Annexe B

Mesure de Jordan et intégrales de Riemann

B.1 Mesures des ensembles élémentaires

Définition B.1. (i) Soit $(a,b) \in \mathbb{R}^2$ avec $a \leq b$. Si I est l'un des intervalles [a,b],]a,b[ou [a,b[on définit la longueur de I comme étant le réel positif

$$|I| = b - a$$
.

(ii) Soit $d \in \mathbb{N}^*$. Soient I_1, \dots, I_d des intervalles bornés de \mathbb{R} . On considère le pavé

$$P = I_1 \times \cdots \times I_d$$
.

Le volume de P (on parle plutôt d'aire si d=2) est par définition

$$|P| = |I_1| \times \cdots \times |I_d|$$
.

Définition B.2. On dit qu'une partie de \mathbb{R}^d est un *ensemble élémentaire* si elle s'écrit comme union finie de pavés de \mathbb{R}^d .

Proposition B.3. (i) Une union finie d'ensembles élémentaires est un ensemble élémentaire.

- (ii) Une intersection finie d'ensembles élémentaires est un ensemble élémentaire.
- (iii) Si E et F sont des ensembles élémentaires, alors $E \setminus F$ et $E\Delta F = (E \setminus F) \cup (E \setminus F)$ sont des ensembles élémentaires.
- (iv) Soient E un ensemble élémentaire et $x \in \mathbb{R}^d$. Le translaté $E + x = \{y + x, y \in E\}$ est un ensemble élémentaire.

 $D\'{e}monstration$. • Le premier point résulte simplement du fait qu'une union finie d'unions finies de pavés est une union finie de pavés.

• Soient maintenant E et F deux ensembles élémentaires de \mathbb{R}^d . Soient P_1, \ldots, P_n et $\tilde{P}_1, \ldots, \tilde{P}_m$ des pavés de \mathbb{R}^d (avec $n, m \in \mathbb{N}$) tels que

$$E = P_1 \cup \cdots \cup P_n$$
 et $F = \tilde{P}_1 \cup \cdots \cup \tilde{P}_m$.

On a

$$E \cap F = \bigcup_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant m}} (P_i \cap \tilde{P}_j).$$

Comme l'intersection de deux pavés est encore un pavé, on en déduit que $E \cap F$ est un ensemble élémentaire de \mathbb{R}^d . Par récurrence, on obtient que toute intersection finie d'ensembles élémentaires est un ensemble élémentaire.

• Soit $P = I_1 \times \cdots \times I_d$ et $\tilde{P} = \tilde{I}_1 \times \cdots \times \tilde{I}_d$ deux pavés de \mathbb{R}^d . Alors on a

$$P \setminus \tilde{P} = \bigcup_{k=1}^{d} \left(I_1 \times \dots \times I_{k-1} \times \left(I_k \setminus \tilde{I}_k \right) \times I_{k+1} \times \dots \times I_d \right).$$

Comme $I_k \setminus \tilde{I}_k$ est l'union d'au plus deux intervalles bornés de \mathbb{R} , on obtient que $P \setminus \tilde{P}$ est un ensemble élémentaire de \mathbb{R}^d . Avec les notations précédentes on a

$$E \setminus \tilde{P}_1 = \bigcup_{i=1}^n (P_i \setminus \tilde{P}_1),$$

donc la soustraction d'un pavé à un ensemble élémentaire est un ensemble élémentaire. Par récurrence, on obtient que

$$E \setminus F = (\dots((E \setminus \tilde{P}_1) \setminus \tilde{P}_2) \dots) \setminus \tilde{P}_m$$

est bien un ensemble élémentaire.

- Avec les propriétés démontrées il devient clair que $E\Delta F = (E \setminus F) \cup (E \setminus F)$ est également un ensemble élémentaire.
- Finalement, pour $x \in \mathbb{R}^d$ on a

$$E + x = \bigcup_{i=1}^{n} (P_i + x),$$

donc l'ensemble des ensembles élémentaires est invariant par translation.

