Chapitre 8

Théoréme des fonctions implicites

On revient de ce chapitre sur les lignes de niveau d’une fonction. Plus précisément, notre
but est montrer le théoréme des fonctions implicites, qui permet de les paramétrer. Au moins
localement. Et sous certaines hypothéses.

Lors du premier chapitre, on a introduit les lignes de niveau comme étant un moyen de
visualiser les variations d’une fonction de R? dans R. Pourquoi leur accorder tant d’impor-
tance maintenant ? Tout simplement parce que bien souvent les ensembles qui apparaissent
dans les problémes qui nous intéressent sont définis par une équation de la forme F(z) =0
pour une certaine fonction F. Par exemple le cercle de R? de centre (0,0) et de rayon 1 peut
étre vu comme l’ensemble des solutions (z,y) € R? de équation

24+ —1=0.

C’est une ligne de niveau.

Paramétrer ce cercle signifie qu’on aimerait le voir comme le graphe d’une fonction régu-
liére, disons au moins de classe C'. Manifestement, le cercle n’est le graphe d’aucune fonction,
ni d’'une fonction y = f(x), ni d’une fonction x = f(y). Par contre le demi-cercle supérieur
est le graphe de la fonction z — /1 — a2 pour z €] — 1,1], le demi cercle inférieur est le
graphe de la fonction @ — —+/1 — 22 pour x €] — 1,1], le demi-cercle de droite peut étre
vu comme le graphe de la fonction y — = = y/1 —y? pour y €] — 1,1[, et de méme pour
le demi-cercle de gauche. Ainsi le cercle peut étre vu comme le graphe d’une fonction au
voisinage de n’importe lequel de ses points (voir figure 7.1). A condition tout de méme de ne
pas avoir peur de retourner le repére, car au voisinage du point (1,0) on ne pourra jamais
voir le cercle comme le graphe d’une fonction qui exprime y en fonction de x.

Au début du cours on a introduit les lignes de niveau d’une fonction pour mieux com-
prendre la fonction en question. Ici la démarche est inverse. On va étudier la fonction F' pour
mieux comprendre I'une de ses lignes de niveau.

Théoréme 8.1 (Théoréme des fonctions implicites). Soit U un ouvert de R™ x R? et f :
U — RP une application de classe C* avec k > 1. Soit (a,b) € R™ x RP tel que f(a,b) =0 et
la différentielle partielle D, f(a,b) est inversible. Alors il existe un voisinage V de a dans R™,
un voisinage W de b dans RP et une application ¢ : V — W de classe C* tels que V x W C U
et
VeeV,VyeW, flz,y)=0 <= y=o¢).

En outre on peut choisir V et W de sorte que la différentielle D, f(x,y) est inversible pour
tout (z,y) €V X W et

d(x) = —Dy f(z,¢(2)) ™" o Dy f(z, ().
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FIGURE 8.1 — Graphe de I'application (x,y) — (0,2 + 2% — 2y2)e_2””2_92 — 0,1, coupé par le
plan d’équation z = 0, ainsi que la ligne de niveau correspondante.

Ici Dy f(a,b) est la différentielle de I'application y € R? — f(a,y) € RP au point b. Au
départ f est une fonction de n + p variables & valeurs dans RP. Si on fixe n variables, on
obtient une fonction de p variables & valeurs dans RP. La différentielle partielle D, f(a,b)
est alors la différentielle de cette fonction au point b, les n premiéres variables étant fixées a

a = (ay,...,a,). Sa matrice dans la base canonique de RP est
12} 0,
7 h(ab) ... 52—(a,b)
Jacy f(a,b) = : : € My(R).
dfp afp
sol—(a,b) ... 5ole—(a,b)

Ezxercice 8.1. Ré-écrire cet énoncé proprement dans le cas ot m =p = 1.

Heuristique. Si on oublie les restes d’ordre 2 ou plus on peut écrire

fx,y) = fla,b) +dy f(a,b)(x — a) + dy f(a,b)(y = b) +
——

=0

On a alors
f(1'7y):0 — y:b—dyf(a,b)71odxf(a,b)(z—a)—l—...

C’est bien une formule donnant y en fonction de x.

Reste a rendre cette observation un peu plus rigoureuse. Pour cela on utilise le théoréme
de l'inversion locale :

Démonstration. Pour tout (z,y) € U on pose g(x,y) = (z, f(x,y)) € R™ x RP. Cela définit
une fonction de classe C* sur ¢. En outre on a

Ly, Om,p

det Jac g(a7 b) = Jacz f(a, b) Jacy f(a7 b)

= det Jac, f(a,b) # 0,

ot I, est la matrice identité de taille m x m et 0,, j, la matrice & m lignes et p colonnes dont
tous les coefficients sont nuls.

On peut donc appliquer le théoréme de I'inversion locale. Il existe un voisinage U de (a,b)
dans U tel que g réalise un difféomorphisme de classe C* de U sur son image. Soient V un
voisinage ouvert de a dans R™ et VW un voisinage ouvert de b dans R? tels que VxWcl.
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Comme g(V x W) est un ouvert de R”*? contenant (a,0), il existe un voisinage ¥V C V de
a dans R™ tel que V x {0} C g(f} x W). Etant donné z € V il existe donc un unique y € W
(quon note ¢(x)) tel que (2,0) = gly .y (@, 6()). Comme (2, 6(x)) = (gl ) 1(.0), 6
est une fonction de classe C*. Pour tout x € V on a donc

[z, ¢(x)) = 0.

