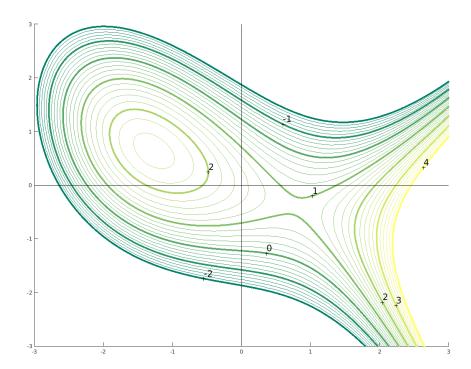
Calcul Différentiel et Intégral

Examen partiel - lundi 02 novembre 2015

Durée: 2h

Aucun document (ni calculatrice, ni téléphone, etc.) n'est autorisé. On accordera un soin particulier à la rédaction. Il n'est pas nécessaire de traiter le sujet dans l'ordre, mais veillez à toujours bien préciser le numéro de la question à laquelle vous répondez.

Exercice 1. On considère une fonction f de $[-3,3] \times [-3,3]$ dans \mathbb{R} dont les lignes de niveaux entre -2 (ligne foncée) et 4 (ligne claire) sont données par la figure ci-après. Dessiner l'allure des graphes (en précisant les coordonnées approximatives des points particuliers) des fonctions $\varphi: t \mapsto f(t,0)$ et $\psi: t \mapsto f(t,t)$.



Exercice 2. On considère la fonction

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & \left(x^3y^2, x\cos(xy)\right) \end{array} \right.$$

- 1. Montrer que f est différentiable en tout point de \mathbb{R}^2 et préciser sa différentielle.
- **2.** Pour $t \in \mathbb{R}$ on note $\varphi(t) = f(t^2, e^t)$. Montrer que la fonction φ est dérivable sur \mathbb{R} et préciser sa dérivée en tout point.

Exercice 3. Pour $(x,y) \in \mathbb{R}^2$ on note

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- **1.** Montrer que f est continue sur \mathbb{R}^2 .
- 2. Montrer que f admet des dérivées partielles en tout point, et les expliciter.
- 3. Déterminer le plus grand ouvert de \mathbb{R}^2 sur lequel f est différentiable.

Exercice 4. Soit f une fonction de classe C^1 de \mathbb{R}^n dans lui-même. On suppose qu'il existe k>0 tel que

$$\forall x, y \in \mathbb{R}^n, \quad \|f(x) - f(y)\| \geqslant k \|x - y\|.$$

1. Montrer que pour tous $x \in \mathbb{R}^n$ et $h \in \mathbb{R}^n$ on a

$$||d_x f(h)|| \geqslant k ||h||.$$

- 2. Montrer que l'image de \mathbb{R}^n par f est un ouvert.
- **3.** Montrer que f réalise un C^1 -difféomorphisme de \mathbb{R}^n sur son image.

Exercice 5. Soit $n \in \mathbb{N}^*$. \mathbb{R}^n est muni de la norme euclidienne $\|\cdot\|_2$ standard. On note \overline{B} la boule fermée de centre 0 et de rayon 1, B la boule ouverte et S la sphère correspondantes. On considère une fonction f continue de \overline{B} dans \mathbb{R} et différentiable sur B. On rappelle qu'une telle fonction est bornée et atteint ses bornes sur \overline{B} . Sa restriction à S atteint également ses bornes. Les deux questions sont indépendantes.

- ${f 1.}$ (Rolle) On suppose que f est constante sur S. Montrer qu'il existe un point de B où la différentielle de f s'annule.
- **2.** (Principe du maximum) On suppose maintenant que f est de classe C^2 sur B.
- a. On suppose que $\Delta f(x) > 0$ pour tout $x \in B$. Montrer que f atteint son maximum en un point de S.
- b. On suppose que $\Delta f(x) \ge 0$ pour tout $x \in B$. En considérant la fonction $f_{\varepsilon} : x \mapsto f(x) + \varepsilon ||x||_2^2$, montrer que f atteint son maximum en un point de S.
- c. On suppose que f(x) = 0 pour tout $x \in S$ et que $\Delta f(x) = 0$ pour tout $x \in B$. Montrer que f(x) = 0 pour tout $x \in \overline{B}$.