Proposition B.4. Soit E un ensemble élémentaire. Alors il existe des pavés P_1, \ldots, P_m deux à deux disjoints tels que

$$E = \bigsqcup_{k=1}^{m} P_k.$$

Démonstration. On considère le cas $E \neq \emptyset$. Soient P_1, \ldots, P_n des pavés de \mathbb{R}^d (avec $n \in \mathbb{N}^*$) tels que $E = \bigcup_{i=1}^n P_i$. Pour $i \in [\![1,n]\!]$ on note $P_i = I_{i,1} \times \cdots \times I_{i,d}$. Soit $k \in [\![1,d]\!]$. On note $(a_{0,k}, \ldots, a_{\nu_k,k})$ la famille croissante des extrémités des intervalles $I_{1,k}, \ldots, I_{n,k}$ (avec $\nu_k \in \mathbb{N}$). On note alors \mathcal{J}_k l'ensemble des intervalles de la forme $\{a_j\}$ avec $j \in [\![0,\nu_k]\!]$ ou $]a_{j-1},a_j[$ avec $j \in [\![1,\nu_k]\!]$. On note ensuite \mathcal{P} l'ensemble (fini) des pavés de la forme $J_1 \times \cdots \times J_k$ avec $J_k \in \mathcal{J}_k$ pour tout $k \in [\![1,d]\!]$. Pour $P \in \mathcal{P}$ on a soit $E \cap P = \emptyset$, soit $E \cap P = P$. Si on note \mathcal{P}_0 l'ensemble des $P \in \mathcal{P}$ dont l'intersection avec E n'est pas vide, on a alors

$$E = \bigsqcup_{P \in \mathcal{P}_0} P.$$

Proposition-Définition B.5. Soit E un ensemble élémentaire. On définit la mesure m(E) de E par l'une des deux définitions équivalentes suivantes :

(i) Si $E = P_1 \sqcup \cdots \sqcup P_n$ où $n \in \mathbb{N}$ et les P_i , $1 \leq i \leq n$, sont des pavés deux à deux disjoints de \mathbb{R}^d , alors on pose

$$m(E) := \sum_{i=1}^{n} |P|.$$

(ii) On note

$$m(E) := \lim_{n \to \infty} \frac{1}{n} \mathsf{Card} \left(E \cap \frac{\mathbb{Z}^d}{n} \right).$$

 $D\acute{e}monstration.$ On commence par observer que si I est un intervalle borné de $\mathbb R$ on a

$$\frac{1}{n}\left(\operatorname{Card}\left(I\cap\frac{\mathbb{Z}}{n}\right)-1\right)\leqslant |I|\leqslant\frac{1}{n}\left(\operatorname{Card}\left(I\cap\frac{\mathbb{Z}}{n}\right)+1\right)$$

et donc

2

$$\frac{1}{n} \mathsf{Card} \left(I \cap \frac{\mathbb{Z}}{n} \right) \xrightarrow[n \to +\infty]{} |I| \, .$$

Pour un pavé de \mathbb{R}^d on a de la même façon

$$\frac{1}{n} \mathrm{Card} \left(P \cap \frac{\mathbb{Z}^d}{n} \right) \xrightarrow[n \to +\infty]{} |P| \, .$$

Si $E = P_1 \sqcup \cdots \sqcup P_m$ comme dans l'énoncé on a alors

$$\frac{1}{n}\mathsf{Card}\left(E\cap\frac{\mathbb{Z}^d}{n}\right) = \frac{1}{n}\sum_{i=1}^m\mathsf{Card}\left(P_i\cap\frac{\mathbb{Z}^d}{n}\right)\xrightarrow[n\to+\infty]{}\sum_{i=1}^m|P_i|\,.$$

Cela prouve que la limite de la deuxième définition existe et est égale à la somme de la première définition. Cela prouve en particulier que cette somme ne dépend pas du choix d'une décomposition de E comme union finie de pavés deux à deux disjoints.

Proposition B.6. (i) On a $m(\emptyset) = 0$.

- (ii) Si P est un pavé alors m(P) = |P|.
- (iii) (positivité) La mesure de toute ensemble élémentaire est positive ou nulle.
- (iv) (invariance par translation) Si E est un ensemble élémentaire et $x \in \mathbb{R}^d$ on a

$$m(E+x) = m(E)$$
.

(v) (additivité finie) Si E et F sont élémentaires et disjoints alors

$$m(E \sqcup F) = m(E) + m(F).$$

Plus généralement pour $k \in \mathbb{N}^*$ et E_1, \dots, E_k des ensembles élémentaires deux à deux disjoints on a

$$m(E_1 \sqcup \cdots \sqcup E_k) = m(E_1) + \cdots + m(E_k).$$

- (vi) (monotonie) Si E et F sont deux ensembles élémentaires tels que $E \subset F$ alors on a $m(E) \leq m(F)$.
- (vii) (sous-additivité finie) Si E et F sont élémentaires alors on a

$$m(E \cup F) \leqslant m(E) + m(F)$$
.