En différentiant on obtient

Dy f(x,¢(x)) + Dy f(x, ¢(x))dé(x) = 0,
ce qui donne l'expression pour la différentielle de ¢. O

Remarque 8.2. 1l est fortement déconseillé de chercher a retenir la formule pour la différentielle
de ¢. Par contre il faut savoir qu’elle existe et comment la retrouver.

FEzemple 8.3. On revient sur le cercle
C={(z,y) €R2|1—m2—y2:0}.

Alors on a C = {(x,y) €ER?| f(z,y) = 0}7 ot f: (z,y) = 1 — 22 — y? est de classe C°. Les
dérivées partielles sont 0, f : (x,y) — —2z et 0, f : (x,y) — —2y. La dérivée par rapport a y
est non nulle en tout point de C sauf en (1,0) et (-1,0). Autour de tout point de C exceptés
(1,0) et (-1,0) on peut effectivement voir le cercle comme le graphe d’une fonction donnant
y en fonction de x. La dérivée par rapport & = est non nulle en tout point de C sauf en (0,1)
et (0,-1). Et c’est effectivement autour de ces deux points qu’on ne peut pas voir le cercle
comme le graphe d’une fonction donnant = en fonction de y.

C’est une bonne idée de bien avoir cet exemple du cercle en téte. Il peut par
exemple arriver qu’on oublie quelle dérivée doit étre non nulle pour pouvoir
exprimer telle variable en fonction de telle autre. Il est bon de se remémorer
le cercle et les quatre points pour lesquels on sait quelle dérivée est nulle et
quelle variable peut étre exprimée en fonction de l'autre.

Dans le cas ot m # p, on peut aussi penser au fait que la différentielle
partielle qui est supposée inversible est nécessairement une application entre
espaces de mémes dimensions.

FIGURE 8.2 — Théoréme des fonctions implicites pour f : (z,y) — 1 — 22 — y2.

8.1 Exercices
Ezercice 8.2. On considére ’équation
20y — 22 +y—2=0 (%)

1. Montrer qu’il existe une fonction ¢ sur un domaine D, C R telle que pour tout (z,y) € R?
on a
(x,y) est solution de (¥) <<= x€ D, ety=p(z).

2. Montrer qu'il existe une fonction ¢ sur un domaine Dy, C R telle que pour tout (x,y) € R2
on a
(x,y) est solution de (x) <=y € Dy etz =1(y).

3. Quel lien peut-on faire entre les fonctions ¢ et ¥ ?
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Ezxercice 8.3. Pour (z,y) € R? on pose f(x,y) = 22+y?—1. Montrer que pour x suffisament

proche de 0 il existe un unique y(z) > 0 tel que f(x,y(z)) = 0. Montrer, sans résolution

explicite, que la fonction y ainsi définie au voisinage de 0 est dérivable et pour = proche de

0:

x

/

y(z)=———=.

y(x)

Ezercice 8.4. On considére Iapplication f : R? — R? définie par

fle,y,2) = (2° —y* + 22 = Layz - 1).

Soit (z0,y0,20) € R3 tel que f(zo,yo0,20) = (0,0). Montrer qu'il existe un ouvert I de R
contenant zg et une application ¢ : I — R? telle que p(x0) = (yo, 20) et f(z,o(z)) = (0,0)
pour tout x € I.

Ezxercice 8.5. Décrire 'allure de I'ensemble C = {(z,y) € R? [2* +y* —a? —y? + 2 —y =0}
au voisinage des points (0,0) et (1,1).

Ezercice 8.6. On considére la courbe C d’équation 3 —2xy+2y% — 1. Déterminer I’équation
de la tangente a cette courbe au point (1,1) et préciser la position de la courbe par rapport
a cette tangente.

Ezxercice 8.7. On considére le systéme d’équations

4+ o+ ot o+ 2 =0,
2+ 2+ 22+t = 2
x + yv + z 4+ t = 0

1. Montrer qu’il existe un voisinage V de (0,-1,1,0) et une fonction ¢ : t — (x(¢), y(t), y(t))
de classe C'! au voisinage de 0 tels que (z,y, 2,t) € V est solution du systéme si et seulement
st (z,y,2) = p(t).

2. Calculer la dérivée de ¢ en 0.

Ezercice 8.8. On considére 'application f : R® — R définie par
fz,y,2) = 2® —ay® —y?2 + 2%,

puis la surface § d’équation f(z,y,z) = 0.

1. Déterminer 1’équation du plan tangent a S au point (1,1,1).

2. Vérifier qu’au voisinage du point (1,1,1), la surface S est décrite par une équation de la
forme z = ¢(x,y) ol ¢ est une fonction de classe C*° définie au voisinage de (1,1).

3. Ecrire le développement limité de ¢ a I'ordre 2 au point (1,1).

4. Donner la matrice Hessienne de ¢ au point (1,1).

5. Quelle est la position de S par rapport a son plan tangent au point (1,1).

Ezxercice 8.9. Soient a,b € R avec a < b. Montrer que pour € > 0 assez petit I’équation
(¥ —a)(b—x) + ex® = 0 admet trois solutions distinctes (qu’on note x1(g), z2(g) et x3(e)
avec 1(g) < x22(¢€) < x3(¢)). Donner un développement asymptotique de x;, 9 et 23 jusqu’a
Iordre 0(g?).

Ezxercice 8.10. Soient n € N* est Ay € M, (R) une matrice possédant n valeurs propres
réelles distinctes. Montrer que si A € M, (R) est proche de Ag, alors A posséde également n
valeurs propres réelles distinctes, et ces valeurs propres dépendent continuement de A.
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