TD nº 6

Polynômes et fractions rationnelles

Exercice 6.1. 1. Calculer le reste et le quotient de la division euclidienne de $1+X+X^2+X^3$ par 2 + X. En déduire une primitive de la fonction

$$f: x \mapsto \frac{x^3 + x^2 + x + 1}{x + 2}.$$

- **2.** Écrire la division euclidienne de $X^4 + 5X^3 X^2 + 2X + 1$ par $2X^2 3X + 1$.
- 3. Écrire la division euclidienne de X^3+3X+1 par $2X^2-X+1$. En déduire le comportement asymptotique en $\pm \infty$ de la fonction

$$g : \mapsto \frac{x^3 + 3x + 1}{2x^2 - x + 1}.$$

Exercice 6.2. 1. Déterminer les racines du polynôme $P(X) = X^2 + X + 1$.

- **2.** Le polynôme P divise-t-il $(X^8 + 1)^8 X^8$?
- **3.** Le polynôme P divise-t-il $(X^5 + 1)^5 X^5$?

Exercice 6.3. Décomposer en facteurs irréductibles dans $\mathbb{C}[X]$ puis $\mathbb{R}[X]$ les polynômes $X^3 - 2$ et $X^{13} - 1$.

Exercice 6.4. 1. Montrer que $z_1 = \frac{\sqrt{3}+i}{2}$ est racine du polynôme $P(X) = X^4 - \sqrt{3}X^3 + 2$ $\sqrt{3}X - 1$. Sans calcul, donner une autre racine complexe de ce polynôme.

- **2.** Effectuer la division euclidienne de P(X) par $Q(X) = X^2 \sqrt{3}X + 1$, puis en déduire les quatre racines de P.
- **3.** Écrire la décomposition en facteurs irréductibles de P dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.

Exercice 6.5. Déterminer l'ensemble des polynômes $P \in \mathbb{C}[X]$ tels que P' divise P.

Exercice 6.6. On cherche à déterminer l'ensemble des polynômes $P \in \mathbb{C}[X]$ tels que

$$P(X^2) = P(X)P(X+1)$$

On note Z l'ensemble des racines de P.

- **1.** Montrer que si $z \in Z$, alors $z^2 \in Z$ et $(z-1)^2 \in Z$.
- **2.** Montrer que si $z \in Z$ alors |z| et |z-1| sont dans $\{0,1\}$. **3.** En déduire que $Z \subset \{0,1,e^{\frac{i\pi}{3}},e^{-\frac{i\pi}{3}}\}$, puis que les seules racines possibles pour P sont 0et 1.
- 4. Conclure.

Exercice 6.7. Pour chacune des fractions rationnelles $F_i \in \mathbb{R}(X)$ suivantes, donner la décomposition en éléments simples puis une primitive de la fonction $x \mapsto F(x)$ sur son domaine de définition :

$$F_1(X) = \frac{1}{(X+1)(X-1)(X-2)(X+3)}; \quad F_2(X) = \frac{1}{1-X^4};$$
$$F_3(X) = \frac{X^2 - 3X + 4}{X^2 - 4X + 4}; \quad F_4(X) = \frac{X^2}{(X+2)^4}.$$

Pour F_2 on commencera par chercher la décomposition en éléments simples dans $\mathbb{C}(X)$.

Exercice 6.8. 1. Décomposer dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $P(X) = X^3 - 1$. **2.** En déduire que $X^4 + X^2 + 1$ divise $Q(X) = X^6 - 1$.

- 3. Déterminer l'ensemble des racines complexes de Q. Les représenter graphiquement dans le plan complexe.
- **4.** Donner la décomposition en facteurs irréductibles de Q dans $\mathbb{R}[X]$.
- **5.** En déduire la factorisation de $X^4 + X^2 + 1$ en facteurs irréductibles dans $\mathbb{R}[X]$.
- 6. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X^4+X^2+1}$. On pourra utiliser convenablement les points 0, i et $+\infty$.

Exercice 6.9. Soit a > 0. Calculer une primitive de chacune des fonctions suivantes :

$$f_1: x \mapsto \frac{1}{x^2 + a^2}; \quad f_2: x \mapsto \frac{1}{(x^2 + a^2)^2};$$

$$f_3: x \mapsto \frac{1}{x^2 + x + 1}; \quad f_4: x \mapsto \frac{1}{(x^2 + x + 1)^2};$$

$$f_5: x \mapsto \frac{x^4 + x^3 + 4x^2 + 2}{x(x^2 + 1)^2}.$$

Exercice 6.10. Déterminer les décompositions en éléments simples dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ des fractions rationnelles

$$\frac{2X^5 + 4X^3 - 2X^2 + X - 1}{(X^2 + 1)^2 X^2}$$

et

$$\frac{2X^3 - 4X^2 + 2X - 1}{X^4 - 4X^3 + 6X^2 - 5X + 2}.$$