Plus généralement, si E_1, \ldots, E_k pour $k \in \mathbb{N}^*$ sont des ensembles élémentaires alors on a

$$m(E_1 \cup \cdots \cup E_k) \leqslant m(E_1) + \cdots + m(E_k).$$

Démonstration. Les trois premières propriétés sont claires. Si $E = P_1 \sqcup \cdots \sqcup P_m$ où $m \in \mathbb{N}$ et les P_j , $1 \leq j \leq m$, sont deux à deux disjoints, alors on a

$$E + x = \bigsqcup_{j=1}^{m} (P_j + x),$$

donc

$$m(E+x) = \sum_{j=1}^{m} |P_j + x| = \sum_{j=1}^{m} |P_j| = m(E).$$

Pour l'additivité on utilise directement l'une ou l'autre des deux définitions de m. Pour la monotonie on écrit $F = E \sqcup (F \setminus E)$. Par monotonie on a alors

$$m(F) = m(E) + m(F \setminus E) \geqslant m(E).$$

Enfin, pour la dernière propriété on a $E \cup F = E \sqcup (F \setminus E)$ et $F \setminus E \subset F$ donc

$$m(E \cup F) = m(E) + m(F \setminus E) \leqslant m(E) + m(F).$$

Année 2018-2019 3

B.2 Mesure de Jordan

Définition B.7. Soit A une partie bornée de \mathbb{R}^d . On définit les mesures intérieure et extérieure de Jordan de A par

$$m_{*,J}(A) := \sup_{\substack{E \text{ élémentaire} \\ E \subset A}} m(E)$$

et par

$$m^{*,J}(A) := \inf_{\substack{E \text{ élémentaire} \\ E \supset A}} m(E),$$

respectivement. On dit alors que A est mesurable au sens de Jordan si $m_{*,J}(A) = m^{*,J}(A)$, et dans ce cas la mesure de Jordan de A est par définition

$$m_J(A) := m_{*,J}(A) = m^{*,J}(A).$$

Exemple B.8. On considère $A = [0,1] \cap \mathbb{Q}$. Montrons que $m_{*,J}(A) = 0$ et $m^{*,J}(A) = 1$.

Soit E un ensemble élémentaire de $\mathbb R$ tel que $A \subset E$. L'adhérence de E est encore un ensemble élémentaire de $\mathbb R$ contenant A et $m(\overline E) = m(E)$. Si x n'est pas dans $\overline E$, il existe r > 0 tel que $]x - r, x + r[\subset [0,1] \setminus \overline E$. Puisque A est dense dans [0,1], on obtient une contradiction. Ainsi $\overline E$ contient]0,1[et sa mesure est au moins égale à 1. Cela prouve que $m^{*,J}(A) \geqslant 1$. Comme par ailleurs on a $A \subset [0,1]$ et que [0,1] est un ensemble élémentaire de mesure 1, on a $m^{*,J}(A) \leqslant 1$.

Soit maintenant E un ensemble élémentaire de $\mathbb R$ inclus dans A. L'intérieur de E est encore un ensemble élémentaire de $\mathbb R$ inclus dans A et $m(\mathring{E}) = m(E)$. Si $\mathring{E} \neq \emptyset$, alors par densité de $[0,1] \setminus A$ dans [0,1] on obtient que $([0,1] \setminus A) \cap \mathring{E} \neq \emptyset$, ce qui est absurde. D'où $\mathring{E} = \emptyset$. Cela prouve que $m_{*,J}(A) = 0$.

Exemple B.9. On considère

$$T = \{(x, y) \in [0, 1]^2 \mid y \leqslant x \}.$$

Pour $n \in \mathbb{N}$ on a

$$T \subset \bigcup_{i=1}^{n} \left[\frac{j-1}{n}, \frac{j}{n} \right] \times \left[0, \frac{j}{n} \right]$$

donc

$$m^{*,J}(T) \le \sum_{i=1}^{n} \frac{j}{n^2} = \frac{n(n+1)}{2n^2} \xrightarrow[n \to +\infty]{} \frac{1}{2}.$$

D'où

$$m^{*,J}(T) \leqslant \frac{1}{2}.$$

D'autre part, pour tout $n \in \mathbb{N}$ on a

$$T\supset \bigcup_{j=1}^n\left[\frac{j-1}{n},\frac{j}{n}\right] imes\left[0,\frac{j-1}{n}\right]$$

donc

$$m_{*,J}(T) \geqslant \sum_{j=1}^{n} \frac{j}{n^2} = \frac{n(n-1)}{2n^2} \xrightarrow[n \to +\infty]{} \frac{1}{2}.$$

D'où

$$m_{*,J}(T) \geqslant \frac{1}{2}.$$

Cela prouve que T est mesurable au sens de Jordan, de mesure $m_J(T) = \frac{1}{2}$.

Proposition B.10. (i) Pour toute partie bornée A de \mathbb{R}^d on a

$$m_{*,J}(A) \leqslant m^{*,J}(A).$$

(ii) Un ensemble élémentaire E est mesurable au sens de Jordan, et on a $m_J(E) = m(E)$.

