimension d > 2, however with the trace Theorem we can generalize this example in higher
dimension, see Exercise 16).

Let f € L%Q) and F € L?(,RY). Then ¢ = f — divF, where the derivatives are
understood in the sense of distributions, also defines a continuous linear form on H{ ()
(which is not necessarily in L2(€)). For v € H}(Q) it is given by

d
p(v) = (fyv) + Y, (Fy,05u).
j=1
In particular we have

d
[0y < 1Flz2@y + O 1l oy - (2.35)

Jj=1

In fact, using the Riesz Theorem in H}(Q) we see that any ¢ € H~1({2) can be written in
this form with u € Hg () and F = Vu. Moreover, in this case we have an equality in (2.35).
See Theorem 5.9.1 in [Evans| (see Exercise 17 for the particular case of the Dirac distribution
(2.34)).

Ezercise 16. Let f € L?(R). Prove that the map
Ve CEER) > | fa)oe0)ds
R

extends to a continuous linear form on H'(R?).

Ezercise 17. Find u € H'(R) such that

Yve H'(R), wv(0) :f uv+-[ u'v'.
R R
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2.8 Exercises

Ezercise 18. Show that there is no continuous linear map v : L?(R*) — R such that
v(u) = 0 for all u e C°([0, +o0[) N L?(R%).

Ezercise 19. For which values of k € N, p € [1, +o0] and ¢ € [1, +o0] do we have W*P(R?) <
LY(R%) ?

Ezercise 20. 1.Let ue H}(R?). For (z1,22) € R? we set

- u(zy,xe) if zq >0,
) =9 if 21 <0

Prove that @ € H*(R?) and give an expression for the derivatives of 4. In particular, what
can we say about ||| g1 g2y ?

2. Let © be an open subset of R2. Let u € HZ(£2). Prove that the extension of u by 0 on R?
belongs to H'(R?).

Exercise 21. We recall that for s € [0,1] and u € L?(R?%) we have set

ol = [, 0+ 167)° P de

Then H*(R?) is the set of u € L?(R?) such that |l e ey < +00.

1. Check that H(R?) = L?(R9) and that H'(R?) coincides with the space already defined,
with equivalent norm.
2. Let s €]0,1[. Prove that there exists C' > 0 such that for all u € S(R?) we have

u\x S| A
[ il Hﬂci@—c € la©)]? de.
yeRd JxeRd x £eRd

3. Deduce that the quantity

1
2

2 u(z )‘
<||U|L2(Rd)+J . LeRd o — d+2s dx dy)

defines a norm on H*(R%), equivalent to the norm defined above.

Exercise 22. In this exercise we prove that for v € H'(RY) (real valued) we have |u| €
H(R?%), Vu = 0 almost everywhere on u~1({0}) and V |u| = sign(u)Vu on u~1(R% {0}).
1.Let G : R — R be of class C*, globally Lipschitz and such that G(0) =

a. Show that G’ is bounded on R.

b. Prove that G oue H*(RY) with V(G ou) = (G’ o u)Vu.
2.For t € R we set

1 ifz>0 1 fz>0
H_(t) = ’ d H.(t) = ’
®) {0 o<, 04 HO {o if 2 < 0.

For n € N* we set

1 ift>2,
Hn(t) nt lfO < t < %,
0 ift<o0

Then we set V,,(t) = Sioo H,(s)ds.

a. Prove that (Vj, ou) € H(RY) with V(V,, = (H, o u)Vu.
b. For t € R we set

/-—A—-—\
SR
~ o
AN
==

Prove that (g ou) € H'(R?) with V(g o u)

c. Prove that V(gou) = (Hy ou)Vu.

d. Deduce that Vu = 0 almost everywhere on u~1({0}).
3. Conclude.
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