- (iii) Soit A une partie bornée de \mathbb{R}^d . Alors A est mesurable au sens de Jordan si et seulement si pour tout $\varepsilon > 0$ il existe des ensembles élémentaires A^- et A^+ tels que $A^- \subset A \subset A^+$ et $m(A^+ \setminus A^-) \leq \varepsilon$.
- (iv) Soient A et B deux ensembles mesurables au sens de Jordan tels que $A \subset B$. Alors on a

$$m(A) \leqslant m(B)$$
.

(v) Une union finie d'ensembles mesurables au sens de Jordan est mesurable au sens de Jordan. En outre, si A_1, \ldots, A_n (avec $n \in \mathbb{N}^*$) sont mesurables au sens de Jordan on a

$$m_J(A_1 \cup \cdots \cup A_n) \leqslant m_J(A_1) + \cdots + m_J(A_n).$$

De plus, si les A_i , $1 \le i \le n$, sont deux à deux disjoints on a

$$m_J(A_1 \sqcup \cdots \sqcup A_n) = m_J(A_1) + \cdots + m_J(A_n).$$

- (vi) Une intersection finie d'ensembles mesurables au sens de Jordan est mesurable au sens de Jordan.
- (vii) Si A et B sont deux ensembles mesurables au sens de Jordan alors $A \setminus B$ et $A \Delta B$ le sont également.

Démonstration. • Si E et F sont des ensembles élémentaires telles que $E \subset A \subset F$ on a en particulier

$$m(E) \leqslant m(F)$$
.

La première propriété vient alors en prenant la borne supérieure sur E et la borne inférieure sur F.

• Puisque $E \subset E$ on a par définition

$$m^{J,*}(E) \leqslant m(E)$$
 et $m(E) \leqslant m_{*,J}(E)$.

Avec l'inégalité précédente, on a alors $m_{*,J}(E) = m(E) = m^{*,J}(E)$. Cela prouve que E est mesurable au sens de Jordan de mesure m(E).

 $\bullet\,\,$ On suppose que A est mesurable au sens de Jordan. Alors il existe un ensemble élémentaire A^- tel que

$$A^- \subset A$$
 et $m(A^-) \geqslant m_J(A) - \frac{\varepsilon}{2}$.

Il existe un ensemble élémentaire A^+ tel que

$$A \subset A^+$$
 et $m(A^+) \leqslant m_J(A) + \frac{\varepsilon}{2}$.

On a en particulier $A^- \subset A^+$ et $m(A^+ \setminus A^-) = m(A^+) - m(A^-) \leqslant \varepsilon$. On montre maintenant la réciproque. Il existe des suites $(A_n^-)_{n \in \mathbb{N}}$ et $(A_n^+)_{n \in \mathbb{N}}$ d'ensembles élémentaires telles que $A_n^- \subset A \subset A_n^+$ pour tout $n \in \mathbb{N}$ et $m(A_n^+) - m(A_n^-) = m(A_n^+ \setminus A_n^-) \to 0$ quand $n \to 0$. On a alors

$$m^{*,J}(A) \leqslant \liminf_{n \to +\infty} m(A_n^+) \leqslant \limsup_{n \to +\infty} m(A_n^-) \leqslant m_{*,J}(A).$$

Cela prouve que A est mesurable au sens de Jordan.

- Si E est un ensemble élémentaire contenant B il contient aussi A, donc $m^{J,*}(A) \leq m^{J,*}(B)$. Pour des ensembles mesurables les mesures de Jordan et de Jordan extérieure coïncident, donc $m_J(A) \leq m_J(B)$.
- Soient A et B deux ensembles mesurables au sens de Jordan. Soit $\varepsilon > 0$. Soient A^-, A^+, B^- et B^+ des ensembles élémentaires tels que $A^- \subset A \subset A^+, B^- \subset B \subset B^+, m(A^+ \setminus A^-) \leqslant \frac{\varepsilon}{2}$ et $m(B^+ \setminus B^-) \leqslant \frac{\varepsilon}{2}$. Alors on a

$$(A^- \cup B^-) \subset (A \cup B) \subset (A^+ \cup B^+).$$

D'autre part

$$(A^+ \cup B^+) \setminus (A^- \cup B^-) \subset (A^+ \setminus A^-) \cup (B^+ \setminus B^-),$$

donc

$$m\big((E_A^+ \cup E_B^+) \setminus (E_A^- \cup E_B^-)\big) \leqslant m\big((E_A^+ \setminus E_A^-) \cup (E_B^+ \setminus E_B^-)\big) \leqslant \varepsilon.$$

Année 2018-2019 5

Cela prouve que $A \cup B$ est mesurable au sens de Jordan. En outre avec ces notations on a

$$m(A \cup B) \leqslant m(E_A^+ \cup E_B^+) \leqslant m(A) + m(B) + \varepsilon.$$

Ceci étant valable pour tout $\varepsilon > 0$ on obtient bien que $m(A \cup B) \leq m(A) + m(B)$. En outre si $A \cap B = \emptyset$ on a $A^- \cap B^- = \emptyset$ donc

$$m(A \sqcup B) \geqslant m(A^- \sqcup B^-) = m(A^-) + m(B^-) \geqslant m(A) + m(B) - \varepsilon.$$

On obtient alors $m(A \sqcup B) \ge m(A) + m(B)$, d'où l'égalité.

• En reprenant les notations précédentes, on a

$$(A^- \cap B^-) \subset (A \cap B) \subset (A^+ \cap B^+)$$

et

$$(A^+ \cap B^+) \setminus (A^- \cap B^-) \subset (A^+ \setminus A^-) \cap (B^+ \setminus B^-),$$

donc $A \cap B$ est mesurable au sens de Jordan. Enfin

$$(A^- \setminus B^+) \subset (A \setminus B) \subset (A^+ \setminus B^-)$$

et

$$(A^+ \setminus B^-) \setminus (A^- \setminus B^+) \subset (A^+ \setminus A^-) \cup (B^+ \setminus B^-),$$

donc $A \setminus B$ est mesurable au sens de Jordan.

Remarques B.11. • Une union dénombrable d'ensembles mesurables au sens de Jordan peut ne pas être mesurable (voir Exemple B.8).

• Une intersection dénombrable d'ensembles mesurables au sens de Jordan peut ne pas être mesurable.

B.3 Lien avec les intégrales de Riemann et de Darboux

(C'est probablement suffisant de faire le cas 1D, par contre il faut évoquer en dur les intégrales généralisées)

Définition B.12. On dit que $f : \mathbb{R}^d \to \mathbb{R}$ est une fonction en escalier si f est combinaison linéaire de fonctions indicatrices de pavés.

Définition B.13. Soient $k \in \mathbb{N}$, P_1, \ldots, P_k des pavés de \mathbb{R}^d , $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ et

$$f = \sum_{j=1}^{k} \alpha_j \mathbb{1}_{P_j}$$

une fonction en escalier. alors on définit l'intégrale (de Riemann) de f par

$$\int_{\text{Riem.}} f \, dx = \sum_{j=1}^{k} \alpha_j \, \text{Vol}(P_j).$$

Définition B.14. Soit f une fonction de \mathbb{R}^d dans \mathbb{R} . On dit que f est **intégrable au sens de Riemann** s'il existe deux suites $(f_n)_{n\in\mathbb{N}}$ et $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers telles que $|f-f_n|\leqslant \varphi_n$ pour tout $n\in\mathbb{N}$ (en particulier φ_n est à valeurs positives) et

$$\int_{\text{Riem.}} \varphi_n \, dx \xrightarrow[n \to \infty]{} 0.$$

Dans ce cas on définit l'intégrale de Riemann de f par

$$\int_{\text{Riem.}} f \, dx = \lim_{n \to \infty} \int_{\text{Riem.}} f_n \, dx.$$

6

Justification de la définition. Pour $n, m \in \mathbb{N}$ on a

$$\left| \int_{\text{Riem}} f_n \, dx - \int_{\text{Riem}} f_m \, dx \right| \leqslant \int_{\text{Riem}} |f_n - f_m| \, dx \leqslant \int_{\text{Riem}} (\varphi_n + \varphi_m) \, dx \xrightarrow[n, m \to +\infty]{} 0.$$

Ainsi la suite $\left(\int_{\text{Riem.}} f_n dx\right)_{n \in \mathbb{N}}$ est de Cauchy dans \mathbb{R} , et donc convergente.

Définition B.15. On dit que $f : \mathbb{R}^d \to \mathbb{R}$ est une fonction en escalier si f est combinaison linéaire de fonctions indicatrices de pavés de \mathbb{R}^d .

Remarque B.16. En procédant comme à la Proposition B.4, on peut vérifier que toute fonction en escalier s'écrit comme combinaison linéaire d'indicatrices de pavés deux à deux disjoints.

Définition B.17. Soient $k \in \mathbb{N}$, P_1, \ldots, P_k des pavés, $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ et

$$f = \sum_{j=1}^{k} \alpha_j \mathbb{1}_{P_j}$$

une fonction en escalier. On définit l'intégrale de f par

$$\int f := \sum_{i=1}^k \alpha_i |P_j|.$$

Soit f une fonction sur une partie bornée A de \mathbb{R}^d . Si P est un pavé de \mathbb{R}^d contenant A, on peut prolonger f en une fonction sur P en posant f(x) = 0 pour tout $x \in P \setminus A$. Tout ce qui suit est indépendant du choix d'un tel P. Pour simplifier on considérera directement des fonctions définies sur un pavé P.

On considère donc un pavé P de \mathbb{R}^d et une fonction bornée f de P dans \mathbb{R} . On note alors

$$A^{+} = \{(x, y) \in P \times \mathbb{R}_{+} \mid 0 \leqslant y \leqslant f(x)\}$$
(B.1)

et

$$A^{-} = \{ (x, y) \in P \times \mathbb{R}_{+} \mid f(x) \le y \le 0 \}.$$
 (B.2)

Soit $\delta > 0$. On appelle subdivision pointée de P de pas δ une famille $((P_i, x_i))_{1 \leq i \leq n}$ (avec $n \in \mathbb{N}$) telle que

- pour tout $i \in [1, n]$, P_i est un pavé de \mathbb{R}^d , $x_i \in P_i$ et si on écrit $P_i = I_{1,i} \times \cdots \times I_{i,d}$ alors $|I_{i,j}| \leq \delta$ pour tout $j \in [1, d]$ (les longueurs des côtés de P_i sont toutes inférieures à δ).
- les P_i , $1 \le i \le n$ sont deux à deux disjoints et leur union est P.

Définition B.18. On dit que f est Riemann-intégrable d'intégrale

$$\int_{P \, \mathsf{Riem}} f(x) \, dx$$

si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour toute subdivision pointée $((P_i, x_i))_{1 \leqslant i \leqslant n}$ de P (avec $n \in \mathbb{N}$) de pas δ on a

$$\left| \int_{P, \mathsf{Riem.}} f(x) \, dx - \sum_{i=1}^n f(x_i) \, |P_i| \right| \leqslant \varepsilon.$$

On note

$$\overline{\int_{P}} f = \inf_{\substack{g \text{ en escalier} \\ f \leqslant g}} g$$

et

$$\underbrace{\int_{P} f}_{g \text{ en escalier}} g.$$

Année 2018-2019 7

Définition B.19. On dit que f est intégrable au sens de Darboux si

$$\overline{\int_P} f = \int_P f.$$

Dans ce cas on appelle intégrale de Darboux de f cette valeur commune. On peut la noter

$$\int_{P,\mathsf{Darb.}} f(x)\,dx.$$

Remarque B.20. On a toujours

$$\int_P f \leqslant \overline{\int_P} f.$$

Proposition B.21. Les assertions suivantes sont équivalentes :

- (i) f est Riemann-intégrable,
- (ii) f est Darboux-intégrable,
- (iii) Les parties A^+ et A^- de \mathbb{R}^{d+1} sont mesurables au sens de Jordan.

Lorsque ces assertions sont vraies on a par ailleurs

$$\int_{P, Riem.} f(x) \, dx = \int_{P, Darb.} f(x) \, dx = m_J(A^+) - m_J(A^-).$$

Démonstration. • On suppose que f est intégrable au sens de Riemann. Soit $\varepsilon > 0$. Soit $\delta > 0$ tel que donné par la définition B.18. Soit $(P_i, x_i)_{1 \leqslant i \leqslant n}$ une subdivision pointée de P de pas δ . Pour $i \in [\![1,n]\!]$ on note $M_i = \sup_{P_i} f$. Il existe une suite $(x_{i,m})_{m \in \mathbb{N}}$ d'éléments de P_i telle que $f(x_{i,m})$ tend vers M_i quand m tend vers $+\infty$, et pour tout $m \in \mathbb{N}$ on a

$$\sum_{i=1}^n f(x_{i,m}) |P_i| \leqslant \int_{P, \mathsf{Riem}} f + \varepsilon.$$

Par passage à la limite on obtient

$$\sum_{i=1}^{n} M_i |P_i| \leqslant \int_{P, \mathsf{Riem}} f + \varepsilon.$$

Ainsi, si on note $f_+ = \sum_{i=1}^n M_i \mathbbm{1}_{P_i}$ la fonction sur P telle que f_+ vaut M_i sur P_i pour tout $i \in [\![1,n]\!]$, alors f_+ est une fonction en escalier telle que $f \leqslant f_+$, d'où

$$\overline{\int_P} f \leqslant \int_P f_+ \leqslant \int_{P.\mathsf{Riem}} f + \varepsilon.$$

On montre de la même façon que

$$\underline{\int_{P}} f \geqslant \int_{P, \mathsf{Riem}} f - \varepsilon.$$

Ceci étant valable pour tout $\varepsilon > 0$, on obtient que f est intégrable au sens de Darboux avec

$$\int_{P.\mathsf{Darb.}} f = \int_{P.\mathsf{Riem}} f. \tag{B.3}$$

• On suppose maintenant que f est intégrable au sens de Darboux. Soit $\varepsilon > 0$. Soit f_- et f_+ des fonctions en escalier telles que $f_- \leqslant f \leqslant f_+$ et

$$\int_{P} f_{-} + \frac{\varepsilon}{2} \geqslant \int_{P \text{ Dark}} f \geqslant \int_{P} f_{+} - \frac{\varepsilon}{2}.$$

Comme f_- et f_+ prennent un nombre fini de valeurs, elles sont bornées. On en déduit que f est également bornée. Soit alors $M \ge 0$ tel que $|f| \le M$.

Il existe des pavés P_1^+, \ldots, P_k^+ (avec $k \in \mathbb{N}$) et $M_1, \ldots, M_k \in \mathbb{R}$ tels que $f_+ = \sum_{j=1}^k M_j \mathbb{1}_{P_j^+}$. Pour $j \in [\![1,k]\!]$, il existe $(a_{j,l},b_{j,l})_{1 \leqslant l \leqslant d} \in \mathbb{R}^{2d}$ tel que

$$\prod_{l=1}^{d}]a_{j,l}, b_{j,l} [\subset P_{j}^{+} \subset \prod_{l=1}^{d} [a_{j,l}, b_{j,l}]$$

Soit $\delta > 0$ et P un pavé de \mathbb{R}^d tel que tous les côtés de P sont de longueur inférieure à δ . Si P intersecte la frontière d'un des pavés P_i^+ , $1 \leq j \leq k$, alors P est inclus dans

$$F_{j}^{\delta} = \bigcup_{l=1}^{d} \left(\prod_{p=1}^{l-1} [b_{j,p} - a_{j,p}] \right) \times \left([a_{j,l} - \delta, a_{j,l} + \delta] \cup [b_{j,l} - \delta, b_{j,l} + \delta] \right) \times \left(\prod_{p=l+1}^{d} [b_{j,p} - a_{j,p}] \right)$$

(voir Figure B.1).

FIGURE B.1 – Un rectangle P_j^+ sa frontière « épaissie » F_j^δ d'une largeur δ (en gris). Tout cube de côté δ qui touche la frontière de P_j^+ est inclus dans cette zone dont l'aire décroit avec δ .

On note $F^{\delta} = \bigcup_{j=1}^k F_j^{\delta}$. Alors F^{δ} est un ensemble élémentaire et il existe C tel que pour tout $\delta > 0$ on a $|F^{\delta}| \leq \delta C$. On fixe

$$\delta = \frac{\varepsilon}{2CM}.$$

Soit alors $(P_i, x_i)_{1 \leq i \leq n}$ une subdivision pointée de pas δ de P. On note

$$I_1 = \{i \in [1, n], \text{il existe } j \in [1, k] \text{ tel que } P_i \subset P_i^+\}$$

et $I_2 = [\![1,n]\!] \setminus I_1$. Soit $i \in I_1$ et $j \in [\![1,k]\!]$ tel que $P_i \subset P_j^+$. Comme $f_+ \geqslant f$ sur P_i on a $m_j \geqslant \sup_{P_i} f$. En particulier, $f(x_i) \leqslant m_i$. D'autre part, puisque les P_i , $i \in I_2$, sont deux à deux disjoints, on a

$$\sum_{i \in I_2} |P_i| \leqslant |F^{\delta}| \leqslant C\delta.$$

Finalement on a

$$\sum_{i=1}^n f(x_i) \left| P_i \right| \leqslant \sum_{i \in I_1} f(x_i) \left| P_i \right| + M \sum_{i \in I_2} \left| P_i \right| \leqslant \int_P f_+ + MC\delta \leqslant \int_{R, \mathsf{Darb.}} f + \varepsilon.$$

De la même façon on peut montrer que si $\delta > 0$ a été choisi suffisamment petit alors on a

$$\sum_{i=1}^{n} f(x_i) |P_i| \geqslant \int_{R, \mathsf{Darb.}} f - \varepsilon.$$

Cela prouve que f est intégrable au sens de Riemann et que l'égalité (B.3) est bien vérifiée. • On suppose à nouveau que f est intégrable au sens de Darboux. Soient f_- et f_+ comme précédemment. On note

$$A_{+}^{+} = \{(x, y) \in P \times \mathbb{R}_{+} \mid 0 \leqslant y \leqslant f_{+}(x)\}.$$

Soit P_1, \ldots, P_k des pavés deux à deux disjoints de \mathbb{R}^d et $M_1, \ldots, M_k \in \mathbb{R}$ tels que $f_+ = \sum_{j=1}^k M_j \mathbb{1}_{P_j}$. On a alors

$$A_{+}^{+} = \bigsqcup_{j=1}^{k} (P_{j} \times [0, M_{j}]).$$

Année 2018-2019 9

Ainsi A_+^+ est un ensemble élémentaire. De même, si on définit A_+^- comme en (B.2) (avec f remplacée par f_+), on obtient que A_+^- est un ensemble élémentaire et

$$m(A_{+}^{+}) - m(A_{+}^{-}) = \int_{P} f_{+}.$$

On définit maintenant A_{-}^{+} et A_{-}^{-} comme en (B.1)-(B.2) avec f remplacée par f_{-} . Alors A_{-}^{+} et A_{-}^{-} sont des ensembles élémentaires tels que

$$m(A_{-}^{+}) - m(A_{-}^{-}) = \int_{P} f_{-}.$$

En particulier

$$(m(A_+^+) - m(A_-^+)) + (m(A_-^-) - m(A_+^-)) = \int_P f_+ - \int_P f_- \leqslant \varepsilon.$$

En outre, on a $A_{-}^{+} \subset A_{+}^{+}$ et $A_{+}^{-} \subset A_{-}^{-} \subset A_{-}^{-}$. En particulier les deux termes de gauche dans l'inégalité précédente sont positifs, donc chacun est inférieur à ε . On en déduit que A^{+} et A^{-} sont mesurables au sens de Jordan, avec

$$m(A^+) - m(A_-) = \int_{P,\mathsf{Darb.}} f.$$

• On suppose finalement que A^+ et A^- sont mesurables au sens de Jordan. Soit $\varepsilon > 0$. Soient A^+_- et A^+_+ deux ensembles élémentaires de \mathbb{R}^{d+1} tels que $A^+_- \subset A^+_+ \subset A^+_+$ et $m(A^+_+ \setminus A^+_-) \leqslant \varepsilon$. Puisque A^+_- est inclus dans $\mathbb{R}^d \times \mathbb{R}_+$, on peut supposer sans perte de généralité que c'est également le cas de A^+_- et A^+_+ .

Soit $x \in \mathbb{R}^d$. On note

$$y_{+}(x) = \inf \{ y \ge 0, (x, y) \notin A_{+}^{+} \} \ge f(x)$$

et

$$y_{-}(x) = \sup \{ y \ge 0, (x, y) \in A_{-}^{+} \} \le f(x).$$

On peut alors remplacer A_{+}^{+} par

$$\{(x,y) \in \mathbb{R}^d \mid y \leqslant y_+(x)\}$$

et A_{-}^{+} par

$$\{(x,y) \in \mathbb{R}^d \,|\, y < y_-(x)\}$$
.

On obtient deux nouveaux ensembles élémentaires (qu'on note toujours A_+^+ et A_-^+) qui vérifient les propriétés précédentes.

Il existe alors $k \in \mathbb{N}^*$, des pavés P_1, \ldots, P_k de \mathbb{R}^d et $M_1, \ldots, M_k \geqslant 0$ tels que

$$A_{+}^{+} = \bigcup_{j=1}^{k} (P_{j} \times [0, M_{j}]).$$
 (B.4)

Comme à la démonstration de la Proposition B.4, on peut trouver une famille $(\tilde{P})_{1 \leq l \leq m}$ de pavés de \mathbb{R}^d deux à deux disjoints tels que pour tout $j \in [1, k]$ on a

$$P_j = \bigsqcup_{\tilde{P}_l \cap P_j \neq \emptyset} \tilde{P}_l.$$

On peut alors ré-écrire une inclusion comme (B.4) avec des P_j deux à deux disjoints. On suppose maintenant que c'était le cas. On définit alors

$$f_+^+ = \sum_{j=1}^k M_j \mathbb{1}_{P_j}.$$

Cela définit une fonction en escalier sur \mathbb{R}^d . On définit de même une fonction en escalier f_-^+ à partir de A_-^+ , puis f_-^- et f_+^- . Notant $f_+ = f_+^+ - f_+^-$ et $f_- = f_-^+ - f_-^-$ on obtient deux fonctions en escalier telles que $f_- \leqslant f \leqslant f_+$ et $\int f_+ - \int f_- \leqslant \varepsilon$. Cela prouve que f est intégrable au sens de Darboux.

Proposition B.22. Une fonction continue de P dans \mathbb{R} est Riemann-intégrable.